--- a/src/HOL/Hyperreal/MacLaurin.thy Tue Jul 27 15:39:59 2004 +0200
+++ b/src/HOL/Hyperreal/MacLaurin.thy Wed Jul 28 10:49:29 2004 +0200
@@ -2,48 +2,614 @@
Author : Jacques D. Fleuriot
Copyright : 2001 University of Edinburgh
Description : MacLaurin series
+ Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
-theory MacLaurin = Log
-files ("MacLaurin_lemmas.ML"):
+theory MacLaurin = Log:
+
+lemma sumr_offset: "sumr 0 n (%m. f (m+k)) = sumr 0 (n+k) f - sumr 0 k f"
+by (induct_tac "n", auto)
+
+lemma sumr_offset2: "\<forall>f. sumr 0 n (%m. f (m+k)) = sumr 0 (n+k) f - sumr 0 k f"
+by (induct_tac "n", auto)
+
+lemma sumr_offset3: "sumr 0 (n+k) f = sumr 0 n (%m. f (m+k)) + sumr 0 k f"
+by (simp add: sumr_offset)
+
+lemma sumr_offset4: "\<forall>n f. sumr 0 (n+k) f = sumr 0 n (%m. f (m+k)) + sumr 0 k f"
+by (simp add: sumr_offset)
+
+lemma sumr_from_1_from_0: "0 < n ==>
+ sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else
+ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) =
+ sumr 0 (Suc n) (%n. (if even(n) then 0 else
+ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)"
+by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto)
+
+
+subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
+
+text{*This is a very long, messy proof even now that it's been broken down
+into lemmas.*}
+
+lemma Maclaurin_lemma:
+ "0 < h ==>
+ \<exists>B. f h = sumr 0 n (%m. (j m / real (fact m)) * (h^m)) +
+ (B * ((h^n) / real(fact n)))"
+by (rule_tac x = "(f h - sumr 0 n (%m. (j m / real (fact m)) * h^m)) *
+ real(fact n) / (h^n)"
+ in exI, auto)
+
+
+lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
+by arith
+
+text{*A crude tactic to differentiate by proof.*}
+ML
+{*
+exception DERIV_name;
+fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
+| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
+| get_fun_name _ = raise DERIV_name;
+
+val deriv_rulesI = [DERIV_Id,DERIV_const,DERIV_cos,DERIV_cmult,
+ DERIV_sin, DERIV_exp, DERIV_inverse,DERIV_pow,
+ DERIV_add, DERIV_diff, DERIV_mult, DERIV_minus,
+ DERIV_inverse_fun,DERIV_quotient,DERIV_fun_pow,
+ DERIV_fun_exp,DERIV_fun_sin,DERIV_fun_cos,
+ DERIV_Id,DERIV_const,DERIV_cos];
+
+val deriv_tac =
+ SUBGOAL (fn (prem,i) =>
+ (resolve_tac deriv_rulesI i) ORELSE
+ ((rtac (read_instantiate [("f",get_fun_name prem)]
+ DERIV_chain2) i) handle DERIV_name => no_tac));;
+
+val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i));
+*}
+
+lemma Maclaurin_lemma2:
+ "[| \<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t;
+ n = Suc k;
+ difg =
+ (\<lambda>m t. diff m t -
+ ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
+ B * (t ^ (n - m) / real (fact (n - m)))))|] ==>
+ \<forall>m t. m < n & 0 \<le> t & t \<le> h -->
+ DERIV (difg m) t :> difg (Suc m) t"
+apply clarify
+apply (rule DERIV_diff)
+apply (simp (no_asm_simp))
+apply (tactic DERIV_tac)
+apply (tactic DERIV_tac)
+apply (rule_tac [2] lemma_DERIV_subst)
+apply (rule_tac [2] DERIV_quotient)
+apply (rule_tac [3] DERIV_const)
+apply (rule_tac [2] DERIV_pow)
+ prefer 3 apply (simp add: fact_diff_Suc)
+ prefer 2 apply simp
+apply (frule_tac m = m in less_add_one, clarify)
+apply (simp del: sumr_Suc)
+apply (insert sumr_offset4 [of 1])
+apply (simp del: sumr_Suc fact_Suc realpow_Suc)
+apply (rule lemma_DERIV_subst)
+apply (rule DERIV_add)
+apply (rule_tac [2] DERIV_const)
+apply (rule DERIV_sumr, clarify)
+ prefer 2 apply simp
+apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc realpow_Suc)
+apply (rule DERIV_cmult)
+apply (rule lemma_DERIV_subst)
+apply (best intro: DERIV_chain2 intro!: DERIV_intros)
+apply (subst fact_Suc)
+apply (subst real_of_nat_mult)
+apply (simp add: inverse_mult_distrib mult_ac)
+done
+
+
+lemma Maclaurin_lemma3:
+ "[|\<forall>k t. k < Suc m \<and> 0\<le>t & t\<le>h \<longrightarrow> DERIV (difg k) t :> difg (Suc k) t;
+ \<forall>k<Suc m. difg k 0 = 0; DERIV (difg n) t :> 0; n < m; 0 < t;
+ t < h|]
+ ==> \<exists>ta. 0 < ta & ta < t & DERIV (difg (Suc n)) ta :> 0"
+apply (rule Rolle, assumption, simp)
+apply (drule_tac x = n and P="%k. k<Suc m --> difg k 0 = 0" in spec)
+apply (rule DERIV_unique)
+prefer 2 apply assumption
+apply force
+apply (subgoal_tac "\<forall>ta. 0 \<le> ta & ta \<le> t --> (difg (Suc n)) differentiable ta")
+apply (simp add: differentiable_def)
+apply (blast dest!: DERIV_isCont)
+apply (simp add: differentiable_def, clarify)
+apply (rule_tac x = "difg (Suc (Suc n)) ta" in exI)
+apply force
+apply (simp add: differentiable_def, clarify)
+apply (rule_tac x = "difg (Suc (Suc n)) x" in exI)
+apply force
+done
-use "MacLaurin_lemmas.ML"
+lemma Maclaurin:
+ "[| 0 < h; 0 < n; diff 0 = f;
+ \<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
+ ==> \<exists>t. 0 < t &
+ t < h &
+ f h =
+ sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) +
+ (diff n t / real (fact n)) * h ^ n"
+apply (case_tac "n = 0", force)
+apply (drule not0_implies_Suc)
+apply (erule exE)
+apply (frule_tac f=f and n=n and j="%m. diff m 0" in Maclaurin_lemma)
+apply (erule exE)
+apply (subgoal_tac "\<exists>g.
