author | krauss |
Sat, 23 Oct 2010 23:41:19 +0200 | |
changeset 40107 | 374f3ef9f940 |
parent 40106 | c58951943cba |
child 40108 | dbab949c2717 |
src/HOL/Partial_Function.thy | file | annotate | diff | comparison | revisions | |
src/HOL/Tools/Function/partial_function.ML | file | annotate | diff | comparison | revisions |
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Partial_Function.thy Sat Oct 23 23:41:19 2010 +0200 @@ -0,0 +1,247 @@ +(* Title: HOL/Partial_Function.thy + Author: Alexander Krauss, TU Muenchen +*) + +header {* Partial Function Definitions *} + +theory Partial_Function +imports Complete_Partial_Order Option +uses + "Tools/Function/function_lib.ML" + "Tools/Function/partial_function.ML" +begin + +setup Partial_Function.setup + +subsection {* Axiomatic setup *} + +text {* This techical locale constains the requirements for function + definitions with ccpo fixed points. *} + +definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))" +definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})" +definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))" +definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))" + +lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)" +by (rule monotoneI) (auto simp: fun_ord_def) + +lemma if_mono[partial_function_mono]: "monotone orda ordb F +\<Longrightarrow> monotone orda ordb G +\<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)" +unfolding monotone_def by simp + +definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)" + +locale partial_function_definitions = + fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" + fixes lub :: "'a set \<Rightarrow> 'a" + assumes leq_refl: "leq x x" + assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z" + assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y" + assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)" + assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z" + +lemma partial_function_lift: + assumes "partial_function_definitions ord lb" + shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf") +proof - + interpret partial_function_definitions ord lb by fact + + { fix A a assume A: "chain ?ordf A" + have "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C") + proof (rule chainI) + fix x y assume "x \<in> ?C" "y \<in> ?C" + then obtain f g where fg: "f \<in> A" "g \<in> A" + and [simp]: "x = f a" "y = g a" by blast + from chainD[OF A fg] + show "ord x y \<or> ord y x" unfolding fun_ord_def by auto + qed } + note chain_fun = this + + show ?thesis + proof + fix x show "?ordf x x" + unfolding fun_ord_def by (auto simp: leq_refl) + next + fix x y z assume "?ordf x y" "?ordf y z" + thus "?ordf x z" unfolding fun_ord_def + by (force dest: leq_trans) + next + fix x y assume "?ordf x y" "?ordf y x" + thus "x = y" unfolding fun_ord_def + by (force intro!: ext dest: leq_antisym) + next + fix A f assume f: "f \<in> A" and A: "chain ?ordf A" + thus "?ordf f (?lubf A)" + unfolding fun_lub_def fun_ord_def + by (blast intro: lub_upper chain_fun[OF A] f) + next + fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a" + assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g" + show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def + by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def]) + qed +qed + +lemma ccpo: assumes "partial_function_definitions ord lb" + shows "class.ccpo ord (mk_less ord) lb" +using assms unfolding partial_function_definitions_def mk_less_def +by unfold_locales blast+ + +lemma partial_function_image: + assumes "partial_function_definitions ord Lub" + assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y" + assumes inv: "\<And>x. f (g x) = x" + shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)" +proof - + let ?iord = "img_ord f ord" + let ?ilub = "img_lub f g Lub" + + interpret partial_function_definitions ord Lub by fact + show ?thesis + proof + fix A x assume "chain ?iord A" "x \<in> A" + then have "chain ord (f ` A)" "f x \<in> f ` A" + by (auto simp: img_ord_def intro: chainI dest: chainD) + thus "?iord x (?ilub A)" + unfolding inv img_lub_def img_ord_def by (rule lub_upper) + next + fix A x assume "chain ?iord A" + and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x" + then have "chain ord (f ` A)" + by (auto simp: img_ord_def intro: chainI dest: chainD) + thus "?iord (?ilub A) x" + unfolding inv img_lub_def img_ord_def + by (rule lub_least) (auto dest: 1[unfolded img_ord_def]) + qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj) +qed + +context partial_function_definitions +begin + +abbreviation "le_fun \<equiv> fun_ord leq" +abbreviation "lub_fun \<equiv> fun_lub lub" +abbreviation "fixp_fun == ccpo.fixp le_fun lub_fun" +abbreviation "mono_body \<equiv> monotone le_fun leq" + +text {* Interpret manually, to avoid flooding everything with facts about + orders *} + +lemma ccpo: "class.ccpo le_fun (mk_less le_fun) lub_fun" +apply (rule ccpo) +apply (rule partial_function_lift) +apply (rule partial_function_definitions_axioms) +done + +text {* The crucial fixed-point theorem *} + +lemma mono_body_fixp: + "(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)" +by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def) + +text {* Version with curry/uncurry combinators, to be used by package *} + +lemma fixp_rule_uc: + fixes F :: "'c \<Rightarrow> 'c" and + U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and + C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" + assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)" + assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))" + assumes inverse: "\<And>f. C (U f) = f" + shows "f = F f" +proof - + have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq) + also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))" + by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl) + also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse) + also have "... = F f" by (simp add: eq) + finally show "f = F f" . +qed + +text {* Rules for @{term mono_body}: *} + +lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)" +by (rule monotoneI) (rule leq_refl) + +declaration {* Partial_Function.init @{term fixp_fun} + @{term mono_body} @{thm fixp_rule_uc} *} + +end + + +subsection {* Flat interpretation: tailrec and option *} + +definition + "flat_ord b x y \<longleftrightarrow> x = b \<or> x = y" + +definition + "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))" + +lemma flat_interpretation: + "partial_function_definitions (flat_ord b) (flat_lub b)" +proof + fix A x assume 1: "chain (flat_ord b) A" "x \<in> A" + show "flat_ord b x (flat_lub b A)" + proof cases + assume "x = b" + thus ?thesis by (simp add: flat_ord_def) + next + assume "x \<noteq> b" + with 1 have "A - {b} = {x}" + by (auto elim: chainE simp: flat_ord_def) + then have "flat_lub b A = x" + by (auto simp: flat_lub_def) + thus ?thesis by (auto simp: flat_ord_def) + qed +next + fix A z assume A: "chain (flat_ord b) A" + and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z" + show "flat_ord b (flat_lub b A) z" + proof cases + assume "A \<subseteq> {b}" + thus ?thesis + by (auto simp: flat_lub_def flat_ord_def) + next + assume nb: "\<not> A \<subseteq> {b}" + then obtain y where y: "y \<in> A" "y \<noteq> b" by auto + with A have "A - {b} = {y}" + by (auto elim: chainE simp: flat_ord_def) + with nb have "flat_lub b A = y" + by (auto simp: flat_lub_def) + with z y show ?thesis by auto + qed +qed (auto simp: flat_ord_def) + +interpretation tailrec!: + partial_function_definitions "flat_ord undefined" "flat_lub undefined" +by (rule flat_interpretation) + +interpretation option!: + partial_function_definitions "flat_ord None" "flat_lub None" +by (rule flat_interpretation) + +abbreviation "option_ord \<equiv> flat_ord None" +abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord" + +lemma bind_mono[partial_function_mono]: +assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)" +shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))" +proof (rule monotoneI) + fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g" + with mf + have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g]) + then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))" + unfolding flat_ord_def by auto + also from mg + have "\<And>y'. option_ord (C y' f) (C y' g)" + by (rule monotoneD) (rule fg) + then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))" + unfolding flat_ord_def by (cases "B g") auto + finally (option.leq_trans) + show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" . +qed + + +end +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Tools/Function/partial_function.ML Sat Oct 23 23:41:19 2010 +0200 @@ -0,0 +1,238 @@ +(* Title: HOL/Tools/Function/partial_function.ML + Author: Alexander Krauss, TU Muenchen + +Partial function definitions based on least fixed points in ccpos. +*) + +signature PARTIAL_FUNCTION = +sig + val setup: theory -> theory + val init: term -> term -> thm -> declaration + + val add_partial_function: string -> (binding * typ option * mixfix) list -> + Attrib.binding * term -> local_theory -> local_theory + + val add_partial_function_cmd: string -> (binding * string option * mixfix) list -> + Attrib.binding * string -> local_theory -> local_theory +end; + + +structure Partial_Function: PARTIAL_FUNCTION = +struct + +(*** Context Data ***) + +structure Modes = Generic_Data +( + type T = ((term * term) * thm) Symtab.table; + val empty = Symtab.empty; + val extend = I; + fun merge (a, b) = Symtab.merge (K true) (a, b); +) + +fun init fixp mono fixp_eq phi = + let + val term = Morphism.term phi; + val data' = ((term fixp, term mono), Morphism.thm phi fixp_eq); + val mode = (* extract mode identifier from morphism prefix! *) + Binding.prefix_of (Morphism.binding phi (Binding.empty)) + |> map fst |> space_implode "."; + in + if mode = "" then I + else Modes.map (Symtab.update (mode, data')) + end + +val known_modes = Symtab.keys o Modes.get o Context.Proof; +val lookup_mode = Symtab.lookup o Modes.get o Context.Proof; + + +structure Mono_Rules = Named_Thms +( + val name = "partial_function_mono"; + val description = "monotonicity rules for partial function definitions"; +); + + +(*** Automated monotonicity proofs ***) + +fun strip_cases ctac = ctac #> Seq.map snd; + +(*rewrite conclusion with k-th assumtion*) +fun rewrite_with_asm_tac ctxt k = + Subgoal.FOCUS (fn {context=ctxt', prems, ...} => + Local_Defs.unfold_tac ctxt' [nth prems k]) ctxt; + +fun dest_case thy t = + case strip_comb t of + (Const (case_comb, _), args) => + (case Datatype.info_of_case thy case_comb of + NONE => NONE + | SOME {case_rewrites, ...} => + let + val lhs = prop_of (hd case_rewrites) + |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst; + val arity = length (snd (strip_comb lhs)); + val conv = funpow (length args - arity) Conv.fun_conv + (Conv.rewrs_conv (map mk_meta_eq case_rewrites)); + in + SOME (nth args (arity - 1), conv) + end) + | _ => NONE; + +(*split on case expressions*) +val split_cases_tac = Subgoal.FOCUS_PARAMS (fn {context=ctxt, ...} => + SUBGOAL (fn (t, i) => case t of + _ $ (_ $ Abs (_, _, body)) => + (case dest_case (ProofContext.theory_of ctxt) body of + NONE => no_tac + | SOME (arg, conv) => + let open Conv in + if not (null (loose_bnos arg)) then no_tac + else ((DETERM o strip_cases o Induct.cases_tac ctxt false [[SOME arg]] NONE []) + THEN_ALL_NEW (rewrite_with_asm_tac ctxt 0) + THEN_ALL_NEW etac @{thm thin_rl} + THEN_ALL_NEW (CONVERSION + (params_conv ~1 (fn ctxt' => + arg_conv (arg_conv (abs_conv (K conv) ctxt'))) ctxt))) i + end) + | _ => no_tac) 1); + +(*monotonicity proof: apply rules + split case expressions*) +fun mono_tac ctxt = + K (Local_Defs.unfold_tac ctxt [@{thm curry_def}]) + THEN' (TRY o REPEAT_ALL_NEW + (resolve_tac (Mono_Rules.get ctxt) + ORELSE' split_cases_tac ctxt)); + + +(*** Auxiliary functions ***) + +(*positional instantiation with computed type substitution. + internal version of attribute "[of s t u]".