new theory of finite sets as a subtype
authorkuncar
Fri, 27 Sep 2013 14:43:26 +0200
changeset 53953 2f103a894ebe
parent 53952 b2781a3ce958
child 53956 967728367ad9
new theory of finite sets as a subtype
src/HOL/Library/FSet.thy
src/HOL/Library/Library.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/FSet.thy	Fri Sep 27 14:43:26 2013 +0200
@@ -0,0 +1,812 @@
+(*  Title:      HOL/Library/FSet.thy
+    Author:     Ondrej Kuncar, TU Muenchen
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+
+header {* Type of finite sets defined as a subtype of sets *}
+
+theory FSet
+imports Main Conditionally_Complete_Lattices
+begin
+
+subsection {* Definition of the type *}
+
+typedef 'a fset = "{A :: 'a set. finite A}"  morphisms fset Abs_fset
+by auto
+
+setup_lifting type_definition_fset
+
+subsection {* Basic operations and type class instantiations *}
+
+(* FIXME transfer and right_total vs. bi_total *)
+instantiation fset :: (finite) finite
+begin
+instance by default (transfer, simp)
+end
+
+instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
+begin
+
+interpretation lifting_syntax .
+
+lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp 
+
+lift_definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" is subset_eq parametric subset_transfer 
+  by simp
+
+definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where "xs < ys \<equiv> xs \<le> ys \<and> xs \<noteq> (ys::'a fset)"
+
+lemma less_fset_transfer[transfer_rule]:
+  assumes [transfer_rule]: "bi_unique A" 
+  shows "((pcr_fset A) ===> (pcr_fset A) ===> op =) op \<subset> op <"
+  unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover
+  
+
+lift_definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is union parametric union_transfer
+  by simp
+
+lift_definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is inter parametric inter_transfer
+  by simp
+
+lift_definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is minus parametric Diff_transfer
+  by simp
+
+instance
+by default (transfer, auto)+
+
+end
+
+abbreviation fempty :: "'a fset" ("{||}") where "{||} \<equiv> bot"
+abbreviation fsubset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50) where "xs |\<subseteq>| ys \<equiv> xs \<le> ys"
+abbreviation fsubset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subset>|" 50) where "xs |\<subset>| ys \<equiv> xs < ys"
+abbreviation funion :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<union>|" 65) where "xs |\<union>| ys \<equiv> sup xs ys"
+abbreviation finter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<inter>|" 65) where "xs |\<inter>| ys \<equiv> inf xs ys"
+abbreviation fminus :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|-|" 65) where "xs |-| ys \<equiv> minus xs ys"
+
+instantiation fset :: (type) conditionally_complete_lattice
+begin
+
+interpretation lifting_syntax .
+
+lemma right_total_Inf_fset_transfer:
+  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
+  shows "(set_rel (set_rel A) ===> set_rel A) 
+    (\<lambda>S. if finite (Inter S \<inter> Collect (Domainp A)) then Inter S \<inter> Collect (Domainp A) else {}) 
+      (\<lambda>S. if finite (Inf S) then Inf S else {})"
+    by transfer_prover
+
+lemma Inf_fset_transfer:
+  assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
+  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>A. if finite (Inf A) then Inf A else {}) 
+    (\<lambda>A. if finite (Inf A) then Inf A else {})"
+  by transfer_prover
+
+lift_definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Inf A) then Inf A else {}" 
+parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp
+
+lemma Sup_fset_transfer:
+  assumes [transfer_rule]: "bi_unique A"
+  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>A. if finite (Sup A) then Sup A else {})
+  (\<lambda>A. if finite (Sup A) then Sup A else {})" by transfer_prover
+
+lift_definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Sup A) then Sup A else {}"
+parametric Sup_fset_transfer by simp
+
+lemma finite_Sup: "\<exists>z. finite z \<and> (\<forall>a. a \<in> X \<longrightarrow> a \<le> z) \<Longrightarrow> finite (Sup X)"
+by (auto intro: finite_subset)
+
+instance
+proof 
+  fix x z :: "'a fset"
+  fix X :: "'a fset set"
+  {
+    assume "x \<in> X" "(\<And>a. a \<in> X \<Longrightarrow> z |\<subseteq>| a)" 
+    then show "Inf X |\<subseteq>| x"  by transfer auto
+  next
+    assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> z |\<subseteq>| x)"
+    then show "z |\<subseteq>| Inf X" by transfer (clarsimp, blast)
+  next
+    assume "x \<in> X" "(\<And>a. a \<in> X \<Longrightarrow> a |\<subseteq>| z)"
+    then show "x |\<subseteq>| Sup X" by transfer (auto intro!: finite_Sup)
+  next
+    assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)"
+    then show "Sup X |\<subseteq>| z" by transfer (clarsimp, blast)
+  }
+qed
+end
+
+instantiation fset :: (finite) complete_lattice 
+begin
+
+lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer by simp
+
+instance by default (transfer, auto)+
+end
+
+instantiation fset :: (finite) complete_boolean_algebra
+begin
+
+lift_definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" is uminus 
+  parametric right_total_Compl_transfer Compl_transfer by simp
+
+instance by (default, simp_all only: INF_def SUP_def) (transfer, auto)+
+
+end
+
+abbreviation fUNIV :: "'a::finite fset" where "fUNIV \<equiv> top"
+abbreviation fuminus :: "'a::finite fset \<Rightarrow> 'a fset" ("|-| _" [81] 80) where "|-| x \<equiv> uminus x"
+
+subsection {* Other operations *}
+
+lift_definition finsert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is insert parametric Lifting_Set.insert_transfer
+  by simp
+
+syntax
+  "_insert_fset"     :: "args => 'a fset"  ("{|(_)|}")
+
+translations
+  "{|x, xs|}" == "CONST finsert x {|xs|}"
+  "{|x|}"     == "CONST finsert x {||}"
+
+lift_definition fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<in>|" 50) is Set.member 
+  parametric member_transfer by simp
+
+abbreviation notin_fset :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<notin>|" 50) where "x |\<notin>| S \<equiv> \<not> (x |\<in>| S)"
+
+context
+begin
+interpretation lifting_syntax .
