conversion of equalities and WF to Isar
authorpaulson
Mon, 20 May 2002 11:45:57 +0200
changeset 13165 31d020705aff
parent 13164 dfc399c684e4
child 13166 9e9032657a0f
conversion of equalities and WF to Isar
src/ZF/IsaMakefile
src/ZF/WF.thy
src/ZF/equalities.thy
--- a/src/ZF/IsaMakefile	Sat May 18 22:22:23 2002 +0200
+++ b/src/ZF/IsaMakefile	Mon May 20 11:45:57 2002 +0200
@@ -44,9 +44,9 @@
   Sum.thy Tools/cartprod.ML Tools/datatype_package.ML			\
   Tools/ind_cases.ML Tools/induct_tacs.ML Tools/inductive_package.ML	\
   Tools/numeral_syntax.ML Tools/primrec_package.ML Tools/typechk.ML	\
-  Trancl.ML Trancl.thy Univ.thy Update.ML Update.thy WF.ML	\
+  Trancl.ML Trancl.thy Univ.thy Update.ML Update.thy \
   WF.thy ZF.ML ZF.thy Zorn.thy arith_data.ML domrange.ML	\
-  domrange.thy equalities.ML equalities.thy func.thy		\
+  domrange.thy equalities.thy func.thy		\
   ind_syntax.ML mono.ML mono.thy pair.ML pair.thy simpdata.ML		\
   subset.ML subset.thy thy_syntax.ML upair.ML upair.thy
 	@$(ISATOOL) usedir -b -r $(OUT)/FOL ZF
--- a/src/ZF/WF.thy	Sat May 18 22:22:23 2002 +0200
+++ b/src/ZF/WF.thy	Mon May 20 11:45:57 2002 +0200
@@ -1,38 +1,394 @@
-(*  Title:      ZF/wf.thy
+(*  Title:      ZF/WF.thy
     ID:         $Id$
     Author:     Tobias Nipkow and Lawrence C Paulson
     Copyright   1994  University of Cambridge
 
 Well-founded Recursion
+
+Derived first for transitive relations, and finally for arbitrary WF relations
+via wf_trancl and trans_trancl.
+
+It is difficult to derive this general case directly, using r^+ instead of
+r.  In is_recfun, the two occurrences of the relation must have the same
+form.  Inserting r^+ in the_recfun or wftrec yields a recursion rule with
+r^+ -`` {a} instead of r-``{a}.  This recursion rule is stronger in
+principle, but harder to use, especially to prove wfrec_eclose_eq in
+epsilon.ML.  Expanding out the definition of wftrec in wfrec would yield
+a mess.
 *)
 
-WF = Trancl + mono + equalities +
-consts
-  wf           :: i=>o
-  wf_on        :: [i,i]=>o                      ("wf[_]'(_')")
+theory WF = Trancl + mono + equalities:
+
+constdefs
+  wf           :: "i=>o"
+    (*r is a well-founded relation*)
+    "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
+
+  wf_on        :: "[i,i]=>o"                      ("wf[_]'(_')")
+    (*r is well-founded on A*)
+    "wf_on(A,r) == wf(r Int A*A)"
+
+  is_recfun    :: "[i, i, [i,i]=>i, i] =>o"
+    "is_recfun(r,a,H,f) == (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
+
+  the_recfun   :: "[i, i, [i,i]=>i] =>i"
+    "the_recfun(r,a,H) == (THE f. is_recfun(r,a,H,f))"
+
+  wftrec :: "[i, i, [i,i]=>i] =>i"
+    "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
+
+  wfrec :: "[i, i, [i,i]=>i] =>i"
+    (*public version.  Does not require r to be transitive*)
+    "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
+
+  wfrec_on     :: "[i, i, i, [i,i]=>i] =>i"       ("wfrec[_]'(_,_,_')")
+    "wfrec[A](r,a,H) == wfrec(r Int A*A, a, H)"
+
+
+(*** Well-founded relations ***)
+
+(** Equivalences between wf and wf_on **)
+
+lemma wf_imp_wf_on: "wf(r) ==> wf[A](r)"
+apply (unfold wf_def wf_on_def, clarify) (*needed for blast's efficiency*)
+apply blast
+done
+
+lemma wf_on_field_imp_wf: "wf[field(r)](r) ==> wf(r)"
+by (unfold wf_def wf_on_def, fast)
+
+lemma wf_iff_wf_on_field: "wf(r) <-> wf[field(r)](r)"
+by (blast intro: wf_imp_wf_on wf_on_field_imp_wf)
+
+lemma wf_on_subset_A: "[| wf[A](r);  B<=A |] ==> wf[B](r)"
+by (unfold wf_on_def wf_def, fast)
+
+lemma wf_on_subset_r: "[| wf[A](r); s<=r |] ==> wf[A](s)"
+by (unfold wf_on_def wf_def, fast)
+
+(** Introduction rules for wf_on **)
+
+lemma wf_onI:
+(*If every non-empty subset of A has an r-minimal element then wf[A](r).*)
+ assumes prem: "!!Z u. [| Z<=A;  u:Z;  ALL x:Z. EX y:Z. <y,x>:r |] ==> False"
+ shows         "wf[A](r)"
+apply (unfold wf_on_def wf_def)
+apply (rule equals0I [THEN disjCI, THEN allI])
+apply (rule_tac Z = "Z" in prem, blast+)
+done
+
+(*If r allows well-founded induction over A then wf[A](r)
+  Premise is equivalent to
+  !!B. ALL x:A. (ALL y. <y,x>: r --> y:B) --> x:B ==> A<=B  *)
+lemma wf_onI2:
+ assumes prem: "!!y B. [| ALL x:A. (ALL y:A. <y,x>:r --> y:B) --> x:B;   y:A |]
+                       ==> y:B"
+ shows         "wf[A](r)"
+apply (rule wf_onI)
+apply (rule_tac c=u in prem [THEN DiffE])
+  prefer 3 apply blast 
+ apply fast+
+done
+
+
+(** Well-founded Induction **)
+
+(*Consider the least z in domain(r) Un {a} such that P(z) does not hold...*)
+lemma wf_induct:
+    "[| wf(r);
+        !!x.[| ALL y. <y,x>: r --> P(y) |] ==> P(x)
+     |]  ==>  P(a)"
+apply (unfold wf_def) 
+apply (erule_tac x = "{z:domain (r) Un {a}. ~P (z) }" in allE)
+apply blast 
+done
 
-  wftrec,wfrec :: [i, i, [i,i]=>i] =>i
-  wfrec_on     :: [i, i, i, [i,i]=>i] =>i       ("wfrec[_]'(_,_,_')")
-  is_recfun    :: [i, i, [i,i]=>i, i] =>o
-  the_recfun   :: [i, i, [i,i]=>i] =>i
+(*The form of this rule is designed to match wfI*)
+lemma wf_induct2:
+    "[| wf(r);  a:A;  field(r)<=A;