+ g = (%t. f t - (sumr 0 n (%m. (diff m 0 / real(fact m)) * t^m) + (B * (t^n / real(fact n)))))")
+ prefer 2 apply blast
+apply (erule exE)
+apply (subgoal_tac "g 0 = 0 & g h =0")
+ prefer 2
+ apply (simp del: sumr_Suc)
+ apply (cut_tac n = m and k = 1 in sumr_offset2)
+ apply (simp add: eq_diff_eq' del: sumr_Suc)
+apply (subgoal_tac "\<exists>difg. difg = (%m t. diff m t - (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) + (B * ((t ^ (n - m)) / real (fact (n - m))))))")
+ prefer 2 apply blast
+apply (erule exE)
+apply (subgoal_tac "difg 0 = g")
+ prefer 2 apply simp
+apply (frule Maclaurin_lemma2, assumption+)
+apply (subgoal_tac "\<forall>ma. ma < n --> (\<exists>t. 0 < t & t < h & difg (Suc ma) t = 0) ")
+apply (drule_tac x = m and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
+apply (erule impE)
+apply (simp (no_asm_simp))
+apply (erule exE)
+apply (rule_tac x = t in exI)
+apply (simp del: realpow_Suc fact_Suc)
+apply (subgoal_tac "\<forall>m. m < n --> difg m 0 = 0")
+ prefer 2
+ apply clarify
+ apply simp
+ apply (frule_tac m = ma in less_add_one, clarify)
+ apply (simp del: sumr_Suc)
+apply (insert sumr_offset4 [of 1])
+apply (simp del: sumr_Suc fact_Suc realpow_Suc)
+apply (subgoal_tac "\<forall>m. m < n --> (\<exists>t. 0 < t & t < h & DERIV (difg m) t :> 0) ")
+apply (rule allI, rule impI)
+apply (drule_tac x = ma and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
+apply (erule impE, assumption)
+apply (erule exE)
+apply (rule_tac x = t in exI)
+(* do some tidying up *)
+apply (erule_tac [!] V= "difg = (%m t. diff m t - (sumr 0 (n - m) (%p. diff (m + p) 0 / real (fact p) * t ^ p) + B * (t ^ (n - m) / real (fact (n - m)))))"
+ in thin_rl)
+apply (erule_tac [!] V="g = (%t. f t - (sumr 0 n (%m. diff m 0 / real (fact m) * t ^ m) + B * (t ^ n / real (fact n))))"
+ in thin_rl)
+apply (erule_tac [!] V="f h = sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + B * (h ^ n / real (fact n))"
+ in thin_rl)
+(* back to business *)
+apply (simp (no_asm_simp))
+apply (rule DERIV_unique)
+prefer 2 apply blast
+apply force
+apply (rule allI, induct_tac "ma")
+apply (rule impI, rule Rolle, assumption, simp, simp)
+apply (subgoal_tac "\<forall>t. 0 \<le> t & t \<le> h --> g differentiable t")
+apply (simp add: differentiable_def)
+apply (blast dest: DERIV_isCont)
+apply (simp add: differentiable_def, clarify)
+apply (rule_tac x = "difg (Suc 0) t" in exI)
+apply force
+apply (simp add: differentiable_def, clarify)
+apply (rule_tac x = "difg (Suc 0) x" in exI)
+apply force
+apply safe
+apply force
+apply (frule Maclaurin_lemma3, assumption+, safe)
+apply (rule_tac x = ta in exI, force)
+done
+
+lemma Maclaurin_objl:
+ "0 < h & 0 < n & diff 0 = f &
+ (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
+ --> (\<exists>t. 0 < t &
+ t < h &
+ f h =
+ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
+ diff n t / real (fact n) * h ^ n)"
+by (blast intro: Maclaurin)
+
+
+lemma Maclaurin2:
+ "[| 0 < h; diff 0 = f;
+ \<forall>m t.
+ m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
+ ==> \<exists>t. 0 < t &
+ t \<le> h &
+ f h =
+ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
+ diff n t / real (fact n) * h ^ n"
+apply (case_tac "n", auto)
+apply (drule Maclaurin, auto)
+done
+
+lemma Maclaurin2_objl:
+ "0 < h & diff 0 = f &
+ (\<forall>m t.
+ m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
+ --> (\<exists>t. 0 < t &
+ t \<le> h &
+ f h =
+ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
+ diff n t / real (fact n) * h ^ n)"
+by (blast intro: Maclaurin2)
+
+lemma Maclaurin_minus:
+ "[| h < 0; 0 < n; diff 0 = f;
+ \<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |]
+ ==> \<exists>t. h < t &
+ t < 0 &
+ f h =
+ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
+ diff n t / real (fact n) * h ^ n"
+apply (cut_tac f = "%x. f (-x)"
+ and diff = "%n x. ((- 1) ^ n) * diff n (-x)"
+ and h = "-h" and n = n in Maclaurin_objl)
+apply simp
+apply safe
+apply (subst minus_mult_right)
+apply (rule DERIV_cmult)
+apply (rule lemma_DERIV_subst)
+apply (rule DERIV_chain2 [where g=uminus])
+apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_Id)
+prefer 2 apply force
+apply force
+apply (rule_tac x = "-t" in exI, auto)
+apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) =
+ (\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))")
+apply (rule_tac [2] sumr_fun_eq)
+apply (auto simp add: divide_inverse power_mult_distrib [symmetric])
+done
+
+lemma Maclaurin_minus_objl:
+ "(h < 0 & 0 < n & diff 0 = f &
+ (\<forall>m t.