+
+lift_definition ffilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is Set.filter 
+  parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp
+
+lemma compose_rel_to_Domainp:
+  assumes "left_unique R"
+  assumes "(R ===> op=) P P'"
+  shows "(R OO Lifting.invariant P' OO R\<inverse>\<inverse>) x y \<longleftrightarrow> Domainp R x \<and> P x \<and> x = y"
+using assms unfolding OO_def conversep_iff Domainp_iff left_unique_def fun_rel_def invariant_def
+by blast
+
+lift_definition fPow :: "'a fset \<Rightarrow> 'a fset fset" is Pow parametric Pow_transfer 
+by (subst compose_rel_to_Domainp [OF _ finite_transfer]) (auto intro: transfer_raw finite_subset 
+  simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq)
+
+lift_definition fcard :: "'a fset \<Rightarrow> nat" is card parametric card_transfer by simp
+
+lift_definition fimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" (infixr "|`|" 90) is image 
+  parametric image_transfer by simp
+
+lift_definition fthe_elem :: "'a fset \<Rightarrow> 'a" is the_elem ..
+
+(* FIXME why is not invariant here unfolded ? *)
+lift_definition fbind :: "'a fset \<Rightarrow> ('a \<Rightarrow> 'b fset) \<Rightarrow> 'b fset" is Set.bind parametric bind_transfer
+unfolding invariant_def Set.bind_def by clarsimp metis
+
+lift_definition ffUnion :: "'a fset fset \<Rightarrow> 'a fset" is Union parametric Union_transfer
+by (subst(asm) compose_rel_to_Domainp [OF _ finite_transfer])
+  (auto intro: transfer_raw simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq invariant_def)
+
+lift_definition fBall :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Ball parametric Ball_transfer ..
+lift_definition fBex :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Bex parametric Bex_transfer ..
+
+subsection {* Transferred lemmas from Set.thy *}
+
+lemmas fset_eqI = set_eqI[Transfer.transferred]
+lemmas fset_eq_iff[no_atp] = set_eq_iff[Transfer.transferred]
+lemmas fBallI[intro!] = ballI[Transfer.transferred]
+lemmas fbspec[dest?] = bspec[Transfer.transferred]
+lemmas fBallE[elim] = ballE[Transfer.transferred]
+lemmas fBexI[intro] = bexI[Transfer.transferred]
+lemmas rev_fBexI[intro?] = rev_bexI[Transfer.transferred]
+lemmas fBexCI = bexCI[Transfer.transferred]
+lemmas fBexE[elim!] = bexE[Transfer.transferred]
+lemmas fBall_triv[simp] = ball_triv[Transfer.transferred]
+lemmas fBex_triv[simp] = bex_triv[Transfer.transferred]
+lemmas fBex_triv_one_point1[simp] = bex_triv_one_point1[Transfer.transferred]
+lemmas fBex_triv_one_point2[simp] = bex_triv_one_point2[Transfer.transferred]
+lemmas fBex_one_point1[simp] = bex_one_point1[Transfer.transferred]
+lemmas fBex_one_point2[simp] = bex_one_point2[Transfer.transferred]
+lemmas fBall_one_point1[simp] = ball_one_point1[Transfer.transferred]
+lemmas fBall_one_point2[simp] = ball_one_point2[Transfer.transferred]
+lemmas fBall_conj_distrib = ball_conj_distrib[Transfer.transferred]
+lemmas fBex_disj_distrib = bex_disj_distrib[Transfer.transferred]
+lemmas fBall_cong = ball_cong[Transfer.transferred]
+lemmas fBex_cong = bex_cong[Transfer.transferred]
+lemmas subfsetI[intro!] = subsetI[Transfer.transferred]
+lemmas subfsetD[elim, intro?] = subsetD[Transfer.transferred]
+lemmas rev_subfsetD[no_atp,intro?] = rev_subsetD[Transfer.transferred]
+lemmas subfsetCE[no_atp,elim] = subsetCE[Transfer.transferred]
+lemmas subfset_eq[no_atp] = subset_eq[Transfer.transferred]
+lemmas contra_subfsetD[no_atp] = contra_subsetD[Transfer.transferred]
+lemmas subfset_refl = subset_refl[Transfer.transferred]
+lemmas subfset_trans = subset_trans[Transfer.transferred]
+lemmas fset_rev_mp = set_rev_mp[Transfer.transferred]
+lemmas fset_mp = set_mp[Transfer.transferred]
+lemmas subfset_not_subfset_eq[code] = subset_not_subset_eq[Transfer.transferred]
+lemmas eq_fmem_trans = eq_mem_trans[Transfer.transferred]
+lemmas subfset_antisym[intro!] = subset_antisym[Transfer.transferred]
+lemmas fequalityD1 = equalityD1[Transfer.transferred]
+lemmas fequalityD2 = equalityD2[Transfer.transferred]
+lemmas fequalityE = equalityE[Transfer.transferred]
+lemmas fequalityCE[elim] = equalityCE[Transfer.transferred]
+lemmas eqfset_imp_iff = eqset_imp_iff[Transfer.transferred]
+lemmas eqfelem_imp_iff = eqelem_imp_iff[Transfer.transferred]
+lemmas fempty_iff[simp] = empty_iff[Transfer.transferred]
+lemmas fempty_subfsetI[iff] = empty_subsetI[Transfer.transferred]
+lemmas equalsffemptyI = equals0I[Transfer.transferred]
+lemmas equalsffemptyD = equals0D[Transfer.transferred]
