rename domain_theorems.ML to domain_induction.ML; rename domain_extender.ML to domain.ML
authorhuffman
Tue, 19 Oct 2010 15:01:51 -0700
changeset 40040 3adb92ee2f22
parent 40039 391746914dba
child 40041 1f09b4c7b85e
rename domain_theorems.ML to domain_induction.ML; rename domain_extender.ML to domain.ML
src/HOLCF/Domain.thy
src/HOLCF/IsaMakefile
src/HOLCF/Tools/Domain/domain.ML
src/HOLCF/Tools/Domain/domain_extender.ML
src/HOLCF/Tools/Domain/domain_induction.ML
src/HOLCF/Tools/Domain/domain_theorems.ML
--- a/src/HOLCF/Domain.thy	Tue Oct 19 14:28:14 2010 -0700
+++ b/src/HOLCF/Domain.thy	Tue Oct 19 15:01:51 2010 -0700
@@ -11,8 +11,8 @@
   ("Tools/cont_proc.ML")
   ("Tools/Domain/domain_constructors.ML")
   ("Tools/Domain/domain_axioms.ML")
-  ("Tools/Domain/domain_theorems.ML")
-  ("Tools/Domain/domain_extender.ML")
+  ("Tools/Domain/domain_induction.ML")
+  ("Tools/Domain/domain.ML")
 begin
 
 default_sort pcpo
@@ -113,7 +113,7 @@
 use "Tools/cont_proc.ML"
 use "Tools/Domain/domain_axioms.ML"
 use "Tools/Domain/domain_constructors.ML"
-use "Tools/Domain/domain_theorems.ML"
-use "Tools/Domain/domain_extender.ML"
+use "Tools/Domain/domain_induction.ML"
+use "Tools/Domain/domain.ML"
 
 end
--- a/src/HOLCF/IsaMakefile	Tue Oct 19 14:28:14 2010 -0700
+++ b/src/HOLCF/IsaMakefile	Tue Oct 19 15:01:51 2010 -0700
@@ -70,12 +70,12 @@
   Tools/cont_consts.ML \
   Tools/cont_proc.ML \
   Tools/holcf_library.ML \
-  Tools/Domain/domain_extender.ML \
+  Tools/Domain/domain.ML \
   Tools/Domain/domain_axioms.ML \
   Tools/Domain/domain_constructors.ML \
+  Tools/Domain/domain_induction.ML \
   Tools/Domain/domain_isomorphism.ML \
   Tools/Domain/domain_take_proofs.ML \
-  Tools/Domain/domain_theorems.ML \
   Tools/fixrec.ML \
   Tools/pcpodef.ML \
   Tools/repdef.ML \
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain.ML	Tue Oct 19 15:01:51 2010 -0700
@@ -0,0 +1,279 @@
+
+(*  Title:      HOLCF/Tools/Domain/domain.ML
+    Author:     David von Oheimb
+    Author:     Brian Huffman
+
+Theory extender for domain command, including theory syntax.
+*)
+
+signature DOMAIN =
+sig
+  val add_domain_cmd:
+      binding ->
+      ((string * string option) list * binding * mixfix *
+       (binding * (bool * binding option * string) list * mixfix) list) list
+      -> theory -> theory
+
+  val add_domain:
+      binding ->
+      ((string * string option) list * binding * mixfix *
+       (binding * (bool * binding option * typ) list * mixfix) list) list
+      -> theory -> theory
+
+  val add_new_domain_cmd:
+      binding ->
+      ((string * string option) list * binding * mixfix *
+       (binding * (bool * binding option * string) list * mixfix) list) list
+      -> theory -> theory
+
+  val add_new_domain:
+      binding ->
+      ((string * string option) list * binding * mixfix *
+       (binding * (bool * binding option * typ) list * mixfix) list) list
+      -> theory -> theory
+end;
+
+structure Domain :> DOMAIN =
+struct
+
+open HOLCF_Library;
+
+fun first  (x,_,_) = x;
+fun second (_,x,_) = x;
+fun third  (_,_,x) = x;
+
+fun upd_first  f (x,y,z) = (f x,   y,   z);
+fun upd_second f (x,y,z) = (  x, f y,   z);
+fun upd_third  f (x,y,z) = (  x,   y, f z);
+
+(* ----- general testing and preprocessing of constructor list -------------- *)
+fun check_and_sort_domain
+    (arg_sort : bool -> sort)
+    (dtnvs : (string * typ list) list)
+    (cons'' : (binding * (bool * binding option * typ) list * mixfix) list list)
+    (thy : theory)
+    : ((string * typ list) *
+       (binding * (bool * binding option * typ) list * mixfix) list) list =
+  let
+    val defaultS = Sign.defaultS thy;
+
+    val test_dupl_typs =
+      case duplicates (op =) (map fst dtnvs) of 
+        [] => false | dups => error ("Duplicate types: " ^ commas_quote dups);
+
+    val all_cons = map (Binding.name_of o first) (flat cons'');
+    val test_dupl_cons =
+      case duplicates (op =) all_cons of 
+        [] => false | dups => error ("Duplicate constructors: " 
+                                      ^ commas_quote dups);
+    val all_sels =
+      (map Binding.name_of o map_filter second o maps second) (flat cons'');
+    val test_dupl_sels =
+      case duplicates (op =) all_sels of
+        [] => false | dups => error("Duplicate selectors: "^commas_quote dups);
+
+    fun test_dupl_tvars s =
+      case duplicates (op =) (map(fst o dest_TFree)s) of
+        [] => false | dups => error("Duplicate type arguments: " 
+                                    ^commas_quote dups);
+    val test_dupl_tvars' = exists test_dupl_tvars (map snd dtnvs);
+
+    (* test for free type variables, illegal sort constraints on rhs,
+       non-pcpo-types and invalid use of recursive type;
+       replace sorts in type variables on rhs *)
+    fun analyse_equation ((dname,typevars),cons') = 
+      let
+        val tvars = map dest_TFree typevars;
+        val distinct_typevars = map TFree tvars;
+        fun rm_sorts (TFree(s,_)) = TFree(s,[])
+          | rm_sorts (Type(s,ts)) = Type(s,remove_sorts ts)
+          | rm_sorts (TVar(s,_))  = TVar(s,[])
+        and remove_sorts l = map rm_sorts l;
+        fun analyse indirect (TFree(v,s))  =
+            (case AList.lookup (op =) tvars v of 
+               NONE => error ("Free type variable " ^ quote v ^ " on rhs.")