+ m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))
+ --> (\<exists>t. h < t &
+ t < 0 &
+ f h =
+ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
+ diff n t / real (fact n) * h ^ n)"
+by (blast intro: Maclaurin_minus)
+
+
+subsection{*More Convenient "Bidirectional" Version.*}
+
+(* not good for PVS sin_approx, cos_approx *)
+
+lemma Maclaurin_bi_le_lemma [rule_format]:
+ "0 < n \<longrightarrow>
+ diff 0 0 =
+ (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
+ diff n 0 * 0 ^ n / real (fact n)"
+by (induct_tac "n", auto)
-lemma Maclaurin_sin_bound:
- "abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
- x ^ m)) <= inverse(real (fact n)) * abs(x) ^ n"
+lemma Maclaurin_bi_le:
+ "[| diff 0 = f;
+ \<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |]
+ ==> \<exists>t. abs t \<le> abs x &
+ f x =
+ sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) +
+ diff n t / real (fact n) * x ^ n"
+apply (case_tac "n = 0", force)
+apply (case_tac "x = 0")
+apply (rule_tac x = 0 in exI)
+apply (force simp add: Maclaurin_bi_le_lemma)
+apply (cut_tac x = x and y = 0 in linorder_less_linear, auto)
+txt{*Case 1, where @{term "x < 0"}*}
+apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe)
+apply (simp add: abs_if)
+apply (rule_tac x = t in exI)
+apply (simp add: abs_if)
+txt{*Case 2, where @{term "0 < x"}*}
+apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe)
+apply (simp add: abs_if)
+apply (rule_tac x = t in exI)
+apply (simp add: abs_if)
+done
+
+lemma Maclaurin_all_lt:
+ "[| diff 0 = f;
+ \<forall>m x. DERIV (diff m) x :> diff(Suc m) x;
+ x ~= 0; 0 < n
+ |] ==> \<exists>t. 0 < abs t & abs t < abs x &
+ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
+ (diff n t / real (fact n)) * x ^ n"
+apply (rule_tac x = x and y = 0 in linorder_cases)
+prefer 2 apply blast
+apply (drule_tac [2] diff=diff in Maclaurin)
+apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe)
+apply (rule_tac [!] x = t in exI, auto, arith+)
+done
+
+lemma Maclaurin_all_lt_objl:
+ "diff 0 = f &
+ (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &
+ x ~= 0 & 0 < n
+ --> (\<exists>t. 0 < abs t & abs t < abs x &
+ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
+ (diff n t / real (fact n)) * x ^ n)"
+by (blast intro: Maclaurin_all_lt)
+
+lemma Maclaurin_zero [rule_format]:
+ "x = (0::real)
+ ==> 0 < n -->
+ sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) =
+ diff 0 0"
+by (induct n, auto)
+
+lemma Maclaurin_all_le: "[| diff 0 = f;
+ \<forall>m x. DERIV (diff m) x :> diff (Suc m) x
+ |] ==> \<exists>t. abs t \<le> abs x &
+ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
+ (diff n t / real (fact n)) * x ^ n"
+apply (insert linorder_le_less_linear [of n 0])
+apply (erule disjE, force)
+apply (case_tac "x = 0")
+apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption)
+apply (drule gr_implies_not0 [THEN not0_implies_Suc])
+apply (rule_tac x = 0 in exI, force)
+apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto)
+apply (rule_tac x = t in exI, auto)
+done
+
+lemma Maclaurin_all_le_objl: "diff 0 = f &
+ (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
+ --> (\<exists>t. abs t \<le> abs x &
+ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
+ (diff n t / real (fact n)) * x ^ n)"
+by (blast intro: Maclaurin_all_le)
+
+
+subsection{*Version for Exponential Function*}
+
+lemma Maclaurin_exp_lt: "[| x ~= 0; 0 < n |]
+ ==> (\<exists>t. 0 < abs t &
+ abs t < abs x &
+ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) +
+ (exp t / real (fact n)) * x ^ n)"
+by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)
+
+
+lemma Maclaurin_exp_le:
+ "\<exists>t. abs t \<le> abs x &
+ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) +
+ (exp t / real (fact n)) * x ^ n"
+by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)
+
+
+subsection{*Version for Sine Function*}
+
+lemma MVT2:
+ "[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
+ ==> \<exists>z. a < z & z < b & (f b - f a = (b - a) * f'(z))"
+apply (drule MVT)
+apply (blast intro: DERIV_isCont)
+apply (force dest: order_less_imp_le simp add: differentiable_def)
+apply (blast dest: DERIV_unique order_less_imp_le)
+done
+
+lemma mod_exhaust_less_4:
+ "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)"
+by (case_tac "m mod 4", auto, arith)
+
+lemma Suc_Suc_mult_two_diff_two [rule_format, simp]:
+ "0 < n --> Suc (Suc (2 * n - 2)) = 2*n"
+by (induct_tac "n", auto)
+
+lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]:
+ "0 < n --> Suc (Suc (4*n - 2)) = 4*n"
+by (induct_tac "n", auto)
+
+lemma Suc_mult_two_diff_one [rule_format, simp]:
+ "0 < n --> Suc (2 * n - 1) = 2*n"
+by (induct_tac "n", auto)
+
+lemma Maclaurin_sin_expansion:
+ "\<exists>t. sin x =
+ (sumr 0 n (%m. (if even m then 0
+ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
+ x ^ m))
+ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = sin and n = n and x = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
+apply safe
+apply (simp (no_asm))
+apply (simp (no_asm))
+apply (case_tac "n", clarify, simp)
+apply (drule_tac x = 0 in spec, simp, simp)
+apply (rule ccontr, simp)
+apply (drule_tac x = x in spec, simp)
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
+(*Could sin_zero_iff help?*)
+done
+
+lemma Maclaurin_sin_expansion2:
