moved Coind.*, Dagstuhl.*, Focus_ex.* to HOLCF/ex,
marked the remaining files as obsolete (new versions in HOLCF/ex)
--- a/src/HOLCF/explicit_domains/Coind.ML Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,138 +0,0 @@
-(* Title: HOLCF/Coind.ML
- ID: $Id$
- Author: Franz Regensburger
- Copyright 1993 Technische Universitaet Muenchen
-*)
-
-open Coind;
-
-(* ------------------------------------------------------------------------- *)
-(* expand fixed point properties *)
-(* ------------------------------------------------------------------------- *)
-
-
-val nats_def2 = fix_prover2 Coind.thy nats_def
- "nats = scons`dzero`(smap`dsucc`nats)";
-
-val from_def2 = fix_prover2 Coind.thy from_def
- "from = (LAM n.scons`n`(from`(dsucc`n)))";
-
-
-
-(* ------------------------------------------------------------------------- *)
-(* recursive properties *)
-(* ------------------------------------------------------------------------- *)
-
-
-val from = prove_goal Coind.thy "from`n = scons`n`(from`(dsucc`n))"
- (fn prems =>
- [
- (rtac trans 1),
- (stac from_def2 1),
- (Simp_tac 1),
- (rtac refl 1)
- ]);
-
-
-val from1 = prove_goal Coind.thy "from`UU = UU"
- (fn prems =>
- [
- (rtac trans 1),
- (stac from 1),
- (resolve_tac stream_constrdef 1),
- (rtac refl 1)
- ]);
-
-val coind_rews =
- [iterator1, iterator2, iterator3, smap1, smap2,from1];
-
-
-(* ------------------------------------------------------------------------- *)
-(* the example *)
-(* prove: nats = from`dzero *)
-(* ------------------------------------------------------------------------- *)
-
-
-val coind_lemma1 = prove_goal Coind.thy "iterator`n`(smap`dsucc)`nats =\
-\ scons`n`(iterator`(dsucc`n)`(smap`dsucc)`nats)"
- (fn prems =>
- [
- (res_inst_tac [("s","n")] dnat_ind 1),
- (simp_tac (!simpset addsimps (coind_rews @ stream_rews)) 1),
- (simp_tac (!simpset addsimps (coind_rews @ stream_rews)) 1),
- (rtac trans 1),
- (rtac nats_def2 1),
- (simp_tac (!simpset addsimps (coind_rews @ dnat_rews)) 1),
- (rtac trans 1),
- (etac iterator3 1),
- (rtac trans 1),
- (Asm_simp_tac 1),
- (rtac trans 1),
- (etac smap2 1),
- (rtac cfun_arg_cong 1),
- (asm_simp_tac (!simpset addsimps ([iterator3 RS sym] @ dnat_rews)) 1)
- ]);
-
-
-val nats_eq_from = prove_goal Coind.thy "nats = from`dzero"
- (fn prems =>
- [
- (res_inst_tac [("R",
-"% p q.? n. p = iterator`n`(smap`dsucc)`nats & q = from`n")] stream_coind 1),
- (res_inst_tac [("x","dzero")] exI 2),
- (asm_simp_tac (!simpset addsimps coind_rews) 2),
- (rewtac stream_bisim_def),
- (strip_tac 1),
- (etac exE 1),
- (case_tac "n=UU" 1),
- (rtac disjI1 1),
- (asm_simp_tac (!simpset addsimps coind_rews) 1),
- (rtac disjI2 1),
- (etac conjE 1),
- (hyp_subst_tac 1),
- (res_inst_tac [("x","n")] exI 1),
- (res_inst_tac [("x","iterator`(dsucc`n)`(smap`dsucc)`nats")] exI 1),
- (res_inst_tac [("x","from`(dsucc`n)")] exI 1),
- (etac conjI 1),
- (rtac conjI 1),
- (rtac coind_lemma1 1),
- (rtac conjI 1),
- (rtac from 1),
- (res_inst_tac [("x","dsucc`n")] exI 1),
- (fast_tac HOL_cs 1)
- ]);
-
-(* another proof using stream_coind_lemma2 *)
-
-val nats_eq_from = prove_goal Coind.thy "nats = from`dzero"
- (fn prems =>
- [
- (res_inst_tac [("R","% p q.? n. p = \
-\ iterator`n`(smap`dsucc)`nats & q = from`n")] stream_coind 1),
- (rtac stream_coind_lemma2 1),
- (strip_tac 1),
- (etac exE 1),
- (case_tac "n=UU" 1),
- (asm_simp_tac (!simpset addsimps coind_rews) 1),
- (res_inst_tac [("x","UU::dnat")] exI 1),
- (simp_tac (!simpset addsimps coind_rews addsimps stream_rews) 1),
- (etac conjE 1),
- (hyp_subst_tac 1),
- (rtac conjI 1),
- (stac coind_lemma1 1),
- (stac from 1),
- (asm_simp_tac (!simpset addsimps stream_rews) 1),
- (res_inst_tac [("x","dsucc`n")] exI 1),
