Replace algebra_eqI by algebra.equality;
Move sets_sigma_subset to Sigma_Algebra;
--- a/src/HOL/Probability/Borel_Space.thy Wed Dec 01 19:42:09 2010 +0100
+++ b/src/HOL/Probability/Borel_Space.thy Wed Dec 01 20:09:41 2010 +0100
@@ -6,12 +6,6 @@
imports Sigma_Algebra Positive_Infinite_Real Multivariate_Analysis
begin
-lemma (in sigma_algebra) sets_sigma_subset:
- assumes "space N = space M"
- assumes "sets N \<subseteq> sets M"
- shows "sets (sigma N) \<subseteq> sets M"
- by (unfold assms sets_sigma, rule sigma_sets_subset, rule assms)
-
lemma LIMSEQ_max:
"u ----> (x::real) \<Longrightarrow> (\<lambda>i. max (u i) 0) ----> max x 0"
by (fastsimp intro!: LIMSEQ_I dest!: LIMSEQ_D)
@@ -612,13 +606,10 @@
then show ?thesis by (intro sets_sigma_subset) auto
qed
-lemma algebra_eqI: assumes "sets A = sets (B::'a algebra)" "space A = space B"
- shows "A = B" using assms by auto
-
lemma borel_eq_atMost:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> a. {.. a::'a\<Colon>ordered_euclidean_space})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using halfspace_le_span_atMost halfspace_span_halfspace_le open_span_halfspace
by auto
@@ -629,7 +620,7 @@
lemma borel_eq_atLeastAtMost:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space, b). {a .. b})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using atMost_span_atLeastAtMost halfspace_le_span_atMost
halfspace_span_halfspace_le open_span_halfspace
@@ -641,7 +632,7 @@
lemma borel_eq_greaterThan:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space). {a <..})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using halfspace_le_span_greaterThan
halfspace_span_halfspace_le open_span_halfspace
@@ -653,7 +644,7 @@
lemma borel_eq_lessThan:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a :: 'a\<Colon>ordered_euclidean_space). {..< a})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using halfspace_le_span_lessThan
halfspace_span_halfspace_ge open_span_halfspace
@@ -665,7 +656,7 @@
lemma borel_eq_greaterThanLessThan:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, b). {a <..< (b :: 'a \<Colon> ordered_euclidean_space)})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets ?SIGMA \<subseteq> sets borel"
by (rule borel.sets_sigma_subset) auto
show "sets borel \<subseteq> sets ?SIGMA"
@@ -686,7 +677,7 @@
lemma borel_eq_halfspace_le:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. x$$i \<le> a})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using open_span_halfspace halfspace_span_halfspace_le by auto
show "sets ?SIGMA \<subseteq> sets borel"
@@ -696,7 +687,7 @@
lemma borel_eq_halfspace_less:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. x$$i < a})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using open_span_halfspace .
show "sets ?SIGMA \<subseteq> sets borel"
@@ -706,7 +697,7 @@
lemma borel_eq_halfspace_gt:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. a < x$$i})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using halfspace_le_span_halfspace_gt open_span_halfspace halfspace_span_halfspace_le by auto
show "sets ?SIGMA \<subseteq> sets borel"
@@ -716,7 +707,7 @@
lemma borel_eq_halfspace_ge:
"borel = (sigma \<lparr>space=UNIV, sets=range (\<lambda> (a, i). {x::'a::ordered_euclidean_space. a \<le> x$$i})\<rparr>)"
(is "_ = ?SIGMA")
-proof (rule algebra_eqI, rule antisym)
+proof (intro algebra.equality antisym)
show "sets borel \<subseteq> sets ?SIGMA"
using halfspace_span_halfspace_ge open_span_halfspace by auto
show "sets ?SIGMA \<subseteq> sets borel"
--- a/src/HOL/Probability/Sigma_Algebra.thy Wed Dec 01 19:42:09 2010 +0100
+++ b/src/HOL/Probability/Sigma_Algebra.thy Wed Dec 01 20:09:41 2010 +0100
@@ -397,6 +397,12 @@
by (auto intro: sigma_sets.Empty sigma_sets_top)
qed
+lemma (in sigma_algebra) sets_sigma_subset:
+ assumes "space N = space M"
+ assumes "sets N \<subseteq> sets M"
+ shows "sets (sigma N) \<subseteq> sets M"
+ by (unfold assms sets_sigma, rule sigma_sets_subset, rule assms)
+
section {* Measurable functions *}
definition
@@ -1149,7 +1155,6 @@
section {* Dynkin systems *}
-
locale dynkin_system =
fixes M :: "'a algebra"
assumes space_closed: "sets M \<subseteq> Pow (space M)"