+ "\<exists>t. abs t \<le> abs x &
+ sin x =
+ (sumr 0 n (%m. (if even m then 0
+ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
+ x ^ m))
+ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = sin and n = n and x = x
+ and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)
+apply safe
+apply (simp (no_asm))
+apply (simp (no_asm))
+apply (case_tac "n", clarify, simp, simp)
+apply (rule ccontr, simp)
+apply (drule_tac x = x in spec, simp)
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
+done
+
+lemma Maclaurin_sin_expansion3:
+ "[| 0 < n; 0 < x |] ==>
+ \<exists>t. 0 < t & t < x &
+ sin x =
+ (sumr 0 n (%m. (if even m then 0
+ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
+ x ^ m))
+ + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)
+apply safe
+apply simp
+apply (simp (no_asm))
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
+done
+
+lemma Maclaurin_sin_expansion4:
+ "0 < x ==>
+ \<exists>t. 0 < t & t \<le> x &
+ sin x =
+ (sumr 0 n (%m. (if even m then 0
+ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
+ x ^ m))
+ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)
+apply safe
+apply simp
+apply (simp (no_asm))
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
+done
+
+
+subsection{*Maclaurin Expansion for Cosine Function*}
+
+lemma sumr_cos_zero_one [simp]:
+ "sumr 0 (Suc n)
+ (%m. (if even m
+ then (- 1) ^ (m div 2)/(real (fact m))
+ else 0) *
+ 0 ^ m) = 1"
+by (induct_tac "n", auto)
+
+lemma Maclaurin_cos_expansion:
+ "\<exists>t. abs t \<le> abs x &
+ cos x =
+ (sumr 0 n (%m. (if even m
+ then (- 1) ^ (m div 2)/(real (fact m))
+ else 0) *
+ x ^ m))
+ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
+apply safe
+apply (simp (no_asm))
+apply (simp (no_asm))
+apply (case_tac "n", simp)
+apply (simp del: sumr_Suc)
+apply (rule ccontr, simp)
+apply (drule_tac x = x in spec, simp)
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
+apply (simp add: mult_commute [of _ pi])
+done
+
+lemma Maclaurin_cos_expansion2:
+ "[| 0 < x; 0 < n |] ==>
+ \<exists>t. 0 < t & t < x &
+ cos x =
+ (sumr 0 n (%m. (if even m
+ then (- 1) ^ (m div 2)/(real (fact m))
+ else 0) *
+ x ^ m))
+ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)
+apply safe
+apply simp
+apply (simp (no_asm))
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
+apply (simp add: mult_commute [of _ pi])
+done
+
+lemma Maclaurin_minus_cos_expansion: "[| x < 0; 0 < n |] ==>
+ \<exists>t. x < t & t < 0 &
+ cos x =
+ (sumr 0 n (%m. (if even m
+ then (- 1) ^ (m div 2)/(real (fact m))
+ else 0) *
+ x ^ m))
+ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
+apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)
+apply safe
+apply simp
+apply (simp (no_asm))
+apply (erule ssubst)
+apply (rule_tac x = t in exI, simp)
+apply (rule sumr_fun_eq)
+apply (auto simp add: odd_Suc_mult_two_ex)
+apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
+apply (simp add: mult_commute [of _ pi])
+done
+
+(* ------------------------------------------------------------------------- *)
+(* Version for ln(1 +/- x). Where is it?? *)
+(* ------------------------------------------------------------------------- *)
+
+lemma sin_bound_lemma:
+ "[|x = y; abs u \<le> (v::real) |] ==> abs ((x + u) - y) \<le> v"
+by auto
+
+lemma Maclaurin_sin_bound:
+ "abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
+ x ^ m)) \<le> inverse(real (fact n)) * abs(x) ^ n"
proof -
- have "!! x (y::real). x <= 1 \<Longrightarrow> 0 <= y \<Longrightarrow> x * y \<le> 1 * y"
+ have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"
by (rule_tac mult_right_mono,simp_all)
note est = this[simplified]
show ?thesis
- apply (cut_tac f=sin and n=n and x=x and
+ apply (cut_tac f=sin and n=n and x=x and
diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
in Maclaurin_all_le_objl)
- apply (tactic{* (Step_tac 1) *})
- apply (simp)
+ apply safe
+ apply simp
apply (subst mod_Suc_eq_Suc_mod)
- apply (tactic{* cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1*})
- apply (tactic{* Step_tac 1 *})
- apply (simp)+
+ apply (cut_tac m=m in mod_exhaust_less_4, safe, simp+)
apply (rule DERIV_minus, simp+)
apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
- apply (tactic{* dtac ssubst 1 THEN assume_tac 2 *})
- apply (tactic {* rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1 *})
- apply (rule sumr_fun_eq)
- apply (tactic{* Step_tac 1 *})
- apply (tactic{*rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1*})
+ apply (erule ssubst)
+ apply (rule sin_bound_lemma)
+ apply (rule sumr_fun_eq, safe)
+ apply (rule_tac f = "%u. u * (x^r)" in arg_cong)
apply (subst even_even_mod_4_iff)
- apply (tactic{* cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1 *})
- apply (tactic{* Step_tac 1 *})
- apply (simp)
+ apply (cut_tac m=r in mod_exhaust_less_4, simp, safe)
apply (simp_all add:even_num_iff)
apply (drule lemma_even_mod_4_div_2[simplified])
- apply(simp add: numeral_2_eq_2 real_divide_def)
- apply (drule lemma_odd_mod_4_div_2 );
- apply (simp add: numeral_2_eq_2 real_divide_def)
- apply (auto intro: real_mult_le_lemma mult_right_mono simp add: est mult_pos_le mult_ac real_divide_def abs_mult abs_inverse power_abs[symmetric])
+ apply(simp add: numeral_2_eq_2 divide_inverse)
+ apply (drule lemma_odd_mod_4_div_2)