+        !!x.[| x: A;  ALL y. <y,x>: r --> P(y) |] ==> P(x) |]
+     ==>  P(a)"
+apply (erule_tac P="a:A" in rev_mp)
+apply (erule_tac a=a in wf_induct, blast) 
+done
+
+lemma field_Int_square: "field(r Int A*A) <= A"
+by blast
+
+lemma wf_on_induct:
+    "[| wf[A](r);  a:A;
+        !!x.[| x: A;  ALL y:A. <y,x>: r --> P(y) |] ==> P(x)
+     |]  ==>  P(a)"
+apply (unfold wf_on_def) 
+apply (erule wf_induct2, assumption)
+apply (rule field_Int_square, blast)
+done
+
+(*If r allows well-founded induction then wf(r)*)
+lemma wfI:
+    "[| field(r)<=A;
+        !!y B. [| ALL x:A. (ALL y:A. <y,x>:r --> y:B) --> x:B;  y:A|]
+               ==> y:B |]
+     ==>  wf(r)"
+apply (rule wf_on_subset_A [THEN wf_on_field_imp_wf])
+apply (rule wf_onI2)
+ prefer 2 apply blast  
+apply blast 
+done
+
+
+(*** Properties of well-founded relations ***)
+
+lemma wf_not_refl: "wf(r) ==> <a,a> ~: r"
+by (erule_tac a=a in wf_induct, blast)
+
+lemma wf_not_sym [rule_format]: "wf(r) ==> ALL x. <a,x>:r --> <x,a> ~: r"
+by (erule_tac a=a in wf_induct, blast)
+
+(* [| wf(r);  <a,x> : r;  ~P ==> <x,a> : r |] ==> P *)
+lemmas wf_asym = wf_not_sym [THEN swap, standard]
+
+lemma wf_on_not_refl: "[| wf[A](r); a: A |] ==> <a,a> ~: r"
+apply (erule_tac a=a in wf_on_induct, assumption)
+apply blast
+done
 
-defs
-  (*r is a well-founded relation*)
-  wf_def         "wf(r) == ALL Z. Z=0 | (EX x:Z. ALL y. <y,x>:r --> ~ y:Z)"
+lemma wf_on_not_sym [rule_format]:
+     "[| wf[A](r);  a:A |] ==> ALL b:A. <a,b>:r --> <b,a>~:r"
+apply (erule_tac a=a in wf_on_induct, assumption)
+apply blast
+done
+
+lemma wf_on_asym:
+     "[| wf[A](r);  ~Z ==> <a,b> : r;
+         <b,a> ~: r ==> Z; ~Z ==> a : A; ~Z ==> b : A |] ==> Z"
+by (blast dest: wf_on_not_sym); 
+
+
+(*Needed to prove well_ordI.  Could also reason that wf[A](r) means
+  wf(r Int A*A);  thus wf( (r Int A*A)^+ ) and use wf_not_refl *)
+lemma wf_on_chain3:
+     "[| wf[A](r); <a,b>:r; <b,c>:r; <c,a>:r; a:A; b:A; c:A |] ==> P"
+apply (subgoal_tac "ALL y:A. ALL z:A. <a,y>:r --> <y,z>:r --> <z,a>:r --> P",
+       blast) 
+apply (erule_tac a=a in wf_on_induct, assumption)
+apply blast
+done
+
+
+
+
+(*transitive closure of a WF relation is WF provided A is downwards closed*)
+lemma wf_on_trancl:
+    "[| wf[A](r);  r-``A <= A |] ==> wf[A](r^+)"
+apply (rule wf_onI2)
+apply (frule bspec [THEN mp], assumption+)
+apply (erule_tac a = "y" in wf_on_induct, assumption)
+apply (blast elim: tranclE, blast) 
+done
+
+lemma wf_trancl: "wf(r) ==> wf(r^+)"
+apply (simp add: wf_iff_wf_on_field)
+apply (rule wf_on_subset_A) 
+ apply (erule wf_on_trancl)
+ apply blast 
+apply (rule trancl_type [THEN field_rel_subset])
+done
+
+
+
+(** r-``{a} is the set of everything under a in r **)
+
+lemmas underI = vimage_singleton_iff [THEN iffD2, standard]
+lemmas underD = vimage_singleton_iff [THEN iffD1, standard]
+
+(** is_recfun **)
 
-  (*r is well-founded relation over A*)
-  wf_on_def      "wf_on(A,r) == wf(r Int A*A)"
+lemma is_recfun_type: "is_recfun(r,a,H,f) ==> f: r-``{a} -> range(f)"
+apply (unfold is_recfun_def)
+apply (erule ssubst)
+apply (rule lamI [THEN rangeI, THEN lam_type], assumption)
+done
+
+lemma apply_recfun:
+    "[| is_recfun(r,a,H,f); <x,a>:r |] ==> f`x = H(x, restrict(f,r-``{x}))"
+apply (unfold is_recfun_def) 
+apply (erule_tac P = "%x.?t (x) = (?u::i) " in ssubst)
+apply (erule underI [THEN beta])
+done
+
+lemma is_recfun_equal [rule_format]:
+     "[| wf(r);  trans(r);  is_recfun(r,a,H,f);  is_recfun(r,b,H,g) |]
+      ==> <x,a>:r --> <x,b>:r --> f`x=g`x"
+apply (frule_tac f = "f" in is_recfun_type)
+apply (frule_tac f = "g" in is_recfun_type)
+apply (simp add: is_recfun_def)
+apply (erule_tac a=x in wf_induct)
+apply (intro impI)
+apply (elim ssubst)
+apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def)
+apply (rule_tac t = "%z. H (?x,z) " in subst_context)
+apply (subgoal_tac "ALL y : r-``{x}. ALL z. <y,z>:f <-> <y,z>:g")
+ apply (blast dest: transD)
+apply (simp add: apply_iff)
+apply (blast dest: transD intro: sym)
+done
+
+lemma is_recfun_cut:
+     "[| wf(r);  trans(r);
+         is_recfun(r,a,H,f);  is_recfun(r,b,H,g);  <b,a>:r |]
+      ==> restrict(f, r-``{b}) = g"
+apply (frule_tac f = "f" in is_recfun_type)
+apply (rule fun_extension)
+  apply (blast dest: transD intro: restrict_type2)
+ apply (erule is_recfun_type, simp)
+apply (blast dest: transD intro: is_recfun_equal)
+done
+
+(*** Main Existence Lemma ***)
 
-  is_recfun_def  "is_recfun(r,a,H,f) == 
-                        (f = (lam x: r-``{a}. H(x, restrict(f, r-``{x}))))"
+lemma is_recfun_functional:
+     "[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,a,H,g) |]  ==>  f=g"
+by (blast intro: fun_extension is_recfun_type is_recfun_equal)
+
+(*If some f satisfies is_recfun(r,a,H,-) then so does the_recfun(r,a,H) *)
+lemma is_the_recfun:
+    "[| is_recfun(r,a,H,f);  wf(r);  trans(r) |]
+     ==> is_recfun(r, a, H, the_recfun(r,a,H))"
+apply (unfold the_recfun_def)
+apply (rule ex1I [THEN theI], assumption)
+apply (blast intro: is_recfun_functional)
+done