- (rtac conjI 1),
- (rtac trans 1),
- (stac coind_lemma1 1),
- (asm_simp_tac (!simpset addsimps stream_rews) 1),
- (rtac refl 1),
- (rtac trans 1),
- (stac from 1),
- (asm_simp_tac (!simpset addsimps stream_rews) 1),
- (rtac refl 1),
- (res_inst_tac [("x","dzero")] exI 1),
- (asm_simp_tac (!simpset addsimps coind_rews) 1)
- ]);
-
--- a/src/HOLCF/explicit_domains/Coind.thy Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-(* Title: HOLCF/Coind.thy
- ID: $Id$
- Author: Franz Regensburger
- Copyright 1993 Technische Universitaet Muenchen
-
-Example for co-induction on streams
-*)
-
-Coind = Stream2 +
-
-
-consts
-
- nats :: "dnat stream"
- from :: "dnat -> dnat stream"
-
-defs
- nats_def "nats == fix`(LAM h.scons`dzero`(smap`dsucc`h))"
-
- from_def "from == fix`(LAM h n.scons`n`(h`(dsucc`n)))"
-
-end
-
-(*
- smap`f`UU = UU
- x~=UU --> smap`f`(scons`x`xs) = scons`(f`x)`(smap`f`xs)
-
- nats = scons`dzero`(smap`dsucc`nats)
-
- from`n = scons`n`(from`(dsucc`n))
-*)
-
-
--- a/src/HOLCF/explicit_domains/Dagstuhl.ML Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,75 +0,0 @@
-(* $Id$ *)
-
-open Dagstuhl;
-
-val YS_def2 = fix_prover2 Dagstuhl.thy YS_def "YS = scons`y`YS";
-val YYS_def2 = fix_prover2 Dagstuhl.thy YYS_def "YYS = scons`y`(scons`y`YYS)";
-
-
-val prems = goal Dagstuhl.thy "YYS << scons`y`YYS";
-by (rewtac YYS_def);
-by (rtac fix_ind 1);
-by (resolve_tac adm_thms 1);
-by (cont_tacR 1);
-by (rtac minimal 1);
-by (stac beta_cfun 1);
-by (cont_tacR 1);
-by (rtac monofun_cfun_arg 1);
-by (rtac monofun_cfun_arg 1);
-by (atac 1);
-val lemma3 = result();
-
-val prems = goal Dagstuhl.thy "scons`y`YYS << YYS";
-by (stac YYS_def2 1);
-back();
-by (rtac monofun_cfun_arg 1);
-by (rtac lemma3 1);
-val lemma4=result();
-
-(* val lemma5 = lemma3 RS (lemma4 RS antisym_less) *)
-
-val prems = goal Dagstuhl.thy "scons`y`YYS = YYS";
-by (rtac antisym_less 1);
-by (rtac lemma4 1);
-by (rtac lemma3 1);
-val lemma5=result();
-
-val prems = goal Dagstuhl.thy "YS = YYS";
-by (rtac stream_take_lemma 1);
-by (nat_ind_tac "n" 1);
-by (simp_tac (!simpset addsimps stream_rews) 1);
-by (stac YS_def2 1);
-by (stac YYS_def2 1);
-by (asm_simp_tac (!simpset addsimps stream_rews) 1);
-by (rtac (lemma5 RS sym RS subst) 1);
-by (rtac refl 1);
-val wir_moel=result();
-
-(* ------------------------------------------------------------------------ *)
-(* Zweite L"osung: Bernhard M"oller *)
-(* statt Beweis von wir_moel "uber take_lemma beidseitige Inclusion *)
-(* verwendet lemma5 *)
-(* ------------------------------------------------------------------------ *)
-
-val prems = goal Dagstuhl.thy "YYS << YS";
-by (rewtac YYS_def);
-by (rtac fix_least 1);
-by (stac beta_cfun 1);
-by (cont_tacR 1);
-by (simp_tac (!simpset addsimps [YS_def2 RS sym]) 1);
-val lemma6=result();
-
-val prems = goal Dagstuhl.thy "YS << YYS";
-by (rewtac YS_def);
-by (rtac fix_ind 1);
-by (resolve_tac adm_thms 1);
-by (cont_tacR 1);
-by (rtac minimal 1);
-by (stac beta_cfun 1);
-by (cont_tacR 1);
-by (stac (lemma5 RS sym) 1);
-by (etac monofun_cfun_arg 1);
-val lemma7 = result();
-
-val wir_moel = lemma6 RS (lemma7 RS antisym_less);
-
--- a/src/HOLCF/explicit_domains/Dagstuhl.thy Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-(* $Id$ *)
-
-
-Dagstuhl = Stream2 +
-
-consts
- y :: "'a"
- YS :: "'a stream"
- YYS :: "'a stream"
-
-defs
-
-YS_def "YS == fix`(LAM x. scons`y`x)"
-YYS_def "YYS == fix`(LAM z. scons`y`(scons`y`z))"
-
-end
-
--- a/src/HOLCF/explicit_domains/Dlist.thy Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/Dlist.thy Fri Jan 31 16:51:58 1997 +0100
@@ -4,6 +4,8 @@
ID: $ $
Copyright 1994 Technische Universitaet Muenchen
+NOT SUPPORTED ANY MORE. USE HOLCF/ex/Dlist.thy INSTEAD.
