removed duplicate lemmas
authorManuel Eberl <manuel@pruvisto.org>
Wed, 16 Apr 2025 11:38:38 +0200
changeset 82519 2886a76359f3
parent 82518 da14e77a48b2
child 82521 819688d4cc45
removed duplicate lemmas
src/HOL/Analysis/Gamma_Function.thy
src/HOL/Library/Nonpos_Ints.thy
--- a/src/HOL/Analysis/Gamma_Function.thy	Tue Apr 15 17:38:20 2025 +0200
+++ b/src/HOL/Analysis/Gamma_Function.thy	Wed Apr 16 11:38:38 2025 +0200
@@ -2096,7 +2096,7 @@
   } note lim = this
 
   from assms double_in_nonpos_Ints_imp[of z] have z': "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
-  from fraction_not_in_ints[of 2 1] have "(1/2 :: 'a) \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  from fraction_not_in_Ints[of 2 1] have "(1/2 :: 'a) \<notin> \<int>\<^sub>\<le>\<^sub>0"
     by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all
   with lim[of "1/2 :: 'a"] have "?h \<longlonglongrightarrow> 2 * Gamma (1/2 :: 'a)" by (simp add: exp_of_real)
   from LIMSEQ_unique[OF this lim[OF assms]] z' show ?thesis
@@ -2388,9 +2388,9 @@
     case True
     with that have "z = 0 \<or> z = 1" by (force elim!: Ints_cases)
     moreover have "g 0 * g (1/2) = Gamma (1/2)^2 * g 0"
-      using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square)
+      using fraction_not_in_Ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square)
     moreover have "g (1/2) * g 1 = Gamma (1/2)^2 * g 1"
-        using fraction_not_in_ints[where 'a = complex, of 2 1]
+        using fraction_not_in_Ints[where 'a = complex, of 2 1]
         by (simp add: g_def power2_eq_square Beta_def algebra_simps)
     ultimately show ?thesis by force
   next
@@ -2457,7 +2457,7 @@
       by (subst (1 2) g_eq[symmetric]) simp
     from DERIV_cmult[OF this, of "inverse ((Gamma (1/2))^2)"]
       have "(g has_field_derivative (g z * ((h (z/2) + h ((z+1)/2))/2))) (at z)"
-      using fraction_not_in_ints[where 'a = complex, of 2 1]
+      using fraction_not_in_Ints[where 'a = complex, of 2 1]
       by (simp add: divide_simps Gamma_eq_zero_iff not_in_Ints_imp_not_in_nonpos_Ints)
     moreover have "(g has_field_derivative (g z * h z)) (at z)"
       using g_g'[of z] by (simp add: ac_simps)
@@ -2596,7 +2596,7 @@
 
 lemma Gamma_one_half_real: "Gamma (1/2 :: real) = sqrt pi"
 proof -
-  from Gamma_reflection_complex[of "1/2"] fraction_not_in_ints[where 'a = complex, of 2 1]
+  from Gamma_reflection_complex[of "1/2"] fraction_not_in_Ints[where 'a = complex, of 2 1]
     have "Gamma (1/2 :: complex)^2 = of_real pi" by (simp add: power2_eq_square)
   hence "of_real pi = Gamma (complex_of_real (1/2))^2" by simp
   also have "\<dots> = of_real ((Gamma (1/2))^2)" by (subst Gamma_complex_of_real) simp_all
--- a/src/HOL/Library/Nonpos_Ints.thy	Tue Apr 15 17:38:20 2025 +0200
+++ b/src/HOL/Library/Nonpos_Ints.thy	Wed Apr 16 11:38:38 2025 +0200
@@ -329,19 +329,7 @@
   finally show ?thesis .
 qed
 
-lemma fraction_not_in_ints:
-  assumes "\<not>(n dvd m)" "n \<noteq> 0"
-  shows   "of_int m / of_int n \<notin> (\<int> :: 'a :: {division_ring,ring_char_0} set)"
-proof
-  assume "of_int m / (of_int n :: 'a) \<in> \<int>"
-  then obtain k where "of_int m / of_int n = (of_int k :: 'a)" by (elim Ints_cases)
-  with assms have "of_int m = (of_int (k * n) :: 'a)" by (auto simp add: field_split_simps)
-  hence "m = k * n" by (subst (asm) of_int_eq_iff)
-  hence "n dvd m" by simp
-  with assms(1) show False by contradiction
-qed
-
-lemma fraction_not_in_nats:
+lemma fraction_not_in_Nats:
   assumes "\<not>n dvd m" "n \<noteq> 0"
   shows   "of_int m / of_int n \<notin> (\<nat> :: 'a :: {division_ring,ring_char_0} set)"
 proof
@@ -349,7 +337,7 @@
   also note Nats_subset_Ints
   finally have "of_int m / of_int n \<in> (\<int> :: 'a set)" .
   moreover have "of_int m / of_int n \<notin> (\<int> :: 'a set)"
-    using assms by (intro fraction_not_in_ints)
+    using assms by (intro fraction_not_in_Ints)
   ultimately show False by contradiction
 qed
 
@@ -369,7 +357,7 @@
    \<longleftrightarrow> (numeral b :: int) dvd numeral a"  (is "?L=?R")
 proof
   show "?L \<Longrightarrow> ?R"
-    by (metis fraction_not_in_ints of_int_numeral zero_neq_numeral)
+    by (metis fraction_not_in_Ints of_int_numeral zero_neq_numeral)
   assume ?R
   then obtain k::int where "numeral a = numeral b * (of_int k :: 'a)"
     unfolding dvd_def by (metis of_int_mult of_int_numeral)