expanded tabs
authorclasohm
Tue, 06 Feb 1996 12:27:17 +0100
changeset 1478 2b8c2a7547ab
parent 1477 4c51ab632cda
child 1479 21eb5e156d91
expanded tabs
src/ZF/AC.thy
src/ZF/AC/AC16_WO4.thy
src/ZF/AC/AC18_AC19.thy
src/ZF/AC/AC_Equiv.thy
src/ZF/AC/DC.thy
src/ZF/AC/HH.thy
src/ZF/AC/Hartog.thy
src/ZF/AC/OrdQuant.thy
src/ZF/AC/Transrec2.thy
src/ZF/AC/WO6_WO1.thy
src/ZF/AC/first.thy
src/ZF/AC/recfunAC16.thy
src/ZF/Arith.thy
src/ZF/Bool.thy
src/ZF/Cardinal.thy
src/ZF/CardinalArith.thy
src/ZF/Cardinal_AC.thy
src/ZF/Coind/BCR.thy
src/ZF/Coind/Dynamic.thy
src/ZF/Coind/ECR.thy
src/ZF/Coind/Language.thy
src/ZF/Coind/Map.thy
src/ZF/Coind/Static.thy
src/ZF/Coind/Types.thy
src/ZF/Coind/Values.thy
src/ZF/Epsilon.thy
src/ZF/EquivClass.thy
src/ZF/Finite.thy
src/ZF/Fixedpt.thy
src/ZF/IMP/Com.thy
src/ZF/IMP/Denotation.thy
src/ZF/IMP/Equiv.thy
src/ZF/Let.thy
src/ZF/List.thy
src/ZF/Nat.thy
src/ZF/Order.thy
src/ZF/OrderArith.thy
src/ZF/OrderType.thy
src/ZF/Ordinal.thy
src/ZF/Perm.thy
src/ZF/QPair.thy
src/ZF/QUniv.thy
src/ZF/Rel.thy
src/ZF/Resid/Confluence.thy
src/ZF/Resid/Conversion.thy
src/ZF/Resid/Cube.thy
src/ZF/Resid/Redex.thy
src/ZF/Resid/Reduction.thy
src/ZF/Resid/Residuals.thy
src/ZF/Resid/SubUnion.thy
src/ZF/Resid/Substitution.thy
src/ZF/Resid/Terms.thy
src/ZF/Sum.thy
src/ZF/Trancl.thy
src/ZF/Univ.thy
src/ZF/WF.thy
src/ZF/ZF.thy
src/ZF/Zorn.thy
src/ZF/ex/Acc.thy
src/ZF/ex/BT.thy
src/ZF/ex/Brouwer.thy
src/ZF/ex/CoUnit.thy
src/ZF/ex/Comb.thy
src/ZF/ex/Data.thy
src/ZF/ex/Enum.thy
src/ZF/ex/Integ.thy
src/ZF/ex/LList.thy
src/ZF/ex/Limit.thy
src/ZF/ex/ListN.thy
src/ZF/ex/Ntree.thy
src/ZF/ex/Primrec.thy
src/ZF/ex/PropLog.thy
src/ZF/ex/Ramsey.thy
src/ZF/ex/Rmap.thy
src/ZF/ex/TF.thy
src/ZF/ex/Term.thy
src/ZF/ex/twos_compl.thy
--- a/src/ZF/AC.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC.thy
+(*  Title:      ZF/AC.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 The Axiom of Choice
@@ -10,5 +10,5 @@
 
 AC = ZF + "func" +
 rules
-  AC	"[| a: A;  !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
+  AC    "[| a: A;  !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
 end
--- a/src/ZF/AC/AC16_WO4.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/AC16_WO4.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/AC16_WO4.thy
+(*  Title:      ZF/AC/AC16_WO4.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 *)
 
 AC16_WO4 = OrderType + AC16_lemmas + Cardinal_aux +
@@ -24,6 +24,6 @@
   LL_def  "LL(t_n, k, y) == {v Int y. v:MM(t_n, k, y)}"
 
   GG_def  "GG(t_n, k, y) == lam v:LL(t_n, k, y). 
-	                    (THE w. w:MM(t_n, k, y) & v <= w) - v"
+                            (THE w. w:MM(t_n, k, y) & v <= w) - v"
 
 end
--- a/src/ZF/AC/AC18_AC19.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/AC18_AC19.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/AC18_AC19.thy
+(*  Title:      ZF/AC/AC18_AC19.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Additional definition used in the proof AC19 ==> AC1 which is a part
 of the chain AC1 ==> AC18 ==> AC19 ==> AC1
--- a/src/ZF/AC/AC_Equiv.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/AC_Equiv.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/AC_Equiv.thy
+(*  Title:      ZF/AC/AC_Equiv.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Axioms AC1 -- AC19 come from "Equivalents of the Axiom of Choice, II"
 by H. Rubin and J.E. Rubin, 1985.
@@ -42,18 +42,18 @@
   WO3_def "WO3 == ALL A. EX a. Ord(a) & (EX b. b <= a & A eqpoll b)"
 
   WO4_def "WO4(m) == ALL A. EX a f. Ord(a) & domain(f)=a &   
-	             (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m)"
+                     (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m)"
 
   WO5_def "WO5 == EX m:nat. 1 le m & WO4(m)"
 
   WO6_def "WO6 == ALL A. EX m:nat. 1 le m & (EX a f. Ord(a) & domain(f)=a   
-	            & (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m))"
+                    & (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m))"
 
   WO7_def "WO7 == ALL A. Finite(A) <-> (ALL R. well_ord(A,R) -->   
-	            well_ord(A,converse(R)))"
+                    well_ord(A,converse(R)))"
 
   WO8_def "WO8 == ALL A. (EX f. f : (PROD X:A. X)) -->  
-	            (EX R. well_ord(A,R))"
+                    (EX R. well_ord(A,R))"
 
 (* Axioms of Choice *)  
 
@@ -62,64 +62,64 @@
   AC1_def "AC1 == ALL A. 0~:A --> (EX f. f:(PROD X:A. X))"
 
   AC2_def "AC2 == ALL A. 0~:A & pairwise_disjoint(A)   
-	            --> (EX C. ALL B:A. EX y. B Int C = {y})"
+                    --> (EX C. ALL B:A. EX y. B Int C = {y})"
 
   AC3_def "AC3 == ALL A B. ALL f:A->B. EX g. g:(PROD x:{a:A. f`a~=0}. f`x)"
 
   AC4_def "AC4 == ALL R A B. (R<=A*B --> (EX f. f:(PROD x:domain(R). R``{x})))"
 
   AC5_def "AC5 == ALL A B. ALL f:A->B. EX g:range(f)->A.   
-	            ALL x:domain(g). f`(g`x) = x"
+                    ALL x:domain(g). f`(g`x) = x"
 
   AC6_def "AC6 == ALL A. 0~:A --> (PROD B:A. B)~=0"
 
   AC7_def "AC7 == ALL A. 0~:A & (ALL B1:A. ALL B2:A. B1 eqpoll B2)   
-	            --> (PROD B:A. B)~=0"
+                    --> (PROD B:A. B)~=0"
 
   AC8_def "AC8 == ALL A. (ALL B:A. EX B1 B2. B=<B1,B2> & B1 eqpoll B2)   
-	            --> (EX f. ALL B:A. f`B : bij(fst(B),snd(B)))"
+                    --> (EX f. ALL B:A. f`B : bij(fst(B),snd(B)))"
 
   AC9_def "AC9 == ALL A. (ALL B1:A. ALL B2:A. B1 eqpoll B2) -->   
-	            (EX f. ALL B1:A. ALL B2:A. f`<B1,B2> : bij(B1,B2))"
+                    (EX f. ALL B1:A. ALL B2:A. f`<B1,B2> : bij(B1,B2))"
 
   AC10_def "AC10(n) ==  ALL A. (ALL B:A. ~Finite(B)) -->   
-	            (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
-	            sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))"
+                    (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
+                    sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))"
 
   AC11_def "AC11 == EX n:nat. 1 le n & AC10(n)"
 
   AC12_def "AC12 == ALL A. (ALL B:A. ~Finite(B)) -->   
-	    (EX n:nat. 1 le n & (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
-	    sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))"
+            (EX n:nat. 1 le n & (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
+            sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))"
 
   AC13_def "AC13(m) == ALL A. 0~:A --> (EX f. ALL B:A. f`B~=0 &   
-	                                  f`B <= B & f`B lepoll m)"
+                                          f`B <= B & f`B lepoll m)"
 
   AC14_def "AC14 == EX m:nat. 1 le m & AC13(m)"
 
   AC15_def "AC15 == ALL A. 0~:A --> (EX m:nat. 1 le m & (EX f. ALL B:A.   
-	                              f`B~=0 & f`B <= B & f`B lepoll m))"
+                                      f`B~=0 & f`B <= B & f`B lepoll m))"
 
   AC16_def "AC16(n, k)  == ALL A. ~Finite(A) -->   
-	    (EX T. T <= {X:Pow(A). X eqpoll succ(n)} &   
-	    (ALL X:{X:Pow(A). X eqpoll succ(k)}. EX! Y. Y:T & X <= Y))"
+            (EX T. T <= {X:Pow(A). X eqpoll succ(n)} &   
+            (ALL X:{X:Pow(A). X eqpoll succ(k)}. EX! Y. Y:T & X <= Y))"
 
   AC17_def "AC17 == ALL A. ALL g: (Pow(A)-{0} -> A) -> Pow(A)-{0}.   
-	            EX f: Pow(A)-{0} -> A. f`(g`f) : g`f"
+                    EX f: Pow(A)-{0} -> A. f`(g`f) : g`f"
 
   AC18_def "AC18 == (!!X A B. A~=0 & (ALL a:A. B(a) ~= 0) -->   
                  ((INT a:A. UN b:B(a). X(a,b)) =   
                  (UN f: PROD a:A. B(a). INT a:A. X(a, f`a))))"
 
   AC19_def "AC19 == ALL A. A~=0 & 0~:A --> ((INT a:A. UN b:a. b) =   
-	            (UN f:(PROD B:A. B). INT a:A. f`a))"
+                    (UN f:(PROD B:A. B). INT a:A. f`a))"
 
 (* Auxiliary definitions used in the above definitions *)
 
   pairwise_disjoint_def    "pairwise_disjoint(A)   
-			    == ALL A1:A. ALL A2:A. A1 Int A2 ~= 0 --> A1=A2"
+                            == ALL A1:A. ALL A2:A. A1 Int A2 ~= 0 --> A1=A2"
 
   sets_of_size_between_def "sets_of_size_between(A,m,n)   
-			    == ALL B:A. m lepoll B & B lepoll n"
+                            == ALL B:A. m lepoll B & B lepoll n"
   
 end
--- a/src/ZF/AC/DC.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/DC.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/DC.thy
+(*  Title:      ZF/AC/DC.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Theory file for the proofs concernind the Axiom of Dependent Choice
 *)
@@ -16,13 +16,13 @@
 rules
 