+lemmas fBall_fempty[simp] = ball_empty[Transfer.transferred]
+lemmas fBex_fempty[simp] = bex_empty[Transfer.transferred]
+lemmas fPow_iff[iff] = Pow_iff[Transfer.transferred]
+lemmas fPowI = PowI[Transfer.transferred]
+lemmas fPowD = PowD[Transfer.transferred]
+lemmas fPow_bottom = Pow_bottom[Transfer.transferred]
+lemmas fPow_top = Pow_top[Transfer.transferred]
+lemmas fPow_not_fempty = Pow_not_empty[Transfer.transferred]
+lemmas finter_iff[simp] = Int_iff[Transfer.transferred]
+lemmas finterI[intro!] = IntI[Transfer.transferred]
+lemmas finterD1 = IntD1[Transfer.transferred]
+lemmas finterD2 = IntD2[Transfer.transferred]
+lemmas finterE[elim!] = IntE[Transfer.transferred]
+lemmas funion_iff[simp] = Un_iff[Transfer.transferred]
+lemmas funionI1[elim?] = UnI1[Transfer.transferred]
+lemmas funionI2[elim?] = UnI2[Transfer.transferred]
+lemmas funionCI[intro!] = UnCI[Transfer.transferred]
+lemmas funionE[elim!] = UnE[Transfer.transferred]
+lemmas fminus_iff[simp] = Diff_iff[Transfer.transferred]
+lemmas fminusI[intro!] = DiffI[Transfer.transferred]
+lemmas fminusD1 = DiffD1[Transfer.transferred]
+lemmas fminusD2 = DiffD2[Transfer.transferred]
+lemmas fminusE[elim!] = DiffE[Transfer.transferred]
+lemmas finsert_iff[simp] = insert_iff[Transfer.transferred]
+lemmas finsertI1 = insertI1[Transfer.transferred]
+lemmas finsertI2 = insertI2[Transfer.transferred]
+lemmas finsertE[elim!] = insertE[Transfer.transferred]
+lemmas finsertCI[intro!] = insertCI[Transfer.transferred]
+lemmas subfset_finsert_iff = subset_insert_iff[Transfer.transferred]
+lemmas finsert_ident = insert_ident[Transfer.transferred]
+lemmas fsingletonI[intro!,no_atp] = singletonI[Transfer.transferred]
+lemmas fsingletonD[dest!,no_atp] = singletonD[Transfer.transferred]
+lemmas fsingleton_iff = singleton_iff[Transfer.transferred]
+lemmas fsingleton_inject[dest!] = singleton_inject[Transfer.transferred]
+lemmas fsingleton_finsert_inj_eq[iff,no_atp] = singleton_insert_inj_eq[Transfer.transferred]
+lemmas fsingleton_finsert_inj_eq'[iff,no_atp] = singleton_insert_inj_eq'[Transfer.transferred]
+lemmas subfset_fsingletonD = subset_singletonD[Transfer.transferred]
+lemmas fminus_single_finsert = diff_single_insert[Transfer.transferred]
+lemmas fdoubleton_eq_iff = doubleton_eq_iff[Transfer.transferred]
+lemmas funion_fsingleton_iff = Un_singleton_iff[Transfer.transferred]
+lemmas fsingleton_funion_iff = singleton_Un_iff[Transfer.transferred]
+lemmas fimage_eqI[simp, intro] = image_eqI[Transfer.transferred]
+lemmas fimageI = imageI[Transfer.transferred]
+lemmas rev_fimage_eqI = rev_image_eqI[Transfer.transferred]
+lemmas fimageE[elim!] = imageE[Transfer.transferred]
+lemmas Compr_fimage_eq = Compr_image_eq[Transfer.transferred]
+lemmas fimage_funion = image_Un[Transfer.transferred]
+lemmas fimage_iff = image_iff[Transfer.transferred]
+lemmas fimage_subfset_iff[no_atp] = image_subset_iff[Transfer.transferred]
+lemmas fimage_subfsetI = image_subsetI[Transfer.transferred]
+lemmas fimage_ident[simp] = image_ident[Transfer.transferred]
+lemmas split_if_fmem1 = split_if_mem1[Transfer.transferred]
+lemmas split_if_fmem2 = split_if_mem2[Transfer.transferred]
+lemmas psubfsetI[intro!,no_atp] = psubsetI[Transfer.transferred]
+lemmas psubfsetE[elim!,no_atp] = psubsetE[Transfer.transferred]
+lemmas psubfset_finsert_iff = psubset_insert_iff[Transfer.transferred]
+lemmas psubfset_eq = psubset_eq[Transfer.transferred]
+lemmas psubfset_imp_subfset = psubset_imp_subset[Transfer.transferred]
+lemmas psubfset_trans = psubset_trans[Transfer.transferred]
+lemmas psubfsetD = psubsetD[Transfer.transferred]
+lemmas psubfset_subfset_trans = psubset_subset_trans[Transfer.transferred]
+lemmas subfset_psubfset_trans = subset_psubset_trans[Transfer.transferred]
+lemmas psubfset_imp_ex_fmem = psubset_imp_ex_mem[Transfer.transferred]
+lemmas fimage_fPow_mono = image_Pow_mono[Transfer.transferred]
+lemmas fimage_fPow_surj = image_Pow_surj[Transfer.transferred]
+lemmas subfset_finsertI = subset_insertI[Transfer.transferred]
+lemmas subfset_finsertI2 = subset_insertI2[Transfer.transferred]
+lemmas subfset_finsert = subset_insert[Transfer.transferred]
+lemmas funion_upper1 = Un_upper1[Transfer.transferred]
+lemmas funion_upper2 = Un_upper2[Transfer.transferred]
+lemmas funion_least = Un_least[Transfer.transferred]
+lemmas finter_lower1 = Int_lower1[Transfer.transferred]
+lemmas finter_lower2 = Int_lower2[Transfer.transferred]
+lemmas finter_greatest = Int_greatest[Transfer.transferred]
