--- a/src/HOL/NumberTheory/Euler.thy Mon Dec 17 18:24:44 2007 +0100
+++ b/src/HOL/NumberTheory/Euler.thy Mon Dec 17 18:27:48 2007 +0100
@@ -91,9 +91,7 @@
apply (auto simp add: MultInvPair_def)
apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
apply auto
- apply (simp only: StandardRes_prop2)
- apply (drule MultInvPair_distinct)
- apply auto back
+ apply (metis MultInvPair_distinct Pls_def StandardRes_prop2 int_0_less_1 less_Pls_Bit0 number_of_is_id one_is_num_one order_less_trans)
done
@@ -297,15 +295,14 @@
[x^(nat (((p) - 1) div 2)) = 1](mod p)"
apply (subgoal_tac "p \<in> zOdd")
apply (auto simp add: QuadRes_def)
+ prefer 2
+ apply (metis number_of_is_id numeral_1_eq_1 zprime_zOdd_eq_grt_2)
apply (frule aux__1, auto)
apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
- apply (auto simp add: zpower_zpower)
+ apply (auto simp add: zpower_zpower)
apply (rule zcong_trans)
apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
- apply (simp add: aux__2)
- apply (frule odd_minus_one_even)
- apply (frule even_div_2_prop2)
- apply (auto intro: Little_Fermat simp add: zprime_zOdd_eq_grt_2)
+ apply (metis Little_Fermat even_div_2_prop2 mult_num0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2)
done
--- a/src/HOL/NumberTheory/Int2.thy Mon Dec 17 18:24:44 2007 +0100
+++ b/src/HOL/NumberTheory/Int2.thy Mon Dec 17 18:27:48 2007 +0100
@@ -124,13 +124,7 @@
lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m);
x < m; y < m |] ==> x = y"
- apply (simp add: zcong_zmod_eq)
- apply (subgoal_tac "(x mod m) = x")
- apply (subgoal_tac "(y mod m) = y")
- apply simp
- apply (rule_tac [1-2] mod_pos_pos_trivial)
- apply auto
- done
+ by (metis zcong_not zcong_sym zless_linear)
lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==>
~([x = 1] (mod p))"