--- a/src/Pure/Pure.thy Sun Jan 29 19:23:42 2006 +0100
+++ b/src/Pure/Pure.thy Sun Jan 29 19:23:43 2006 +0100
@@ -73,7 +73,8 @@
lemma imp_conjunction [unfolded prop_def]:
includes meta_conjunction_syntax
shows "(PROP A ==> PROP prop (PROP B && PROP C)) == (PROP A ==> PROP B) && (PROP A ==> PROP C)"
-proof (unfold prop_def, rule)
+ unfolding prop_def
+proof
assume conj: "PROP A ==> PROP B && PROP C"
fix X assume r: "(PROP A ==> PROP B) ==> (PROP A ==> PROP C) ==> PROP X"
show "PROP X"
@@ -121,6 +122,6 @@
lemma conjunction_assoc:
includes meta_conjunction_syntax
shows "((PROP A && PROP B) && PROP C) == (PROP A && (PROP B && PROP C))"
- by (rule equal_intr_rule) (unfold imp_conjunction conjunction_imp)
+ unfolding conjunction_imp .
end