+lemmas fminus_subfset = Diff_subset[Transfer.transferred]
+lemmas fminus_subfset_conv = Diff_subset_conv[Transfer.transferred]
+lemmas subfset_fempty[simp] = subset_empty[Transfer.transferred]
+lemmas not_psubfset_fempty[iff] = not_psubset_empty[Transfer.transferred]
+lemmas finsert_is_funion = insert_is_Un[Transfer.transferred]
+lemmas finsert_not_fempty[simp] = insert_not_empty[Transfer.transferred]
+lemmas fempty_not_finsert = empty_not_insert[Transfer.transferred]
+lemmas finsert_absorb = insert_absorb[Transfer.transferred]
+lemmas finsert_absorb2[simp] = insert_absorb2[Transfer.transferred]
+lemmas finsert_commute = insert_commute[Transfer.transferred]
+lemmas finsert_subfset[simp] = insert_subset[Transfer.transferred]
+lemmas finsert_inter_finsert[simp] = insert_inter_insert[Transfer.transferred]
+lemmas finsert_disjoint[simp,no_atp] = insert_disjoint[Transfer.transferred]
+lemmas disjoint_finsert[simp,no_atp] = disjoint_insert[Transfer.transferred]
+lemmas fimage_fempty[simp] = image_empty[Transfer.transferred]
+lemmas fimage_finsert[simp] = image_insert[Transfer.transferred]
+lemmas fimage_constant = image_constant[Transfer.transferred]
+lemmas fimage_constant_conv = image_constant_conv[Transfer.transferred]
+lemmas fimage_fimage = image_image[Transfer.transferred]
+lemmas finsert_fimage[simp] = insert_image[Transfer.transferred]
+lemmas fimage_is_fempty[iff] = image_is_empty[Transfer.transferred]
+lemmas fempty_is_fimage[iff] = empty_is_image[Transfer.transferred]
+lemmas fimage_cong = image_cong[Transfer.transferred]
+lemmas fimage_finter_subfset = image_Int_subset[Transfer.transferred]
+lemmas fimage_fminus_subfset = image_diff_subset[Transfer.transferred]
+lemmas finter_absorb = Int_absorb[Transfer.transferred]
+lemmas finter_left_absorb = Int_left_absorb[Transfer.transferred]
+lemmas finter_commute = Int_commute[Transfer.transferred]
+lemmas finter_left_commute = Int_left_commute[Transfer.transferred]
+lemmas finter_assoc = Int_assoc[Transfer.transferred]
+lemmas finter_ac = Int_ac[Transfer.transferred]
+lemmas finter_absorb1 = Int_absorb1[Transfer.transferred]
+lemmas finter_absorb2 = Int_absorb2[Transfer.transferred]
+lemmas finter_fempty_left = Int_empty_left[Transfer.transferred]
+lemmas finter_fempty_right = Int_empty_right[Transfer.transferred]
+lemmas disjoint_iff_fnot_equal = disjoint_iff_not_equal[Transfer.transferred]
+lemmas finter_funion_distrib = Int_Un_distrib[Transfer.transferred]
+lemmas finter_funion_distrib2 = Int_Un_distrib2[Transfer.transferred]
+lemmas finter_subfset_iff[no_atp, simp] = Int_subset_iff[Transfer.transferred]
+lemmas funion_absorb = Un_absorb[Transfer.transferred]
+lemmas funion_left_absorb = Un_left_absorb[Transfer.transferred]
+lemmas funion_commute = Un_commute[Transfer.transferred]
+lemmas funion_left_commute = Un_left_commute[Transfer.transferred]
+lemmas funion_assoc = Un_assoc[Transfer.transferred]
+lemmas funion_ac = Un_ac[Transfer.transferred]
+lemmas funion_absorb1 = Un_absorb1[Transfer.transferred]
+lemmas funion_absorb2 = Un_absorb2[Transfer.transferred]
+lemmas funion_fempty_left = Un_empty_left[Transfer.transferred]
+lemmas funion_fempty_right = Un_empty_right[Transfer.transferred]
+lemmas funion_finsert_left[simp] = Un_insert_left[Transfer.transferred]
+lemmas funion_finsert_right[simp] = Un_insert_right[Transfer.transferred]
+lemmas finter_finsert_left = Int_insert_left[Transfer.transferred]
+lemmas finter_finsert_left_ifffempty[simp] = Int_insert_left_if0[Transfer.transferred]
+lemmas finter_finsert_left_if1[simp] = Int_insert_left_if1[Transfer.transferred]
+lemmas finter_finsert_right = Int_insert_right[Transfer.transferred]
+lemmas finter_finsert_right_ifffempty[simp] = Int_insert_right_if0[Transfer.transferred]
+lemmas finter_finsert_right_if1[simp] = Int_insert_right_if1[Transfer.transferred]
+lemmas funion_finter_distrib = Un_Int_distrib[Transfer.transferred]
+lemmas funion_finter_distrib2 = Un_Int_distrib2[Transfer.transferred]
+lemmas funion_finter_crazy = Un_Int_crazy[Transfer.transferred]
+lemmas subfset_funion_eq = subset_Un_eq[Transfer.transferred]
+lemmas funion_fempty[iff] = Un_empty[Transfer.transferred]
+lemmas funion_subfset_iff[no_atp, simp] = Un_subset_iff[Transfer.transferred]
+lemmas funion_fminus_finter = Un_Diff_Int[Transfer.transferred]
+lemmas fminus_finter2 = Diff_Int2[Transfer.transferred]
+lemmas funion_finter_assoc_eq = Un_Int_assoc_eq[Transfer.transferred]
+lemmas fBall_funion = ball_Un[Transfer.transferred]