*) +fun cterm_instantiate' cts thm = + let + val thy = Thm.theory_of_thm thm; + val vs = rev (Term.add_vars (prop_of thm) []) + |> map (Thm.cterm_of thy o Var); + in + cterm_instantiate (zip_options vs cts) thm + end; + +(*Returns t $ u, but instantiates the type of t to make the +application type correct*) +fun apply_inst ctxt t u = + let + val thy = ProofContext.theory_of ctxt; + val T = domain_type (fastype_of t); + val T' = fastype_of u; + val subst = Type.typ_match (Sign.tsig_of thy) (T, T') Vartab.empty + handle Type.TYPE_MATCH => raise TYPE ("apply_inst", [T, T'], [t, u]) + in + map_types (Envir.norm_type subst) t $ u + end; + +fun head_conv cv ct = + if can Thm.dest_comb ct then Conv.fun_conv (head_conv cv) ct else cv ct; + + +(*** currying transformation ***) + +fun curry_const (A, B, C) = + Const (@{const_name Product_Type.curry}, + [HOLogic.mk_prodT (A, B) --> C, A, B] ---> C); + +fun mk_curry f = + case fastype_of f of + Type ("fun", [Type (_, [S, T]), U]) => + curry_const (S, T, U) $ f + | T => raise TYPE ("mk_curry", [T], [f]); + +(* iterated versions. Nonstandard left-nested tuples arise naturally +from "split o split o split"*) +fun curry_n arity = funpow (arity - 1) mk_curry; +fun uncurry_n arity = funpow (arity - 1) HOLogic.mk_split; + +val curry_uncurry_ss = HOL_basic_ss addsimps + [@{thm Product_Type.curry_split}, @{thm Product_Type.split_curry}] + + +(*** partial_function definition ***) + +fun gen_add_partial_function prep mode fixes_raw eqn_raw lthy = + let + val ((fixp, mono), fixp_eq) = the (lookup_mode lthy mode) + handle Option.Option => error (cat_lines ["Unknown mode " ^ quote mode ^ ".", + "Known modes are " ^ commas_quote (known_modes lthy) ^ "."]); + + val ((fixes, [(eq_abinding, eqn)]), _) = prep fixes_raw [eqn_raw] lthy; + val (_, _, plain_eqn) = Function_Lib.dest_all_all_ctx lthy eqn; + + val ((f_binding, fT), mixfix) = the_single fixes; + val fname = Binding.name_of f_binding; + + val cert = cterm_of (ProofContext.theory_of lthy); + val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop plain_eqn); + val (head, args) = strip_comb lhs; + val F = fold_rev lambda (head :: args) rhs; + + val arity = length args; + val (aTs, bTs) = chop arity (binder_types fT); + + val tupleT = foldl1 HOLogic.mk_prodT aTs; + val fT_uc = tupleT :: bTs ---> body_type fT; + val f_uc = Var ((fname, 0), fT_uc); + val x_uc = Var (("x", 0), tupleT); + val uncurry = lambda head (uncurry_n arity head); + val curry = lambda f_uc (curry_n arity f_uc); + + val F_uc = + lambda f_uc (uncurry_n arity (F $ curry_n arity f_uc)); + + val mono_goal = apply_inst lthy mono (lambda f_uc (F_uc $ f_uc $ x_uc)) + |> HOLogic.mk_Trueprop + |> Logic.all x_uc; + + val mono_thm = Goal.prove_internal [] (cert mono_goal) + (K (mono_tac lthy 1)) + |> Thm.forall_elim (cert x_uc); + + val f_def_rhs = curry_n arity (apply_inst lthy fixp F_uc); + val f_def_binding = Binding.conceal (Binding.name (Thm.def_name fname)); + val ((f, (_, f_def)), lthy') = Local_Theory.define + ((f_binding, mixfix), ((f_def_binding, []), f_def_rhs)) lthy; + + val eqn = HOLogic.mk_eq (list_comb (f, args), + Term.betapplys (F, f :: args)) + |> HOLogic.mk_Trueprop; + + val unfold = + (cterm_instantiate' (map (SOME o cert) [uncurry, F, curry]) fixp_eq + OF [mono_thm, f_def]) + |> Tactic.rule_by_tactic lthy (Simplifier.simp_tac curry_uncurry_ss 1); + + val rec_rule = let open Conv in + Goal.prove lthy' (map (fst o dest_Free) args) [] eqn (fn _ => + CONVERSION ((arg_conv o arg1_conv o head_conv o rewr_conv) (mk_meta_eq unfold)) 1 + THEN rtac @{thm refl} 1) end; + in + lthy' + |> Local_Theory.note (eq_abinding, [rec_rule]) + |-> (fn (_, rec') => + Local_Theory.note ((Binding.qualify true fname (Binding.name "rec"), []), rec')) + |> snd + end; + +val add_partial_function = gen_add_partial_function Specification.check_spec; +val add_partial_function_cmd = gen_add_partial_function Specification.read_spec; + +val mode = Parse.$$$ "(" |-- Parse.xname --| Parse.$$$ ")"; + +val _ = Outer_Syntax.local_theory + "partial_function" "define partial function" Keyword.thy_goal + ((mode -- (Parse.fixes -- (Parse.where_ |-- Parse_Spec.spec))) + >> (fn (mode, (fixes, spec)) => add_partial_function_cmd mode fixes spec)); + + +val setup = Mono_Rules.setup; + +end