+ apply (simp add: numeral_2_eq_2 divide_inverse)
+ apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
+ simp add: est mult_pos_le mult_ac divide_inverse
+ power_abs [symmetric])
done
qed
-end
\ No newline at end of file
+end
--- a/src/HOL/Hyperreal/MacLaurin_lemmas.ML Tue Jul 27 15:39:59 2004 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,724 +0,0 @@
-(* Title : MacLaurin.thy
- Author : Jacques D. Fleuriot
- Copyright : 2001 University of Edinburgh
- Description : MacLaurin series
-*)
-
-val DERIV_intros = thms"DERIV_intros";
-
-val lemma_DERIV_subst = thm"lemma_DERIV_subst";
-
-fun ARITH_PROVE str = prove_goal thy str
- (fn prems => [cut_facts_tac prems 1,arith_tac 1]);
-
-
-(* FIXME: remove this quick, crude tactic *)
-exception DERIV_name;
-fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
-| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
-| get_fun_name _ = raise DERIV_name;
-
-val deriv_rulesI = [DERIV_Id,DERIV_const,DERIV_cos,DERIV_cmult,
- DERIV_sin, DERIV_exp, DERIV_inverse,DERIV_pow,
- DERIV_add, DERIV_diff, DERIV_mult, DERIV_minus,
- DERIV_inverse_fun,DERIV_quotient,DERIV_fun_pow,
- DERIV_fun_exp,DERIV_fun_sin,DERIV_fun_cos,
- DERIV_Id,DERIV_const,DERIV_cos];
-
-
-fun deriv_tac i = (resolve_tac deriv_rulesI i) ORELSE
- ((rtac (read_instantiate [("f",get_fun_name (getgoal i))]
- DERIV_chain2) i) handle DERIV_name => no_tac);
-
-val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i));
-
-
-Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_offset";
-
-Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_offset2";
-
-Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
-by (simp_tac (simpset() addsimps [sumr_offset]) 1);
-qed "sumr_offset3";
-
-Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
-by (simp_tac (simpset() addsimps [sumr_offset]) 1);
-qed "sumr_offset4";
-
-Goal "0 < n ==> \
-\ sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
-\ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
-\ sumr 0 (Suc n) (%n. (if even(n) then 0 else \
-\ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
-by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
-by Auto_tac;
-qed "sumr_from_1_from_0";
-
-(*---------------------------------------------------------------------------*)
-(* Maclaurin's theorem with Lagrange form of remainder *)
-(*---------------------------------------------------------------------------*)
-
-
-
-(* FIXME: remove this quick, crude tactic *)
-exception DERIV_name;
-fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
-| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
-| get_fun_name _ = raise DERIV_name;
-
-val deriv_rulesI = [DERIV_Id,DERIV_const,DERIV_cos,DERIV_cmult,
- DERIV_sin, DERIV_exp, DERIV_inverse,DERIV_pow,
- DERIV_add, DERIV_diff, DERIV_mult, DERIV_minus,
- DERIV_inverse_fun,DERIV_quotient,DERIV_fun_pow,
- DERIV_fun_exp,DERIV_fun_sin,DERIV_fun_cos,
- DERIV_Id,DERIV_const,DERIV_cos];
-
-
-fun deriv_tac i = (resolve_tac deriv_rulesI i) ORELSE
- ((rtac (read_instantiate [("f",get_fun_name (getgoal i))]
- DERIV_chain2) i) handle DERIV_name => no_tac);
-
-val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i));
-
-
-(* Annoying: Proof is now even longer due mostly to
- change in behaviour of simplifier since Isabelle99 *)
-Goal " [| 0 < h; 0 < n; diff 0 = f; \
-\ ALL m t. \
-\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
-\ ==> EX t. 0 < t & \
-\ t < h & \
-\ f h = \
-\ sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
-\ (diff n t / real (fact n)) * h ^ n";
-by (case_tac "n = 0" 1);
-by (Force_tac 1);
-by (dtac not0_implies_Suc 1);
-by (etac exE 1);
-by (subgoal_tac
- "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
-\ + (B * ((h ^ n) / real (fact n)))" 1);
-
-by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
- ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
-by (res_inst_tac
- [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
-\ * real (fact n) / (h ^ n)")] exI 2);
-by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
- by (rtac (CLAIM "x = (1::real) ==> a = a * (x::real)") 2);
-by (asm_simp_tac (HOL_ss addsimps
- [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
- delsimps [realpow_Suc]) 2);
-by (stac left_inverse 2);
-by (stac left_inverse 3);
-by (rtac (real_not_refl2 RS not_sym) 2);
-by (etac zero_less_power 2);
-by (rtac real_of_nat_fact_not_zero 2);
-by (Simp_tac 2);
-by (etac exE 1);
-by (cut_inst_tac [("b","%t. f t - \
-\ (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
-\ (B * ((t ^ n) / real (fact n))))")]
- (CLAIM "EX g. g = b") 1);
-by (etac exE 1);
-by (subgoal_tac "g 0 = 0 & g h =0" 1);
-by (asm_simp_tac (simpset() addsimps
- [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
- delsimps [sumr_Suc]) 2);
-by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
-by (asm_full_simp_tac (simpset() addsimps
- [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
- delsimps [sumr_Suc]) 2);
-by (cut_inst_tac [("b","%m t. diff m t - \
-\ (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
-\ + (B * ((t ^ (n - m)) / real (fact(n - m)))))")]
- (CLAIM "EX difg. difg = b") 1);
-by (etac exE 1);
-by (subgoal_tac "difg 0 = g" 1);
-by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
-by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