+
Theory for finite lists 'a dlist = one ++ ('a ** 'a dlist)
The type is axiomatized as the least solution of the domain equation above.
--- a/src/HOLCF/explicit_domains/Dnat.thy Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/Dnat.thy Fri Jan 31 16:51:58 1997 +0100
@@ -3,6 +3,8 @@
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
+NOT SUPPORTED ANY MORE. USE HOLCF/ex/Dnat.thy INSTEAD.
+
Theory for the domain of natural numbers dnat = one ++ dnat
The type is axiomatized as the least solution of the domain equation above.
--- a/src/HOLCF/explicit_domains/Dnat2.thy Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/Dnat2.thy Fri Jan 31 16:51:58 1997 +0100
@@ -3,6 +3,8 @@
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
+NOT SUPPORTED ANY MORE. USE HOLCF/ex/Dnat.thy INSTEAD.
+
Additional constants for dnat
*)
--- a/src/HOLCF/explicit_domains/Focus_ex.ML Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,153 +0,0 @@
-(*
- ID: $Id$
- Author: Franz Regensburger
- Copyright 1995 Technische Universitaet Muenchen
-
-*)
-
-open Focus_ex;
-
- Delsimps (ex_simps @ all_simps);
-
-(* first some logical trading *)
-
-val prems = goal Focus_ex.thy
-"is_g(g) = \
-\ (? f. is_f(f) & (!x.(? z. <g`x,z> = f`<x,z> & \
-\ (! w y. <y,w> = f`<x,w> --> z << w))))";
-by (simp_tac (!simpset addsimps [is_g,is_net_g]) 1);
-by (fast_tac HOL_cs 1);
-val lemma1 = result();
-
-val prems = goal Focus_ex.thy
-"(? f. is_f(f) & (!x. (? z. <g`x,z> = f`<x,z> & \
-\ (! w y. <y,w> = f`<x,w> --> z << w)))) \
-\ = \
-\ (? f. is_f(f) & (!x. ? z.\
-\ g`x = cfst`(f`<x,z>) & \
-\ z = csnd`(f`<x,z>) & \
-\ (! w y. <y,w> = f`<x,w> --> z << w)))";
-by (rtac iffI 1);
-by (etac exE 1);
-by (res_inst_tac [("x","f")] exI 1);
-by (REPEAT (etac conjE 1));
-by (etac conjI 1);
-by (strip_tac 1);
-by (etac allE 1);
-by (etac exE 1);
-by (res_inst_tac [("x","z")] exI 1);
-by (REPEAT (etac conjE 1));
-by (rtac conjI 1);
-by (rtac conjI 2);
-by (atac 3);
-by (dtac sym 1);
-by (Asm_simp_tac 1);
-by (dtac sym 1);
-by (Asm_simp_tac 1);
-by (etac exE 1);
-by (res_inst_tac [("x","f")] exI 1);
-by (REPEAT (etac conjE 1));
-by (etac conjI 1);
-by (strip_tac 1);
-by (etac allE 1);
-by (etac exE 1);
-by (res_inst_tac [("x","z")] exI 1);
-by (REPEAT (etac conjE 1));
-by (rtac conjI 1);
-by (atac 2);
-by (rtac trans 1);
-by (rtac (surjective_pairing_Cprod2) 2);
-by (etac subst 1);
-by (etac subst 1);
-by (rtac refl 1);
-val lemma2 = result();
-
-(* direction def_g(g) --> is_g(g) *)
-
-val prems = goal Focus_ex.thy "def_g(g) --> is_g(g)";
-by (simp_tac (!simpset addsimps [def_g,lemma1, lemma2]) 1);
-by (rtac impI 1);
-by (etac exE 1);
-by (res_inst_tac [("x","f")] exI 1);
-by (REPEAT (etac conjE 1));
-by (etac conjI 1);
-by (strip_tac 1);
-by (res_inst_tac [("x","fix`(LAM k.csnd`(f`<x,k>))")] exI 1);
-by (rtac conjI 1);
-by (Asm_simp_tac 1);
-by (rtac conjI 1);
-by (rtac trans 1);
-by (rtac fix_eq 1);
-by (Simp_tac 1);
-by (strip_tac 1);
-by (rtac fix_least 1);
-by (dtac sym 1);
-back();
-by (Asm_simp_tac 1);
-val lemma3 = result();
-
-(* direction is_g(g) --> def_g(g) *)