+
+lemma unfold_the_recfun:
+     "[| wf(r);  trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))"
+apply (rule_tac a=a in wf_induct, assumption)
+apply (rename_tac a1) 
+apply (rule_tac f = "lam y: r-``{a1}. wftrec (r,y,H)" in is_the_recfun)
+  apply typecheck
+apply (unfold is_recfun_def wftrec_def)
+(*Applying the substitution: must keep the quantified assumption!!*)
+apply (rule lam_cong [OF refl]) 
+apply (drule underD) 
+apply (fold is_recfun_def)
+apply (rule_tac t = "%z. H(?x,z)" in subst_context)
+apply (rule fun_extension)
+  apply (blast intro: is_recfun_type)
+ apply (rule lam_type [THEN restrict_type2])
+  apply blast
+ apply (blast dest: transD)
+apply (frule spec [THEN mp], assumption)
+apply (subgoal_tac "<xa,a1> : r")
+ apply (drule_tac x1 = "xa" in spec [THEN mp], assumption)
+apply (simp add: vimage_singleton_iff  underI [THEN beta] 
+                 apply_recfun is_recfun_cut)
+apply (blast dest: transD)
+done
+
+
+(*** Unfolding wftrec ***)
+
+lemma the_recfun_cut:
+     "[| wf(r);  trans(r);  <b,a>:r |]
+      ==> restrict(the_recfun(r,a,H), r-``{b}) = the_recfun(r,b,H)"
+by (blast intro: is_recfun_cut unfold_the_recfun);
 
-  the_recfun_def "the_recfun(r,a,H) == (THE f. is_recfun(r,a,H,f))"
+(*NOT SUITABLE FOR REWRITING: it is recursive!*)
+lemma wftrec:
+    "[| wf(r);  trans(r) |] ==>
+          wftrec(r,a,H) = H(a, lam x: r-``{a}. wftrec(r,x,H))"
+apply (unfold wftrec_def)
+apply (subst unfold_the_recfun [unfolded is_recfun_def])
+apply (simp_all add: vimage_singleton_iff [THEN iff_sym] the_recfun_cut)
+done
+
+(** Removal of the premise trans(r) **)
+
+(*NOT SUITABLE FOR REWRITING: it is recursive!*)
+lemma wfrec:
+    "wf(r) ==> wfrec(r,a,H) = H(a, lam x:r-``{a}. wfrec(r,x,H))"
+apply (unfold wfrec_def) 
+apply (erule wf_trancl [THEN wftrec, THEN ssubst])
+ apply (rule trans_trancl)
+apply (rule vimage_pair_mono [THEN restrict_lam_eq, THEN subst_context])
+ apply (erule r_into_trancl)
+apply (rule subset_refl)
+done
 
-  wftrec_def     "wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
+(*This form avoids giant explosions in proofs.  NOTE USE OF == *)
+lemma def_wfrec:
+    "[| !!x. h(x)==wfrec(r,x,H);  wf(r) |] ==>
+     h(a) = H(a, lam x: r-``{a}. h(x))"
+apply simp
+apply (elim wfrec) 
+done
+
+lemma wfrec_type:
+    "[| wf(r);  a:A;  field(r)<=A;
+        !!x u. [| x: A;  u: Pi(r-``{x}, B) |] ==> H(x,u) : B(x)
+     |] ==> wfrec(r,a,H) : B(a)"
+apply (rule_tac a = "a" in wf_induct2, assumption+)
+apply (subst wfrec, assumption)
+apply (simp add: lam_type underD)  
+done
+
+
+lemma wfrec_on:
+ "[| wf[A](r);  a: A |] ==>
+         wfrec[A](r,a,H) = H(a, lam x: (r-``{a}) Int A. wfrec[A](r,x,H))"
+apply (unfold wf_on_def wfrec_on_def)
+apply (erule wfrec [THEN trans])
+apply (simp add: vimage_Int_square cons_subset_iff)
+done
 
-  (*public version.  Does not require r to be transitive*)
-  wfrec_def "wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
+(*Minimal-element characterization of well-foundedness*)
+lemma wf_eq_minimal:
+     "wf(r) <-> (ALL Q x. x:Q --> (EX z:Q. ALL y. <y,z>:r --> y~:Q))"
+apply (unfold wf_def, blast)
+done
+
+ML
+{*
+val wf_def = thm "wf_def";
+val wf_on_def = thm "wf_on_def";
 
-  wfrec_on_def   "wfrec[A](r,a,H) == wfrec(r Int A*A, a, H)"
+val wf_imp_wf_on = thm "wf_imp_wf_on";
+val wf_on_field_imp_wf = thm "wf_on_field_imp_wf";
+val wf_iff_wf_on_field = thm "wf_iff_wf_on_field";
+val wf_on_subset_A = thm "wf_on_subset_A";
+val wf_on_subset_r = thm "wf_on_subset_r";
+val wf_onI = thm "wf_onI";
+val wf_onI2 = thm "wf_onI2";
+val wf_induct = thm "wf_induct";
+val wf_induct2 = thm "wf_induct2";
+val field_Int_square = thm "field_Int_square";
+val wf_on_induct = thm "wf_on_induct";
+val wfI = thm "wfI";
+val wf_not_refl = thm "wf_not_refl";
+val wf_not_sym = thm "wf_not_sym";
+val wf_asym = thm "wf_asym";
+val wf_on_not_refl = thm "wf_on_not_refl";
+val wf_on_not_sym = thm "wf_on_not_sym";
+val wf_on_asym = thm "wf_on_asym";
+val wf_on_chain3 = thm "wf_on_chain3";
+val wf_on_trancl = thm "wf_on_trancl";
+val wf_trancl = thm "wf_trancl";
+val underI = thm "underI";
+val underD = thm "underD";
+val is_recfun_type = thm "is_recfun_type";
+val apply_recfun = thm "apply_recfun";
+val is_recfun_equal = thm "is_recfun_equal";
+val is_recfun_cut = thm "is_recfun_cut";
+val is_recfun_functional = thm "is_recfun_functional";
+val is_the_recfun = thm "is_the_recfun";
+val unfold_the_recfun = thm "unfold_the_recfun";
+val the_recfun_cut = thm "the_recfun_cut";
+val wftrec = thm "wftrec";
+val wfrec = thm "wfrec";
+val def_wfrec = thm "def_wfrec";
+val wfrec_type = thm "wfrec_type";
+val wfrec_on = thm "wfrec_on";
+val wf_eq_minimal = thm "wf_eq_minimal";
+*}
 
 end
--- a/src/ZF/equalities.thy	Sat May 18 22:22:23 2002 +0200
+++ b/src/ZF/equalities.thy	Mon May 20 11:45:57 2002 +0200
@@ -1,4 +1,761 @@
-(*Dummy theory to document dependencies *)
+(*  Title:      ZF/equalities
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+Set Theory examples: Union, Intersection, Inclusion, etc.
