Divides.ML -> Divides_lemmas.ML
authornipkow
Wed, 15 May 2002 13:49:51 +0200
changeset 13152 2a54f99b44b3
parent 13151 0f1c6fa846f2
child 13153 4b052946b41c
Divides.ML -> Divides_lemmas.ML Converted Divides.thy to Isar.
src/HOL/Divides.ML
src/HOL/Divides.thy
src/HOL/IsaMakefile
--- a/src/HOL/Divides.ML	Wed May 15 11:51:20 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,682 +0,0 @@
-(*  Title:      HOL/Divides.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-The division operators div, mod and the divides relation "dvd"
-*)
-
-
-(** Less-then properties **)
-
-bind_thm ("wf_less_trans", [eq_reflection, wf_pred_nat RS wf_trancl] MRS 
-                    def_wfrec RS trans);
-
-Goal "(%m. m mod n) = wfrec (trancl pred_nat) \
-\                           (%f j. if j<n | n=0 then j else f (j-n))";
-by (simp_tac (simpset() addsimps [mod_def]) 1);
-qed "mod_eq";
-
-Goal "(%m. m div n) = wfrec (trancl pred_nat) \
-\            (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))";
-by (simp_tac (simpset() addsimps [div_def]) 1);
-qed "div_eq";
-
-
-(** Aribtrary definitions for division by zero.  Useful to simplify 
-    certain equations **)
-
-Goal "a div 0 = (0::nat)";
-by (rtac (div_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "DIVISION_BY_ZERO_DIV";  (*NOT for adding to default simpset*)
-
-Goal "a mod 0 = (a::nat)";
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "DIVISION_BY_ZERO_MOD";  (*NOT for adding to default simpset*)
-
-fun div_undefined_case_tac s i =
-  case_tac s i THEN 
-  Full_simp_tac (i+1) THEN
-  asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_DIV, 
-				    DIVISION_BY_ZERO_MOD]) i;
-
-(*** Remainder ***)
-
-Goal "m<n ==> m mod n = (m::nat)";
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "mod_less";
-Addsimps [mod_less];
-
-Goal "~ m < (n::nat) ==> m mod n = (m-n) mod n";
-by (div_undefined_case_tac "n=0" 1);
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
-qed "mod_geq";
-
-(*Avoids the ugly ~m<n above*)
-Goal "(n::nat) <= m ==> m mod n = (m-n) mod n";
-by (asm_simp_tac (simpset() addsimps [mod_geq, not_less_iff_le]) 1);
-qed "le_mod_geq";
-
-Goal "m mod (n::nat) = (if m<n then m else (m-n) mod n)";
-by (asm_simp_tac (simpset() addsimps [mod_geq]) 1);
-qed "mod_if";
-
-Goal "m mod Suc 0 = 0";
-by (induct_tac "m" 1);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_geq])));
-qed "mod_1";
-Addsimps [mod_1];
-
-Goal "n mod n = (0::nat)";
-by (div_undefined_case_tac "n=0" 1);
-by (asm_simp_tac (simpset() addsimps [mod_geq]) 1);
-qed "mod_self";
-Addsimps [mod_self];
-
-Goal "(m+n) mod n = m mod (n::nat)";
-by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1);
-by (stac (mod_geq RS sym) 2);
-by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute])));
-qed "mod_add_self2";
-
-Goal "(n+m) mod n = m mod (n::nat)";
-by (asm_simp_tac (simpset() addsimps [add_commute, mod_add_self2]) 1);
-qed "mod_add_self1";
-
-Addsimps [mod_add_self1, mod_add_self2];
-
-Goal "(m + k*n) mod n = m mod (n::nat)";
-by (induct_tac "k" 1);
-by (ALLGOALS
-    (asm_simp_tac 