   DC_def  "DC(a) == ALL X R. R<=Pow(X)*X &
-	   (ALL Y:Pow(X). Y lesspoll a --> (EX x:X. <Y,x> : R)) 
-	   --> (EX f:a->X. ALL b<a. <f``b,f`b> : R)"
+           (ALL Y:Pow(X). Y lesspoll a --> (EX x:X. <Y,x> : R)) 
+           --> (EX f:a->X. ALL b<a. <f``b,f`b> : R)"
 
   DC0_def "DC0 == ALL A B R. R <= A*B & R~=0 & range(R) <= domain(R) 
-	   --> (EX f:nat->domain(R). ALL n:nat. <f`n,f`succ(n)>:R)"
+           --> (EX f:nat->domain(R). ALL n:nat. <f`n,f`succ(n)>:R)"
 
   ff_def  "ff(b, X, Q, R) == transrec(b, %c r. 
-	                     THE x. first(x, {x:X. <r``c, x> : R}, Q))"
+                             THE x. first(x, {x:X. <r``c, x> : R}, Q))"
   
 end
--- a/src/ZF/AC/HH.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/HH.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/HH.thy
+(*  Title:      ZF/AC/HH.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 The theory file for the proofs of
   AC17 ==> AC1
--- a/src/ZF/AC/Hartog.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/Hartog.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/Hartog.thy
+(*  Title:      ZF/AC/Hartog.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Hartog's function.
 *)
--- a/src/ZF/AC/OrdQuant.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/OrdQuant.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/OrdQuant.thy
+(*  Title:      ZF/AC/OrdQuant.thy
     ID:         $Id$
-    Authors: 	Krzysztof Grabczewski and L C Paulson
+    Authors:    Krzysztof Grabczewski and L C Paulson
 
 Quantifiers and union operator for ordinals. 
 *)
--- a/src/ZF/AC/Transrec2.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/Transrec2.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/Transrec2.thy
+(*  Title:      ZF/AC/Transrec2.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Transfinite recursion introduced to handle definitions based on the three
 cases of ordinals.
@@ -14,10 +14,10 @@
 
 defs
 
-  transrec2_def  "transrec2(alpha, a, b) ==   			
-		         transrec(alpha, %i r. if(i=0,   	
-		                  a, if(EX j. i=succ(j),   	
-		                  b(THE j. i=succ(j), r`(THE j. i=succ(j))),   
-		                  UN j<i. r`j)))"
+  transrec2_def  "transrec2(alpha, a, b) ==                     
+                         transrec(alpha, %i r. if(i=0,          
+                                  a, if(EX j. i=succ(j),        
+                                  b(THE j. i=succ(j), r`(THE j. i=succ(j))),   
+                                  UN j<i. r`j)))"
 
 end
--- a/src/ZF/AC/WO6_WO1.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/WO6_WO1.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/WO6_WO1.thy
+(*  Title:      ZF/AC/WO6_WO1.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 The proof of "WO6 ==> WO1".
 
@@ -20,18 +20,18 @@
 defs
 
   NN_def  "NN(y) == {m:nat. EX a. EX f. Ord(a) & domain(f)=a  &  
-			    (UN b<a. f`b) = y & (ALL b<a. f`b lepoll m)}"
+                            (UN b<a. f`b) = y & (ALL b<a. f`b lepoll m)}"
 
   uu_def  "uu(f, beta, gamma, delta) == (f`beta * f`gamma) Int f`delta"
 
   (*Definitions for case 1*)
 
-  vv1_def "vv1(f,m,b) ==   						
-   	   let g = LEAST g. (EX d. Ord(d) & (domain(uu(f,b,g,d)) ~= 0 &	
-	                           domain(uu(f,b,g,d)) lepoll m));   	
-	       d = LEAST d. domain(uu(f,b,g,d)) ~= 0 &   		
-                           domain(uu(f,b,g,d)) lepoll m		
-	   in  if(f`b ~= 0, domain(uu(f,b,g,d)), 0)"
+  vv1_def "vv1(f,m,b) ==                                                
+           let g = LEAST g. (EX d. Ord(d) & (domain(uu(f,b,g,d)) ~= 0 & 
+                                   domain(uu(f,b,g,d)) lepoll m));      
+               d = LEAST d. domain(uu(f,b,g,d)) ~= 0 &                  
+                           domain(uu(f,b,g,d)) lepoll m         
+           in  if(f`b ~= 0, domain(uu(f,b,g,d)), 0)"
 
   ww1_def "ww1(f,m,b) == f`b - vv1(f,m,b)"
 
@@ -40,7 +40,7 @@
   (*Definitions for case 2*)
 
   vv2_def "vv2(f,b,g,s) ==   
-	   if(f`g ~= 0, {uu(f, b, g, LEAST d. uu(f,b,g,d) ~= 0)`s}, 0)"
+           if(f`g ~= 0, {uu(f, b, g, LEAST d. uu(f,b,g,d) ~= 0)`s}, 0)"
 
   ww2_def "ww2(f,b,g,s) == f`g - vv2(f,b,g,s)"
 
--- a/src/ZF/AC/first.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/first.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/first.thy
+(*  Title:      ZF/AC/first.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 Theory helpful in proofs using first element of a well ordered set
 *)
@@ -14,5 +14,5 @@
 defs
 
   first_def                "first(u, X, R) 
-			    == u:X & (ALL v:X. v~=u --> <u,v> : R)"
+                            == u:X & (ALL v:X. v~=u --> <u,v> : R)"
 end
--- a/src/ZF/AC/recfunAC16.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/AC/recfunAC16.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/AC/recfunAC16.thy
+(*  Title:      ZF/AC/recfunAC16.thy
     ID:         $Id$
-    Author: 	Krzysztof Grabczewski
+    Author:     Krzysztof Grabczewski
 
 A recursive definition used in the proof of WO2 ==> AC16
 *)
@@ -15,9 +15,9 @@
 
   recfunAC16_def
     "recfunAC16(f,fa,i,a) == 
-	 transrec2(i, 0, 
-	      %g r. if(EX y:r. fa`g <= y, r, 
-		       r Un {f`(LEAST i. fa`g <= f`i & 
-		       (ALL b<a. (fa`b <= f`i --> (ALL t:r. ~ fa`b <= t))))}))"
+         transrec2(i, 0, 
+              %g r. if(EX y:r. fa`g <= y, r, 
+                       r Un {f`(LEAST i. fa`g <= f`i & 
+                       (ALL b<a. (fa`b <= f`i --> (ALL t:r. ~ fa`b <= t))))}))"
 
 end
--- a/src/ZF/Arith.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Arith.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/arith.thy
+(*  Title:      ZF/arith.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Arithmetic operators and their definitions
@@ -9,11 +9,11 @@
 Arith = Epsilon + "simpdata" +
 consts
     rec  :: [i, i, [i,i]=>i]=>i
-    "#*" :: [i,i]=>i      		(infixl 70)
-    div  :: [i,i]=>i      		(infixl 70) 
-    mod  :: [i,i]=>i      		(infixl 70)
-    "#+" :: [i,i]=>i      		(infixl 65)
-    "#-" :: [i,i]=>i      		(infixl 65)
+    "#*" :: [i,i]=>i                    (infixl 70)
+    div  :: [i,i]=>i                    (infixl 70) 
+    mod  :: [i,i]=>i                    (infixl 70)
+    "#+" :: [i,i]=>i                    (infixl 65)
+    "#-" :: [i,i]=>i                    (infixl 65)
 
 defs
     rec_def  "rec(k,a,b) ==  transrec(k, %n f. nat_case(a, %m. b(m, f`m), n))"
--- a/src/ZF/Bool.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Bool.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/bool.thy
+(*  Title:      ZF/bool.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Booleans in Zermelo-Fraenkel Set Theory 
@@ -10,24 +10,24 @@
 
 Bool = ZF + "simpdata" +
 consts
-    "1"		:: i     	   ("1")
+    "1"         :: i               ("1")
     "2"         :: i             ("2")
     bool        :: i
     cond        :: [i,i,i]=>i
-    not		:: i=>i
+    not         :: i=>i
     "and"       :: [i,i]=>i      (infixl 70)
-    or		:: [i,i]=>i      (infixl 65)
-    xor		:: [i,i]=>i      (infixl 65)
+    or          :: [i,i]=>i      (infixl 65)
+    xor         :: [i,i]=>i      (infixl 65)
 
 translations
    "1"  == "succ(0)"
    "2"  == "succ(1)"
 
 defs
-    bool_def	"bool == {0,1}"
-    cond_def	"cond(b,c,d) == if(b=1,c,d)"
-    not_def	"not(b) == cond(b,0,1)"
-    and_def	"a and b == cond(a,b,0)"
-    or_def	"a or b == cond(a,1,b)"
-    xor_def	"a xor b == cond(a,not(b),b)"
+    bool_def    "bool == {0,1}"
+    cond_def    "cond(b,c,d) == if(b=1,c,d)"
+    not_def     "not(b) == cond(b,0,1)"
+    and_def     "a and b == cond(a,b,0)"
+    or_def      "a or b == cond(a,1,b)"
+    xor_def     "a xor b == cond(a,not(b),b)"
 end
--- a/src/ZF/Cardinal.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Cardinal.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Cardinal.thy
+(*  Title:      ZF/Cardinal.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Cardinals in Zermelo-Fraenkel Set Theory 
--- a/src/ZF/CardinalArith.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/CardinalArith.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/CardinalArith.thy
+(*  Title:      ZF/CardinalArith.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Cardinal Arithmetic
--- a/src/ZF/Cardinal_AC.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Cardinal_AC.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Cardinal_AC.thy
+(*  Title:      ZF/Cardinal_AC.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Cardinal Arithmetic WITH the Axiom of Choice
--- a/src/ZF/Coind/BCR.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/BCR.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/BCR.thy
+(*  Title:      ZF/Coind/BCR.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
@@ -19,9 +19,9 @@
 consts
   isofenv :: [i,i] => o
 defs
-  isofenv_def "isofenv(ve,te) ==   		
-   ve_dom(ve) = te_dom(te) &   		
-   ( ALL x:ve_dom(ve).   			
+  isofenv_def "isofenv(ve,te) ==                
+   ve_dom(ve) = te_dom(te) &            
+   ( ALL x:ve_dom(ve).                          
      EX c:Const. ve_app(ve,x) = v_const(c) & isof(c,te_app(te,x)))"
   