+lemmas fBex_funion = bex_Un[Transfer.transferred]
+lemmas fminus_eq_fempty_iff[simp,no_atp] = Diff_eq_empty_iff[Transfer.transferred]
+lemmas fminus_cancel[simp] = Diff_cancel[Transfer.transferred]
+lemmas fminus_idemp[simp] = Diff_idemp[Transfer.transferred]
+lemmas fminus_triv = Diff_triv[Transfer.transferred]
+lemmas fempty_fminus[simp] = empty_Diff[Transfer.transferred]
+lemmas fminus_fempty[simp] = Diff_empty[Transfer.transferred]
+lemmas fminus_finsertffempty[simp,no_atp] = Diff_insert0[Transfer.transferred]
+lemmas fminus_finsert = Diff_insert[Transfer.transferred]
+lemmas fminus_finsert2 = Diff_insert2[Transfer.transferred]
+lemmas finsert_fminus_if = insert_Diff_if[Transfer.transferred]
+lemmas finsert_fminus1[simp] = insert_Diff1[Transfer.transferred]
+lemmas finsert_fminus_single[simp] = insert_Diff_single[Transfer.transferred]
+lemmas finsert_fminus = insert_Diff[Transfer.transferred]
+lemmas fminus_finsert_absorb = Diff_insert_absorb[Transfer.transferred]
+lemmas fminus_disjoint[simp] = Diff_disjoint[Transfer.transferred]
+lemmas fminus_partition = Diff_partition[Transfer.transferred]
+lemmas double_fminus = double_diff[Transfer.transferred]
+lemmas funion_fminus_cancel[simp] = Un_Diff_cancel[Transfer.transferred]
+lemmas funion_fminus_cancel2[simp] = Un_Diff_cancel2[Transfer.transferred]
+lemmas fminus_funion = Diff_Un[Transfer.transferred]
+lemmas fminus_finter = Diff_Int[Transfer.transferred]
+lemmas funion_fminus = Un_Diff[Transfer.transferred]
+lemmas finter_fminus = Int_Diff[Transfer.transferred]
+lemmas fminus_finter_distrib = Diff_Int_distrib[Transfer.transferred]
+lemmas fminus_finter_distrib2 = Diff_Int_distrib2[Transfer.transferred]
+lemmas fUNIV_bool[no_atp] = UNIV_bool[Transfer.transferred]
+lemmas fPow_fempty[simp] = Pow_empty[Transfer.transferred]
+lemmas fPow_finsert = Pow_insert[Transfer.transferred]
+lemmas funion_fPow_subfset = Un_Pow_subset[Transfer.transferred]
+lemmas fPow_finter_eq[simp] = Pow_Int_eq[Transfer.transferred]
+lemmas fset_eq_subfset = set_eq_subset[Transfer.transferred]
+lemmas subfset_iff[no_atp] = subset_iff[Transfer.transferred]
+lemmas subfset_iff_psubfset_eq = subset_iff_psubset_eq[Transfer.transferred]
+lemmas all_not_fin_conv[simp] = all_not_in_conv[Transfer.transferred]
+lemmas ex_fin_conv = ex_in_conv[Transfer.transferred]
+lemmas fimage_mono = image_mono[Transfer.transferred]
+lemmas fPow_mono = Pow_mono[Transfer.transferred]
+lemmas finsert_mono = insert_mono[Transfer.transferred]
+lemmas funion_mono = Un_mono[Transfer.transferred]
+lemmas finter_mono = Int_mono[Transfer.transferred]
+lemmas fminus_mono = Diff_mono[Transfer.transferred]
+lemmas fin_mono = in_mono[Transfer.transferred]
+lemmas fthe_felem_eq[simp] = the_elem_eq[Transfer.transferred]
+lemmas fLeast_mono = Least_mono[Transfer.transferred]
+lemmas fbind_fbind = bind_bind[Transfer.transferred]
+lemmas fempty_fbind[simp] = empty_bind[Transfer.transferred]
+lemmas nonfempty_fbind_const = nonempty_bind_const[Transfer.transferred]
+lemmas fbind_const = bind_const[Transfer.transferred]
+lemmas ffmember_filter[simp] = member_filter[Transfer.transferred]
+lemmas fequalityI = equalityI[Transfer.transferred]
+
+subsection {* Additional lemmas*}
+
+subsubsection {* fsingleton *}
+
+lemmas fsingletonE = fsingletonD [elim_format]
+
+subsubsection {* femepty *}
+
+lemma fempty_ffilter[simp]: "ffilter (\<lambda>_. False) A = {||}"
+by transfer auto
+
+(* FIXME, transferred doesn't work here *)
+lemma femptyE [elim!]: "a |\<in>| {||} \<Longrightarrow> P"
+  by simp
+
+subsubsection {* fset *}
+
+lemmas fset_simp[simp] = bot_fset.rep_eq finsert.rep_eq
+
+lemma finite_fset [simp]: 
+  shows "finite (fset S)"
+  by transfer simp
+
+lemmas fset_cong[simp] = fset_inject
+
+lemma filter_fset [simp]:
+  shows "fset (ffilter P xs) = Collect P \<inter> fset xs"
+  by transfer auto
+
+lemmas inter_fset [simp] = inf_fset.rep_eq
+
+lemmas union_fset [simp] = sup_fset.rep_eq
+
+lemmas minus_fset [simp] = minus_fset.rep_eq
+
+subsubsection {* filter_fset *}
+
+lemma subset_ffilter: 
+  "ffilter P A |\<subseteq>| ffilter Q A = (\<forall> x. x |\<in>| A \<longrightarrow> P x \<longrightarrow> Q x)"
+  by transfer auto
+
+lemma eq_ffilter: 
+  "(ffilter P A = ffilter Q A) = (\<forall>x. x |\<in>| A \<longrightarrow> P x = Q x)"
+  by transfer auto
+
+lemma psubset_ffilter:
+  "(\<And>x. x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> (x |\<in>| A & \<not> P x & Q x) \<Longrightarrow> 