+             | SOME sort => if eq_set (op =) (s, defaultS) orelse
+                               eq_set (op =) (s, sort)
+                            then TFree(v,sort)
+                            else error ("Inconsistent sort constraint" ^
+                                        " for type variable " ^ quote v))
+          | analyse indirect (t as Type(s,typl)) =
+            (case AList.lookup (op =) dtnvs s of
+               NONE => Type (s, map (analyse false) typl)
+             | SOME typevars =>
+                 if indirect 
+                 then error ("Indirect recursion of type " ^ 
+                             quote (Syntax.string_of_typ_global thy t))
+                 else if dname <> s orelse
+                         (** BUG OR FEATURE?:
+                             mutual recursion may use different arguments **)
+                         remove_sorts typevars = remove_sorts typl 
+                 then Type(s,map (analyse true) typl)
+                 else error ("Direct recursion of type " ^ 
+                             quote (Syntax.string_of_typ_global thy t) ^ 
+                             " with different arguments"))
+          | analyse indirect (TVar _) = error "extender:analyse";
+        fun check_pcpo lazy T =
+            let val sort = arg_sort lazy in
+              if Sign.of_sort thy (T, sort) then T
+              else error ("Constructor argument type is not of sort " ^
+                          Syntax.string_of_sort_global thy sort ^ ": " ^
+                          Syntax.string_of_typ_global thy T)
+            end;
+        fun analyse_arg (lazy, sel, T) =
+            (lazy, sel, check_pcpo lazy (analyse false T));
+        fun analyse_con (b, args, mx) = (b, map analyse_arg args, mx);
+      in ((dname,distinct_typevars), map analyse_con cons') end; 
+  in ListPair.map analyse_equation (dtnvs,cons'')
+  end; (* let *)
+
+(* ----- calls for building new thy and thms -------------------------------- *)
+
+type info =
+     Domain_Take_Proofs.iso_info list * Domain_Take_Proofs.take_induct_info;
+
+fun gen_add_domain
+    (prep_typ : theory -> 'a -> typ)
+    (add_isos : (binding * mixfix * (typ * typ)) list -> theory -> info * theory)
+    (arg_sort : bool -> sort)
+    (comp_dbind : binding)
+    (eqs''' : ((string * string option) list * binding * mixfix *
+               (binding * (bool * binding option * 'a) list * mixfix) list) list)
+    (thy : theory) =
+  let
+    val dtnvs : (binding * typ list * mixfix) list =
+      let
+        fun readS (SOME s) = Syntax.read_sort_global thy s
+          | readS NONE = Sign.defaultS thy;
+        fun readTFree (a, s) = TFree (a, readS s);
+      in
+        map (fn (vs,dname:binding,mx,_) =>
+                (dname, map readTFree vs, mx)) eqs'''
+      end;
+
+    fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
+    fun thy_arity (dname,tvars,mx) =
+      (Sign.full_name thy dname, map (snd o dest_TFree) tvars, arg_sort false);
+
+    (* this theory is used just for parsing and error checking *)
+    val tmp_thy = thy
+      |> Theory.copy
+      |> Sign.add_types (map thy_type dtnvs)
+      |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
+
+    val dbinds : binding list =
+        map (fn (_,dbind,_,_) => dbind) eqs''';
+    val cons''' :
+        (binding * (bool * binding option * 'a) list * mixfix) list list =
+        map (fn (_,_,_,cons) => cons) eqs''';
+    val cons'' :
+        (binding * (bool * binding option * typ) list * mixfix) list list =
+        map (map (upd_second (map (upd_third (prep_typ tmp_thy))))) cons''';
+    val dtnvs' : (string * typ list) list =
+        map (fn (dname,vs,mx) => (Sign.full_name thy dname,vs)) dtnvs;
+    val eqs' : ((string * typ list) *
+        (binding * (bool * binding option * typ) list * mixfix) list) list =
+        check_and_sort_domain arg_sort dtnvs' cons'' tmp_thy;
+    val dts : typ list = map (Type o fst) eqs';