-     (simpset() addsimps [read_instantiate [("y","n")] add_left_commute])));
-qed "mod_mult_self1";
-
-Goal "(m + n*k) mod n = m mod (n::nat)";
-by (asm_simp_tac (simpset() addsimps [mult_commute, mod_mult_self1]) 1);
-qed "mod_mult_self2";
-
-Addsimps [mod_mult_self1, mod_mult_self2];
-
-Goal "(m mod n) * (k::nat) = (m*k) mod (n*k)";
-by (div_undefined_case_tac "n=0" 1);
-by (div_undefined_case_tac "k=0" 1);
-by (induct_thm_tac nat_less_induct "m" 1);
-by (stac mod_if 1);
-by (Asm_simp_tac 1);
-by (asm_simp_tac (simpset() addsimps [mod_geq, 
-				      diff_less, diff_mult_distrib]) 1);
-qed "mod_mult_distrib";
-
-Goal "(k::nat) * (m mod n) = (k*m) mod (k*n)";
-by (asm_simp_tac 
-    (simpset() addsimps [read_instantiate [("m","k")] mult_commute, 
-			 mod_mult_distrib]) 1);
-qed "mod_mult_distrib2";
-
-Goal "(m*n) mod n = (0::nat)";
-by (div_undefined_case_tac "n=0" 1);
-by (induct_tac "m" 1);
-by (Asm_simp_tac 1);
-by (rename_tac "k" 1);
-by (cut_inst_tac [("m","k*n"),("n","n")] mod_add_self2 1);
-by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1);
-qed "mod_mult_self_is_0";
-
-Goal "(n*m) mod n = (0::nat)";
-by (simp_tac (simpset() addsimps [mult_commute, mod_mult_self_is_0]) 1);
-qed "mod_mult_self1_is_0";
-Addsimps [mod_mult_self_is_0, mod_mult_self1_is_0];
-
-
-(*** Quotient ***)
-
-Goal "m<n ==> m div n = (0::nat)";
-by (rtac (div_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "div_less";
-Addsimps [div_less];
-
-Goal "[| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
-by (rtac (div_eq RS wf_less_trans) 1);
-by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1);
-qed "div_geq";
-
-(*Avoids the ugly ~m<n above*)
-Goal "[| 0<n;  n<=m |] ==> m div n = Suc((m-n) div n)";
-by (asm_simp_tac (simpset() addsimps [div_geq, not_less_iff_le]) 1);
-qed "le_div_geq";
-
-Goal "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))";
-by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
-qed "div_if";
-
-
-(*Main Result about quotient and remainder.*)
-Goal "(m div n)*n + m mod n = (m::nat)";
-by (div_undefined_case_tac "n=0" 1);
-by (induct_thm_tac nat_less_induct "m" 1);
-by (stac mod_if 1);
-by (ALLGOALS (asm_simp_tac 
-	      (simpset() addsimps [add_assoc, div_geq,
-				   add_diff_inverse, diff_less])));
-qed "mod_div_equality";
-
-(* a simple rearrangement of mod_div_equality: *)
-Goal "(n::nat) * (m div n) = m - (m mod n)";
-by (cut_inst_tac [("m","m"),("n","n")] mod_div_equality 1);
-by (full_simp_tac (simpset() addsimps mult_ac) 1);
-by (arith_tac 1);
-qed "mult_div_cancel";
-
-Goal "0<n ==> m mod n < (n::nat)";
-by (induct_thm_tac nat_less_induct "m" 1);
-by (case_tac "na<n" 1);
-(*case n le na*)
-by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 2);
-(*case na<n*)
-by (Asm_simp_tac 1);
-qed "mod_less_divisor";
-Addsimps [mod_less_divisor];
-
-(*** More division laws ***)
-
-Goal "0<n ==> (m*n) div n = (m::nat)";
-by (cut_inst_tac [("m", "m*n"),("n","n")] mod_div_equality 1);
-by Auto_tac;
-qed "div_mult_self_is_m";
-
-Goal "0<n ==> (n*m) div n = (m::nat)";
-by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self_is_m]) 1);
