added lemmas
authornipkow
Wed, 13 Dec 2017 19:28:19 +0100
changeset 67171 2f213405cc0e
parent 67170 9bfe79084443
child 67198 694f29a5433b
added lemmas
src/HOL/List.thy
--- a/src/HOL/List.thy	Wed Dec 13 13:25:14 2017 +0100
+++ b/src/HOL/List.thy	Wed Dec 13 19:28:19 2017 +0100
@@ -4814,6 +4814,9 @@
 lemma f_arg_min_list_f: "xs \<noteq> [] \<Longrightarrow> f (arg_min_list f xs) = Min (f ` (set xs))"
 by(induction f xs rule: arg_min_list.induct) (auto simp: min_def intro!: antisym)
 
+lemma arg_min_list_in: "xs \<noteq> [] \<Longrightarrow> arg_min_list f xs \<in> set xs"
+by(induction xs rule: induct_list012) (auto simp: Let_def)
+
 
 subsubsection \<open>(In)finiteness\<close>