+
+    fun mk_arg_typ (lazy, dest_opt, T) = if lazy then mk_upT T else T;
+    fun mk_con_typ (bind, args, mx) =
+        if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
+    fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
+    val repTs : typ list = map mk_eq_typ eqs';
+
+    val iso_spec : (binding * mixfix * (typ * typ)) list =
+        map (fn ((dbind, _, mx), eq) => (dbind, mx, eq))
+          (dtnvs ~~ (dts ~~ repTs));
+
+    val ((iso_infos, take_info), thy) = add_isos iso_spec thy;
+
+    val (constr_infos, thy) =
+        thy
+          |> fold_map (fn ((dbind, (_,cs)), info) =>
+                Domain_Constructors.add_domain_constructors dbind cs info)
+             (dbinds ~~ eqs' ~~ iso_infos);
+
+    val (take_rews, thy) =
+        Domain_Induction.comp_theorems comp_dbind
+          dbinds take_info constr_infos thy;
+  in
+    thy
+  end;
+
+fun define_isos (spec : (binding * mixfix * (typ * typ)) list) =
+  let
+    fun prep (dbind, mx, (lhsT, rhsT)) =
+      let val (dname, vs) = dest_Type lhsT;
+      in (map (fst o dest_TFree) vs, dbind, mx, rhsT, NONE) end;
+  in
+    Domain_Isomorphism.domain_isomorphism (map prep spec)
+  end;
+
+fun pcpo_arg lazy = if lazy then @{sort cpo} else @{sort pcpo};
+fun rep_arg lazy = @{sort bifinite};
+
+val add_domain =
+    gen_add_domain Sign.certify_typ Domain_Axioms.add_axioms pcpo_arg;
+
+val add_new_domain =
+    gen_add_domain Sign.certify_typ define_isos rep_arg;
+
+val add_domain_cmd =
+    gen_add_domain Syntax.read_typ_global Domain_Axioms.add_axioms pcpo_arg;
+
+val add_new_domain_cmd =
+    gen_add_domain Syntax.read_typ_global define_isos rep_arg;
+
+
+(** outer syntax **)
+
+val _ = Keyword.keyword "lazy";
+
+val dest_decl : (bool * binding option * string) parser =
+  Parse.$$$ "(" |-- Scan.optional (Parse.$$$ "lazy" >> K true) false --
+    (Parse.binding >> SOME) -- (Parse.$$$ "::" |-- Parse.typ)  --| Parse.$$$ ")" >> Parse.triple1
+    || Parse.$$$ "(" |-- Parse.$$$ "lazy" |-- Parse.typ --| Parse.$$$ ")"
+    >> (fn t => (true,NONE,t))
+    || Parse.typ >> (fn t => (false,NONE,t));
+
+val cons_decl =
+  Parse.binding -- Scan.repeat dest_decl -- Parse.opt_mixfix;
+
+val domain_decl =
+  (Parse.type_args_constrained -- Parse.binding -- Parse.opt_mixfix) --
+    (Parse.$$$ "=" |-- Parse.enum1 "|" cons_decl);
+
+val domains_decl =
+  Scan.option (Parse.$$$ "(" |-- Parse.binding --| Parse.$$$ ")") --
+    Parse.and_list1 domain_decl;
+
+fun mk_domain
+    (definitional : bool)
+    (opt_name : binding option,
+     doms : ((((string * string option) list * binding) * mixfix) *
+             ((binding * (bool * binding option * string) list) * mixfix) list) list ) =
+  let
+    val names = map (fn (((_, t), _), _) => Binding.name_of t) doms;
+    val specs : ((string * string option) list * binding * mixfix *
+                 (binding * (bool * binding option * string) list * mixfix) list) list =
+        map (fn (((vs, t), mx), cons) =>
+                (vs, t, mx, map (fn ((c, ds), mx) => (c, ds, mx)) cons)) doms;
+    val comp_dbind =
+        case opt_name of NONE => Binding.name (space_implode "_" names)
+                       | SOME s => s;
+  in
+    if definitional 
+    then add_new_domain_cmd comp_dbind specs
+    else add_domain_cmd comp_dbind specs
+  end;
+
+val _ =
+  Outer_Syntax.command "domain" "define recursive domains (HOLCF)"
+    Keyword.thy_decl (domains_decl >> (Toplevel.theory o mk_domain false));
+
+val _ =
+  Outer_Syntax.command "new_domain" "define recursive domains (HOLCF)"
+    Keyword.thy_decl (domains_decl >> (Toplevel.theory o mk_domain true));
+
+end;
--- a/src/HOLCF/Tools/Domain/domain_extender.ML	Tue Oct 19 14:28:14 2010 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,278 +0,0 @@
-(*  Title:      HOLCF/Tools/Domain/domain_extender.ML
-    Author:     David von Oheimb
-    Author:     Brian Huffman
-
-Theory extender for domain command, including theory syntax.