-qed "div_mult_self1_is_m";
-Addsimps [div_mult_self_is_m, div_mult_self1_is_m];
-
-(*mod_mult_distrib2 above is the counterpart for remainder*)
-
-
-(*** Proving facts about div and mod using quorem ***)
-
-Goal "[| b*q' + r'  <= b*q + r;  0 < b;  r < b |] \
-\     ==> q' <= (q::nat)";
-by (rtac leI 1); 
-by (stac less_iff_Suc_add 1);
-by (auto_tac (claset(), simpset() addsimps [add_mult_distrib2]));   
-qed "unique_quotient_lemma";
-
-Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |] \
-\     ==> q = q'";
-by (asm_full_simp_tac 
-    (simpset() addsimps split_ifs @ [Divides.quorem_def]) 1);
-by Auto_tac;  
-by (REPEAT 
-    (blast_tac (claset() addIs [order_antisym]
-			 addDs [order_eq_refl RS unique_quotient_lemma, 
-				sym]) 1));
-qed "unique_quotient";
-
-Goal "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |] \
-\     ==> r = r'";
-by (subgoal_tac "q = q'" 1);
-by (blast_tac (claset() addIs [unique_quotient]) 2);
-by (asm_full_simp_tac (simpset() addsimps [Divides.quorem_def]) 1);
-qed "unique_remainder";
-
-Goal "0 < b ==> quorem ((a, b), (a div b, a mod b))";
-by (cut_inst_tac [("m","a"),("n","b")] mod_div_equality 1);
-by (auto_tac
-    (claset() addEs [sym],
-     simpset() addsimps mult_ac@[Divides.quorem_def]));
-qed "quorem_div_mod";
-
-Goal "[| quorem((a,b),(q,r));  0 < b |] ==> a div b = q";
-by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_quotient]) 1);
-qed "quorem_div";
-
-Goal "[| quorem((a,b),(q,r));  0 < b |] ==> a mod b = r";
-by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_remainder]) 1);
-qed "quorem_mod";
-
-(** A dividend of zero **)
-
-Goal "0 div m = (0::nat)";
-by (div_undefined_case_tac "m=0" 1);
-by (Asm_simp_tac 1);
-qed "div_0"; 
-
-Goal "0 mod m = (0::nat)";
-by (div_undefined_case_tac "m=0" 1);
-by (Asm_simp_tac 1);
-qed "mod_0"; 
-Addsimps [div_0, mod_0];
-
-(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
-
-Goal "[| quorem((b,c),(q,r));  0 < c |] \
-\     ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))";
-by (cut_inst_tac [("m", "a*r"), ("n","c")] mod_div_equality 1);
-by (auto_tac
-    (claset(),
-     simpset() addsimps split_ifs@mult_ac@
-                        [Divides.quorem_def, add_mult_distrib2]));
-val lemma = result();
-
-Goal "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)";
-by (div_undefined_case_tac "c = 0" 1);
-by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
-qed "div_mult1_eq";
-
-Goal "(a*b) mod c = a*(b mod c) mod (c::nat)";
-by (div_undefined_case_tac "c = 0" 1);
-by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
-qed "mod_mult1_eq";
-
-Goal "(a*b) mod (c::nat) = ((a mod c) * b) mod c";
-by (rtac trans 1);
-by (res_inst_tac [("s","b*a mod c")] trans 1);
-by (rtac mod_mult1_eq 2);
-by (ALLGOALS (simp_tac (simpset() addsimps [mult_commute])));
-qed "mod_mult1_eq'";
-
-Goal "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c";
-by (rtac (mod_mult1_eq' RS trans) 1);
-by (rtac mod_mult1_eq 1);
-qed "mod_mult_distrib_mod";
-
-(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