+    (Thanks also to Philippe de Groote.)
+*)
+
+theory equalities = domrange:
+
+(** Finite Sets **)
+
+(* cons_def refers to Upair; reversing the equality LOOPS in rewriting!*)
+lemma cons_eq: "{a} Un B = cons(a,B)"
+by blast
+
+lemma cons_commute: "cons(a, cons(b, C)) = cons(b, cons(a, C))"
+by blast
+
+lemma cons_absorb: "a: B ==> cons(a,B) = B"
+by blast
+
+lemma cons_Diff: "a: B ==> cons(a, B-{a}) = B"
+by blast
+
+lemma equal_singleton [rule_format]: "[| a: C;  ALL y:C. y=b |] ==> C = {b}"
+by blast
+
+
+(** Binary Intersection **)
+
+(*NOT an equality, but it seems to belong here...*)
+lemma Int_cons: "cons(a,B) Int C <= cons(a, B Int C)"
+by blast
+
+lemma Int_absorb [simp]: "A Int A = A"
+by blast
+
+lemma Int_left_absorb: "A Int (A Int B) = A Int B"
+by blast
+
+lemma Int_commute: "A Int B = B Int A"
+by blast
+
+lemma Int_left_commute: "A Int (B Int C) = B Int (A Int C)"
+by blast
+
+lemma Int_assoc: "(A Int B) Int C  =  A Int (B Int C)"
+by blast
+
+(*Intersection is an AC-operator*)
+lemmas Int_ac= Int_assoc Int_left_absorb Int_commute Int_left_commute
+
+lemma Int_Un_distrib: "A Int (B Un C) = (A Int B) Un (A Int C)"
+by blast
+
+lemma Int_Un_distrib2: "(B Un C) Int A = (B Int A) Un (C Int A)"
+by blast
+
+lemma subset_Int_iff: "A<=B <-> A Int B = A"
+by (blast elim!: equalityE)
+
+lemma subset_Int_iff2: "A<=B <-> B Int A = A"
+by (blast elim!: equalityE)
+
+lemma Int_Diff_eq: "C<=A ==> (A-B) Int C = C-B"
+by blast
+
+(** Binary Union **)
+
+lemma Un_cons: "cons(a,B) Un C = cons(a, B Un C)"
+by blast
+
+lemma Un_absorb [simp]: "A Un A = A"
+by blast
+
+lemma Un_left_absorb: "A Un (A Un B) = A Un B"
+by blast
+
+lemma Un_commute: "A Un B = B Un A"
+by blast
+
+lemma Un_left_commute: "A Un (B Un C) = B Un (A Un C)"
+by blast
+
+lemma Un_assoc: "(A Un B) Un C  =  A Un (B Un C)"
+by blast
+
+(*Union is an AC-operator*)
+lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
+
+lemma Un_Int_distrib: "(A Int B) Un C  =  (A Un C) Int (B Un C)"
+by blast
+
+lemma subset_Un_iff: "A<=B <-> A Un B = B"
+by (blast elim!: equalityE)
+
+lemma subset_Un_iff2: "A<=B <-> B Un A = B"
+by (blast elim!: equalityE)
+
+lemma Un_empty [iff]: "(A Un B = 0) <-> (A = 0 & B = 0)"
+by blast
+
+lemma Un_eq_Union: "A Un B = Union({A, B})"
+by blast
+
+(** Simple properties of Diff -- set difference **)
+
+lemma Diff_cancel: "A - A = 0"
+by blast
+
+lemma Diff_triv: "A  Int B = 0 ==> A - B = A"
+by blast
+
+lemma empty_Diff [simp]: "0 - A = 0"
+by blast
+
+lemma Diff_0 [simp]: "A - 0 = A"
+by blast
+
+lemma Diff_eq_0_iff: "A - B = 0 <-> A <= B"
+by (blast elim: equalityE)
+
+(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
+lemma Diff_cons: "A - cons(a,B) = A - B - {a}"
+by blast
+
+(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
+lemma Diff_cons2: "A - cons(a,B) = A - {a} - B"
+by blast
+
+lemma Diff_disjoint: "A Int (B-A) = 0"
+by blast
+
+lemma Diff_partition: "A<=B ==> A Un (B-A) = B"
+by blast
+
+lemma subset_Un_Diff: "A <= B Un (A - B)"
+by blast
+
+lemma double_complement: "[| A<=B; B<=C |] ==> B-(C-A) = A"
+by blast
+
+lemma double_complement_Un: "(A Un B) - (B-A) = A"
+by blast
+
+lemma Un_Int_crazy: 
+ "(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
+apply blast
+done
+
+lemma Diff_Un: "A - (B Un C) = (A-B) Int (A-C)"
+by blast
+
+lemma Diff_Int: "A - (B Int C) = (A-B) Un (A-C)"
+by blast
+
+lemma Un_Diff: "(A Un B) - C = (A - C) Un (B - C)"
+by blast
+
+lemma Int_Diff: "(A Int B) - C = A Int (B - C)"
+by blast
+
+lemma Diff_Int_distrib: "C Int (A-B) = (C Int A) - (C Int B)"
+by blast
+
+lemma Diff_Int_distrib2: "(A-B) Int C = (A Int C) - (B Int C)"
+by blast
+
+(*Halmos, Naive Set Theory, page 16.*)
+lemma Un_Int_assoc_iff: "(A Int B) Un C = A Int (B Un C)  <->  C<=A"
+by (blast elim!: equalityE)
+
+
+(** Big Union and Intersection **)
+
+lemma Union_cons [simp]: "Union(cons(a,B)) = a Un Union(B)"
+by blast
+
+lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
+by blast
+
+lemma Union_Int_subset: "Union(A Int B) <= Union(A) Int Union(B)"
+by blast
+
+lemma Union_disjoint: "Union(C) Int A = 0 <-> (ALL B:C. B Int A = 0)"
+by (blast elim!: equalityE)
+