+    ffilter P A |\<subset>| ffilter Q A"
+  unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter)
+
+subsubsection {* insert *}
+
+(* FIXME, transferred doesn't work here *)
+lemma set_finsert:
+  assumes "x |\<in>| A"
+  obtains B where "A = finsert x B" and "x |\<notin>| B"
+using assms by transfer (metis Set.set_insert finite_insert)
+
+lemma mk_disjoint_finsert: "a |\<in>| A \<Longrightarrow> \<exists>B. A = finsert a B \<and> a |\<notin>| B"
+  by (rule_tac x = "A |-| {|a|}" in exI, blast)
+
+subsubsection {* image *}
+
+lemma subset_fimage_iff: "(B |\<subseteq>| f|`|A) = (\<exists> AA. AA |\<subseteq>| A \<and> B = f|`|AA)"
+by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff)
+
+subsubsection {* bounded quantification *}
+
+lemma bex_simps [simp, no_atp]:
+  "\<And>A P Q. fBex A (\<lambda>x. P x \<and> Q) = (fBex A P \<and> Q)" 
+  "\<And>A P Q. fBex A (\<lambda>x. P \<and> Q x) = (P \<and> fBex A Q)"
+  "\<And>P. fBex {||} P = False" 
+  "\<And>a B P. fBex (finsert a B) P = (P a \<or> fBex B P)"
+  "\<And>A P f. fBex (f |`| A) P = fBex A (\<lambda>x. P (f x))"
+  "\<And>A P. (\<not> fBex A P) = fBall A (\<lambda>x. \<not> P x)"
+by auto
+
+lemma ball_simps [simp, no_atp]:
+  "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)"
+  "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)"
+  "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)"
+  "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)"
+  "\<And>P. fBall {||} P = True"
+  "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)"
+  "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))"
+  "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)"
+by auto
+
+lemma atomize_fBall:
+    "(\<And>x. x |\<in>| A ==> P x) == Trueprop (fBall A (\<lambda>x. P x))"
+apply (simp only: atomize_all atomize_imp)
+apply (rule equal_intr_rule)
+by (transfer, simp)+
+
+subsection {* Choice in fsets *}
+
+lemma fset_choice: 
+  assumes "\<forall>x. x |\<in>| A \<longrightarrow> (\<exists>y. P x y)"
+  shows "\<exists>f. \<forall>x. x |\<in>| A \<longrightarrow> P x (f x)"
+  using assms by transfer metis
+
+subsection {* Induction and Cases rules for fsets *}
+
+lemma fset_exhaust [case_names empty insert, cases type: fset]:
+  assumes fempty_case: "S = {||} \<Longrightarrow> P" 
+  and     finsert_case: "\<And>x S'. S = finsert x S' \<Longrightarrow> P"
+  shows "P"
+  using assms by transfer blast
+
+lemma fset_induct [case_names empty insert]:
+  assumes fempty_case: "P {||}"
+  and     finsert_case: "\<And>x S. P S \<Longrightarrow> P (finsert x S)"
+  shows "P S"
+proof -
+  (* FIXME transfer and right_total vs. bi_total *)
+  note Domainp_forall_transfer[transfer_rule]
+  show ?thesis
+  using assms by transfer (auto intro: finite_induct)
+qed
+
+lemma fset_induct_stronger [case_names empty insert, induct type: fset]:
+  assumes empty_fset_case: "P {||}"
+  and     insert_fset_case: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
+  shows "P S"
+proof -
+  (* FIXME transfer and right_total vs. bi_total *)
+  note Domainp_forall_transfer[transfer_rule]
+  show ?thesis
+  using assms by transfer (auto intro: finite_induct)
+qed
+
+lemma fset_card_induct:
+  assumes empty_fset_case: "P {||}"
+  and     card_fset_Suc_case: "\<And>S T. Suc (fcard S) = (fcard T) \<Longrightarrow> P S \<Longrightarrow> P T"
+  shows "P S"
+proof (induct S)
+  case empty
+  show "P {||}" by (rule empty_fset_case)
+next
+  case (insert x S)
+  have h: "P S" by fact
+  have "x |\<notin>| S" by fact
+  then have "Suc (fcard S) = fcard (finsert x S)" 
+    by transfer auto
+  then show "P (finsert x S)" 
+    using h card_fset_Suc_case by simp
+qed
+
+lemma fset_strong_cases:
+  obtains "xs = {||}"
+    | ys x where "x |\<notin>| ys" and "xs = finsert x ys"
+by transfer blast
+
+lemma fset_induct2:
+  "P {||} {||} \<Longrightarrow>
+  (\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
+  (\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
+  (\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow>
+  P xsa ysa"
+  apply (induct xsa arbitrary: ysa)
+  apply (induct_tac x rule: fset_induct_stronger)
+  apply simp_all
+  apply (induct_tac xa rule: fset_induct_stronger)
+  apply simp_all
+  done
+
+subsection {* Setup for Lifting/Transfer *}
+
+subsubsection {* Relator and predicator properties *}
+
+lift_definition fset_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'b fset \<Rightarrow> bool" is set_rel
+parametric set_rel_transfer ..