-
-Goal "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  0 < c |] \
-\     ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))";
-by (cut_inst_tac [("m", "ar+br"), ("n","c")] mod_div_equality 1);
-by (auto_tac
-    (claset(),
-     simpset() addsimps split_ifs@mult_ac@
-                        [Divides.quorem_def, add_mult_distrib2]));
-val lemma = result();
-
-(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
-Goal "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)";
-by (div_undefined_case_tac "c = 0" 1);
-by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
-			       MRS lemma RS quorem_div]) 1);
-qed "div_add1_eq";
-
-Goal "(a+b) mod (c::nat) = (a mod c + b mod c) mod c";
-by (div_undefined_case_tac "c = 0" 1);
-by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
-			       MRS lemma RS quorem_mod]) 1);
-qed "mod_add1_eq";
-
-
-(*** proving  a div (b*c) = (a div b) div c ***)
-
-(** first, a lemma to bound the remainder **)
-
-Goal "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c";
-by (cut_inst_tac [("m","q"),("n","c")] mod_less_divisor 1);
-by (dres_inst_tac [("m","q mod c")] less_imp_Suc_add 2); 
-by Auto_tac;  
-by (eres_inst_tac [("P","%x. ?lhs < ?rhs x")] ssubst 1); 
-by (asm_simp_tac (simpset() addsimps [add_mult_distrib2]) 1);
-val mod_lemma = result();
-
-Goal "[| quorem ((a,b), (q,r));  0 < b;  0 < c |] \
-\     ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))";
-by (cut_inst_tac [("m", "q"), ("n","c")] mod_div_equality 1);
-by (auto_tac  
-    (claset(),
-     simpset() addsimps mult_ac@
-                        [Divides.quorem_def, add_mult_distrib2 RS sym,
-			 mod_lemma]));
-val lemma = result();
-
-Goal "a div (b*c) = (a div b) div (c::nat)";
-by (div_undefined_case_tac "b=0" 1);
-by (div_undefined_case_tac "c=0" 1);
-by (force_tac (claset(),
-	       simpset() addsimps [quorem_div_mod RS lemma RS quorem_div]) 1);
-qed "div_mult2_eq";
-
-Goal "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)";
-by (div_undefined_case_tac "b=0" 1);
-by (div_undefined_case_tac "c=0" 1);
-by (cut_inst_tac [("m", "a"), ("n","b")] mod_div_equality 1);
-by (auto_tac (claset(),
-	       simpset() addsimps [mult_commute, 
-				   quorem_div_mod RS lemma RS quorem_mod]));
-qed "mod_mult2_eq";
-
-
-(*** Cancellation of common factors in "div" ***)
-
-Goal "[| (0::nat) < b;  0 < c |] ==> (c*a) div (c*b) = a div b";
-by (stac div_mult2_eq 1);
-by Auto_tac;
-val lemma1 = result();
-
-Goal "(0::nat) < c ==> (c*a) div (c*b) = a div b";
-by (div_undefined_case_tac "b = 0" 1);
-by (auto_tac
-    (claset(), 
-     simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff, 
-			 lemma1, lemma2]));
-qed "div_mult_mult1";
-
-Goal "(0::nat) < c ==> (a*c) div (b*c) = a div b";
-by (dtac div_mult_mult1 1);
-by (auto_tac (claset(), simpset() addsimps [mult_commute]));
-qed "div_mult_mult2";
-
-Addsimps [div_mult_mult1, div_mult_mult2];
-
-
-(*** Distribution of factors over "mod"
-
-Could prove these as in Integ/IntDiv.ML, but we already have
-mod_mult_distrib and mod_mult_distrib2 above!