-val prems = goal Focus_ex.thy "is_g(g) --> def_g(g)";
-by (simp_tac (!simpset addsimps [lemma1,lemma2,def_g]) 1);
-by (rtac impI 1);
-by (etac exE 1);
-by (res_inst_tac [("x","f")] exI 1);
-by (REPEAT (etac conjE 1));
-by (etac conjI 1);
-by (rtac ext_cfun 1);
-by (etac allE 1);
-by (etac exE 1);
-by (REPEAT (etac conjE 1));
-by (subgoal_tac "fix`(LAM k. csnd`(f`<x, k>)) = z" 1);
-by (Asm_simp_tac 1);
-by (subgoal_tac "! w y. f`<x, w> = <y, w> --> z << w" 1);
-by (rtac sym 1);
-by (rtac fix_eqI 1);
-by (Asm_simp_tac 1);
-by (etac sym 1);
-by (rtac allI 1);
-by (Simp_tac 1);
-by (strip_tac 1);
-by (subgoal_tac "f`<x, za> = <cfst`(f`<x,za>),za>" 1);
-by (fast_tac HOL_cs 1);
-by (rtac trans 1);
-by (rtac (surjective_pairing_Cprod2 RS sym) 1);
-by (etac cfun_arg_cong 1);
-by (strip_tac 1);
-by (REPEAT (etac allE 1));
-by (etac mp 1);
-by (etac sym 1);
-val lemma4 = result();
-
-(* now we assemble the result *)
-
-val prems = goal Focus_ex.thy "def_g = is_g";
-by (rtac ext 1);
-by (rtac iffI 1);
-by (etac (lemma3 RS mp) 1);
-by (etac (lemma4 RS mp) 1);
-val loopback_eq = result();
-
-val prems = goal Focus_ex.thy
-"(? f.\
-\ is_f(f::'b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream))\
-\ -->\
-\ (? g. def_g(g::'b stream -> 'c stream ))";
-by (simp_tac (!simpset addsimps [def_g]) 1);
-by (strip_tac 1);
-by (etac exE 1);
-by (rtac exI 1);
-by (rtac exI 1);
-by (etac conjI 1);
-by (rtac refl 1);
-val L2 = result();
-
-val prems = goal Focus_ex.thy
-"(? f.\
-\ is_f(f::'b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream))\
-\ -->\
-\ (? g. is_g(g::'b stream -> 'c stream ))";
-by (rtac (loopback_eq RS subst) 1);
-by (rtac L2 1);
-val conservative_loopback = result();
-
--- a/src/HOLCF/explicit_domains/Focus_ex.thy Fri Jan 31 16:39:27 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,143 +0,0 @@
-(*
- ID: $Id$
- Author: Franz Regensburger
- Copyright 1995 Technische Universitaet Muenchen
-
-*)
-
-(* Specification of the following loop back device
-
-
- g
- --------------------
- | ------- |
- x | | | | y
- ------|---->| |------| ----->
- | z | f | z |
- | -->| |--- |
- | | | | | |
- | | ------- | |
- | | | |
- | <-------------- |
- | |
- --------------------
-
-
-First step: Notation in Agent Network Description Language (ANDL)
------------------------------------------------------------------
-
-agent f
- input channel i1:'b i2: ('b,'c) tc
- output channel o1:'c o2: ('b,'c) tc
-is
- Rf(i1,i2,o1,o2) (left open in the example)
-end f
-
-agent g
- input channel x:'b
- output channel y:'c
-is network
- <y,z> = f`<x,z>
-end network
-end g
-
-
-Remark: the type of the feedback depends at most on the types of the input and
- output of g. (No type miracles inside g)
-
-Second step: Translation of ANDL specification to HOLCF Specification
----------------------------------------------------------------------
-
-Specification of agent f ist translated to predicate is_f
-
-is_f :: ('b stream * ('b,'c) tc stream ->
- 'c stream * ('b,'c) tc stream) => bool
-
-is_f f = ! i1 i2 o1 o2.