+lemma Union_empty_iff: "Union(A) = 0 <-> (ALL B:A. B=0)"
+by blast
+
+lemma Inter_0: "Inter(0) = 0"
+by (unfold Inter_def, blast)
+
+lemma Inter_Un_subset: "[| z:A; z:B |] ==> Inter(A) Un Inter(B) <= Inter(A Int B)"
+by blast
+
+(* A good challenge: Inter is ill-behaved on the empty set *)
+lemma Inter_Un_distrib:
+     "[| a:A;  b:B |] ==> Inter(A Un B) = Inter(A) Int Inter(B)"
+by blast
+
+lemma Union_singleton: "Union({b}) = b"
+by blast
+
+lemma Inter_singleton: "Inter({b}) = b"
+by blast
+
+lemma Inter_cons [simp]:
+     "Inter(cons(a,B)) = (if B=0 then a else a Int Inter(B))"
+by force
+
+(** Unions and Intersections of Families **)
+
+lemma Union_eq_UN: "Union(A) = (UN x:A. x)"
+by blast
+
+lemma Inter_eq_INT: "Inter(A) = (INT x:A. x)"
+by (unfold Inter_def, blast)
+
+lemma UN_0 [simp]: "(UN i:0. A(i)) = 0"
+by blast
+
+lemma UN_singleton: "(UN x:A. {x}) = A"
+by blast
+
+lemma UN_Un: "(UN i: A Un B. C(i)) = (UN i: A. C(i)) Un (UN i:B. C(i))"
+by blast
+
+lemma INT_Un: "(INT i:I Un J. A(i)) = (if I=0 then INT j:J. A(j)  
+                              else if J=0 then INT i:I. A(i)  
+                              else ((INT i:I. A(i)) Int  (INT j:J. A(j))))"
+apply auto
+apply (blast intro!: equalityI)
+done
+
+lemma UN_UN_flatten: "(UN x : (UN y:A. B(y)). C(x)) = (UN y:A. UN x: B(y). C(x))"
+by blast
+
+(*Halmos, Naive Set Theory, page 35.*)
+lemma Int_UN_distrib: "B Int (UN i:I. A(i)) = (UN i:I. B Int A(i))"
+by blast
+
+lemma Un_INT_distrib: "i:I ==> B Un (INT i:I. A(i)) = (INT i:I. B Un A(i))"
+by blast
+
+lemma Int_UN_distrib2:
+     "(UN i:I. A(i)) Int (UN j:J. B(j)) = (UN i:I. UN j:J. A(i) Int B(j))"
+by blast
+
+lemma Un_INT_distrib2: "[| i:I;  j:J |] ==>  
+      (INT i:I. A(i)) Un (INT j:J. B(j)) = (INT i:I. INT j:J. A(i) Un B(j))"
+by blast
+
+lemma UN_constant: "a: A ==> (UN y:A. c) = c"
+by blast
+
+lemma INT_constant: "a: A ==> (INT y:A. c) = c"
+by blast
+
+lemma UN_RepFun [simp]: "(UN y: RepFun(A,f). B(y)) = (UN x:A. B(f(x)))"
+by blast
+
+lemma INT_RepFun [simp]: "(INT x:RepFun(A,f). B(x))    = (INT a:A. B(f(a)))"
+by (auto simp add: Inter_def)
+
+lemma INT_Union_eq:
+     "0 ~: A ==> (INT x: Union(A). B(x)) = (INT y:A. INT x:y. B(x))"
+apply (simp add: Inter_def)
+apply (subgoal_tac "ALL x:A. x~=0")
+prefer 2 apply blast
+apply force
+done
+
+lemma INT_UN_eq: "(ALL x:A. B(x) ~= 0)  
+      ==> (INT z: (UN x:A. B(x)). C(z)) = (INT x:A. INT z: B(x). C(z))"
+apply (subst INT_Union_eq, blast)
+apply (simp add: Inter_def)
+done
+
+
+(** Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: 
+    Union of a family of unions **)
+
+lemma UN_Un_distrib:
+     "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i))  Un  (UN i:I. B(i))"
+by blast
+
+lemma INT_Int_distrib:
+     "i:I ==> (INT i:I. A(i) Int B(i)) = (INT i:I. A(i)) Int (INT i:I. B(i))"
+by blast
+
+lemma UN_Int_subset:
+     "(UN z:I Int J. A(z)) <= (UN z:I. A(z)) Int (UN z:J. A(z))"
+by blast
+
+(** Devlin, page 12, exercise 5: Complements **)
+
+lemma Diff_UN: "i:I ==> B - (UN i:I. A(i)) = (INT i:I. B - A(i))"
+by blast
+
+lemma Diff_INT: "i:I ==> B - (INT i:I. A(i)) = (UN i:I. B - A(i))"
+by blast
+
+(** Unions and Intersections with General Sum **)
+
+(*Not suitable for rewriting: LOOPS!*)
+lemma Sigma_cons1: "Sigma(cons(a,B), C) = ({a}*C(a)) Un Sigma(B,C)"
+by blast
+
+(*Not suitable for rewriting: LOOPS!*)
+lemma Sigma_cons2: "A * cons(b,B) = A*{b} Un A*B"
+by blast
+
+lemma Sigma_succ1: "Sigma(succ(A), B) = ({A}*B(A)) Un Sigma(A,B)"
+by blast
+
+lemma Sigma_succ2: "A * succ(B) = A*{B} Un A*B"
+by blast
+
+lemma SUM_UN_distrib1:
+     "(SUM x:(UN y:A. C(y)). B(x)) = (UN y:A. SUM x:C(y). B(x))"
+by blast
+
+lemma SUM_UN_distrib2:
+     "(SUM i:I. UN j:J. C(i,j)) = (UN j:J. SUM i:I. C(i,j))"
+by blast
+
+lemma SUM_Un_distrib1:
+     "(SUM i:I Un J. C(i)) = (SUM i:I. C(i)) Un (SUM j:J. C(j))"
+by blast
+
+lemma SUM_Un_distrib2:
+     "(SUM i:I. A(i) Un B(i)) = (SUM i:I. A(i)) Un (SUM i:I. B(i))"
+by blast
+
+(*First-order version of the above, for rewriting*)
+lemma prod_Un_distrib2: "I * (A Un B) = I*A Un I*B"
+by (rule SUM_Un_distrib2)
+
+lemma SUM_Int_distrib1:
+     "(SUM i:I Int J. C(i)) = (SUM i:I. C(i)) Int (SUM j:J. C(j))"