-
-Goal "(c*a) mod (c*b) = (c::nat) * (a mod b)";
-qed "mod_mult_mult1";
-
-Goal "(a*c) mod (b*c) = (a mod b) * (c::nat)";
-qed "mod_mult_mult2";
- ***)
-
-(*** Further facts about div and mod ***)
-
-Goal "m div Suc 0 = m";
-by (induct_tac "m" 1);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_geq])));
-qed "div_1";
-Addsimps [div_1];
-
-Goal "0<n ==> n div n = (1::nat)";
-by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
-qed "div_self";
-Addsimps [div_self];
-
-Goal "0<n ==> (m+n) div n = Suc (m div n)";
-by (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n)" 1);
-by (stac (div_geq RS sym) 2);
-by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute])));
-qed "div_add_self2";
-
-Goal "0<n ==> (n+m) div n = Suc (m div n)";
-by (asm_simp_tac (simpset() addsimps [add_commute, div_add_self2]) 1);
-qed "div_add_self1";
-
-Goal "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n";
-by (stac div_add1_eq 1); 
-by (stac div_mult1_eq 1); 
-by (Asm_simp_tac 1); 
-qed "div_mult_self1";
-
-Goal "0<n ==> (m + n*k) div n = k + m div (n::nat)";
-by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self1]) 1);
-qed "div_mult_self2";
-
-Addsimps [div_mult_self1, div_mult_self2];
-
-(* Monotonicity of div in first argument *)
-Goal "ALL m::nat. m <= n --> (m div k) <= (n div k)";
-by (div_undefined_case_tac "k=0" 1);
-by (induct_thm_tac nat_less_induct "n" 1);
-by (Clarify_tac 1);
-by (case_tac "n<k" 1);
-(* 1  case n<k *)
-by (Asm_simp_tac 1);
-(* 2  case n >= k *)
-by (case_tac "m<k" 1);
-(* 2.1  case m<k *)
-by (Asm_simp_tac 1);
-(* 2.2  case m>=k *)
-by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1);
-qed_spec_mp "div_le_mono";
-
-(* Antimonotonicity of div in second argument *)
-Goal "!!m::nat. [| 0<m; m<=n |] ==> (k div n) <= (k div m)";
-by (subgoal_tac "0<n" 1);
- by (Asm_simp_tac 2);
-by (induct_thm_tac nat_less_induct "k" 1);
-by (rename_tac "k" 1);
-by (case_tac "k<n" 1);
- by (Asm_simp_tac 1);
-by (subgoal_tac "~(k<m)" 1);
- by (Asm_simp_tac 2);
-by (asm_simp_tac (simpset() addsimps [div_geq]) 1);
-by (subgoal_tac "(k-n) div n <= (k-m) div n" 1);
- by (REPEAT (ares_tac [div_le_mono,diff_le_mono2] 2));
-by (rtac le_trans 1);
-by (Asm_simp_tac 1);
-by (asm_simp_tac (simpset() addsimps [diff_less]) 1);
-qed "div_le_mono2";
-
-Goal "m div n <= (m::nat)";
-by (div_undefined_case_tac "n=0" 1);
-by (subgoal_tac "m div n <= m div 1" 1);
-by (Asm_full_simp_tac 1);
-by (rtac div_le_mono2 1);
-by (ALLGOALS Asm_simp_tac);
-qed "div_le_dividend";
-Addsimps [div_le_dividend];
-
-(* Similar for "less than" *)
-Goal "!!n::nat. 1<n ==> (0 < m) --> (m div n < m)";
-by (induct_thm_tac nat_less_induct "m" 1);
-by (rename_tac "m" 1);
-by (case_tac "m<n" 1);
- by (Asm_full_simp_tac 1);
-by (subgoal_tac "0<n" 1);
- by (Asm_simp_tac 2);
-by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1);
-by (case_tac "n<m" 1);
- by (subgoal_tac "(m-n) div n < (m-n)" 1);
-  by (REPEAT (ares_tac [impI,less_trans_Suc] 1));
-  by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
- by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1);
-(* case n=m *)
-by (subgoal_tac "m=n" 1);
- by (Asm_simp_tac 2);
-by (Asm_simp_tac 1);
-qed_spec_mp "div_less_dividend";
-Addsimps [div_less_dividend];
-
-(*** Further facts about mod (mainly for the mutilated chess board ***)