 end
--- a/src/ZF/Coind/Dynamic.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Dynamic.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/Dynamic.thy
+(*  Title:      ZF/Coind/Dynamic.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
--- a/src/ZF/Coind/ECR.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/ECR.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/ECR.thy
+(*  Title:      ZF/Coind/ECR.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
@@ -17,9 +17,9 @@
       "[| c:Const; t:Ty; isof(c,t) |] ==> <v_const(c),t>:HasTyRel"
     htr_closI
       "[| x:ExVar; e:Exp; t:Ty; ve:ValEnv; te:TyEnv; 
-	  <te,e_fn(x,e),t>:ElabRel;  
-	  ve_dom(ve) = te_dom(te);   
-	  {<ve_app(ve,y),te_app(te,y)>.y:ve_dom(ve)}:Pow(HasTyRel)  
+          <te,e_fn(x,e),t>:ElabRel;  
+          ve_dom(ve) = te_dom(te);   
+          {<ve_app(ve,y),te_app(te,y)>.y:ve_dom(ve)}:Pow(HasTyRel)  
       |] ==>   
       <v_clos(x,e,ve),t>:HasTyRel" 
   monos "[Pow_mono]"
@@ -31,8 +31,8 @@
   hastyenv :: [i,i] => o
 defs
   hastyenv_def 
-    " hastyenv(ve,te) == 			
-     ve_dom(ve) = te_dom(te) & 		
+    " hastyenv(ve,te) ==                        
+     ve_dom(ve) = te_dom(te) &          
      (ALL x:ve_dom(ve). <ve_app(ve,x),te_app(te,x)>:HasTyRel)"
 
 end
--- a/src/ZF/Coind/Language.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Language.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,14 +1,14 @@
-(*  Title: 	ZF/Coind/Language.thy
+(*  Title:      ZF/Coind/Language.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
 Language ="Datatype" + QUniv +
 
 consts
-  Const :: i			(* Abstract type of constants *)
-  c_app :: [i,i] => i		(*Abstract constructor for fun application*)
+  Const :: i                    (* Abstract type of constants *)
+  c_app :: [i,i] => i           (*Abstract constructor for fun application*)
 
 rules
   constNEE  "c:Const ==> c ~= 0"
@@ -16,8 +16,8 @@
 
 
 consts
-  Exp   :: i			(* Datatype of expressions *)
-  ExVar :: i			(* Abstract type of variables *)
+  Exp   :: i                    (* Datatype of expressions *)
+  ExVar :: i                    (* Abstract type of variables *)
 datatype <= "univ(Const Un ExVar)"
   "Exp" = e_const("c:Const")
         | e_var("x:ExVar")
--- a/src/ZF/Coind/Map.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Map.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/Map.thy
+(*  Title:      ZF/Coind/Map.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
--- a/src/ZF/Coind/Static.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Static.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/Static.thy
+(*  Title:      ZF/Coind/Static.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
--- a/src/ZF/Coind/Types.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Types.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,14 +1,14 @@
-(*  Title: 	ZF/Coind/Types.thy
+(*  Title:      ZF/Coind/Types.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
 Types = Language +
 
 consts
-  Ty :: i			(* Datatype of types *)
-  TyConst :: i		(* Abstract type of type constants *)
+  Ty :: i                       (* Datatype of types *)
+  TyConst :: i          (* Abstract type of type constants *)
 datatype <= "univ(TyConst)"
   "Ty" = t_const("tc:TyConst")
        | t_fun("t1:Ty","t2:Ty")
--- a/src/ZF/Coind/Values.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Coind/Values.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Coind/Values.thy
+(*  Title:      ZF/Coind/Values.thy
     ID:         $Id$
-    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Author:     Jacob Frost, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 *)
 
--- a/src/ZF/Epsilon.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Epsilon.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/epsilon.thy
+(*  Title:      ZF/epsilon.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Epsilon induction and recursion
@@ -12,7 +12,7 @@
     transrec    ::      [i, [i,i]=>i] =>i
 
 defs
-  eclose_def	"eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))"
-  transrec_def	"transrec(a,H) == wfrec(Memrel(eclose({a})), a, H)"
-  rank_def    	"rank(a) == transrec(a, %x f. UN y:x. succ(f`y))"
+  eclose_def    "eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))"
+  transrec_def  "transrec(a,H) == wfrec(Memrel(eclose({a})), a, H)"
+  rank_def      "rank(a) == transrec(a, %x f. UN y:x. succ(f`y))"
 end
--- a/src/ZF/EquivClass.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/EquivClass.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/EquivClass.thy
+(*  Title:      ZF/EquivClass.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Equivalence relations in Zermelo-Fraenkel Set Theory 
@@ -9,7 +9,7 @@
 EquivClass = Rel + Perm + 
 consts
     "'/"        ::      [i,i]=>i  (infixl 90)  (*set of equiv classes*)
-    congruent	::	[i,i=>i]=>o
+    congruent   ::      [i,i=>i]=>o
     congruent2  ::      [i,[i,i]=>i]=>o
 
 defs
--- a/src/ZF/Finite.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Finite.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Finite.thy
+(*  Title:      ZF/Finite.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Finite powerset operator
@@ -8,8 +8,8 @@
 
 Finite = Arith + Inductive +
 consts
-  Fin 	    :: i=>i
-  FiniteFun :: [i,i]=>i		("(_ -||>/ _)" [61, 60] 60)
+  Fin       :: i=>i
+  FiniteFun :: [i,i]=>i         ("(_ -||>/ _)" [61, 60] 60)
 
 inductive
   domains   "Fin(A)" <= "Pow(A)"
@@ -24,6 +24,6 @@
   intrs
     emptyI  "0 : A -||> B"
     consI   "[| a: A;  b: B;  h: A -||> B;  a ~: domain(h)   
-	     |] ==> cons(<a,b>,h) : A -||> B"
+             |] ==> cons(<a,b>,h) : A -||> B"
   type_intrs "Fin.intrs"
 end
--- a/src/ZF/Fixedpt.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Fixedpt.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/fixedpt.thy
+(*  Title:      ZF/fixedpt.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Least and greatest fixed points
--- a/src/ZF/IMP/Com.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/IMP/Com.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/IMP/Com.thy
+(*  Title:      ZF/IMP/Com.thy
     ID:         $Id$
-    Author: 	Heiko Loetzbeyer & Robert Sandner, TUM
+    Author:     Heiko Loetzbeyer & Robert Sandner, TUM
     Copyright   1994 TUM
 
 Arithmetic expressions, Boolean expressions, Commands
@@ -23,14 +23,14 @@
 
 (** Evaluation of arithmetic expressions **)
 consts  evala    :: i
-       "@evala"  :: [i,i,i] => o		("<_,_>/ -a-> _"  [0,0,50] 50)
+       "@evala"  :: [i,i,i] => o                ("<_,_>/ -a-> _"  [0,0,50] 50)
 translations
     "<ae,sig> -a-> n" == "<ae,sig,n> : evala"
 inductive
   domains "evala" <= "aexp * (loc -> nat) * nat"
   intrs 
     N   "[| n:nat ; sigma:loc->nat |] ==> <N(n),sigma> -a-> n"
-    X  	"[| x:loc;  sigma:loc->nat |] ==> <X(x),sigma> -a-> sigma`x"
+    X   "[| x:loc;  sigma:loc->nat |] ==> <X(x),sigma> -a-> sigma`x"
     Op1 "[| <e,sigma> -a-> n;  f: nat -> nat |] ==> <Op1(f,e),sigma> -a-> f`n"
     Op2 "[| <e0,sigma> -a-> n0;  <e1,sigma>  -a-> n1; f: (nat*nat) -> nat |] 
            ==> <Op2(f,e0,e1),sigma> -a-> f`<n0,n1>"
@@ -46,13 +46,13 @@
          | false
          | ROp  ("f: (nat*nat)->bool", "a0 : aexp", "a1 : aexp")
          | noti ("b : bexp")
-         | andi ("b0 : bexp", "b1 : bexp")	(infixl 60)
-         | ori  ("b0 : bexp", "b1 : bexp")	(infixl 60)
+         | andi ("b0 : bexp", "b1 : bexp")      (infixl 60)
+         | ori  ("b0 : bexp", "b1 : bexp")      (infixl 60)
 
 
 (** Evaluation of boolean expressions **)
-consts evalb	:: i	
-       "@evalb" :: [i,i,i] => o		("<_,_>/ -b-> _" [0,0,50] 50)
+consts evalb    :: i    
+       "@evalb" :: [i,i,i] => o         ("<_,_>/ -b-> _" [0,0,50] 50)
 
 translations
     "<be,sig> -b-> b" == "<be,sig,b> : evalb"
@@ -63,15 +63,15 @@
     tru   "[| sigma:loc -> nat |] ==> <true,sigma> -b-> 1"
     fls   "[| sigma:loc -> nat |] ==> <false,sigma> -b-> 0"
     ROp   "[| <a0,sigma> -a-> n0; <a1,sigma> -a-> n1; f: (nat*nat)->bool |] 
-	   ==> <ROp(f,a0,a1),sigma> -b-> f`<n0,n1> "
+           ==> <ROp(f,a0,a1),sigma> -b-> f`<n0,n1> "
     noti  "[| <b,sigma> -b-> w |] ==> <noti(b),sigma> -b-> not(w)"
     andi  "[| <b0,sigma> -b-> w0; <b1,sigma> -b-> w1 |] 
           ==> <b0 andi b1,sigma> -b-> (w0 and w1)"
     ori   "[| <b0,sigma> -b-> w0; <b1,sigma> -b-> w1 |] 
-	    ==> <b0 ori b1,sigma> -b-> (w0 or w1)"
+            ==> <b0 ori b1,sigma> -b-> (w0 or w1)"
 
   type_intrs "bexp.intrs @   
-	      [apply_funtype, and_type, or_type, bool_1I, bool_0I, not_type]"
+              [apply_funtype, and_type, or_type, bool_1I, bool_0I, not_type]"
   type_elims "[make_elim(evala.dom_subset RS subsetD)]"
 
 
@@ -80,24 +80,24 @@
 
 datatype <= "univ(loc Un aexp Un bexp)"
   "com" = skip
-        | ":="  ("x:loc", "a:aexp")		(infixl 60)
-        | semic ("c0:com", "c1:com")		("_; _"  [60, 60] 10)
-	| while ("b:bexp", "c:com")		("while _ do _"  60)
-	| ifc   ("b:bexp", "c0:com", "c1:com")	("ifc _ then _ else _"  60)
+        | ":="  ("x:loc", "a:aexp")             (infixl 60)
+        | semic ("c0:com", "c1:com")            ("_; _"  [60, 60] 10)
+        | while ("b:bexp", "c:com")             ("while _ do _"  60)
+        | ifc   ("b:bexp", "c0:com", "c1:com")  ("ifc _ then _ else _"  60)
 
 (*Constructor ";" has low precedence to avoid syntactic ambiguities
   with [| m: nat; x: loc; ... |] ==> ...  It usually will need parentheses.*)
 
