more code lemmas by Rene Thiemann
authornipkow
Mon, 03 Mar 2014 16:44:46 +0100
changeset 55887 25bd4745ee38
parent 55886 b11b358fec57
child 55888 cac1add157e8
more code lemmas by Rene Thiemann
src/HOL/Library/DAList_Multiset.thy
--- a/src/HOL/Library/DAList_Multiset.thy	Mon Mar 03 15:14:00 2014 +0100
+++ b/src/HOL/Library/DAList_Multiset.thy	Mon Mar 03 16:44:46 2014 +0100
@@ -231,12 +231,17 @@
 lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<le> m2 \<and> m2 \<le> m1"
 by (metis equal_multiset_def eq_iff)
 
-lemma mset_less_eq_Bag [code]:
+text{* By default the code for @{text "<"} is @{prop"xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys"}.
+With equality implemented by @{text"\<le>"}, this leads to three calls of  @{text"\<le>"}.
+Here is a more efficient version: *}
+lemma mset_less[code]: "xs < (ys :: 'a multiset) \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs" 
+by (rule less_le_not_le)
+
+lemma mset_less_eq_Bag0:
   "Bag xs \<le> A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)"
     (is "?lhs \<longleftrightarrow> ?rhs")
 proof
-  assume ?lhs then show ?rhs
-    by (auto simp add: mset_le_def)
+  assume ?lhs thus ?rhs by (auto simp add: mset_le_def)
 next
   assume ?rhs
   show ?lhs
@@ -244,15 +249,177 @@
     fix x
     from `?rhs` have "count_of (DAList.impl_of xs) x \<le> count A x"
       by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty)
-    then show "count (Bag xs) x \<le> count A x"
-      by (simp add: mset_le_def)
+    thus "count (Bag xs) x \<le> count A x" by (simp add: mset_le_def)
   qed
 qed
 
+lemma mset_less_eq_Bag [code]:
+  "Bag xs \<le> (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)"
+proof -
+  {
+    fix x n
+    assume "(x,n) \<in> set (DAList.impl_of xs)"
+    hence "count_of (DAList.impl_of xs) x = n" 
+    proof (transfer)
+      fix x n and xs :: "('a \<times> nat) list"
+      show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n"
+      proof (induct xs) 
+        case (Cons ym ys)        
+        obtain y m where ym: "ym = (y,m)" by force
+        note Cons = Cons[unfolded ym]
+        show ?case
+        proof (cases "x = y")
+          case False
+          with Cons show ?thesis unfolding ym by auto
+        next
+          case True
+          with Cons(2-3) have "m = n" by force
+          with True show ?thesis unfolding ym by auto
+        qed
+      qed auto
+    qed
+  }
+  thus ?thesis unfolding mset_less_eq_Bag0 by auto
+qed
+
 declare multiset_inter_def [code]
 declare sup_multiset_def [code]
 declare multiset_of.simps [code]
 