-
-Goal "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
-by (div_undefined_case_tac "n=0" 1);
-by (induct_thm_tac nat_less_induct "m" 1);
-by (case_tac "Suc(na)<n" 1);
-(* case Suc(na) < n *)
-by (forward_tac [lessI RS less_trans] 1 
-    THEN asm_simp_tac (simpset() addsimps [less_not_refl3]) 1);
-(* case n <= Suc(na) *)
-by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, le_Suc_eq, 
-					   mod_geq]) 1);
-by (auto_tac (claset(), 
-	      simpset() addsimps [Suc_diff_le, diff_less, le_mod_geq]));
-qed "mod_Suc";
-
-
-(************************************************)
-(** Divides Relation                           **)
-(************************************************)
-
-Goalw [dvd_def] "n = m * k ==> m dvd n";
-by (Blast_tac 1); 
-qed "dvdI";
-
-Goalw [dvd_def] "!!P. [|m dvd n;  !!k. n = m*k ==> P|] ==> P";
-by (Blast_tac 1); 
-qed "dvdE";
-
-Goalw [dvd_def] "m dvd (0::nat)";
-by (blast_tac (claset() addIs [mult_0_right RS sym]) 1);
-qed "dvd_0_right";
-AddIffs [dvd_0_right];
-
-Goalw [dvd_def] "0 dvd m ==> m = (0::nat)";
-by Auto_tac;
-qed "dvd_0_left";
-
-Goal "(0 dvd (m::nat)) = (m = 0)";
-by (blast_tac (claset() addIs [dvd_0_left]) 1); 
-qed "dvd_0_left_iff";
-AddIffs [dvd_0_left_iff];
-
-Goalw [dvd_def] "Suc 0 dvd k";
-by (Simp_tac 1);
-qed "dvd_1_left";
-AddIffs [dvd_1_left];
-
-Goal "(m dvd Suc 0) = (m = Suc 0)";
-by (simp_tac (simpset() addsimps [dvd_def]) 1); 
-qed "dvd_1_iff_1";
-Addsimps [dvd_1_iff_1];
-
-Goalw [dvd_def] "m dvd (m::nat)";
-by (blast_tac (claset() addIs [mult_1_right RS sym]) 1);
-qed "dvd_refl";
-Addsimps [dvd_refl];
-
-Goalw [dvd_def] "[| m dvd n; n dvd p |] ==> m dvd (p::nat)";
-by (blast_tac (claset() addIs [mult_assoc] ) 1);
-qed "dvd_trans";
-
-Goalw [dvd_def] "[| m dvd n; n dvd m |] ==> m = (n::nat)";
-by (force_tac (claset() addDs [mult_eq_self_implies_10],
-	       simpset() addsimps [mult_assoc, mult_eq_1_iff]) 1);
-qed "dvd_anti_sym";
-
-Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)";
-by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1);
-qed "dvd_add";
-
-Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)";
-by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1);
-qed "dvd_diff";
-
-Goal "[| k dvd m-n; k dvd n; n<=m |] ==> k dvd (m::nat)";
-by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1);
-by (blast_tac (claset() addIs [dvd_add]) 1);
-qed "dvd_diffD";
-
-Goal "[| k dvd m-n; k dvd m; n<=m |] ==> k dvd (n::nat)";
-by (dres_inst_tac [("m","m")] dvd_diff 1);
-by Auto_tac;  
-qed "dvd_diffD1";
-
-Goalw [dvd_def] "k dvd n ==> k dvd (m*n :: nat)";
-by (blast_tac (claset() addIs [mult_left_commute]) 1);
-qed "dvd_mult";
-
-Goal "k dvd m ==> k dvd (m*n :: nat)";
-by (stac mult_commute 1);
-by (etac dvd_mult 1);
-qed "dvd_mult2";
-
-(* k dvd (m*k) *)
-AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2];
-
-Goal "(k dvd n + k) = (k dvd (n::nat))";
-by (rtac iffI 1);
-by (etac dvd_add 2);
-by (rtac dvd_refl 2);
-by (subgoal_tac "n = (n+k)-k" 1);
-by  (Simp_tac 2);
-by (etac ssubst 1);
-by (etac dvd_diff 1);
-by (rtac dvd_refl 1);
-qed "dvd_reduce";
-
-Goalw [dvd_def] "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n";
-by (div_undefined_case_tac "n=0" 1);
-by Auto_tac; 
-by (blast_tac (claset() addIs [mod_mult_distrib2 RS sym]) 1);  