-\ DERIV (difg m) t :> difg (Suc m) t" 1);
-by (Clarify_tac 2);
-by (rtac DERIV_diff 2);
-by (Asm_simp_tac 2);
-by DERIV_tac;
-by DERIV_tac;
-by (rtac lemma_DERIV_subst 3);
-by (rtac DERIV_quotient 3);
-by (rtac DERIV_const 4);
-by (rtac DERIV_pow 3);
-by (asm_simp_tac (simpset() addsimps [inverse_mult_distrib,
- CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e"
- mult_ac,fact_diff_Suc]) 4);
-by (Asm_simp_tac 3);
-by (forw_inst_tac [("m","ma")] less_add_one 2);
-by (Clarify_tac 2);
-by (asm_simp_tac (simpset() addsimps
- [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
- delsimps [sumr_Suc]) 2);
-by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc])
- (read_instantiate [("k","1")] sumr_offset4))]
- delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
-by (rtac lemma_DERIV_subst 2);
-by (rtac DERIV_add 2);
-by (rtac DERIV_const 3);
-by (rtac DERIV_sumr 2);
-by (Clarify_tac 2);
-by (Simp_tac 3);
-by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc]
- delsimps [fact_Suc,realpow_Suc]) 2);
-by (rtac DERIV_cmult 2);
-by (rtac lemma_DERIV_subst 2);
-by (best_tac (claset() addIs [DERIV_chain2] addSIs DERIV_intros) 2);
-by (stac fact_Suc 2);
-by (stac real_of_nat_mult 2);
-by (simp_tac (simpset() addsimps [inverse_mult_distrib] @
- mult_ac) 2);
-by (subgoal_tac "ALL ma. ma < n --> \
-\ (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
-by (rotate_tac 11 1);
-by (dres_inst_tac [("x","m")] spec 1);
-by (etac impE 1);
-by (Asm_simp_tac 1);
-by (etac exE 1);
-by (res_inst_tac [("x","t")] exI 1);
-by (asm_full_simp_tac (simpset() addsimps
- [ARITH_PROVE "(x - y = 0) = (y = (x::real))"]
- delsimps [realpow_Suc,fact_Suc]) 1);
-by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
-by (Clarify_tac 2);
-by (Asm_simp_tac 2);
-by (forw_inst_tac [("m","ma")] less_add_one 2);
-by (Clarify_tac 2);
-by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
-by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc])
- (read_instantiate [("k","1")] sumr_offset4))]
- delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
-by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
-\ DERIV (difg m) t :> 0)" 1);
-by (rtac allI 1 THEN rtac impI 1);
-by (rotate_tac 12 1);
-by (dres_inst_tac [("x","ma")] spec 1);
-by (etac impE 1 THEN assume_tac 1);
-by (etac exE 1);
-by (res_inst_tac [("x","t")] exI 1);
-(* do some tidying up *)
-by (ALLGOALS(thin_tac "difg = \
-\ (%m t. diff m t - \
-\ (sumr 0 (n - m) \
-\ (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
-\ B * (t ^ (n - m) / real (fact (n - m)))))"));
-by (ALLGOALS(thin_tac "g = \
-\ (%t. f t - \
-\ (sumr 0 n (%m. diff m 0 / real (fact m) * t ^ m) + \
-\ B * (t ^ n / real (fact n))))"));
-by (ALLGOALS(thin_tac "f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ B * (h ^ n / real (fact n))"));
-(* back to business *)
-by (Asm_simp_tac 1);
-by (rtac DERIV_unique 1);
-by (Blast_tac 2);
-by (Force_tac 1);
-by (rtac allI 1 THEN induct_tac "ma" 1);
-by (rtac impI 1 THEN rtac Rolle 1);
-by (assume_tac 1);
-by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (blast_tac (claset() addDs [DERIV_isCont]) 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
-by (Force_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
-by (Force_tac 1);
-by (Step_tac 1);
-by (Force_tac 1);
-by (subgoal_tac "EX ta. 0 < ta & ta < t & \
-\ DERIV difg (Suc n) ta :> 0" 1);
-by (rtac Rolle 2 THEN assume_tac 2);
-by (Asm_full_simp_tac 2);
-by (rotate_tac 2 2);
-by (dres_inst_tac [("x","n")] spec 2);
-by (ftac (ARITH_PROVE "n < m ==> n < Suc m") 2);
-by (rtac DERIV_unique 2);
-by (assume_tac 3);
-by (Force_tac 2);
-by (subgoal_tac
- "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (Clarify_tac 2);
-by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
-by (Force_tac 2);
-by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
-by (Clarify_tac 2);
-by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
-by (Force_tac 2);
-by (Step_tac 1);
-by (res_inst_tac [("x","ta")] exI 1);
-by (Force_tac 1);
-qed "Maclaurin";
-
-Goal "0 < h & 0 < n & diff 0 = f & \
-\ (ALL m t. \
-\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
-\ --> (EX t. 0 < t & \
-\ t < h & \
-\ f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin]) 1);
-qed "Maclaurin_objl";
-
-Goal " [| 0 < h; diff 0 = f; \
-\ ALL m t. \
-\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
-\ ==> EX t. 0 < t & \
-\ t <= h & \
-\ f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ diff n t / real (fact n) * h ^ n";
-by (case_tac "n" 1);
-by Auto_tac;
-by (dtac Maclaurin 1 THEN Auto_tac);
-qed "Maclaurin2";
-
-Goal "0 < h & diff 0 = f & \
-\ (ALL m t. \
-\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
-\ --> (EX t. 0 < t & \
-\ t <= h & \
-\ f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin2]) 1);
-qed "Maclaurin2_objl";
-
-Goal " [| h < 0; 0 < n; diff 0 = f; \
-\ ALL m t. \
-\ m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
-\ ==> EX t. h < t & \
-\ t < 0 & \
-\ f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ diff n t / real (fact n) * h ^ n";
-by (cut_inst_tac [("f","%x. f (-x)"),
- ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
- ("h","-h"),("n","n")] Maclaurin_objl 1);
-by (Asm_full_simp_tac 1);
-by (etac impE 1 THEN Step_tac 1);
-by (stac minus_mult_right 1);