-*)
-
-signature DOMAIN_EXTENDER =
-sig
-  val add_domain_cmd:
-      binding ->
-      ((string * string option) list * binding * mixfix *
-       (binding * (bool * binding option * string) list * mixfix) list) list
-      -> theory -> theory
-
-  val add_domain:
-      binding ->
-      ((string * string option) list * binding * mixfix *
-       (binding * (bool * binding option * typ) list * mixfix) list) list
-      -> theory -> theory
-
-  val add_new_domain_cmd:
-      binding ->
-      ((string * string option) list * binding * mixfix *
-       (binding * (bool * binding option * string) list * mixfix) list) list
-      -> theory -> theory
-
-  val add_new_domain:
-      binding ->
-      ((string * string option) list * binding * mixfix *
-       (binding * (bool * binding option * typ) list * mixfix) list) list
-      -> theory -> theory
-end;
-
-structure Domain_Extender :> DOMAIN_EXTENDER =
-struct
-
-open HOLCF_Library;
-
-fun first  (x,_,_) = x;
-fun second (_,x,_) = x;
-fun third  (_,_,x) = x;
-
-fun upd_first  f (x,y,z) = (f x,   y,   z);
-fun upd_second f (x,y,z) = (  x, f y,   z);
-fun upd_third  f (x,y,z) = (  x,   y, f z);
-
-(* ----- general testing and preprocessing of constructor list -------------- *)
-fun check_and_sort_domain
-    (arg_sort : bool -> sort)
-    (dtnvs : (string * typ list) list)
-    (cons'' : (binding * (bool * binding option * typ) list * mixfix) list list)
-    (thy : theory)
-    : ((string * typ list) *
-       (binding * (bool * binding option * typ) list * mixfix) list) list =
-  let
-    val defaultS = Sign.defaultS thy;
-
-    val test_dupl_typs =
-      case duplicates (op =) (map fst dtnvs) of 
-        [] => false | dups => error ("Duplicate types: " ^ commas_quote dups);
-
-    val all_cons = map (Binding.name_of o first) (flat cons'');
-    val test_dupl_cons =
-      case duplicates (op =) all_cons of 
-        [] => false | dups => error ("Duplicate constructors: " 
-                                      ^ commas_quote dups);
-    val all_sels =
-      (map Binding.name_of o map_filter second o maps second) (flat cons'');
-    val test_dupl_sels =
-      case duplicates (op =) all_sels of
-        [] => false | dups => error("Duplicate selectors: "^commas_quote dups);
-
-    fun test_dupl_tvars s =
-      case duplicates (op =) (map(fst o dest_TFree)s) of
-        [] => false | dups => error("Duplicate type arguments: " 
-                                    ^commas_quote dups);
-    val test_dupl_tvars' = exists test_dupl_tvars (map snd dtnvs);
-
-    (* test for free type variables, illegal sort constraints on rhs,
-       non-pcpo-types and invalid use of recursive type;
-       replace sorts in type variables on rhs *)
-    fun analyse_equation ((dname,typevars),cons') = 
-      let
-        val tvars = map dest_TFree typevars;
-        val distinct_typevars = map TFree tvars;
-        fun rm_sorts (TFree(s,_)) = TFree(s,[])
-          | rm_sorts (Type(s,ts)) = Type(s,remove_sorts ts)
-          | rm_sorts (TVar(s,_))  = TVar(s,[])
-        and remove_sorts l = map rm_sorts l;
-        fun analyse indirect (TFree(v,s))  =
-            (case AList.lookup (op =) tvars v of 
-               NONE => error ("Free type variable " ^ quote v ^ " on rhs.")
-             | SOME sort => if eq_set (op =) (s, defaultS) orelse
-                               eq_set (op =) (s, sort)
-                            then TFree(v,sort)
-                            else error ("Inconsistent sort constraint" ^
-                                        " for type variable " ^ quote v))
-          | analyse indirect (t as Type(s,typl)) =
-            (case AList.lookup (op =) dtnvs s of
-               NONE => Type (s, map (analyse false) typl)
-             | SOME typevars =>
-                 if indirect 
-                 then error ("Indirect recursion of type " ^ 
-                             quote (Syntax.string_of_typ_global thy t))
-                 else if dname <> s orelse
-                         (** BUG OR FEATURE?:
-                             mutual recursion may use different arguments **)
-                         remove_sorts typevars = remove_sorts typl 
-                 then Type(s,map (analyse true) typl)
-                 else error ("Direct recursion of type " ^ 
-                             quote (Syntax.string_of_typ_global thy t) ^ 
-                             " with different arguments"))
-          | analyse indirect (TVar _) = error "extender:analyse";
-        fun check_pcpo lazy T =
-            let val sort = arg_sort lazy in