+
+fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat)list \<Rightarrow> 'b" where
+  "fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)"
+| "fold_impl fn e [] = e"
+
+definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat)alist \<Rightarrow> 'b" where
+"fold f e al = fold_impl f e (DAList.impl_of al)"
+
+hide_const (open) fold
+
+context comp_fun_commute
+begin
+
+lemma DAList_Multiset_fold: assumes fn: "\<And> a n x. fn a n x = (f a ^^ n) x"
+  shows "Multiset.fold f e (Bag al) = DAList_Multiset.fold fn e al"
+unfolding DAList_Multiset.fold_def
+proof (induct al)
+  fix ys
+  let ?inv = "{xs :: ('a \<times> nat)list. (distinct \<circ> map fst) xs}"
+  note cs[simp del] = count_simps
+  have count[simp]: "\<And> x. count (Abs_multiset (count_of x)) = count_of x"
+    by (rule Abs_multiset_inverse[OF count_of_multiset])
+  assume ys: "ys \<in> ?inv"
+  thus "Multiset.fold f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))"
+    unfolding Bag_def unfolding Alist_inverse[OF ys]
+  proof (induct ys arbitrary: e rule: list.induct)
+    case Nil
+    show ?case
+      by (rule trans[OF arg_cong[of _ "{#}" "Multiset.fold f e", OF multiset_eqI]])
+         (auto, simp add: cs)
+  next
+    case (Cons pair ys e)
+    obtain a n where pair: "pair = (a,n)" by force
+    from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" by auto
+    have inv: "ys \<in> ?inv" using Cons(2) by auto
+    note IH = Cons(1)[OF inv]
+    def Ys \<equiv> "Abs_multiset (count_of ys)"
+    have id: "Abs_multiset (count_of ((a, n) # ys)) = ((op + {# a #}) ^^ n) Ys"
+      unfolding Ys_def
+    proof (rule multiset_eqI, unfold count)
+      fix c      
+      show "count_of ((a, n) # ys) c = count ((op + {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r")
+      proof (cases "c = a")
+        case False thus ?thesis unfolding cs by (induct n) auto
+      next
+        case True
+        hence "?l = n" by (simp add: cs)
+        also have "n = ?r" unfolding True
+        proof (induct n)
+          case 0
+          from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto
+          thus ?case by (induct ys) (simp, auto simp: cs)
+        qed auto
+        finally show ?thesis .
+      qed
+    qed
+    show ?case unfolding pair    
+      by (simp add: IH[symmetric], unfold id Ys_def[symmetric],
+      induct n, auto simp: fold_mset_fun_left_comm[symmetric])
+  qed
+qed
+
+end 
+
+lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a,'b)alist" is "\<lambda> a b. [(a,b)]" by auto
+
+lemma image_mset_Bag[code]:
+  "image_mset f (Bag ms) =
+   DAList_Multiset.fold (\<lambda> a n m. Bag (single_alist_entry (f a) n) + m) {#} ms"
+unfolding image_mset_def 
+proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1])
+  fix a n m
+  show "Bag (single_alist_entry (f a) n) + m = ((op + \<circ> single \<circ> f) a ^^ n) m" (is "?l = ?r")
+  proof (rule multiset_eqI)
+    fix x
+    have "count ?r x = (if x = f a then n + count m x else count m x)"
+      by (induct n, auto)
+    also have "\<dots> = count ?l x" by (simp add: single_alist_entry.rep_eq)
+    finally show "count ?l x = count ?r x" ..
+  qed
+qed
+
+hide_const single_alist_entry
+
+(* we cannot use (\<lambda> a n. op + (a * n)) for folding, since * is not defined
+   in comm_monoid_add *)
+lemma msetsum_Bag[code]:
+  "msetsum (Bag ms) = DAList_Multiset.fold (\<lambda> a n. ((op + a) ^^ n)) 0 ms"
+unfolding msetsum.eq_fold
+by (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, auto simp: ac_simps)
+
+(* we cannot use (\<lambda> a n. op * (a ^ n)) for folding, since ^ is not defined
+   in comm_monoid_mult *)
+lemma msetprod_Bag[code]:
+  "msetprod (Bag ms) = DAList_Multiset.fold (\<lambda> a n. ((op * a) ^^ n)) 1 ms"
+unfolding msetprod.eq_fold
+by (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, auto simp: ac_simps)
+
+lemma mcard_fold: "mcard A = Multiset.fold (\<lambda> _. Suc) 0 A" (is "_ = Multiset.fold ?f _ _")
+proof -
+  interpret comp_fun_commute ?f by (default, auto)
+  show ?thesis by (induct A) auto
+qed
+
+lemma mcard_Bag[code]:
+  "mcard (Bag ms) = DAList_Multiset.fold (\<lambda> a n. op + n) 0 ms"
+unfolding mcard_fold
+proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp)
+  fix a n x
+  show "n + x = (Suc ^^ n) x" by (induct n) auto
+qed
+
+
+lemma set_of_fold: "set_of A = Multiset.fold insert {} A" (is "_ = Multiset.fold ?f _ _")
+proof -
+  interpret comp_fun_commute ?f by (default, auto)
+  show ?thesis by (induct A, auto)
+qed
+
+lemma set_of_Bag[code]:
+  "set_of (Bag ms) = DAList_Multiset.fold (\<lambda> a n. (if n = 0 then (\<lambda> m. m) else insert a)) {} ms"
+unfolding set_of_fold
+proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1])
+  fix a n x
+  show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n")
+  proof (cases n)
+    case (Suc m)
+    hence "?l n = insert a x" by simp
+    moreover have "?r n = insert a x" unfolding Suc by (induct m) auto
+    ultimately show ?thesis by auto
+  qed auto
+qed
+
+
 instantiation multiset :: (exhaustive) exhaustive
 begin