+by blast
+
+lemma SUM_Int_distrib2:
+     "(SUM i:I. A(i) Int B(i)) = (SUM i:I. A(i)) Int (SUM i:I. B(i))"
+by blast
+
+(*First-order version of the above, for rewriting*)
+lemma prod_Int_distrib2: "I * (A Int B) = I*A Int I*B"
+by (rule SUM_Int_distrib2)
+
+(*Cf Aczel, Non-Well-Founded Sets, page 115*)
+lemma SUM_eq_UN: "(SUM i:I. A(i)) = (UN i:I. {i} * A(i))"
+by blast
+
+(** Domain **)
+
+lemma domain_of_prod: "b:B ==> domain(A*B) = A"
+by blast
+
+lemma domain_0 [simp]: "domain(0) = 0"
+by blast
+
+lemma domain_cons [simp]: "domain(cons(<a,b>,r)) = cons(a, domain(r))"
+by blast
+
+lemma domain_Un_eq [simp]: "domain(A Un B) = domain(A) Un domain(B)"
+by blast
+
+lemma domain_Int_subset: "domain(A Int B) <= domain(A) Int domain(B)"
+by blast
+
+lemma domain_Diff_subset: "domain(A) - domain(B) <= domain(A - B)"
+by blast
+
+lemma domain_converse [simp]: "domain(converse(r)) = range(r)"
+by blast
 
-equalities = domrange
+lemma domain_UN: "domain(UN x:A. B(x)) = (UN x:A. domain(B(x)))"
+by blast
+
+lemma domain_Union: "domain(Union(A)) = (UN x:A. domain(x))"
+by blast
+
+
+(** Range **)
+
+lemma range_of_prod: "a:A ==> range(A*B) = B"
+by blast
+
+lemma range_0 [simp]: "range(0) = 0"
+by blast
+
+lemma range_cons [simp]: "range(cons(<a,b>,r)) = cons(b, range(r))"
+by blast
+
+lemma range_Un_eq [simp]: "range(A Un B) = range(A) Un range(B)"
+by blast
+
+lemma range_Int_subset: "range(A Int B) <= range(A) Int range(B)"
+by blast
+
+lemma range_Diff_subset: "range(A) - range(B) <= range(A - B)"
+by blast
+
+lemma range_converse [simp]: "range(converse(r)) = domain(r)"
+by blast
+
+
+(** Field **)
+
+lemma field_of_prod: "field(A*A) = A"
+by blast
+
+lemma field_0 [simp]: "field(0) = 0"
+by blast
+
+lemma field_cons [simp]: "field(cons(<a,b>,r)) = cons(a, cons(b, field(r)))"
+by blast
+
+lemma field_Un_eq [simp]: "field(A Un B) = field(A) Un field(B)"
+by blast
+
+lemma field_Int_subset: "field(A Int B) <= field(A) Int field(B)"
+by blast
+
+lemma field_Diff_subset: "field(A) - field(B) <= field(A - B)"
+by blast
+
+lemma field_converse [simp]: "field(converse(r)) = field(r)"
+by blast
+
+
+(** Image **)
+
+lemma image_0 [simp]: "r``0 = 0"
+by blast
+
+lemma image_Un [simp]: "r``(A Un B) = (r``A) Un (r``B)"
+by blast
+
+lemma image_Int_subset: "r``(A Int B) <= (r``A) Int (r``B)"
+by blast
+
+lemma image_Int_square_subset: "(r Int A*A)``B <= (r``B) Int A"
+by blast
+
+lemma image_Int_square: "B<=A ==> (r Int A*A)``B = (r``B) Int A"
+by blast
+
+
+(*Image laws for special relations*)
+lemma image_0_left [simp]: "0``A = 0"
+by blast
+
+lemma image_Un_left: "(r Un s)``A = (r``A) Un (s``A)"
+by blast
+
+lemma image_Int_subset_left: "(r Int s)``A <= (r``A) Int (s``A)"
+by blast
+
+
+(** Inverse Image **)
+
+lemma vimage_0 [simp]: "r-``0 = 0"
+by blast
+
+lemma vimage_Un [simp]: "r-``(A Un B) = (r-``A) Un (r-``B)"
+by blast
+
+lemma vimage_Int_subset: "r-``(A Int B) <= (r-``A) Int (r-``B)"
+by blast
+
+(*NOT suitable for rewriting*)
+lemma vimage_eq_UN: "f -``B = (UN y:B. f-``{y})"
+by blast
+
+lemma function_vimage_Int:
+     "function(f) ==> f-``(A Int B) = (f-``A)  Int  (f-``B)"
+by (unfold function_def, blast)
+
+lemma function_vimage_Diff: "function(f) ==> f-``(A-B) = (f-``A) - (f-``B)"
+by (unfold function_def, blast)
+
+lemma function_image_vimage: "function(f) ==> f `` (f-`` A) <= A"
+by (unfold function_def, blast)
+
+lemma vimage_Int_square_subset: "(r Int A*A)-``B <= (r-``B) Int A"
+by blast
+
+lemma vimage_Int_square: "B<=A ==> (r Int A*A)-``B = (r-``B) Int A"
+by blast
+
+
+
+(*Invese image laws for special relations*)
+lemma vimage_0_left [simp]: "0-``A = 0"
+by blast
+
+lemma vimage_Un_left: "(r Un s)-``A = (r-``A) Un (s-``A)"
+by blast
+
+lemma vimage_Int_subset_left: "(r Int s)-``A <= (r-``A) Int (s-``A)"
+by blast
+
+
+(** Converse **)
+
+lemma converse_Un [simp]: "converse(A Un B) = converse(A) Un converse(B)"
+by blast
+
+lemma converse_Int [simp]: "converse(A Int B) = converse(A) Int converse(B)"
+by blast
+
+lemma converse_Diff [simp]: "converse(A - B) = converse(A) - converse(B)"
+by blast
+
+lemma converse_UN [simp]: "converse(UN x:A. B(x)) = (UN x:A. converse(B(x)))"
+by blast
+