-              if Sign.of_sort thy (T, sort) then T
-              else error ("Constructor argument type is not of sort " ^
-                          Syntax.string_of_sort_global thy sort ^ ": " ^
-                          Syntax.string_of_typ_global thy T)
-            end;
-        fun analyse_arg (lazy, sel, T) =
-            (lazy, sel, check_pcpo lazy (analyse false T));
-        fun analyse_con (b, args, mx) = (b, map analyse_arg args, mx);
-      in ((dname,distinct_typevars), map analyse_con cons') end; 
-  in ListPair.map analyse_equation (dtnvs,cons'')
-  end; (* let *)
-
-(* ----- calls for building new thy and thms -------------------------------- *)
-
-type info =
-     Domain_Take_Proofs.iso_info list * Domain_Take_Proofs.take_induct_info;
-
-fun gen_add_domain
-    (prep_typ : theory -> 'a -> typ)
-    (add_isos : (binding * mixfix * (typ * typ)) list -> theory -> info * theory)
-    (arg_sort : bool -> sort)
-    (comp_dbind : binding)
-    (eqs''' : ((string * string option) list * binding * mixfix *
-               (binding * (bool * binding option * 'a) list * mixfix) list) list)
-    (thy : theory) =
-  let
-    val dtnvs : (binding * typ list * mixfix) list =
-      let
-        fun readS (SOME s) = Syntax.read_sort_global thy s
-          | readS NONE = Sign.defaultS thy;
-        fun readTFree (a, s) = TFree (a, readS s);
-      in
-        map (fn (vs,dname:binding,mx,_) =>
-                (dname, map readTFree vs, mx)) eqs'''
-      end;
-
-    fun thy_type  (dname,tvars,mx) = (dname, length tvars, mx);
-    fun thy_arity (dname,tvars,mx) =
-      (Sign.full_name thy dname, map (snd o dest_TFree) tvars, arg_sort false);
-
-    (* this theory is used just for parsing and error checking *)
-    val tmp_thy = thy
-      |> Theory.copy
-      |> Sign.add_types (map thy_type dtnvs)
-      |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
-
-    val dbinds : binding list =
-        map (fn (_,dbind,_,_) => dbind) eqs''';
-    val cons''' :
-        (binding * (bool * binding option * 'a) list * mixfix) list list =
-        map (fn (_,_,_,cons) => cons) eqs''';
-    val cons'' :
-        (binding * (bool * binding option * typ) list * mixfix) list list =
-        map (map (upd_second (map (upd_third (prep_typ tmp_thy))))) cons''';
-    val dtnvs' : (string * typ list) list =
-        map (fn (dname,vs,mx) => (Sign.full_name thy dname,vs)) dtnvs;
-    val eqs' : ((string * typ list) *
-        (binding * (bool * binding option * typ) list * mixfix) list) list =
-        check_and_sort_domain arg_sort dtnvs' cons'' tmp_thy;
-    val dts : typ list = map (Type o fst) eqs';
-
-    fun mk_arg_typ (lazy, dest_opt, T) = if lazy then mk_upT T else T;
-    fun mk_con_typ (bind, args, mx) =
-        if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
-    fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
-    val repTs : typ list = map mk_eq_typ eqs';
-
-    val iso_spec : (binding * mixfix * (typ * typ)) list =
-        map (fn ((dbind, _, mx), eq) => (dbind, mx, eq))
-          (dtnvs ~~ (dts ~~ repTs));
-
-    val ((iso_infos, take_info), thy) = add_isos iso_spec thy;
-
-    val (constr_infos, thy) =
-        thy
-          |> fold_map (fn ((dbind, (_,cs)), info) =>
-                Domain_Constructors.add_domain_constructors dbind cs info)
-             (dbinds ~~ eqs' ~~ iso_infos);
-
-    val (take_rews, thy) =
-        Domain_Theorems.comp_theorems comp_dbind
-          dbinds take_info constr_infos thy;
-  in
-    thy
-  end;
-
-fun define_isos (spec : (binding * mixfix * (typ * typ)) list) =
-  let
-    fun prep (dbind, mx, (lhsT, rhsT)) =
-      let val (dname, vs) = dest_Type lhsT;
-      in (map (fst o dest_TFree) vs, dbind, mx, rhsT, NONE) end;
-  in
-    Domain_Isomorphism.domain_isomorphism (map prep spec)
-  end;
-
-fun pcpo_arg lazy = if lazy then @{sort cpo} else @{sort pcpo};
-fun rep_arg lazy = @{sort bifinite};
-
-val add_domain =
-    gen_add_domain Sign.certify_typ Domain_Axioms.add_axioms pcpo_arg;
-
-val add_new_domain =
-    gen_add_domain Sign.certify_typ define_isos rep_arg;
-
-val add_domain_cmd =
-    gen_add_domain Syntax.read_typ_global Domain_Axioms.add_axioms pcpo_arg;
-
-val add_new_domain_cmd =
-    gen_add_domain Syntax.read_typ_global define_isos rep_arg;
-
-
-(** outer syntax **)
-
-val _ = Keyword.keyword "lazy";
-
-val dest_decl : (bool * binding option * string) parser =
-  Parse.$$$ "(" |-- Scan.optional (Parse.$$$ "lazy" >> K true) false --
-    (Parse.binding >> SOME) -- (Parse.$$$ "::" |-- Parse.typ)  --| Parse.$$$ ")" >> Parse.triple1