+
+lemma fset_rel_alt_def: "fset_rel R = (\<lambda>A B. (\<forall>x.\<exists>y. x|\<in>|A \<longrightarrow> y|\<in>|B \<and> R x y) 
+  \<and> (\<forall>y. \<exists>x. y|\<in>|B \<longrightarrow> x|\<in>|A \<and> R x y))"
+apply (rule ext)+
+apply transfer'
+apply (subst set_rel_def[unfolded fun_eq_iff]) 
+by blast
+
+lemma fset_rel_conversep: "fset_rel (conversep R) = conversep (fset_rel R)"
+  unfolding fset_rel_alt_def by auto
+
+lemmas fset_rel_eq [relator_eq] = set_rel_eq[Transfer.transferred]
+
+lemma fset_rel_mono[relator_mono]: "A \<le> B \<Longrightarrow> fset_rel A \<le> fset_rel B"
+unfolding fset_rel_alt_def by blast
+
+lemma finite_set_rel:
+  assumes fin: "finite X" "finite Z"
+  assumes R_S: "set_rel (R OO S) X Z"
+  shows "\<exists>Y. finite Y \<and> set_rel R X Y \<and> set_rel S Y Z"
+proof -
+  obtain f where f: "\<forall>x\<in>X. R x (f x) \<and> (\<exists>z\<in>Z. S (f x) z)"
+  apply atomize_elim
+  apply (subst bchoice_iff[symmetric])
+  using R_S[unfolded set_rel_def OO_def] by blast
+  
+  obtain g where g: "\<forall>z\<in>Z. S (g z) z \<and> (\<exists>x\<in>X. R  x (g z))"
+  apply atomize_elim
+  apply (subst bchoice_iff[symmetric])
+  using R_S[unfolded set_rel_def OO_def] by blast
+  
+  let ?Y = "f ` X \<union> g ` Z"
+  have "finite ?Y" by (simp add: fin)
+  moreover have "set_rel R X ?Y"
+    unfolding set_rel_def
+    using f g by clarsimp blast
+  moreover have "set_rel S ?Y Z"
+    unfolding set_rel_def
+    using f g by clarsimp blast
+  ultimately show ?thesis by metis
+qed
+
+lemma fset_rel_OO[relator_distr]: "fset_rel R OO fset_rel S = fset_rel (R OO S)"
+apply (rule ext)+
+by transfer (auto intro: finite_set_rel set_rel_OO[unfolded fun_eq_iff, rule_format, THEN iffD1])
+
+lemma Domainp_fset[relator_domain]:
+  assumes "Domainp T = P"
+  shows "Domainp (fset_rel T) = (\<lambda>A. fBall A P)"
+proof -
+  from assms obtain f where f: "\<forall>x\<in>Collect P. T x (f x)"
+    unfolding Domainp_iff[abs_def]
+    apply atomize_elim
+    by (subst bchoice_iff[symmetric]) auto
+  from assms f show ?thesis
+    unfolding fun_eq_iff fset_rel_alt_def Domainp_iff
+    apply clarify
+    apply (rule iffI)
+      apply blast
+    by (rename_tac A, rule_tac x="f |`| A" in exI, blast)
+qed
+
+lemmas reflp_fset_rel[reflexivity_rule] = reflp_set_rel[Transfer.transferred]
+
+lemma right_total_fset_rel[transfer_rule]: "right_total A \<Longrightarrow> right_total (fset_rel A)"
+unfolding right_total_def 
+apply transfer
+apply (subst(asm) choice_iff)
+apply clarsimp
+apply (rename_tac A f y, rule_tac x = "f ` y" in exI)
+by (auto simp add: set_rel_def)
+
+lemma left_total_fset_rel[reflexivity_rule]: "left_total A \<Longrightarrow> left_total (fset_rel A)"
+unfolding left_total_def 
+apply transfer
+apply (subst(asm) choice_iff)
+apply clarsimp
+apply (rename_tac A f y, rule_tac x = "f ` y" in exI)
+by (auto simp add: set_rel_def)
+
+lemmas right_unique_fset_rel[transfer_rule] = right_unique_set_rel[Transfer.transferred]
+lemmas left_unique_fset_rel[reflexivity_rule] = left_unique_set_rel[Transfer.transferred]
+
+thm right_unique_fset_rel left_unique_fset_rel
+
+lemma bi_unique_fset_rel[transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (fset_rel A)"
+by (auto intro: right_unique_fset_rel left_unique_fset_rel iff: bi_unique_iff)
+
+lemma bi_total_fset_rel[transfer_rule]: "bi_total A \<Longrightarrow> bi_total (fset_rel A)"
+by (auto intro: right_total_fset_rel left_total_fset_rel iff: bi_total_iff)
+
+lemmas fset_invariant_commute [invariant_commute] = set_invariant_commute[Transfer.transferred]
+
+subsubsection {* Quotient theorem for the Lifting package *}
+
+lemma Quotient_fset_map[quot_map]:
+  assumes "Quotient R Abs Rep T"
+  shows "Quotient (fset_rel R) (fimage Abs) (fimage Rep) (fset_rel T)"
+  using assms unfolding Quotient_alt_def4
+  by (simp add: fset_rel_OO[symmetric] fset_rel_conversep) (simp add: fset_rel_alt_def, blast)
+
+subsubsection {* Transfer rules for the Transfer package *}
+
+text {* Unconditional transfer rules *}
+
+lemmas fempty_transfer [transfer_rule] = empty_transfer[Transfer.transferred]