-by (rtac DERIV_cmult 1);
-by (rtac lemma_DERIV_subst 1);
-by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
-by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
-by (Force_tac 2);
-by (Force_tac 1);
-by (res_inst_tac [("x","-t")] exI 1);
-by Auto_tac;
-by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (Asm_full_simp_tac 1);
-by (auto_tac (claset(),simpset() addsimps [real_divide_def,
- CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
- power_mult_distrib RS sym]));
-qed "Maclaurin_minus";
-
-Goal "(h < 0 & 0 < n & diff 0 = f & \
-\ (ALL m t. \
-\ m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
-\ --> (EX t. h < t & \
-\ t < 0 & \
-\ f h = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
-\ diff n t / real (fact n) * h ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
-qed "Maclaurin_minus_objl";
-
-(* ------------------------------------------------------------------------- *)
-(* More convenient "bidirectional" version. *)
-(* ------------------------------------------------------------------------- *)
-
-(* not good for PVS sin_approx, cos_approx *)
-Goal " [| diff 0 = f; \
-\ ALL m t. \
-\ m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
-\ ==> EX t. abs t <= abs x & \
-\ f x = \
-\ sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
-\ diff n t / real (fact n) * x ^ n";
-by (case_tac "n = 0" 1);
-by (Force_tac 1);
-by (case_tac "x = 0" 1);
-by (res_inst_tac [("x","0")] exI 1);
-by (Asm_full_simp_tac 1);
-by (res_inst_tac [("P","0 < n")] impE 1);
-by (assume_tac 2 THEN assume_tac 2);
-by (induct_tac "n" 1);
-by (Simp_tac 1);
-by Auto_tac;
-by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1);
-by Auto_tac;
-by (cut_inst_tac [("f","diff 0"),
- ("diff","diff"),
- ("h","x"),("n","n")] Maclaurin_objl 2);
-by (Step_tac 2);
-by (blast_tac (claset() addDs
- [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
-by (res_inst_tac [("x","t")] exI 2);
-by (force_tac (claset() addIs
- [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
-by (cut_inst_tac [("f","diff 0"),
- ("diff","diff"),
- ("h","x"),("n","n")] Maclaurin_minus_objl 1);
-by (Step_tac 1);
-by (blast_tac (claset() addDs
- [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
-by (res_inst_tac [("x","t")] exI 1);
-by (force_tac (claset() addIs
- [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
-qed "Maclaurin_bi_le";
-
-Goal "[| diff 0 = f; \
-\ ALL m x. DERIV (diff m) x :> diff(Suc m) x; \
-\ x ~= 0; 0 < n \
-\ |] ==> EX t. 0 < abs t & abs t < abs x & \
-\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\ (diff n t / real (fact n)) * x ^ n";
-by (res_inst_tac [("x","x"),("y","0")] linorder_cases 1);
-by (Blast_tac 2);
-by (dtac Maclaurin_minus 1);
-by (dtac Maclaurin 5);
-by (TRYALL(assume_tac));
-by (Blast_tac 1);
-by (Blast_tac 2);
-by (Step_tac 1);
-by (ALLGOALS(res_inst_tac [("x","t")] exI));
-by (Step_tac 1);
-by (ALLGOALS(arith_tac));
-qed "Maclaurin_all_lt";
-
-Goal "diff 0 = f & \
-\ (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
-\ x ~= 0 & 0 < n \
-\ --> (EX t. 0 < abs t & abs t < abs x & \
-\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\ (diff n t / real (fact n)) * x ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
-qed "Maclaurin_all_lt_objl";
-
-Goal "x = (0::real) \
-\ ==> 0 < n --> \
-\ sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
-\ diff 0 0";
-by (Asm_simp_tac 1);
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "Maclaurin_zero";
-
-Goal "[| diff 0 = f; \
-\ ALL m x. DERIV (diff m) x :> diff (Suc m) x \
-\ |] ==> EX t. abs t <= abs x & \
-\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\ (diff n t / real (fact n)) * x ^ n";
-by (cut_inst_tac [("n","n"),("m","0")]
- (ARITH_PROVE "n <= m | m < (n::nat)") 1);
-by (etac disjE 1);
-by (Force_tac 1);
-by (case_tac "x = 0" 1);
-by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
-by (assume_tac 1);
-by (dtac (gr_implies_not0 RS not0_implies_Suc) 1);
-by (res_inst_tac [("x","0")] exI 1);
-by (Force_tac 1);
-by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
-by (TRYALL(assume_tac));
-by (Step_tac 1);
-by (res_inst_tac [("x","t")] exI 1);
-by Auto_tac;
-qed "Maclaurin_all_le";
-
-Goal "diff 0 = f & \
-\ (ALL m x. DERIV (diff m) x :> diff (Suc m) x) \
-\ --> (EX t. abs t <= abs x & \
-\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
-\ (diff n t / real (fact n)) * x ^ n)";
-by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
-qed "Maclaurin_all_le_objl";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for exp. *)
-(* ------------------------------------------------------------------------- *)
-
-Goal "[| x ~= 0; 0 < n |] \
-\ ==> (EX t. 0 < abs t & \
-\ abs t < abs x & \
-\ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
-\ (exp t / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")]
- Maclaurin_all_lt_objl 1);
-by Auto_tac;
-qed "Maclaurin_exp_lt";
-
-Goal "EX t. abs t <= abs x & \
-\ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
-\ (exp t / real (fact n)) * x ^ n";
-by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")]
- Maclaurin_all_le_objl 1);
-by Auto_tac;
-qed "Maclaurin_exp_le";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for sin function *)
-(* ------------------------------------------------------------------------- *)