-    || Parse.$$$ "(" |-- Parse.$$$ "lazy" |-- Parse.typ --| Parse.$$$ ")"
-    >> (fn t => (true,NONE,t))
-    || Parse.typ >> (fn t => (false,NONE,t));
-
-val cons_decl =
-  Parse.binding -- Scan.repeat dest_decl -- Parse.opt_mixfix;
-
-val domain_decl =
-  (Parse.type_args_constrained -- Parse.binding -- Parse.opt_mixfix) --
-    (Parse.$$$ "=" |-- Parse.enum1 "|" cons_decl);
-
-val domains_decl =
-  Scan.option (Parse.$$$ "(" |-- Parse.binding --| Parse.$$$ ")") --
-    Parse.and_list1 domain_decl;
-
-fun mk_domain
-    (definitional : bool)
-    (opt_name : binding option,
-     doms : ((((string * string option) list * binding) * mixfix) *
-             ((binding * (bool * binding option * string) list) * mixfix) list) list ) =
-  let
-    val names = map (fn (((_, t), _), _) => Binding.name_of t) doms;
-    val specs : ((string * string option) list * binding * mixfix *
-                 (binding * (bool * binding option * string) list * mixfix) list) list =
-        map (fn (((vs, t), mx), cons) =>
-                (vs, t, mx, map (fn ((c, ds), mx) => (c, ds, mx)) cons)) doms;
-    val comp_dbind =
-        case opt_name of NONE => Binding.name (space_implode "_" names)
-                       | SOME s => s;
-  in
-    if definitional 
-    then add_new_domain_cmd comp_dbind specs
-    else add_domain_cmd comp_dbind specs
-  end;
-
-val _ =
-  Outer_Syntax.command "domain" "define recursive domains (HOLCF)"
-    Keyword.thy_decl (domains_decl >> (Toplevel.theory o mk_domain false));
-
-val _ =
-  Outer_Syntax.command "new_domain" "define recursive domains (HOLCF)"
-    Keyword.thy_decl (domains_decl >> (Toplevel.theory o mk_domain true));
-
-end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_induction.ML	Tue Oct 19 15:01:51 2010 -0700
@@ -0,0 +1,438 @@
+(*  Title:      HOLCF/Tools/Domain/domain_induction.ML
+    Author:     David von Oheimb
+    Author:     Brian Huffman
+
+Proofs of high-level (co)induction rules for domain command.
+*)
+
+signature DOMAIN_INDUCTION =
+sig
+  val comp_theorems :
+      binding -> binding list ->
+      Domain_Take_Proofs.take_induct_info ->
+      Domain_Constructors.constr_info list ->
+      theory -> thm list * theory
+
+  val quiet_mode: bool Unsynchronized.ref;
+  val trace_domain: bool Unsynchronized.ref;
+end;
+
+structure Domain_Induction :> DOMAIN_INDUCTION =
+struct
+
+val quiet_mode = Unsynchronized.ref false;
+val trace_domain = Unsynchronized.ref false;
+
+fun message s = if !quiet_mode then () else writeln s;
+fun trace s = if !trace_domain then tracing s else ();
+
+open HOLCF_Library;
+
+(******************************************************************************)
+(***************************** proofs about take ******************************)
+(******************************************************************************)
+
+fun take_theorems
+    (dbinds : binding list)
+    (take_info : Domain_Take_Proofs.take_induct_info)
+    (constr_infos : Domain_Constructors.constr_info list)
+    (thy : theory) : thm list list * theory =
+let
+  val {take_consts, take_Suc_thms, deflation_take_thms, ...} = take_info;
+  val deflation_thms = Domain_Take_Proofs.get_deflation_thms thy;
+
+  val n = Free ("n", @{typ nat});
+  val n' = @{const Suc} $ n;
+
+  local
+    val newTs = map (#absT o #iso_info) constr_infos;
+    val subs = newTs ~~ map (fn t => t $ n) take_consts;
+    fun is_ID (Const (c, _)) = (c = @{const_name ID})
+      | is_ID _              = false;
+  in
+    fun map_of_arg v T =
+      let val m = Domain_Take_Proofs.map_of_typ thy subs T;
+      in if is_ID m then v else mk_capply (m, v) end;
+  end
+
+  fun prove_take_apps
+      ((dbind, take_const), constr_info) thy =
+    let
+      val {iso_info, con_specs, con_betas, ...} = constr_info;
+      val {abs_inverse, ...} = iso_info;
+      fun prove_take_app (con_const, args) =
+        let
+          val Ts = map snd args;
+          val ns = Name.variant_list ["n"] (Datatype_Prop.make_tnames Ts);
+          val vs = map Free (ns ~~ Ts);
+          val lhs = mk_capply (take_const $ n', list_ccomb (con_const, vs));
+          val rhs = list_ccomb (con_const, map2 map_of_arg vs Ts);
+          val goal = mk_trp (mk_eq (lhs, rhs));
+          val rules =
+              [abs_inverse] @ con_betas @ @{thms take_con_rules}
+              @ take_Suc_thms @ deflation_thms @ deflation_take_thms;
+          val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
+        in
+          Goal.prove_global thy [] [] goal (K tac)
+        end;
+      val take_apps = map prove_take_app con_specs;
+    in
+      yield_singleton Global_Theory.add_thmss