-qed "dvd_mod";
-
-Goal "[| (k::nat) dvd m mod n;  k dvd n |] ==> k dvd m";
-by (subgoal_tac "k dvd (m div n)*n + m mod n" 1);
-by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2);
-by (asm_full_simp_tac (simpset() addsimps [mod_div_equality]) 1);
-qed "dvd_mod_imp_dvd";
-
-Goal "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)";
-by (blast_tac (claset() addIs [dvd_mod_imp_dvd, dvd_mod]) 1); 
-qed "dvd_mod_iff";
-
-Goalw [dvd_def]  "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n";
-by (etac exE 1);
-by (asm_full_simp_tac (simpset() addsimps mult_ac) 1);
-qed "dvd_mult_cancel";
-
-Goal "0<m ==> (m*n dvd m) = (n = (1::nat))";
-by Auto_tac;  
-by (subgoal_tac "m*n dvd m*1" 1);
-by (dtac dvd_mult_cancel 1); 
-by Auto_tac;  
-qed "dvd_mult_cancel1";
-
-Goal "0<m ==> (n*m dvd m) = (n = (1::nat))";
-by (stac mult_commute 1); 
-by (etac dvd_mult_cancel1 1); 
-qed "dvd_mult_cancel2";
-
-Goalw [dvd_def] "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)";
-by (Clarify_tac 1);
-by (res_inst_tac [("x","k*ka")] exI 1);
-by (asm_simp_tac (simpset() addsimps mult_ac) 1);
-qed "mult_dvd_mono";
-
-Goalw [dvd_def] "(i*j :: nat) dvd k ==> i dvd k";
-by (full_simp_tac (simpset() addsimps [mult_assoc]) 1);
-by (Blast_tac 1);
-qed "dvd_mult_left";
-
-Goalw [dvd_def] "(i*j :: nat) dvd k ==> j dvd k";
-by (Clarify_tac 1);
-by (res_inst_tac [("x","i*k")] exI 1);
-by (simp_tac (simpset() addsimps mult_ac) 1);
-qed "dvd_mult_right";
-
-Goalw [dvd_def] "[| k dvd n; 0 < n |] ==> k <= (n::nat)";
-by (Clarify_tac 1);
-by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff])));
-by (etac conjE 1);
-by (rtac le_trans 1);
-by (rtac (le_refl RS mult_le_mono) 2);
-by (etac Suc_leI 2);
-by (Simp_tac 1);
-qed "dvd_imp_le";
-
-Goalw [dvd_def] "!!k::nat. (k dvd n) = (n mod k = 0)";
-by (div_undefined_case_tac "k=0" 1);
-by Safe_tac;
-by (asm_simp_tac (simpset() addsimps [mult_commute]) 1);
-by (res_inst_tac [("t","n"),("n1","k")] (mod_div_equality RS subst) 1);
-by (stac mult_commute 1);
-by (Asm_simp_tac 1);
-qed "dvd_eq_mod_eq_0";
-
-Goal "n dvd m ==> n * (m div n) = (m::nat)";
-by (subgoal_tac "m mod n = 0" 1);
- by (asm_full_simp_tac (simpset() addsimps [mult_div_cancel]) 1);
-by (asm_full_simp_tac (HOL_basic_ss addsimps [dvd_eq_mod_eq_0]) 1);
-qed "dvd_mult_div_cancel";
-
-Goal "(m mod d = 0) = (EX q::nat. m = d*q)";
-by (auto_tac (claset(), 
-     simpset() addsimps [dvd_eq_mod_eq_0 RS sym, dvd_def]));  
-qed "mod_eq_0_iff";
-AddSDs [mod_eq_0_iff RS iffD1];
-
-(*Loses information, namely we also have r<d provided d is nonzero*)
-Goal "(m mod d = r) ==> EX q::nat. m = r + q*d";
-by (cut_inst_tac [("m","m")] mod_div_equality 1);
-by (full_simp_tac (simpset() addsimps add_ac) 1); 
-by (blast_tac (claset() addIs [sym]) 1); 
-qed "mod_eqD";
-
--- a/src/HOL/Divides.thy	Wed May 15 11:51:20 2002 +0200
+++ b/src/HOL/Divides.thy	Wed May 15 13:49:51 2002 +0200
@@ -6,35 +6,33 @@
 The division operators div, mod and the divides relation "dvd"
 *)
 
-Divides = NatArith +
+theory Divides = NatArith files("Divides_lemmas.ML"):
 
 (*We use the same class for div and mod;
   moreover, dvd is defined whenever multiplication is*)
 axclass
   div < type
 
-instance  nat :: div
-instance  nat :: plus_ac0 (add_commute,add_assoc,add_0)
+instance  nat :: div ..