-
-Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
-\ ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
-by (dtac MVT 1);
-by (blast_tac (claset() addIs [DERIV_isCont]) 1);
-by (force_tac (claset() addDs [order_less_imp_le],
- simpset() addsimps [differentiable_def]) 1);
-by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
-qed "MVT2";
-
-Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
-by (case_tac "d" 1 THEN Auto_tac);
-qed "lemma_exhaust_less_4";
-
-bind_thm ("real_mult_le_lemma",
- simplify (simpset()) (inst "b" "1" mult_right_mono));
-
-
-Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "Suc_Suc_mult_two_diff_two";
-Addsimps [Suc_Suc_mult_two_diff_two];
-
-Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
-Addsimps [lemma_Suc_Suc_4n_diff_2];
-
-Goal "0 < n --> Suc (2 * n - 1) = 2*n";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "Suc_mult_two_diff_one";
-Addsimps [Suc_mult_two_diff_one];
-
-Goal "EX t. sin x = \
-\ (sumr 0 n (%m. (if even m then 0 \
-\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\ x ^ m)) \
-\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
- ("diff","%n x. sin(x + 1/2*real (n)*pi)")]
- Maclaurin_all_lt_objl 1);
-by (Safe_tac);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Clarify_tac 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-(*Could sin_zero_iff help?*)
-qed "Maclaurin_sin_expansion";
-
-Goal "EX t. abs t <= abs x & \
-\ sin x = \
-\ (sumr 0 n (%m. (if even m then 0 \
-\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\ x ^ m)) \
-\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-
-by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
- ("diff","%n x. sin(x + 1/2*real (n)*pi)")]
- Maclaurin_all_lt_objl 1);
-by (Step_tac 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Clarify_tac 1);
-by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1);
-by (arith_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion2";
-
-Goal "[| 0 < n; 0 < x |] ==> \
-\ EX t. 0 < t & t < x & \
-\ sin x = \
-\ (sumr 0 n (%m. (if even m then 0 \
-\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\ x ^ m)) \
-\ + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
- ("diff","%n x. sin(x + 1/2*real (n)*pi)")]
- Maclaurin_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion3";
-
-Goal "0 < x ==> \
-\ EX t. 0 < t & t <= x & \
-\ sin x = \
-\ (sumr 0 n (%m. (if even m then 0 \
-\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
-\ x ^ m)) \
-\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
- ("diff","%n x. sin(x + 1/2*real (n)*pi)")]
- Maclaurin2_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
-qed "Maclaurin_sin_expansion4";
-
-(*-----------------------------------------------------------------------------*)
-(* Maclaurin expansion for cos *)
-(*-----------------------------------------------------------------------------*)
-
-Goal "sumr 0 (Suc n) \
-\ (%m. (if even m \
-\ then (- 1) ^ (m div 2)/(real (fact m)) \
-\ else 0) * \
-\ 0 ^ m) = 1";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumr_cos_zero_one";
-Addsimps [sumr_cos_zero_one];
-
-Goal "EX t. abs t <= abs x & \
-\ cos x = \
-\ (sumr 0 n (%m. (if even m \
-\ then (- 1) ^ (m div 2)/(real (fact m)) \
-\ else 0) * \
-\ x ^ m)) \
-\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
- ("diff","%n x. cos(x + 1/2*real (n)*pi)")]
- Maclaurin_all_lt_objl 1);
-by (Step_tac 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-by (case_tac "n" 1);
-by (Asm_full_simp_tac 1);
-by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
-by (rtac ccontr 1);
-by (Asm_full_simp_tac 1);
-by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1);
-by (arith_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps
- [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_cos_expansion";
-
-Goal "[| 0 < x; 0 < n |] ==> \
-\ EX t. 0 < t & t < x & \
-\ cos x = \
-\ (sumr 0 n (%m. (if even m \
-\ then (- 1) ^ (m div 2)/(real (fact m)) \
-\ else 0) * \
-\ x ^ m)) \
-\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
- ("diff","%n x. cos(x + 1/2*real (n)*pi)")]
- Maclaurin_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_cos_expansion2";
-
-Goal "[| x < 0; 0 < n |] ==> \
-\ EX t. x < t & t < 0 & \
-\ cos x = \
-\ (sumr 0 n (%m. (if even m \
-\ then (- 1) ^ (m div 2)/(real (fact m)) \
-\ else 0) * \
-\ x ^ m)) \
-\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
-by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
- ("diff","%n x. cos(x + 1/2*real (n)*pi)")]
- Maclaurin_minus_objl 1);
-by (Step_tac 1);
-by (Asm_full_simp_tac 1);
-by (Simp_tac 1);
-by (dtac ssubst 1 THEN assume_tac 2);
-by (res_inst_tac [("x","t")] exI 1);
-by (rtac conjI 1 THEN rtac conjI 2);
-by (assume_tac 1 THEN assume_tac 1);
-by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
-by (rtac sumr_fun_eq 1);
-by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex]));
-by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps [fact_Suc,realpow_Suc]));
-by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
-qed "Maclaurin_minus_cos_expansion";
-
-(* ------------------------------------------------------------------------- *)
-(* Version for ln(1 +/- x). Where is it?? *)
-(* ------------------------------------------------------------------------- *)
-