+        ((Binding.qualified true "take_rews" dbind, take_apps),
+        [Simplifier.simp_add]) thy
+    end;
+in
+  fold_map prove_take_apps
+    (dbinds ~~ take_consts ~~ constr_infos) thy
+end;
+
+(******************************************************************************)
+(****************************** induction rules *******************************)
+(******************************************************************************)
+
+val case_UU_allI =
+    @{lemma "(!!x. x ~= UU ==> P x) ==> P UU ==> ALL x. P x" by metis};
+
+fun prove_induction
+    (comp_dbind : binding)
+    (constr_infos : Domain_Constructors.constr_info list)
+    (take_info : Domain_Take_Proofs.take_induct_info)
+    (take_rews : thm list)
+    (thy : theory) =
+let
+  val comp_dname = Binding.name_of comp_dbind;
+
+  val iso_infos = map #iso_info constr_infos;
+  val exhausts = map #exhaust constr_infos;
+  val con_rews = maps #con_rews constr_infos;
+  val {take_consts, take_induct_thms, ...} = take_info;
+
+  val newTs = map #absT iso_infos;
+  val P_names = Datatype_Prop.indexify_names (map (K "P") newTs);
+  val x_names = Datatype_Prop.indexify_names (map (K "x") newTs);
+  val P_types = map (fn T => T --> HOLogic.boolT) newTs;
+  val Ps = map Free (P_names ~~ P_types);
+  val xs = map Free (x_names ~~ newTs);
+  val n = Free ("n", HOLogic.natT);
+
+  fun con_assm defined p (con, args) =
+    let
+      val Ts = map snd args;
+      val ns = Name.variant_list P_names (Datatype_Prop.make_tnames Ts);
+      val vs = map Free (ns ~~ Ts);
+      val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
+      fun ind_hyp (v, T) t =
+          case AList.lookup (op =) (newTs ~~ Ps) T of NONE => t
+          | SOME p' => Logic.mk_implies (mk_trp (p' $ v), t);
+      val t1 = mk_trp (p $ list_ccomb (con, vs));
+      val t2 = fold_rev ind_hyp (vs ~~ Ts) t1;
+      val t3 = Logic.list_implies (map (mk_trp o mk_defined) nonlazy, t2);
+    in fold_rev Logic.all vs (if defined then t3 else t2) end;
+  fun eq_assms ((p, T), cons) =
+      mk_trp (p $ HOLCF_Library.mk_bottom T) :: map (con_assm true p) cons;
+  val assms = maps eq_assms (Ps ~~ newTs ~~ map #con_specs constr_infos);
+
+  val take_ss = HOL_ss addsimps (@{thm Rep_CFun_strict1} :: take_rews);
+  fun quant_tac ctxt i = EVERY
+    (map (fn name => res_inst_tac ctxt [(("x", 0), name)] spec i) x_names);
+
+  (* FIXME: move this message to domain_take_proofs.ML *)
+  val is_finite = #is_finite take_info;
+  val _ = if is_finite
+          then message ("Proving finiteness rule for domain "^comp_dname^" ...")
+          else ();
+
+  val _ = trace " Proving finite_ind...";
+  val finite_ind =
+    let
+      val concls =
+          map (fn ((P, t), x) => P $ mk_capply (t $ n, x))
+              (Ps ~~ take_consts ~~ xs);
+      val goal = mk_trp (foldr1 mk_conj concls);
+
+      fun tacf {prems, context} =
+        let
+          (* Prove stronger prems, without definedness side conditions *)
+          fun con_thm p (con, args) =
+            let
+              val subgoal = con_assm false p (con, args);
+              val rules = prems @ con_rews @ simp_thms;
+              val simplify = asm_simp_tac (HOL_basic_ss addsimps rules);
+              fun arg_tac (lazy, _) =
+                  rtac (if lazy then allI else case_UU_allI) 1;
+              val tacs =
+                  rewrite_goals_tac @{thms atomize_all atomize_imp} ::
+                  map arg_tac args @
+                  [REPEAT (rtac impI 1), ALLGOALS simplify];
+            in
+              Goal.prove context [] [] subgoal (K (EVERY tacs))
+            end;
+          fun eq_thms (p, cons) = map (con_thm p) cons;
+          val conss = map #con_specs constr_infos;
+          val prems' = maps eq_thms (Ps ~~ conss);
+
+          val tacs1 = [
+            quant_tac context 1,
+            simp_tac HOL_ss 1,
+            InductTacs.induct_tac context [[SOME "n"]] 1,
+            simp_tac (take_ss addsimps prems) 1,
+            TRY (safe_tac HOL_cs)];
+          fun con_tac _ = 
+            asm_simp_tac take_ss 1 THEN
+            (resolve_tac prems' THEN_ALL_NEW etac spec) 1;
+          fun cases_tacs (cons, exhaust) =
+            res_inst_tac context [(("y", 0), "x")] exhaust 1 ::
+            asm_simp_tac (take_ss addsimps prems) 1 ::
+            map con_tac cons;
+          val tacs = tacs1 @ maps cases_tacs (conss ~~ exhausts)
+        in
+          EVERY (map DETERM tacs)
+        end;
+    in Goal.prove_global thy [] assms goal tacf end;
+
+  val _ = trace " Proving ind...";
+  val ind =
+    let