 (** Execution of commands **)
 consts  evalc    :: i
-        "@evalc" :: [i,i,i] => o   		("<_,_>/ -c-> _" [0,0,50] 50)
-	"assign" :: [i,i,i] => i   		("_[_'/_]"       [95,0,0] 95)
+        "@evalc" :: [i,i,i] => o                ("<_,_>/ -c-> _" [0,0,50] 50)
+        "assign" :: [i,i,i] => i                ("_[_'/_]"       [95,0,0] 95)
 
 translations
        "<ce,sig> -c-> s" == "<ce,sig,s> : evalc"
 
 defs 
-	assign_def	"sigma[m/x] == lam y:loc. if(y=x,m,sigma`y)"
+        assign_def      "sigma[m/x] == lam y:loc. if(y=x,m,sigma`y)"
 
 inductive
   domains "evalc" <= "com * (loc -> nat) * (loc -> nat)"
@@ -111,11 +111,11 @@
             <c0 ; c1, sigma> -c-> sigma1"
 
     ifc1     "[| b:bexp; c1:com; sigma:loc->nat;   
-		 <b,sigma> -b-> 1; <c0,sigma> -c-> sigma1 |] ==> 
+                 <b,sigma> -b-> 1; <c0,sigma> -c-> sigma1 |] ==> 
              <ifc b then c0 else c1, sigma> -c-> sigma1"
 
     ifc0     "[| b:bexp; c0:com; sigma:loc->nat;   
-		 <b,sigma> -b-> 0; <c1,sigma> -c-> sigma1 |] ==> 
+                 <b,sigma> -b-> 0; <c1,sigma> -c-> sigma1 |] ==> 
              <ifc b then c0 else c1, sigma> -c-> sigma1"
 
     while0   "[| c: com; <b, sigma> -b-> 0 |] ==> 
@@ -128,6 +128,6 @@
   con_defs   "[assign_def]"
   type_intrs "bexp.intrs @ com.intrs @ [if_type,lam_type,apply_type]"
   type_elims "[make_elim(evala.dom_subset RS subsetD),   
-	      make_elim(evalb.dom_subset RS subsetD) ]"
+              make_elim(evalb.dom_subset RS subsetD) ]"
 
 end
--- a/src/ZF/IMP/Denotation.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/IMP/Denotation.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/IMP/Denotation.thy
+(*  Title:      ZF/IMP/Denotation.thy
     ID:         $Id$
-    Author: 	Heiko Loetzbeyer & Robert Sandner, TUM
+    Author:     Heiko Loetzbeyer & Robert Sandner, TUM
     Copyright   1994 TUM
 
 Denotational semantics of expressions & commands
@@ -14,33 +14,33 @@
   C     :: i => i
   Gamma :: [i,i,i] => i
 
-rules	(*NOT definitional*)
-  A_nat_def	"A(N(n)) == (%sigma. n)"
-  A_loc_def	"A(X(x)) == (%sigma. sigma`x)" 
-  A_op1_def	"A(Op1(f,a)) == (%sigma. f`A(a,sigma))"
-  A_op2_def	"A(Op2(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)"
+rules   (*NOT definitional*)
+  A_nat_def     "A(N(n)) == (%sigma. n)"
+  A_loc_def     "A(X(x)) == (%sigma. sigma`x)" 
+  A_op1_def     "A(Op1(f,a)) == (%sigma. f`A(a,sigma))"
+  A_op2_def     "A(Op2(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)"
 
 
-  B_true_def	"B(true) == (%sigma. 1)"
-  B_false_def	"B(false) == (%sigma. 0)"
-  B_op_def	"B(ROp(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)" 
+  B_true_def    "B(true) == (%sigma. 1)"
+  B_false_def   "B(false) == (%sigma. 0)"
+  B_op_def      "B(ROp(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)" 
 
 
-  B_not_def	"B(noti(b)) == (%sigma. not(B(b,sigma)))"
-  B_and_def	"B(b0 andi b1) == (%sigma. B(b0,sigma) and B(b1,sigma))"
-  B_or_def	"B(b0 ori b1) == (%sigma. B(b0,sigma) or B(b1,sigma))"
+  B_not_def     "B(noti(b)) == (%sigma. not(B(b,sigma)))"
+  B_and_def     "B(b0 andi b1) == (%sigma. B(b0,sigma) and B(b1,sigma))"
+  B_or_def      "B(b0 ori b1) == (%sigma. B(b0,sigma) or B(b1,sigma))"
 
-  C_skip_def	"C(skip) == id(loc->nat)"
-  C_assign_def	"C(x := a) == {io:(loc->nat)*(loc->nat). 
-			       snd(io) = fst(io)[A(a,fst(io))/x]}"
+  C_skip_def    "C(skip) == id(loc->nat)"
+  C_assign_def  "C(x := a) == {io:(loc->nat)*(loc->nat). 
+                               snd(io) = fst(io)[A(a,fst(io))/x]}"
 
-  C_comp_def	"C(c0 ; c1) == C(c1) O C(c0)"
-  C_if_def	"C(ifc b then c0 else c1) == {io:C(c0). B(b,fst(io))=1} Un 
-			 	             {io:C(c1). B(b,fst(io))=0}"
+  C_comp_def    "C(c0 ; c1) == C(c1) O C(c0)"
+  C_if_def      "C(ifc b then c0 else c1) == {io:C(c0). B(b,fst(io))=1} Un 
+                                             {io:C(c1). B(b,fst(io))=0}"
 
-  Gamma_def	"Gamma(b,c) == (%phi.{io : (phi O C(c)). B(b,fst(io))=1} Un 
-			 	     {io : id(loc->nat). B(b,fst(io))=0})"
+  Gamma_def     "Gamma(b,c) == (%phi.{io : (phi O C(c)). B(b,fst(io))=1} Un 
+                                     {io : id(loc->nat). B(b,fst(io))=0})"
 
-  C_while_def	"C(while b do c) == lfp((loc->nat)*(loc->nat), Gamma(b,c))"
+  C_while_def   "C(while b do c) == lfp((loc->nat)*(loc->nat), Gamma(b,c))"
 
 end
--- a/src/ZF/IMP/Equiv.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/IMP/Equiv.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/IMP/Equiv.thy
+(*  Title:      ZF/IMP/Equiv.thy
     ID:         $Id$
-    Author: 	Heiko Loetzbeyer & Robert Sandner, TUM
+    Author:     Heiko Loetzbeyer & Robert Sandner, TUM
     Copyright   1994 TUM
 *)
 
--- a/src/ZF/Let.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Let.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Let
+(*  Title:      ZF/Let
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1995  University of Cambridge
 
 Let expressions, and tuple pattern-matching (borrowed from HOL)
--- a/src/ZF/List.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/List.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/List
+(*  Title:      ZF/List
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Lists in Zermelo-Fraenkel Set Theory 
@@ -13,20 +13,20 @@
 List = Datatype + 
 
 consts
-  "@"	     :: [i,i]=>i      			(infixr 60)
+  "@"        :: [i,i]=>i                        (infixr 60)
   list_rec   :: [i, i, [i,i,i]=>i] => i
-  map 	     :: [i=>i, i] => i
+  map        :: [i=>i, i] => i
   length,rev :: i=>i
   flat       :: i=>i
   list_add   :: i=>i
   hd,tl      :: i=>i
-  drop	     :: [i,i]=>i
+  drop       :: [i,i]=>i
 
  (* List Enumeration *)
- "[]"        :: i 	                           	("[]")
- "@List"     :: is => i 	                   	("[(_)]")
+ "[]"        :: i                                       ("[]")
+ "@List"     :: is => i                                 ("[(_)]")
 
-  list	     :: i=>i
+  list       :: i=>i
 
   
 datatype
@@ -41,9 +41,9 @@
 
 defs
 
-  hd_def	"hd(l)	     == list_case(0, %x xs.x, l)"
-  tl_def	"tl(l)       == list_case(Nil, %x xs.xs, l)"
-  drop_def	"drop(i,l)   == rec(i, l, %j r. tl(r))"
+  hd_def        "hd(l)       == list_case(0, %x xs.x, l)"
+  tl_def        "tl(l)       == list_case(Nil, %x xs.xs, l)"
+  drop_def      "drop(i,l)   == rec(i, l, %j r. tl(r))"
 
   list_rec_def
       "list_rec(l,c,h) == Vrec(l, %l g.list_case(c, %x xs. h(x, xs, g`xs), l))"
--- a/src/ZF/Nat.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Nat.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Nat.thy
+(*  Title:      ZF/Nat.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Natural numbers in Zermelo-Fraenkel Set Theory 
@@ -8,7 +8,7 @@
 
 Nat = Ordinal + Bool + "mono" +
 consts
-    nat 	::      i
+    nat         ::      i
     nat_case    ::      [i, i=>i, i]=>i
     nat_rec     ::      [i, i, [i,i]=>i]=>i
 
@@ -17,10 +17,10 @@
     nat_def     "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})"
 
     nat_case_def
-	"nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"
+        "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"
 
     nat_rec_def
-	"nat_rec(k,a,b) ==   
-   	  wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
+        "nat_rec(k,a,b) ==   
+          wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
 
 end
--- a/src/ZF/Order.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Order.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Order.thy
+(*  Title:      ZF/Order.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Orders in Zermelo-Fraenkel Set Theory 
@@ -8,13 +8,13 @@
 
 Order = WF + Perm + 
 consts
-  part_ord        :: [i,i]=>o		(*Strict partial ordering*)
-  linear, tot_ord :: [i,i]=>o		(*Strict total ordering*)
-  well_ord        :: [i,i]=>o		(*Well-ordering*)
-  mono_map        :: [i,i,i,i]=>i	(*Order-preserving maps*)
-  ord_iso         :: [i,i,i,i]=>i	(*Order isomorphisms*)
-  pred            :: [i,i,i]=>i	(*Set of predecessors*)
-  ord_iso_map     :: [i,i,i,i]=>i	(*Construction for linearity theorem*)
+  part_ord        :: [i,i]=>o           (*Strict partial ordering*)
+  linear, tot_ord :: [i,i]=>o           (*Strict total ordering*)
+  well_ord        :: [i,i]=>o           (*Well-ordering*)
+  mono_map        :: [i,i,i,i]=>i       (*Order-preserving maps*)
+  ord_iso         :: [i,i,i,i]=>i       (*Order isomorphisms*)
+  pred            :: [i,i,i]=>i (*Set of predecessors*)
+  ord_iso_map     :: [i,i,i,i]=>i       (*Construction for linearity theorem*)
 
 defs
   part_ord_def "part_ord(A,r) == irrefl(A,r) & trans[A](r)"
--- a/src/ZF/OrderArith.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/OrderArith.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/OrderArith.thy
+(*  Title:      ZF/OrderArith.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Towards ordinal arithmetic 
@@ -15,14 +15,14 @@
   (*disjoint sum of two relations; underlies ordinal addition*)
   radd_def "radd(A,r,B,s) == 
                 {z: (A+B) * (A+B).  
-                    (EX x y. z = <Inl(x), Inr(y)>)   | 	 
-                    (EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   | 	 
+                    (EX x y. z = <Inl(x), Inr(y)>)   |   
+                    (EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   |      
                     (EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
 