+
+lemma finsert_transfer [transfer_rule]:
+  "(A ===> fset_rel A ===> fset_rel A) finsert finsert"
+  unfolding fun_rel_def fset_rel_alt_def by blast
+
+lemma funion_transfer [transfer_rule]:
+  "(fset_rel A ===> fset_rel A ===> fset_rel A) funion funion"
+  unfolding fun_rel_def fset_rel_alt_def by blast
+
+lemma ffUnion_transfer [transfer_rule]:
+  "(fset_rel (fset_rel A) ===> fset_rel A) ffUnion ffUnion"
+  unfolding fun_rel_def fset_rel_alt_def by transfer (simp, fast)
+
+lemma fimage_transfer [transfer_rule]:
+  "((A ===> B) ===> fset_rel A ===> fset_rel B) fimage fimage"
+  unfolding fun_rel_def fset_rel_alt_def by simp blast
+
+lemma fBall_transfer [transfer_rule]:
+  "(fset_rel A ===> (A ===> op =) ===> op =) fBall fBall"
+  unfolding fset_rel_alt_def fun_rel_def by blast
+
+lemma fBex_transfer [transfer_rule]:
+  "(fset_rel A ===> (A ===> op =) ===> op =) fBex fBex"
+  unfolding fset_rel_alt_def fun_rel_def by blast
+
+(* FIXME transfer doesn't work here *)
+lemma fPow_transfer [transfer_rule]:
+  "(fset_rel A ===> fset_rel (fset_rel A)) fPow fPow"
+  unfolding fun_rel_def
+  using Pow_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred]
+  by blast
+
+lemma fset_rel_transfer [transfer_rule]:
+  "((A ===> B ===> op =) ===> fset_rel A ===> fset_rel B ===> op =)
+    fset_rel fset_rel"
+  unfolding fun_rel_def
+  using set_rel_transfer[unfolded fun_rel_def,rule_format, Transfer.transferred, where A = A and B = B]
+  by simp
+
+lemma bind_transfer [transfer_rule]:
+  "(fset_rel A ===> (A ===> fset_rel B) ===> fset_rel B) fbind fbind"
+  using assms unfolding fun_rel_def
+  using bind_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+text {* Rules requiring bi-unique, bi-total or right-total relations *}
+
+lemma fmember_transfer [transfer_rule]:
+  assumes "bi_unique A"
+  shows "(A ===> fset_rel A ===> op =) (op |\<in>|) (op |\<in>|)"
+  using assms unfolding fun_rel_def fset_rel_alt_def bi_unique_def by metis
+
+lemma finter_transfer [transfer_rule]:
+  assumes "bi_unique A"
+  shows "(fset_rel A ===> fset_rel A ===> fset_rel A) finter finter"
+  using assms unfolding fun_rel_def
+  using inter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+lemma fDiff_transfer [transfer_rule]:
+  assumes "bi_unique A"
+  shows "(fset_rel A ===> fset_rel A ===> fset_rel A) (op |-|) (op |-|)"
+  using assms unfolding fun_rel_def
+  using Diff_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+lemma fsubset_transfer [transfer_rule]:
+  assumes "bi_unique A"
+  shows "(fset_rel A ===> fset_rel A ===> op =) (op |\<subseteq>|) (op |\<subseteq>|)"
+  using assms unfolding fun_rel_def
+  using subset_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+lemma fSup_transfer [transfer_rule]:
+  "bi_unique A \<Longrightarrow> (set_rel (fset_rel A) ===> fset_rel A) Sup Sup"
+  using assms unfolding fun_rel_def
+  apply clarify
+  apply transfer'
+  using Sup_fset_transfer[unfolded fun_rel_def] by blast
+
+(* FIXME: add right_total_fInf_transfer *)
+
+lemma fInf_transfer [transfer_rule]:
+  assumes "bi_unique A" and "bi_total A"
+  shows "(set_rel (fset_rel A) ===> fset_rel A) Inf Inf"
+  using assms unfolding fun_rel_def
+  apply clarify
+  apply transfer'
+  using Inf_fset_transfer[unfolded fun_rel_def] by blast
+
+lemma ffilter_transfer [transfer_rule]:
+  assumes "bi_unique A"
+  shows "((A ===> op=) ===> fset_rel A ===> fset_rel A) ffilter ffilter"
+  using assms unfolding fun_rel_def
+  using Lifting_Set.filter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+lemma card_transfer [transfer_rule]:
+  "bi_unique A \<Longrightarrow> (fset_rel A ===> op =) fcard fcard"
+  using assms unfolding fun_rel_def
+  using card_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast
+
+end
+
+lifting_update fset.lifting
+lifting_forget fset.lifting
+
+end
+
--- a/src/HOL/Library/Library.thy	Fri Sep 27 14:43:26 2013 +0200
+++ b/src/HOL/Library/Library.thy	Fri Sep 27 14:43:26 2013 +0200
@@ -23,6 +23,7 @@
   Float
   Formal_Power_Series
   Fraction_Field
+  FSet
   FuncSet
   Function_Division
   Function_Growth