Complete_Partial_Order.thy: complete partial orders over arbitrary chains, with fixpoint theorem
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Complete_Partial_Order.thy Sat Oct 23 23:39:37 2010 +0200
@@ -0,0 +1,263 @@
+(* Title: HOL/Complete_Partial_Order.thy
+ Author: Brian Huffman, Portland State University
+ Author: Alexander Krauss, TU Muenchen
+*)
+
+header {* Chain-complete partial orders and their fixpoints *}
+
+theory Complete_Partial_Order
+imports Product_Type
+begin
+
+subsection {* Monotone functions *}
+
+text {* Dictionary-passing version of @{const Orderings.mono}. *}
+
+definition monotone :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+where "monotone orda ordb f \<longleftrightarrow> (\<forall>x y. orda x y \<longrightarrow> ordb (f x) (f y))"
+
+lemma monotoneI[intro?]: "(\<And>x y. orda x y \<Longrightarrow> ordb (f x) (f y))
+ \<Longrightarrow> monotone orda ordb f"
+unfolding monotone_def by iprover
+
+lemma monotoneD[dest?]: "monotone orda ordb f \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)"
+unfolding monotone_def by iprover
+
+
+subsection {* Chains *}
+
+text {* A chain is a totally-ordered set. Chains are parameterized over
+ the order for maximal flexibility, since type classes are not enough.
+*}
+
+definition
+ chain :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
+where
+ "chain ord S \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. ord x y \<or> ord y x)"
+
+lemma chainI:
+ assumes "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> ord x y \<or> ord y x"
+ shows "chain ord S"
+using assms unfolding chain_def by fast
+
+lemma chainD:
+ assumes "chain ord S" and "x \<in> S" and "y \<in> S"
+ shows "ord x y \<or> ord y x"
+using assms unfolding chain_def by fast
+
+lemma chainE:
+ assumes "chain ord S" and "x \<in> S" and "y \<in> S"
+ obtains "ord x y" | "ord y x"
+using assms unfolding chain_def by fast
+
+subsection {* Chain-complete partial orders *}
+
+text {*
+ A ccpo has a least upper bound for any chain. In particular, the
+ empty set is a chain, so every ccpo must have a bottom element.
+*}
+
+class ccpo = order +
+ fixes lub :: "'a set \<Rightarrow> 'a"
+ assumes lub_upper: "chain (op \<le>) A \<Longrightarrow> x \<in> A \<Longrightarrow> x \<le> lub A"
+ assumes lub_least: "chain (op \<le>) A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> lub A \<le> z"
+begin
+
+subsection {* Transfinite iteration of a function *}
+
+inductive_set iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set"
+for f :: "'a \<Rightarrow> 'a"
+where
+ step: "x \<in> iterates f \<Longrightarrow> f x \<in> iterates f"
+| lub: "chain (op \<le>) M \<Longrightarrow> \<forall>x\<in>M. x \<in> iterates f \<Longrightarrow> lub M \<in> iterates f"
+
+lemma iterates_le_f:
+ "x \<in> iterates f \<Longrightarrow> monotone (op \<le>) (op \<le>) f \<Longrightarrow> x \<le> f x"
+by (induct x rule: iterates.induct)
+ (force dest: monotoneD intro!: lub_upper lub_least)+
+
+lemma chain_iterates:
+ assumes f: "monotone (op \<le>) (op \<le>) f"
+ shows "chain (op \<le>) (iterates f)" (is "chain _ ?C")
+proof (rule chainI)
+ fix x y assume "x \<in> ?C" "y \<in> ?C"
+ then show "x \<le> y \<or> y \<le> x"
+ proof (induct x arbitrary: y rule: iterates.induct)
+ fix x y assume y: "y \<in> ?C"
+ and IH: "\<And>z. z \<in> ?C \<Longrightarrow> x \<le> z \<or> z \<le> x"
+ from y show "f x \<le> y \<or> y \<le> f x"
+ proof (induct y rule: iterates.induct)
+ case (step y) with IH f show ?case by (auto dest: monotoneD)
+ next
+ case (lub M)
+ then have chM: "chain (op \<le>) M"
+ and IH': "\<And>z. z \<in> M \<Longrightarrow> f x \<le> z \<or> z \<le> f x" by auto
+ show "f x \<le> lub M \<or> lub M \<le> f x"
+ proof (cases "\<exists>z\<in>M. f x \<le> z")
+ case True then have "f x \<le> lub M"
+ apply rule
+ apply (erule order_trans)
+ by (rule lub_upper[OF chM])
+ thus ?thesis ..
+ next
+ case False with IH'
+ show ?thesis by (auto intro: lub_least[OF chM])
+ qed
+ qed
+ next
+ case (lub M y)
+ show ?case
+ proof (cases "\<exists>x\<in>M. y \<le> x")
+ case True then have "y \<le> lub M"
+ apply rule
+ apply (erule order_trans)
+ by (rule lub_upper[OF lub(1)])
+ thus ?thesis ..
+ next
+ case False with lub
+ show ?thesis by (auto intro: lub_least)
+ qed
+ qed
+qed
+
+subsection {* Fixpoint combinator *}
+
+definition
+ fixp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"
+where
+ "fixp f = lub (iterates f)"
+
+lemma iterates_fixp:
+ assumes f: "monotone (op \<le>) (op \<le>) f" shows "fixp f \<in> iterates f"
+unfolding fixp_def
+by (simp add: iterates.lub chain_iterates f)
+
+lemma fixp_unfold:
+ assumes f: "monotone (op \<le>) (op \<le>) f"
+ shows "fixp f = f (fixp f)"
+proof (rule antisym)
+ show "fixp f \<le> f (fixp f)"
+ by (intro iterates_le_f iterates_fixp f)
+ have "f (fixp f) \<le> lub (iterates f)"
+ by (intro lub_upper chain_iterates f iterates.step iterates_fixp)
+ thus "f (fixp f) \<le> fixp f"
+ unfolding fixp_def .