   (*lexicographic product of two relations; underlies ordinal multiplication*)
   rmult_def "rmult(A,r,B,s) == 
                 {z: (A*B) * (A*B).  
-                    EX x' y' x y. z = <<x',y'>, <x,y>> &	 
+                    EX x' y' x y. z = <<x',y'>, <x,y>> &         
                        (<x',x>: r | (x'=x & <y',y>: s))}"
 
   (*inverse image of a relation*)
--- a/src/ZF/OrderType.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/OrderType.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/OrderType.thy
+(*  Title:      ZF/OrderType.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Order types and ordinal arithmetic.
--- a/src/ZF/Ordinal.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Ordinal.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Ordinal.thy
+(*  Title:      ZF/Ordinal.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Ordinals in Zermelo-Fraenkel Set Theory 
@@ -8,7 +8,7 @@
 
 Ordinal = WF + Bool + "simpdata" + "equalities" +
 consts
-  Memrel      	:: i=>i
+  Memrel        :: i=>i
   Transset,Ord  :: i=>o
   "<"           :: [i,i] => o  (infixl 50) (*less than on ordinals*)
   "le"          :: [i,i] => o  (infixl 50) (*less than or equals*)
@@ -18,9 +18,9 @@
   "x le y"      == "x < succ(y)"
 
 defs
-  Memrel_def  	"Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
-  Transset_def	"Transset(i) == ALL x:i. x<=i"
-  Ord_def     	"Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
+  Memrel_def    "Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
+  Transset_def  "Transset(i) == ALL x:i. x<=i"
+  Ord_def       "Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
   lt_def        "i<j         == i:j & Ord(j)"
   Limit_def     "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
 
--- a/src/ZF/Perm.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Perm.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/perm
+(*  Title:      ZF/perm
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
 
 The theory underlying permutation groups
@@ -11,26 +11,26 @@
 
 Perm = ZF + "mono" +
 consts
-    O    	::      [i,i]=>i      (infixr 60)
-    id  	::      i=>i
+    O           ::      [i,i]=>i      (infixr 60)
+    id          ::      i=>i
     inj,surj,bij::      [i,i]=>i
 
 defs
 
     (*composition of relations and functions; NOT Suppes's relative product*)
-    comp_def	"r O s == {xz : domain(s)*range(r) . 
-                  		EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
+    comp_def    "r O s == {xz : domain(s)*range(r) . 
+                                EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
 
     (*the identity function for A*)
-    id_def	"id(A) == (lam x:A. x)"
+    id_def      "id(A) == (lam x:A. x)"
 
     (*one-to-one functions from A to B*)
     inj_def      "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
 
     (*onto functions from A to B*)
-    surj_def	"surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
+    surj_def    "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
 
     (*one-to-one and onto functions*)
-    bij_def	"bij(A,B) == inj(A,B) Int surj(A,B)"
+    bij_def     "bij(A,B) == inj(A,B) Int surj(A,B)"
 
 end
--- a/src/ZF/QPair.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/QPair.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/qpair.thy
+(*  Title:      ZF/qpair.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
@@ -13,19 +13,19 @@
 
 QPair = Sum + "simpdata" +
 consts
-  QPair     :: [i, i] => i               	("<(_;/ _)>")
+  QPair     :: [i, i] => i                      ("<(_;/ _)>")
   qfst,qsnd :: i => i
   qsplit    :: [[i, i] => 'a, i] => 'a::logic  (*for pattern-matching*)
   qconverse :: i => i
   QSigma    :: [i, i => i] => i
 
-  "<+>"     :: [i,i]=>i      			(infixr 65)
+  "<+>"     :: [i,i]=>i                         (infixr 65)
   QInl,QInr :: i=>i
   qcase     :: [i=>i, i=>i, i]=>i
 
 syntax
   "@QSUM"   :: [idt, i, i] => i               ("(3QSUM _:_./ _)" 10)
-  "<*>"     :: [i, i] => i         		(infixr 80)
+  "<*>"     :: [i, i] => i                      (infixr 80)
 
 translations
   "QSUM x:A. B"  => "QSigma(A, %x. B)"
--- a/src/ZF/QUniv.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/QUniv.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/univ.thy
+(*  Title:      ZF/univ.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 A small universe for lazy recursive types
--- a/src/ZF/Rel.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Rel.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Rel.thy
+(*  Title:      ZF/Rel.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Relations in Zermelo-Fraenkel Set Theory 
@@ -10,7 +10,7 @@
 consts
     refl,irrefl,equiv      :: [i,i]=>o
     sym,asym,antisym,trans :: i=>o
-    trans_on               :: [i,i]=>o	("trans[_]'(_')")
+    trans_on               :: [i,i]=>o  ("trans[_]'(_')")
 
 defs
   refl_def     "refl(A,r) == (ALL x: A. <x,x> : r)"
@@ -25,7 +25,7 @@
 
   trans_def    "trans(r) == ALL x y z. <x,y>: r --> <y,z>: r --> <x,z>: r"
 
-  trans_on_def "trans[A](r) == ALL x:A. ALL y:A. ALL z:A. 	
+  trans_on_def "trans[A](r) == ALL x:A. ALL y:A. ALL z:A.       
                           <x,y>: r --> <y,z>: r --> <x,z>: r"
 
   equiv_def    "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)"
--- a/src/ZF/Resid/Confluence.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Confluence.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Confluence.thy
+(*  Title:      Confluence.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -8,14 +8,14 @@
 Confluence = Reduction+
 
 consts
-  confluence	:: i=>o
-  strip		:: o
+  confluence    :: i=>o
+  strip         :: o
 
 defs
   confluence_def "confluence(R) ==   
-		  ALL x y. <x,y>:R --> (ALL z.<x,z>:R -->   
-		                         (EX u.<y,u>:R & <z,u>:R))"
+                  ALL x y. <x,y>:R --> (ALL z.<x,z>:R -->   
+                                         (EX u.<y,u>:R & <z,u>:R))"
   strip_def      "strip == ALL x y. (x ===> y) --> (ALL z.(x =1=> z) -->   
-		                         (EX u.(y =1=> u) & (z===>u)))" 
+                                         (EX u.(y =1=> u) & (z===>u)))" 
 end
 
--- a/src/ZF/Resid/Conversion.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Conversion.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Conversion.thy
+(*  Title:      Conversion.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 
@@ -9,10 +9,10 @@
 Conversion = Confluence+
 
 consts
-  Sconv1	:: i
-  "<-1->"	:: [i,i]=>o (infixl 50)
-  Sconv		:: i
-  "<--->"	:: [i,i]=>o (infixl 50)
+  Sconv1        :: i
+  "<-1->"       :: [i,i]=>o (infixl 50)
+  Sconv         :: i
+  "<--->"       :: [i,i]=>o (infixl 50)
 
 translations
   "a<-1->b"    == "<a,b>:Sconv1"
@@ -21,16 +21,16 @@
 inductive
   domains       "Sconv1" <= "lambda*lambda"
   intrs
-    red1	"m -1-> n ==> m<-1->n"
-    expl  	"n -1-> m ==> m<-1->n"
-  type_intrs	"[red1D1,red1D2]@lambda.intrs@bool_typechecks"
+    red1        "m -1-> n ==> m<-1->n"
+    expl        "n -1-> m ==> m<-1->n"
+  type_intrs    "[red1D1,red1D2]@lambda.intrs@bool_typechecks"
 
 inductive
   domains       "Sconv" <= "lambda*lambda"
   intrs
-    one_step	"m<-1->n  ==> m<--->n"
-    refl  	"m:lambda ==> m<--->m"
-    trans	"[|m<--->n; n<--->p|] ==> m<--->p"
-  type_intrs	"[Sconv1.dom_subset RS subsetD]@lambda.intrs@bool_typechecks"
+    one_step    "m<-1->n  ==> m<--->n"
+    refl        "m:lambda ==> m<--->m"
+    trans       "[|m<--->n; n<--->p|] ==> m<--->p"
+  type_intrs    "[Sconv1.dom_subset RS subsetD]@lambda.intrs@bool_typechecks"
 end
 
--- a/src/ZF/Resid/Cube.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Cube.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Cube.thy
+(*  Title:      Cube.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
--- a/src/ZF/Resid/Redex.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Redex.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Redex.thy
+(*  Title:      Redex.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -10,14 +10,14 @@
   redexes     :: i
 
 datatype
-  "redexes" = Var ("n: nat")	        
+  "redexes" = Var ("n: nat")            
             | Fun ("t: redexes")
             | App ("b:bool" ,"f:redexes" , "a:redexes")
   type_intrs "[bool_into_univ]"
   
 
 consts
-  redex_rec   	:: [i, i=>i, [i,i]=>i, [i,i,i,i,i]=>i]=>i
+  redex_rec     :: [i, i=>i, [i,i]=>i, [i,i,i,i,i]=>i]=>i
  
 defs
   redex_rec_def
--- a/src/ZF/Resid/Reduction.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Reduction.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Reduction.thy
+(*  Title:      Reduction.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -21,39 +21,39 @@
 inductive
   domains       "Sred1" <= "lambda*lambda"
   intrs
-    beta	"[|m:lambda; n:lambda|] ==> Apl(Fun(m),n) -1-> n/m"
-    rfun  	"[|m -1-> n|] ==> Fun(m) -1-> Fun(n)"
-    apl_l	"[|m2:lambda; m1 -1-> n1|] ==>   
-		 	          Apl(m1,m2) -1-> Apl(n1,m2)"
-    apl_r	"[|m1:lambda; m2 -1-> n2|] ==>   
-		 	          Apl(m1,m2) -1-> Apl(m1,n2)"
-  type_intrs	"red_typechecks"
+    beta        "[|m:lambda; n:lambda|] ==> Apl(Fun(m),n) -1-> n/m"
+    rfun        "[|m -1-> n|] ==> Fun(m) -1-> Fun(n)"
+    apl_l       "[|m2:lambda; m1 -1-> n1|] ==>   
+                                  Apl(m1,m2) -1-> Apl(n1,m2)"
+    apl_r       "[|m1:lambda; m2 -1-> n2|] ==>   
+                                  Apl(m1,m2) -1-> Apl(m1,n2)"
+  type_intrs    "red_typechecks"
 
 inductive
   domains       "Sred" <= "lambda*lambda"
   intrs
-    one_step	"[|m-1->n|] ==> m--->n"
-    refl  	"m:lambda==>m --->m"
-    trans	"[|m--->n; n--->p|]==>m--->p"
-  type_intrs	"[Sred1.dom_subset RS subsetD]@red_typechecks"
+    one_step    "[|m-1->n|] ==> m--->n"
+    refl        "m:lambda==>m --->m"
+    trans       "[|m--->n; n--->p|]==>m--->p"
+  type_intrs    "[Sred1.dom_subset RS subsetD]@red_typechecks"
 