+(*Unfolding Inter avoids using excluded middle on A=0*)
+lemma converse_INT [simp]:
+     "converse(INT x:A. B(x)) = (INT x:A. converse(B(x)))"
+apply (unfold Inter_def, blast)
+done
+
+(** Pow **)
+
+lemma Pow_0 [simp]: "Pow(0) = {0}"
+by blast
+
+lemma Pow_insert: "Pow (cons(a,A)) = Pow(A) Un {cons(a,X) . X: Pow(A)}"
+apply (rule equalityI, safe)
+apply (erule swap)
+apply (rule_tac a = "x-{a}" in RepFun_eqI, auto) 
+done
+
+lemma Un_Pow_subset: "Pow(A) Un Pow(B) <= Pow(A Un B)"
+by blast
+
+lemma UN_Pow_subset: "(UN x:A. Pow(B(x))) <= Pow(UN x:A. B(x))"
+by blast
+
+lemma subset_Pow_Union: "A <= Pow(Union(A))"
+by blast
+
+lemma Union_Pow_eq [simp]: "Union(Pow(A)) = A"
+by blast
+
+lemma Pow_Int_eq [simp]: "Pow(A Int B) = Pow(A) Int Pow(B)"
+by blast
+
+lemma Pow_INT_eq: "x:A ==> Pow(INT x:A. B(x)) = (INT x:A. Pow(B(x)))"
+by blast
+
+(** RepFun **)
+
+lemma RepFun_eq_0_iff [simp]: "{f(x).x:A}=0 <-> A=0"
+by blast
+
+lemma RepFun_constant [simp]: "{c. x:A} = (if A=0 then 0 else {c})"
+apply auto
+apply blast
+done
+
+(** Collect **)
 
+lemma Collect_Un: "Collect(A Un B, P) = Collect(A,P) Un Collect(B,P)"
+by blast
+
+lemma Collect_Int: "Collect(A Int B, P) = Collect(A,P) Int Collect(B,P)"
+by blast
+
+lemma Collect_Diff: "Collect(A - B, P) = Collect(A,P) - Collect(B,P)"
+by blast
+
+lemma Collect_cons: "{x:cons(a,B). P(x)} =  
+      (if P(a) then cons(a, {x:B. P(x)}) else {x:B. P(x)})"
+by (simp, blast)
+
+lemma Int_Collect_self_eq: "A Int Collect(A,P) = Collect(A,P)"
+by blast
+
+lemma Collect_Collect_eq [simp]:
+     "Collect(Collect(A,P), Q) = Collect(A, %x. P(x) & Q(x))"
+by blast
+
+lemma Collect_Int_Collect_eq:
+     "Collect(A,P) Int Collect(A,Q) = Collect(A, %x. P(x) & Q(x))"
+by blast
+
+ML
+{*
+val cons_eq = thm "cons_eq";
+val cons_commute = thm "cons_commute";
+val cons_absorb = thm "cons_absorb";
+val cons_Diff = thm "cons_Diff";
+val equal_singleton = thm "equal_singleton";
+val Int_cons = thm "Int_cons";
+val Int_absorb = thm "Int_absorb";
+val Int_left_absorb = thm "Int_left_absorb";
+val Int_commute = thm "Int_commute";
+val Int_left_commute = thm "Int_left_commute";
+val Int_assoc = thm "Int_assoc";
+val Int_Un_distrib = thm "Int_Un_distrib";
+val Int_Un_distrib2 = thm "Int_Un_distrib2";
+val subset_Int_iff = thm "subset_Int_iff";
+val subset_Int_iff2 = thm "subset_Int_iff2";
+val Int_Diff_eq = thm "Int_Diff_eq";
+val Un_cons = thm "Un_cons";
+val Un_absorb = thm "Un_absorb";
+val Un_left_absorb = thm "Un_left_absorb";
+val Un_commute = thm "Un_commute";
+val Un_left_commute = thm "Un_left_commute";
+val Un_assoc = thm "Un_assoc";
+val Un_Int_distrib = thm "Un_Int_distrib";
+val subset_Un_iff = thm "subset_Un_iff";
+val subset_Un_iff2 = thm "subset_Un_iff2";
+val Un_empty = thm "Un_empty";
+val Un_eq_Union = thm "Un_eq_Union";
+val Diff_cancel = thm "Diff_cancel";
+val Diff_triv = thm "Diff_triv";
+val empty_Diff = thm "empty_Diff";
+val Diff_0 = thm "Diff_0";
+val Diff_eq_0_iff = thm "Diff_eq_0_iff";
+val Diff_cons = thm "Diff_cons";
+val Diff_cons2 = thm "Diff_cons2";
+val Diff_disjoint = thm "Diff_disjoint";
+val Diff_partition = thm "Diff_partition";
+val subset_Un_Diff = thm "subset_Un_Diff";
+val double_complement = thm "double_complement";
+val double_complement_Un = thm "double_complement_Un";
+val Un_Int_crazy = thm "Un_Int_crazy";
+val Diff_Un = thm "Diff_Un";
+val Diff_Int = thm "Diff_Int";
+val Un_Diff = thm "Un_Diff";
+val Int_Diff = thm "Int_Diff";
+val Diff_Int_distrib = thm "Diff_Int_distrib";
+val Diff_Int_distrib2 = thm "Diff_Int_distrib2";
+val Un_Int_assoc_iff = thm "Un_Int_assoc_iff";
+val Union_cons = thm "Union_cons";
+val Union_Un_distrib = thm "Union_Un_distrib";
+val Union_Int_subset = thm "Union_Int_subset";
+val Union_disjoint = thm "Union_disjoint";
+val Union_empty_iff = thm "Union_empty_iff";
+val Inter_0 = thm "Inter_0";
+val Inter_Un_subset = thm "Inter_Un_subset";
+val Inter_Un_distrib = thm "Inter_Un_distrib";
+val Union_singleton = thm "Union_singleton";
+val Inter_singleton = thm "Inter_singleton";
+val Inter_cons = thm "Inter_cons";
+val Union_eq_UN = thm "Union_eq_UN";
+val Inter_eq_INT = thm "Inter_eq_INT";
+val UN_0 = thm "UN_0";