+instance  nat :: plus_ac0
+proof qed (rule add_commute add_assoc add_0)+
 
 consts
-  div  :: ['a::div, 'a]  => 'a          (infixl 70)
-  mod  :: ['a::div, 'a]  => 'a          (infixl 70)
-  dvd  :: ['a::times, 'a] => bool       (infixl 50) 
+  div  :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a"          (infixl 70)
+  mod  :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a"          (infixl 70)
+  dvd  :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool"      (infixl 50)
 
 
-(*Remainder and quotient are defined here by algorithms and later proved to
-  satisfy the traditional definition (theorem mod_div_equality)
-*)
 defs
 
-  mod_def   "m mod n == wfrec (trancl pred_nat)
+  mod_def:   "m mod n == wfrec (trancl pred_nat)
                           (%f j. if j<n | n=0 then j else f (j-n)) m"
 
-  div_def   "m div n == wfrec (trancl pred_nat) 
+  div_def:   "m div n == wfrec (trancl pred_nat) 
                           (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"
 
 (*The definition of dvd is polymorphic!*)
-  dvd_def   "m dvd n == EX k. n = m*k"
+  dvd_def:   "m dvd n == EX k. n = m*k"
 
 (*This definition helps prove the harder properties of div and mod.
   It is copied from IntDiv.thy; should it be overloaded?*)
@@ -44,4 +42,54 @@
                       a = b*q + r &
                       (if 0<b then 0<=r & r<b else b<r & r <=0)"
 
+use "Divides_lemmas.ML"
+
+lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
+apply(insert mod_div_equality[of m n])
+apply(simp only:mult_ac)
+done
+
+lemma split_div:
+assumes m: "m \<noteq> 0"
+shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
+       (is "?P = ?Q")
+proof
+  assume P: ?P
+  show ?Q
+  proof (intro allI impI)
+    fix i j
+    assume n: "n = m*i + j" and j: "j < m"
+    show "P i"
+    proof (cases)
+      assume "i = 0"
+      with n j P show "P i" by simp
+    next
+      assume "i \<noteq> 0"
+      with n j P show "P i" by (simp add:add_ac div_mult_self1)
+    qed
+  qed
+next
+  assume Q: ?Q
+  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
+  show ?P by(simp add:mod_div_equality2)
+qed
+
+lemma split_mod:
+assumes m: "m \<noteq> 0"
+shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
+       (is "?P = ?Q")
+proof
+  assume P: ?P
+  show ?Q
+  proof (intro allI impI)
+    fix i j
+    assume "n = m*i + j" "j < m"
+    thus "P j" using m P by(simp add:add_ac mult_ac)
+  qed
+next
+  assume Q: ?Q
+  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
+  show ?P by(simp add:mod_div_equality2)
+qed
+
 end
--- a/src/HOL/IsaMakefile	Wed May 15 11:51:20 2002 +0200
+++ b/src/HOL/IsaMakefile	Wed May 15 13:49:51 2002 +0200
@@ -79,7 +79,7 @@
   $(SRC)/Provers/splitter.ML $(SRC)/TFL/dcterm.ML $(SRC)/TFL/post.ML \
   $(SRC)/TFL/rules.ML $(SRC)/TFL/tfl.ML $(SRC)/TFL/thms.ML $(SRC)/TFL/thry.ML \
   $(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML \
-  Datatype.thy Datatype_Universe.ML Datatype_Universe.thy Divides.ML \
+  Datatype.thy Datatype_Universe.ML Datatype_Universe.thy Divides_lemmas.ML \
   Divides.thy Finite_Set.ML Finite_Set.thy Fun.ML Fun.thy Gfp.ML Gfp.thy \
   Hilbert_Choice.thy Hilbert_Choice_lemmas.ML HOL.ML \
   HOL.thy HOL_lemmas.ML Inductive.thy Integ/Bin.ML Integ/Bin.thy \