 inductive
   domains       "Spar_red1" <= "lambda*lambda"
   intrs
-    beta	"[|m =1=> m';   
-		 n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'"
-    rvar	"n:nat==> Var(n) =1=> Var(n)"
-    rfun	"[|m =1=> m'|]==> Fun(m) =1=> Fun(m')"
-    rapl	"[|m =1=> m';   
-		 n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')"
-  type_intrs	"red_typechecks"
+    beta        "[|m =1=> m';   
+                 n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'"
+    rvar        "n:nat==> Var(n) =1=> Var(n)"
+    rfun        "[|m =1=> m'|]==> Fun(m) =1=> Fun(m')"
+    rapl        "[|m =1=> m';   
+                 n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')"
+  type_intrs    "red_typechecks"
 
   inductive
   domains       "Spar_red" <= "lambda*lambda"
   intrs
-    one_step	"[|m =1=> n|] ==> m ===> n"
-    trans	"[|m===>n; n===>p|]==>m===>p"
-  type_intrs	"[Spar_red1.dom_subset RS subsetD]@red_typechecks"
+    one_step    "[|m =1=> n|] ==> m ===> n"
+    trans       "[|m===>n; n===>p|]==>m===>p"
+  type_intrs    "[Spar_red1.dom_subset RS subsetD]@red_typechecks"
 
 
 end
--- a/src/ZF/Resid/Residuals.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Residuals.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Residuals.thy
+(*  Title:      Residuals.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 
@@ -9,9 +9,9 @@
 Residuals = Substitution+
 
 consts
-  Sres		:: i
-  residuals	:: [i,i,i]=>i
-  "|>"		:: [i,i]=>i     (infixl 70)
+  Sres          :: i
+  residuals     :: [i,i,i]=>i
+  "|>"          :: [i,i]=>i     (infixl 70)
   
 translations
   "residuals(u,v,w)"  == "<u,v,w>:Sres"
@@ -19,16 +19,16 @@
 inductive
   domains       "Sres" <= "redexes*redexes*redexes"
   intrs
-    Res_Var	"n:nat ==> residuals(Var(n),Var(n),Var(n))"
-    Res_Fun	"[|residuals(u,v,w)|]==>   
-		     residuals(Fun(u),Fun(v),Fun(w))"
-    Res_App	"[|residuals(u1,v1,w1);   
-		   residuals(u2,v2,w2); b:bool|]==>   
-		 residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))"
-    Res_redex	"[|residuals(u1,v1,w1);   
-		   residuals(u2,v2,w2); b:bool|]==>   
-		 residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)"
-  type_intrs	"[subst_type]@nat_typechecks@redexes.intrs@bool_typechecks"
+    Res_Var     "n:nat ==> residuals(Var(n),Var(n),Var(n))"
+    Res_Fun     "[|residuals(u,v,w)|]==>   
+                     residuals(Fun(u),Fun(v),Fun(w))"
+    Res_App     "[|residuals(u1,v1,w1);   
+                   residuals(u2,v2,w2); b:bool|]==>   
+                 residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))"
+    Res_redex   "[|residuals(u1,v1,w1);   
+                   residuals(u2,v2,w2); b:bool|]==>   
+                 residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)"
+  type_intrs    "[subst_type]@nat_typechecks@redexes.intrs@bool_typechecks"
 
 rules
   res_func_def  "u |> v == THE w.residuals(u,v,w)"
--- a/src/ZF/Resid/SubUnion.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/SubUnion.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	SubUnion.thy
+(*  Title:      SubUnion.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -11,7 +11,7 @@
   Ssub,Scomp,Sreg  :: i
   "<==","~"        :: [i,i]=>o (infixl 70)
   un               :: [i,i]=>i (infixl 70)
-  regular	   :: i=>o
+  regular          :: i=>o
   
 translations
   "a<==b"        == "<a,b>:Ssub"
@@ -21,39 +21,39 @@
 inductive
   domains       "Ssub" <= "redexes*redexes"
   intrs
-    Sub_Var	"n:nat ==> Var(n)<== Var(n)"
-    Sub_Fun	"[|u<== v|]==> Fun(u)<== Fun(v)"
-    Sub_App1	"[|u1<== v1; u2<== v2; b:bool|]==>   
-		     App(0,u1,u2)<== App(b,v1,v2)"
-    Sub_App2	"[|u1<== v1; u2<== v2|]==>   
-		     App(1,u1,u2)<== App(1,v1,v2)"
-  type_intrs	"redexes.intrs@bool_typechecks"
+    Sub_Var     "n:nat ==> Var(n)<== Var(n)"
+    Sub_Fun     "[|u<== v|]==> Fun(u)<== Fun(v)"
+    Sub_App1    "[|u1<== v1; u2<== v2; b:bool|]==>   
+                     App(0,u1,u2)<== App(b,v1,v2)"
+    Sub_App2    "[|u1<== v1; u2<== v2|]==>   
+                     App(1,u1,u2)<== App(1,v1,v2)"
+  type_intrs    "redexes.intrs@bool_typechecks"
 
 inductive
   domains       "Scomp" <= "redexes*redexes"
   intrs
-    Comp_Var	"n:nat ==> Var(n) ~ Var(n)"
-    Comp_Fun	"[|u ~ v|]==> Fun(u) ~ Fun(v)"
-    Comp_App	"[|u1 ~ v1; u2 ~ v2; b1:bool; b2:bool|]==>   
-		     App(b1,u1,u2) ~ App(b2,v1,v2)"
-  type_intrs	"redexes.intrs@bool_typechecks"
+    Comp_Var    "n:nat ==> Var(n) ~ Var(n)"
+    Comp_Fun    "[|u ~ v|]==> Fun(u) ~ Fun(v)"
+    Comp_App    "[|u1 ~ v1; u2 ~ v2; b1:bool; b2:bool|]==>   
+                     App(b1,u1,u2) ~ App(b2,v1,v2)"
+  type_intrs    "redexes.intrs@bool_typechecks"
 
 inductive
   domains       "Sreg" <= "redexes"
   intrs
-    Reg_Var	"n:nat ==> regular(Var(n))"
-    Reg_Fun	"[|regular(u)|]==> regular(Fun(u))"
-    Reg_App1	"[|regular(Fun(u)); regular(v) 
-		     |]==>regular(App(1,Fun(u),v))"
-    Reg_App2	"[|regular(u); regular(v) 
-		     |]==>regular(App(0,u,v))"
-  type_intrs	"redexes.intrs@bool_typechecks"
+    Reg_Var     "n:nat ==> regular(Var(n))"
+    Reg_Fun     "[|regular(u)|]==> regular(Fun(u))"
+    Reg_App1    "[|regular(Fun(u)); regular(v) 
+                     |]==>regular(App(1,Fun(u),v))"
+    Reg_App2    "[|regular(u); regular(v) 
+                     |]==>regular(App(0,u,v))"
+  type_intrs    "redexes.intrs@bool_typechecks"
 
 defs
   union_def  "u un v == redex_rec(u,   
-	 %i.lam t:redexes.redexes_case(%j.Var(i), %x.0, %b x y.0, t),   
+         %i.lam t:redexes.redexes_case(%j.Var(i), %x.0, %b x y.0, t),   
       %x m.lam t:redexes.redexes_case(%j.0, %y.Fun(m`y), %b y z.0, t),   
 %b x y m p.lam t:redexes.redexes_case(%j.0, %y.0,   
-	                               %c z u. App(b or c, m`z, p`u), t))`v"
+                                       %c z u. App(b or c, m`z, p`u), t))`v"
 end
 
--- a/src/ZF/Resid/Substitution.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Substitution.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Substitution.thy
+(*  Title:      Substitution.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -8,19 +8,19 @@
 Substitution = SubUnion +
 
 consts
-  lift_rec	:: [i,i]=> i
-  lift		:: i=>i
-  subst_rec	:: [i,i,i]=> i
+  lift_rec      :: [i,i]=> i
+  lift          :: i=>i
+  subst_rec     :: [i,i,i]=> i
   "'/"          :: [i,i]=>i  (infixl 70)  (*subst*)
 translations
   "lift(r)"  == "lift_rec(r,0)"
   "u/v" == "subst_rec(u,v,0)"
   
 defs
-  lift_rec_def	"lift_rec(r,kg) ==   
-		     redex_rec(r,%i.(lam k:nat.if(i<k,Var(i),Var(succ(i)))), 
-		                 %x m.(lam k:nat.Fun(m`(succ(k)))),   
-		                 %b x y m p.lam k:nat.App(b,m`k,p`k))`kg"
+  lift_rec_def  "lift_rec(r,kg) ==   
+                     redex_rec(r,%i.(lam k:nat.if(i<k,Var(i),Var(succ(i)))), 
+                                 %x m.(lam k:nat.Fun(m`(succ(k)))),   
+                                 %b x y m p.lam k:nat.App(b,m`k,p`k))`kg"
 
   
 (* subst_rec(u,Var(i),k)     = if k<i then Var(i-1)
@@ -30,15 +30,15 @@
    subst_rec(u,App(b,f,a),k) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))
 
 *)
-  subst_rec_def	"subst_rec(u,t,kg) ==   
-		     redex_rec(t,   
-		       %i.(lam r:redexes.lam k:nat.   
-		              if(k<i,Var(i#-1),   
-		                if(k=i,r,Var(i)))),   
-		       %x m.(lam r:redexes.lam k:nat.   
+  subst_rec_def "subst_rec(u,t,kg) ==   
+                     redex_rec(t,   
+                       %i.(lam r:redexes.lam k:nat.   
+                              if(k<i,Var(i#-1),   
+                                if(k=i,r,Var(i)))),   
+                       %x m.(lam r:redexes.lam k:nat.   
                              Fun(m`(lift(r))`(succ(k)))),   
-		       %b x y m p.lam r:redexes.lam k:nat.   
-		              App(b,m`r`k,p`r`k))`u`kg"
+                       %b x y m p.lam r:redexes.lam k:nat.   
+                              App(b,m`r`k,p`r`k))`u`kg"
 
 
 end
--- a/src/ZF/Resid/Terms.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Resid/Terms.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	Terms.thy
+(*  Title:      Terms.thy
     ID:         $Id$
-    Author: 	Ole Rasmussen
+    Author:     Ole Rasmussen
     Copyright   1995  University of Cambridge
     Logic Image: ZF
 *)
@@ -8,9 +8,9 @@
 Terms = Cube+
 
 consts
-  lambda	:: i
-  unmark	:: i=>i
-  Apl		:: [i,i]=>i
+  lambda        :: i
+  unmark        :: i=>i
+  Apl           :: [i,i]=>i
 
 translations
   "Apl(n,m)" == "App(0,n,m)"
@@ -18,15 +18,15 @@
 inductive
   domains       "lambda" <= "redexes"
   intrs
-    Lambda_Var	"               n:nat ==>     Var(n):lambda"
-    Lambda_Fun	"            u:lambda ==>     Fun(u):lambda"
-    Lambda_App	"[|u:lambda; v:lambda|]==> Apl(u,v):lambda"
-  type_intrs	"redexes.intrs@bool_typechecks"
+    Lambda_Var  "               n:nat ==>     Var(n):lambda"
+    Lambda_Fun  "            u:lambda ==>     Fun(u):lambda"
+    Lambda_App  "[|u:lambda; v:lambda|]==> Apl(u,v):lambda"
+  type_intrs    "redexes.intrs@bool_typechecks"
 
 defs
-  unmark_def	"unmark(u) == redex_rec(u,%i.Var(i),   
-		                          %x m.Fun(m),   
-		                          %b x y m p.Apl(m,p))"
+  unmark_def    "unmark(u) == redex_rec(u,%i.Var(i),   
+                                          %x m.Fun(m),   
+                                          %b x y m p.Apl(m,p))"
 end
 