+val UN_singleton = thm "UN_singleton";
+val UN_Un = thm "UN_Un";
+val INT_Un = thm "INT_Un";
+val UN_UN_flatten = thm "UN_UN_flatten";
+val Int_UN_distrib = thm "Int_UN_distrib";
+val Un_INT_distrib = thm "Un_INT_distrib";
+val Int_UN_distrib2 = thm "Int_UN_distrib2";
+val Un_INT_distrib2 = thm "Un_INT_distrib2";
+val UN_constant = thm "UN_constant";
+val INT_constant = thm "INT_constant";
+val UN_RepFun = thm "UN_RepFun";
+val INT_RepFun = thm "INT_RepFun";
+val INT_Union_eq = thm "INT_Union_eq";
+val INT_UN_eq = thm "INT_UN_eq";
+val UN_Un_distrib = thm "UN_Un_distrib";
+val INT_Int_distrib = thm "INT_Int_distrib";
+val UN_Int_subset = thm "UN_Int_subset";
+val Diff_UN = thm "Diff_UN";
+val Diff_INT = thm "Diff_INT";
+val Sigma_cons1 = thm "Sigma_cons1";
+val Sigma_cons2 = thm "Sigma_cons2";
+val Sigma_succ1 = thm "Sigma_succ1";
+val Sigma_succ2 = thm "Sigma_succ2";
+val SUM_UN_distrib1 = thm "SUM_UN_distrib1";
+val SUM_UN_distrib2 = thm "SUM_UN_distrib2";
+val SUM_Un_distrib1 = thm "SUM_Un_distrib1";
+val SUM_Un_distrib2 = thm "SUM_Un_distrib2";
+val prod_Un_distrib2 = thm "prod_Un_distrib2";
+val SUM_Int_distrib1 = thm "SUM_Int_distrib1";
+val SUM_Int_distrib2 = thm "SUM_Int_distrib2";
+val prod_Int_distrib2 = thm "prod_Int_distrib2";
+val SUM_eq_UN = thm "SUM_eq_UN";
+val domain_of_prod = thm "domain_of_prod";
+val domain_0 = thm "domain_0";
+val domain_cons = thm "domain_cons";
+val domain_Un_eq = thm "domain_Un_eq";
+val domain_Int_subset = thm "domain_Int_subset";
+val domain_Diff_subset = thm "domain_Diff_subset";
+val domain_converse = thm "domain_converse";
+val domain_UN = thm "domain_UN";
+val domain_Union = thm "domain_Union";
+val range_of_prod = thm "range_of_prod";
+val range_0 = thm "range_0";
+val range_cons = thm "range_cons";
+val range_Un_eq = thm "range_Un_eq";
+val range_Int_subset = thm "range_Int_subset";
+val range_Diff_subset = thm "range_Diff_subset";
+val range_converse = thm "range_converse";
+val field_of_prod = thm "field_of_prod";
+val field_0 = thm "field_0";
+val field_cons = thm "field_cons";
+val field_Un_eq = thm "field_Un_eq";
+val field_Int_subset = thm "field_Int_subset";
+val field_Diff_subset = thm "field_Diff_subset";
+val field_converse = thm "field_converse";
+val image_0 = thm "image_0";
+val image_Un = thm "image_Un";
+val image_Int_subset = thm "image_Int_subset";
+val image_Int_square_subset = thm "image_Int_square_subset";
+val image_Int_square = thm "image_Int_square";
+val image_0_left = thm "image_0_left";
+val image_Un_left = thm "image_Un_left";
+val image_Int_subset_left = thm "image_Int_subset_left";
+val vimage_0 = thm "vimage_0";
+val vimage_Un = thm "vimage_Un";
+val vimage_Int_subset = thm "vimage_Int_subset";
+val vimage_eq_UN = thm "vimage_eq_UN";
+val function_vimage_Int = thm "function_vimage_Int";
+val function_vimage_Diff = thm "function_vimage_Diff";
+val function_image_vimage = thm "function_image_vimage";
+val vimage_Int_square_subset = thm "vimage_Int_square_subset";
+val vimage_Int_square = thm "vimage_Int_square";
+val vimage_0_left = thm "vimage_0_left";
+val vimage_Un_left = thm "vimage_Un_left";
+val vimage_Int_subset_left = thm "vimage_Int_subset_left";
+val converse_Un = thm "converse_Un";
+val converse_Int = thm "converse_Int";
+val converse_Diff = thm "converse_Diff";
+val converse_UN = thm "converse_UN";
+val converse_INT = thm "converse_INT";
+val Pow_0 = thm "Pow_0";
+val Pow_insert = thm "Pow_insert";
+val Un_Pow_subset = thm "Un_Pow_subset";
+val UN_Pow_subset = thm "UN_Pow_subset";
+val subset_Pow_Union = thm "subset_Pow_Union";
+val Union_Pow_eq = thm "Union_Pow_eq";
+val Pow_Int_eq = thm "Pow_Int_eq";
+val Pow_INT_eq = thm "Pow_INT_eq";
+val RepFun_eq_0_iff = thm "RepFun_eq_0_iff";
+val RepFun_constant = thm "RepFun_constant";
+val Collect_Un = thm "Collect_Un";
+val Collect_Int = thm "Collect_Int";
+val Collect_Diff = thm "Collect_Diff";
+val Collect_cons = thm "Collect_cons";
+val Int_Collect_self_eq = thm "Int_Collect_self_eq";
+val Collect_Collect_eq = thm "Collect_Collect_eq";
+val Collect_Int_Collect_eq = thm "Collect_Int_Collect_eq";
+
+val Int_ac = thms "Int_ac";
+val Un_ac = thms "Un_ac";
+
+*}
+
+end
+