+qed
+
+lemma fixp_lowerbound:
+ assumes f: "monotone (op \<le>) (op \<le>) f" and z: "f z \<le> z" shows "fixp f \<le> z"
+unfolding fixp_def
+proof (rule lub_least[OF chain_iterates[OF f]])
+ fix x assume "x \<in> iterates f"
+ thus "x \<le> z"
+ proof (induct x rule: iterates.induct)
+ fix x assume "x \<le> z" with f have "f x \<le> f z" by (rule monotoneD)
+ also note z finally show "f x \<le> z" .
+ qed (auto intro: lub_least)
+qed
+
+
+subsection {* Fixpoint induction *}
+
+definition
+ admissible :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
+where
+ "admissible P = (\<forall>A. chain (op \<le>) A \<longrightarrow> (\<forall>x\<in>A. P x) \<longrightarrow> P (lub A))"
+
+lemma admissibleI:
+ assumes "\<And>A. chain (op \<le>) A \<Longrightarrow> \<forall>x\<in>A. P x \<Longrightarrow> P (lub A)"
+ shows "admissible P"
+using assms unfolding admissible_def by fast
+
+lemma admissibleD:
+ assumes "admissible P"
+ assumes "chain (op \<le>) A"
+ assumes "\<And>x. x \<in> A \<Longrightarrow> P x"
+ shows "P (lub A)"
+using assms by (auto simp: admissible_def)
+
+lemma fixp_induct:
+ assumes adm: "admissible P"
+ assumes mono: "monotone (op \<le>) (op \<le>) f"
+ assumes step: "\<And>x. P x \<Longrightarrow> P (f x)"
+ shows "P (fixp f)"
+unfolding fixp_def using adm chain_iterates[OF mono]
+proof (rule admissibleD)
+ fix x assume "x \<in> iterates f"
+ thus "P x"
+ by (induct rule: iterates.induct)
+ (auto intro: step admissibleD adm)
+qed
+
+lemma admissible_True: "admissible (\<lambda>x. True)"
+unfolding admissible_def by simp
+
+lemma admissible_False: "\<not> admissible (\<lambda>x. False)"
+unfolding admissible_def chain_def by simp
+
+lemma admissible_const: "admissible (\<lambda>x. t) = t"
+by (cases t, simp_all add: admissible_True admissible_False)
+
+lemma admissible_conj:
+ assumes "admissible (\<lambda>x. P x)"
+ assumes "admissible (\<lambda>x. Q x)"
+ shows "admissible (\<lambda>x. P x \<and> Q x)"
+using assms unfolding admissible_def by simp
+
+lemma admissible_all:
+ assumes "\<And>y. admissible (\<lambda>x. P x y)"
+ shows "admissible (\<lambda>x. \<forall>y. P x y)"
+using assms unfolding admissible_def by fast
+
+lemma admissible_ball:
+ assumes "\<And>y. y \<in> A \<Longrightarrow> admissible (\<lambda>x. P x y)"
+ shows "admissible (\<lambda>x. \<forall>y\<in>A. P x y)"
+using assms unfolding admissible_def by fast
+
+lemma chain_compr: "chain (op \<le>) A \<Longrightarrow> chain (op \<le>) {x \<in> A. P x}"
+unfolding chain_def by fast
+
+lemma admissible_disj_lemma:
+ assumes A: "chain (op \<le>)A"
+ assumes P: "\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y"
+ shows "lub A = lub {x \<in> A. P x}"
+proof (rule antisym)
+ have *: "chain (op \<le>) {x \<in> A. P x}"
+ by (rule chain_compr [OF A])
+ show "lub A \<le> lub {x \<in> A. P x}"
+ apply (rule lub_least [OF A])
+ apply (drule P [rule_format], clarify)
+ apply (erule order_trans)
+ apply (simp add: lub_upper [OF *])
+ done
+ show "lub {x \<in> A. P x} \<le> lub A"
+ apply (rule lub_least [OF *])
+ apply clarify
+ apply (simp add: lub_upper [OF A])
+ done
+qed
+
+lemma admissible_disj:
+ fixes P Q :: "'a \<Rightarrow> bool"
+ assumes P: "admissible (\<lambda>x. P x)"
+ assumes Q: "admissible (\<lambda>x. Q x)"
+ shows "admissible (\<lambda>x. P x \<or> Q x)"
+proof (rule admissibleI)
+ fix A :: "'a set" assume A: "chain (op \<le>) A"
+ assume "\<forall>x\<in>A. P x \<or> Q x"
+ hence "(\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y) \<or> (\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> Q y)"
+ using chainD[OF A] by blast
+ hence "lub A = lub {x \<in> A. P x} \<or> lub A = lub {x \<in> A. Q x}"
+ using admissible_disj_lemma [OF A] by fast
+ thus "P (lub A) \<or> Q (lub A)"
+ apply (rule disjE, simp_all)
+ apply (rule disjI1, rule admissibleD [OF P chain_compr [OF A]], simp)
+ apply (rule disjI2, rule admissibleD [OF Q chain_compr [OF A]], simp)
+ done
+qed
+
+end
+
+
+
+end