 
--- a/src/ZF/Sum.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Sum.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/sum.thy
+(*  Title:      ZF/sum.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Disjoint sums in Zermelo-Fraenkel Set Theory 
@@ -9,7 +9,7 @@
 
 Sum = Bool + "simpdata" +
 consts
-    "+"    	:: [i,i]=>i      		(infixr 65)
+    "+"         :: [i,i]=>i                     (infixr 65)
     Inl,Inr     :: i=>i
     case        :: [i=>i, i=>i, i]=>i
     Part        :: [i,i=>i] => i
@@ -21,5 +21,5 @@
     case_def    "case(c,d) == (%<y,z>. cond(y, d(z), c(z)))"
 
   (*operator for selecting out the various summands*)
-    Part_def	"Part(A,h) == {x: A. EX z. x = h(z)}"
+    Part_def    "Part(A,h) == {x: A. EX z. x = h(z)}"
 end
--- a/src/ZF/Trancl.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Trancl.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/trancl.thy
+(*  Title:      ZF/trancl.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Transitive closure of a relation
@@ -12,6 +12,6 @@
     trancl  :: i=>i  ("(_^+)" [100] 100)  (*transitive closure*)
 
 defs
-    rtrancl_def	"r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
+    rtrancl_def "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
     trancl_def  "r^+ == r O r^*"
 end
--- a/src/ZF/Univ.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Univ.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/univ.thy
+(*  Title:      ZF/univ.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 The cumulative hierarchy and a small universe for recursive types
@@ -19,13 +19,13 @@
     univ        :: i=>i
 
 translations
-    "Vset(x)"   == 	"Vfrom(0,x)"
+    "Vset(x)"   ==      "Vfrom(0,x)"
 
 defs
     Vfrom_def   "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"
 
     Vrec_def
-   	"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
+        "Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
                              H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
 
     univ_def    "univ(A) == Vfrom(A,nat)"
--- a/src/ZF/WF.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/WF.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/wf.thy
+(*  Title:      ZF/wf.thy
     ID:         $Id$
-    Author: 	Tobias Nipkow and Lawrence C Paulson
+    Author:     Tobias Nipkow and Lawrence C Paulson
     Copyright   1994  University of Cambridge
 
 Well-founded Recursion
@@ -9,26 +9,26 @@
 WF = Trancl + "mono" + "equalities" +
 consts
   wf           :: i=>o
-  wf_on        :: [i,i]=>o			("wf[_]'(_')")
+  wf_on        :: [i,i]=>o                      ("wf[_]'(_')")
 
   wftrec,wfrec :: [i, i, [i,i]=>i] =>i
-  wfrec_on     :: [i, i, i, [i,i]=>i] =>i	("wfrec[_]'(_,_,_')")
+  wfrec_on     :: [i, i, i, [i,i]=>i] =>i       ("wfrec[_]'(_,_,_')")
   is_recfun    :: [i, i, [i,i]=>i, i] =>o
   the_recfun   :: [i, i, [i,i]=>i] =>i
 
 defs
   (*r is a well-founded relation*)
-  wf_def	 "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
+  wf_def         "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
 
   (*r is well-founded relation over A*)
   wf_on_def      "wf_on(A,r) == wf(r Int A*A)"
 
   is_recfun_def  "is_recfun(r,a,H,f) == 
-   			(f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
+                        (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
 
   the_recfun_def "the_recfun(r,a,H) == (THE f.is_recfun(r,a,H,f))"
 
-  wftrec_def  	 "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
+  wftrec_def     "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
 
   (*public version.  Does not require r to be transitive*)
   wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
--- a/src/ZF/ZF.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ZF.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -61,7 +61,7 @@
   range       :: i => i
   field       :: i => i
   converse    :: i => i
-  function    :: i => o	    	(*is a relation a function?*)
+  function    :: i => o         (*is a relation a function?*)
   Lambda      :: [i, i => i] => i
   restrict    :: [i, i] => i
 
@@ -214,8 +214,8 @@
   domain_def    "domain(r) == {x. w:r, EX y. w=<x,y>}"
   range_def     "range(r) == domain(converse(r))"
   field_def     "field(r) == domain(r) Un range(r)"
-  function_def	"function(r) == ALL x y. <x,y>:r -->   
-		                (ALL y'. <x,y'>:r --> y=y')"
+  function_def  "function(r) == ALL x y. <x,y>:r -->   
+                                (ALL y'. <x,y'>:r --> y=y')"
   image_def     "r `` A  == {y : range(r) . EX x:A. <x,y> : r}"
   vimage_def    "r -`` A == converse(r)``A"
 
--- a/src/ZF/Zorn.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/Zorn.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/Zorn.thy
+(*  Title:      ZF/Zorn.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Based upon the article
@@ -39,10 +39,10 @@
 inductive
   domains       "TFin(S,next)" <= "Pow(S)"
   intrs
-    nextI	"[| x : TFin(S,next);  next: increasing(S) 
+    nextI       "[| x : TFin(S,next);  next: increasing(S) 
                 |] ==> next`x : TFin(S,next)"
 
-    Pow_UnionI	"Y : Pow(TFin(S,next)) ==> Union(Y) : TFin(S,next)"
+    Pow_UnionI  "Y : Pow(TFin(S,next)) ==> Union(Y) : TFin(S,next)"
 
   monos         "[Pow_mono]"
   con_defs      "[increasing_def]"
--- a/src/ZF/ex/Acc.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Acc.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Acc.thy
+(*  Title:      ZF/ex/Acc.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Inductive definition of acc(r)
--- a/src/ZF/ex/BT.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/BT.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/BT.thy
+(*  Title:      ZF/ex/BT.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Binary trees
@@ -8,12 +8,12 @@
 
 BT = Datatype +
 consts
-    bt_rec    	:: [i, i, [i,i,i,i,i]=>i] => i
-    n_nodes	:: i=>i
-    n_leaves   	:: i=>i
-    bt_reflect 	:: i=>i
+    bt_rec      :: [i, i, [i,i,i,i,i]=>i] => i
+    n_nodes     :: i=>i
+    n_leaves    :: i=>i
+    bt_reflect  :: i=>i
 
-    bt 	        :: i=>i
+    bt          :: i=>i
 
 datatype
   "bt(A)" = Lf  |  Br ("a: A",  "t1: bt(A)",  "t2: bt(A)")
@@ -22,8 +22,8 @@
   bt_rec_def
     "bt_rec(t,c,h) == Vrec(t, %t g.bt_case(c, %x y z. h(x,y,z,g`y,g`z), t))"
 
-  n_nodes_def	"n_nodes(t) == bt_rec(t,  0,  %x y z r s. succ(r#+s))"
-  n_leaves_def	"n_leaves(t) == bt_rec(t,  succ(0),  %x y z r s. r#+s)"
+  n_nodes_def   "n_nodes(t) == bt_rec(t,  0,  %x y z r s. succ(r#+s))"
+  n_leaves_def  "n_leaves(t) == bt_rec(t,  succ(0),  %x y z r s. r#+s)"
   bt_reflect_def "bt_reflect(t) == bt_rec(t,  Lf,  %x y z r s. Br(x,s,r))"
 
 end
--- a/src/ZF/ex/Brouwer.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Brouwer.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Brouwer.thy
+(*  Title:      ZF/ex/Brouwer.thy
     ID:         $ $
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Infinite branching datatype definitions
@@ -15,15 +15,15 @@
  
 datatype <= "Vfrom(0, csucc(nat))"
   "brouwer" = Zero | Suc ("b: brouwer") | Lim ("h: nat -> brouwer")
-  monos	      "[Pi_mono]"
+  monos       "[Pi_mono]"
   type_intrs  "inf_datatype_intrs"
 
 (*The union with nat ensures that the cardinal is infinite*)
 datatype <= "Vfrom(A Un (UN x:A. B(x)), csucc(nat Un |UN x:A. B(x)|))"
   "Well(A,B)" = Sup ("a:A", "f: B(a) -> Well(A,B)")
-  monos	      "[Pi_mono]"
+  monos       "[Pi_mono]"
   type_intrs  "[[UN_upper_cardinal, le_nat_Un_cardinal] MRS le_trans]   
-	       @ inf_datatype_intrs"
+               @ inf_datatype_intrs"
 
 
 end
--- a/src/ZF/ex/CoUnit.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/CoUnit.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/CoUnit.ML
+(*  Title:      ZF/ex/CoUnit.ML
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Trivial codatatype definitions, one of which goes wrong!
--- a/src/ZF/ex/Comb.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Comb.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Comb.thy
+(*  Title:      ZF/ex/Comb.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson
+    Author:     Lawrence C Paulson
     Copyright   1994  University of Cambridge
 
 Combinatory Logic example: the Church-Rosser Theorem
@@ -27,8 +27,8 @@
 **)
 consts
   contract  :: i
-  "-1->"    :: [i,i] => o    			(infixl 50)
-  "--->"    :: [i,i] => o    			(infixl 50)
+  "-1->"    :: [i,i] => o                       (infixl 50)
+  "--->"    :: [i,i] => o                       (infixl 50)
 
 translations
   "p -1-> q" == "<p,q> : contract"
@@ -49,8 +49,8 @@
 **)
 consts
   parcontract :: i
-  "=1=>"    :: [i,i] => o    			(infixl 50)
-  "===>"    :: [i,i] => o    			(infixl 50)
+  "=1=>"    :: [i,i] => o                       (infixl 50)
+  "===>"    :: [i,i] => o                       (infixl 50)
 
 translations
   "p =1=> q" == "<p,q> : parcontract"
--- a/src/ZF/ex/Data.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Data.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Data.thy
+(*  Title:      ZF/ex/Data.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Sample datatype definition.  
--- a/src/ZF/ex/Enum.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Enum.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Enum
+(*  Title:      ZF/ex/Enum
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Example of a BIG enumeration type
--- a/src/ZF/ex/Integ.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Integ.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/integ.thy
+(*  Title:      ZF/ex/integ.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 The integers as equivalence classes over nat*nat.
@@ -9,34 +9,34 @@
 Integ = EquivClass + Arith +
 consts
     intrel,integ::      i
-    znat	::	i=>i		("$# _" [80] 80)
-    zminus	::	i=>i		("$~ _" [80] 80)
-    znegative	::	i=>o
-    zmagnitude	::	i=>i
+    znat        ::      i=>i            ("$# _" [80] 80)
+    zminus      ::      i=>i            ("$~ _" [80] 80)
+    znegative   ::      i=>o
+    zmagnitude  ::      i=>i
     "$*"        ::      [i,i]=>i      (infixl 70)
     "$'/"       ::      [i,i]=>i      (infixl 70) 
     "$'/'/"     ::      [i,i]=>i      (infixl 70)
-    "$+"	::      [i,i]=>i      (infixl 65)
+    "$+"        ::      [i,i]=>i      (infixl 65)
     "$-"        ::      [i,i]=>i      (infixl 65)
-    "$<"	:: 	[i,i]=>o  	(infixl 50)
+    "$<"        ::      [i,i]=>o        (infixl 50)
 
 defs
 
     intrel_def
-     "intrel == {p:(nat*nat)*(nat*nat). 		
+     "intrel == {p:(nat*nat)*(nat*nat).                 
         EX x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
 
     integ_def   "integ == (nat*nat)/intrel"
     