- f`<i1,i2> = <o1,o2> --> Rf(i1,i2,o1,o2)
-
-Specification of agent g is translated to predicate is_g which uses
-predicate is_net_g
-
-is_net_g :: ('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) =>
- 'b stream => 'c stream => bool
-
-is_net_g f x y =
- ? z. <y,z> = f`<x,z> &
- ! oy hz. <oy,hz> = f`<x,hz> --> z << hz
-
-
-is_g :: ('b stream -> 'c stream) => bool
-
-is_g g = ? f. is_f f & (! x y. g`x = y --> is_net_g f x y
-
-Third step: (show conservativity)
------------
-
-Suppose we have a model for the theory TH1 which contains the axiom
-
- ? f. is_f f
-
-In this case there is also a model for the theory TH2 that enriches TH1 by
-axiom
-
- ? g. is_g g
-
-The result is proved by showing that there is a definitional extension
-that extends TH1 by a definition of g.
-
-
-We define:
-
-def_g g =
- (? f. is_f f &
- g = (LAM x. cfst`(f`<x,fix`(LAM k.csnd`(f`<x,k>))>)) )
-
-Now we prove:
-
- (?f. is_f f ) --> (? g. is_g g)
-
-using the theorems
-
-loopback_eq) def_g = is_g (real work)
-
-L1) (? f. is_f f ) --> (? g. def_g g) (trivial)
-
-*)
-
-Focus_ex = Stream +
-
-types tc 2
-
-arities tc:: (pcpo,pcpo)pcpo
-
-consts
-
-is_f ::
- "('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => bool"
-is_net_g :: "('b stream *('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) =>
- 'b stream => 'c stream => bool"
-is_g :: "('b stream -> 'c stream) => bool"
-def_g :: "('b stream -> 'c stream) => bool"
-Rf ::
-"('b stream * ('b,'c) tc stream * 'c stream * ('b,'c) tc stream) => bool"
-
-defs
-
-is_f "is_f f == (! i1 i2 o1 o2.
- f`<i1,i2> = <o1,o2> --> Rf(i1,i2,o1,o2))"
-
-is_net_g "is_net_g f x y == (? z.
- <y,z> = f`<x,z> &
- (! oy hz. <oy,hz> = f`<x,hz> --> z << hz))"
-
-is_g "is_g g == (? f.
- is_f f &
- (!x y. g`x = y --> is_net_g f x y))"
-
-
-def_g "def_g g == (? f.
- is_f f &
- g = (LAM x. cfst`(f`<x,fix`(LAM k.csnd`(f`<x,k>))>)))"
-
-end
--- a/src/HOLCF/explicit_domains/ROOT.ML Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/ROOT.ML Fri Jan 31 16:51:58 1997 +0100
@@ -16,9 +16,5 @@
time_use_thy "Stream2";
time_use_thy "Dlist";
-time_use_thy "Coind";
-time_use_thy "Dagstuhl";
-time_use_thy "Focus_ex";
-
OS.FileSys.chDir "..";
maketest "END: Root file for HOLCF examples: explicit domain axiomatization";
--- a/src/HOLCF/explicit_domains/Stream.thy Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/Stream.thy Fri Jan 31 16:51:58 1997 +0100
@@ -3,6 +3,8 @@
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
+NOT SUPPORTED ANY MORE. USE HOLCF/ex/Stream.thy INSTEAD.
+
Theory for streams without defined empty stream
'a stream = 'a ** ('a stream)u
--- a/src/HOLCF/explicit_domains/Stream2.thy Fri Jan 31 16:39:27 1997 +0100
+++ b/src/HOLCF/explicit_domains/Stream2.thy Fri Jan 31 16:51:58 1997 +0100
@@ -3,6 +3,8 @@
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
+NOT SUPPORTED ANY MORE. USE HOLCF/ex/Stream.thy INSTEAD.
+
Additional constants for stream
*)