-    znat_def	"$# m == intrel `` {<m,0>}"
+    znat_def    "$# m == intrel `` {<m,0>}"
     
-    zminus_def	"$~ Z == UN <x,y>:Z. intrel``{<y,x>}"
+    zminus_def  "$~ Z == UN <x,y>:Z. intrel``{<y,x>}"
     
     znegative_def
-	"znegative(Z) == EX x y. x<y & y:nat & <x,y>:Z"
+        "znegative(Z) == EX x y. x<y & y:nat & <x,y>:Z"
     
     zmagnitude_def
-	"zmagnitude(Z) == UN <x,y>:Z. (y#-x) #+ (x#-y)"
+        "zmagnitude(Z) == UN <x,y>:Z. (y#-x) #+ (x#-y)"
     
     (*Cannot use UN<x1,y2> here or in zmult because of the form of congruent2.
       Perhaps a "curried" or even polymorphic congruent predicate would be
@@ -47,7 +47,7 @@
                            in intrel``{<x1#+x2, y1#+y2>}"
     
     zdiff_def   "Z1 $- Z2 == Z1 $+ zminus(Z2)"
-    zless_def	"Z1 $< Z2 == znegative(Z1 $- Z2)"
+    zless_def   "Z1 $< Z2 == znegative(Z1 $- Z2)"
     
     (*This illustrates the primitive form of definitions (no patterns)*)
     zmult_def
--- a/src/ZF/ex/LList.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/LList.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/LList.thy
+(*  Title:      ZF/ex/LList.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Codatatype definition of Lazy Lists
--- a/src/ZF/ex/Limit.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Limit.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Limit
+(*  Title:      ZF/ex/Limit
     ID:         $Id$
-    Author: 	Sten Agerholm
+    Author:     Sten Agerholm
 
     A formalization of the inverse limit construction of domain theory.
 
--- a/src/ZF/ex/ListN.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/ListN.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/ListN
+(*  Title:      ZF/ex/ListN
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Inductive definition of lists of n elements
@@ -10,7 +10,7 @@
 *)
 
 ListN = List +
-consts	listn ::i=>i
+consts  listn ::i=>i
 inductive
   domains   "listn(A)" <= "nat*list(A)"
   intrs
--- a/src/ZF/ex/Ntree.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Ntree.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Ntree.ML
+(*  Title:      ZF/ex/Ntree.ML
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Datatype definition n-ary branching trees
@@ -17,18 +17,18 @@
 
 datatype
   "ntree(A)" = Branch ("a: A", "h: (UN n:nat. n -> ntree(A))")
-  monos	      "[[subset_refl, Pi_mono] MRS UN_mono]"	(*MUST have this form*)
+  monos       "[[subset_refl, Pi_mono] MRS UN_mono]"    (*MUST have this form*)
   type_intrs  "[nat_fun_univ RS subsetD]"
   type_elims  "[UN_E]"
 
 datatype
   "maptree(A)" = Sons ("a: A", "h: maptree(A) -||> maptree(A)")
-  monos	      "[FiniteFun_mono1]"	(*Use monotonicity in BOTH args*)
+  monos       "[FiniteFun_mono1]"       (*Use monotonicity in BOTH args*)
   type_intrs  "[FiniteFun_univ1 RS subsetD]"
 
 datatype
   "maptree2(A,B)" = Sons2 ("a: A", "h: B -||> maptree2(A,B)")
-  monos	      "[subset_refl RS FiniteFun_mono]"
+  monos       "[subset_refl RS FiniteFun_mono]"
   type_intrs  "[FiniteFun_in_univ']"
 
 end
--- a/src/ZF/ex/Primrec.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Primrec.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Primrec.thy
+(*  Title:      ZF/ex/Primrec.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Primitive Recursive Functions
@@ -22,8 +22,8 @@
     PROJ    :: i=>i
     COMP    :: [i,i]=>i
     PREC    :: [i,i]=>i
-    ACK	    :: i=>i
-    ack	    :: [i,i]=>i
+    ACK     :: i=>i
+    ack     :: [i,i]=>i
 
 translations
   "ack(x,y)"  == "ACK(x) ` [y]"
@@ -57,8 +57,8 @@
     PREC     "[| f: primrec; g: primrec |] ==> PREC(f,g): primrec"
   monos      "[list_mono]"
   con_defs   "[SC_def,CONST_def,PROJ_def,COMP_def,PREC_def]"
-  type_intrs "nat_typechecks @ list.intrs @   		        
-	      [lam_type, list_case_type, drop_type, map_type,   
-	      apply_type, rec_type]"
+  type_intrs "nat_typechecks @ list.intrs @                     
+              [lam_type, list_case_type, drop_type, map_type,   
+              apply_type, rec_type]"
 
 end
--- a/src/ZF/ex/PropLog.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/PropLog.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/PropLog.thy
+(*  Title:      ZF/ex/PropLog.thy
     ID:         $Id$
-    Author: 	Tobias Nipkow & Lawrence C Paulson
+    Author:     Tobias Nipkow & Lawrence C Paulson
     Copyright   1993  University of Cambridge
 
 Datatype definition of propositional logic formulae and inductive definition
@@ -15,13 +15,13 @@
 
 datatype
   "prop" = Fls
-         | Var ("n: nat")	                ("#_" [100] 100)
-         | "=>" ("p: prop", "q: prop")		(infixr 90)
+         | Var ("n: nat")                       ("#_" [100] 100)
+         | "=>" ("p: prop", "q: prop")          (infixr 90)
 
 (** The proof system **)
 consts
   thms     :: i => i
-  "|-"     :: [i,i] => o    			(infixl 50)
+  "|-"     :: [i,i] => o                        (infixl 50)
 
 translations
   "H |- p" == "p : thms(H)"
@@ -41,7 +41,7 @@
 consts
   prop_rec :: [i, i, i=>i, [i,i,i,i]=>i] => i
   is_true  :: [i,i] => o
-  "|="     :: [i,i] => o    			(infixl 50)
+  "|="     :: [i,i] => o                        (infixl 50)
   hyps     :: [i,i] => i
 
 defs
--- a/src/ZF/ex/Ramsey.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Ramsey.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/ramsey.thy
+(*  Title:      ZF/ex/ramsey.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Ramsey's Theorem (finite exponent 2 version)
@@ -20,9 +20,9 @@
 
 Ramsey = Arith +
 consts
-  Symmetric   		:: i=>o
-  Atleast     		:: [i,i]=>o
-  Clique,Indept,Ramsey	:: [i,i,i]=>o
+  Symmetric             :: i=>o
+  Atleast               :: [i,i]=>o
+  Clique,Indept,Ramsey  :: [i,i,i]=>o
 
 defs
 
--- a/src/ZF/ex/Rmap.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Rmap.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Rmap
+(*  Title:      ZF/ex/Rmap
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Inductive definition of an operator to "map" a relation over a list
--- a/src/ZF/ex/TF.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/TF.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/TF.thy
+(*  Title:      ZF/ex/TF.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Trees & forests, a mutually recursive type definition.
@@ -24,14 +24,14 @@
 
 defs
   TF_rec_def
-    "TF_rec(z,b,c,d) == Vrec(z,  			
-      %z r. tree_forest_case(%x f. b(x, f, r`f), 	
-                             c, 			
-		              %t f. d(t, f, r`t, r`f), z))"
+    "TF_rec(z,b,c,d) == Vrec(z,                         
+      %z r. tree_forest_case(%x f. b(x, f, r`f),        
+                             c,                         
+                              %t f. d(t, f, r`t, r`f), z))"
 
   list_of_TF_def
     "list_of_TF(z) == TF_rec(z, %x f r. [Tcons(x,f)], [], 
-		             %t f r1 r2. Cons(t, r2))"
+                             %t f r1 r2. Cons(t, r2))"
 
   TF_of_list_def
     "TF_of_list(f) == list_rec(f, Fnil,  %t f r. Fcons(t,r))"
--- a/src/ZF/ex/Term.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/Term.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	ZF/ex/Term.thy
+(*  Title:      ZF/ex/Term.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
 Terms over an alphabet.
@@ -19,7 +19,7 @@
 
 datatype
   "term(A)" = Apply ("a: A", "l: list(term(A))")
-  monos	      "[list_mono]"
+  monos       "[list_mono]"
 
   type_elims  "[make_elim (list_univ RS subsetD)]"
 (*Or could have
@@ -31,12 +31,12 @@
    "term_rec(t,d) == 
    Vrec(t, %t g. term_case(%x zs. d(x, zs, map(%z.g`z, zs)), t))"
 
-  term_map_def	"term_map(f,t) == term_rec(t, %x zs rs. Apply(f(x), rs))"
+  term_map_def  "term_map(f,t) == term_rec(t, %x zs rs. Apply(f(x), rs))"
 
-  term_size_def	"term_size(t) == term_rec(t, %x zs rs. succ(list_add(rs)))"
+  term_size_def "term_size(t) == term_rec(t, %x zs rs. succ(list_add(rs)))"
 
-  reflect_def	"reflect(t) == term_rec(t, %x zs rs. Apply(x, rev(rs)))"
+  reflect_def   "reflect(t) == term_rec(t, %x zs rs. Apply(x, rev(rs)))"
 
-  preorder_def	"preorder(t) == term_rec(t, %x zs rs. Cons(x, flat(rs)))"
+  preorder_def  "preorder(t) == term_rec(t, %x zs rs. Cons(x, flat(rs)))"
 
 end
--- a/src/ZF/ex/twos_compl.thy	Mon Feb 05 21:33:14 1996 +0100
+++ b/src/ZF/ex/twos_compl.thy	Tue Feb 06 12:27:17 1996 +0100
@@ -1,5 +1,5 @@
 (*  ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 *)