+      val concls = map (op $) (Ps ~~ xs);
+      val goal = mk_trp (foldr1 mk_conj concls);
+      val adms = if is_finite then [] else map (mk_trp o mk_adm) Ps;
+      fun tacf {prems, context} =
+        let
+          fun finite_tac (take_induct, fin_ind) =
+              rtac take_induct 1 THEN
+              (if is_finite then all_tac else resolve_tac prems 1) THEN
+              (rtac fin_ind THEN_ALL_NEW solve_tac prems) 1;
+          val fin_inds = Project_Rule.projections context finite_ind;
+        in
+          TRY (safe_tac HOL_cs) THEN
+          EVERY (map finite_tac (take_induct_thms ~~ fin_inds))
+        end;
+    in Goal.prove_global thy [] (adms @ assms) goal tacf end
+
+  (* case names for induction rules *)
+  val dnames = map (fst o dest_Type) newTs;
+  val case_ns =
+    let
+      val adms =
+          if is_finite then [] else
+          if length dnames = 1 then ["adm"] else
+          map (fn s => "adm_" ^ Long_Name.base_name s) dnames;
+      val bottoms =
+          if length dnames = 1 then ["bottom"] else
+          map (fn s => "bottom_" ^ Long_Name.base_name s) dnames;
+      fun one_eq bot constr_info =
+        let fun name_of (c, args) = Long_Name.base_name (fst (dest_Const c));
+        in bot :: map name_of (#con_specs constr_info) end;
+    in adms @ flat (map2 one_eq bottoms constr_infos) end;
+
+  val inducts = Project_Rule.projections (ProofContext.init_global thy) ind;
+  fun ind_rule (dname, rule) =
+      ((Binding.empty, rule),
+       [Rule_Cases.case_names case_ns, Induct.induct_type dname]);
+
+in
+  thy
+  |> snd o Global_Theory.add_thms [
+     ((Binding.qualified true "finite_induct" comp_dbind, finite_ind), []),
+     ((Binding.qualified true "induct"        comp_dbind, ind       ), [])]
+  |> (snd o Global_Theory.add_thms (map ind_rule (dnames ~~ inducts)))
+end; (* prove_induction *)
+
+(******************************************************************************)
+(************************ bisimulation and coinduction ************************)
+(******************************************************************************)
+
+fun prove_coinduction
+    (comp_dbind : binding, dbinds : binding list)
+    (constr_infos : Domain_Constructors.constr_info list)
+    (take_info : Domain_Take_Proofs.take_induct_info)
+    (take_rews : thm list list)
+    (thy : theory) : theory =
+let
+  val iso_infos = map #iso_info constr_infos;
+  val newTs = map #absT iso_infos;
+
+  val {take_consts, take_0_thms, take_lemma_thms, ...} = take_info;
+
+  val R_names = Datatype_Prop.indexify_names (map (K "R") newTs);
+  val R_types = map (fn T => T --> T --> boolT) newTs;
+  val Rs = map Free (R_names ~~ R_types);
+  val n = Free ("n", natT);
+  val reserved = "x" :: "y" :: R_names;
+
+  (* declare bisimulation predicate *)
+  val bisim_bind = Binding.suffix_name "_bisim" comp_dbind;
+  val bisim_type = R_types ---> boolT;
+  val (bisim_const, thy) =
+      Sign.declare_const ((bisim_bind, bisim_type), NoSyn) thy;
+
+  (* define bisimulation predicate *)
+  local
+    fun one_con T (con, args) =
+      let
+        val Ts = map snd args;
+        val ns1 = Name.variant_list reserved (Datatype_Prop.make_tnames Ts);
+        val ns2 = map (fn n => n^"'") ns1;
+        val vs1 = map Free (ns1 ~~ Ts);
+        val vs2 = map Free (ns2 ~~ Ts);
+        val eq1 = mk_eq (Free ("x", T), list_ccomb (con, vs1));
+        val eq2 = mk_eq (Free ("y", T), list_ccomb (con, vs2));
+        fun rel ((v1, v2), T) =
+            case AList.lookup (op =) (newTs ~~ Rs) T of
+              NONE => mk_eq (v1, v2) | SOME r => r $ v1 $ v2;
+        val eqs = foldr1 mk_conj (map rel (vs1 ~~ vs2 ~~ Ts) @ [eq1, eq2]);
+      in
+        Library.foldr mk_ex (vs1 @ vs2, eqs)
+      end;
+    fun one_eq ((T, R), cons) =
+      let
+        val x = Free ("x", T);
+        val y = Free ("y", T);
+        val disj1 = mk_conj (mk_eq (x, mk_bottom T), mk_eq (y, mk_bottom T));
+        val disjs = disj1 :: map (one_con T) cons;
+      in
+        mk_all (x, mk_all (y, mk_imp (R $ x $ y, foldr1 mk_disj disjs)))
+      end;
+    val conjs = map one_eq (newTs ~~ Rs ~~ map #con_specs constr_infos);
+    val bisim_rhs = lambdas Rs (Library.foldr1 mk_conj conjs);
+    val bisim_eqn = Logic.mk_equals (bisim_const, bisim_rhs);
+  in
+    val (bisim_def_thm, thy) = thy |>
+        yield_singleton (Global_Theory.add_defs false)
+         ((Binding.qualified true "bisim_def" comp_dbind, bisim_eqn), []);
+  end (* local *)
+
+  (* prove coinduction lemma *)
+  val coind_lemma =
+    let
+      val assm = mk_trp (list_comb (bisim_const, Rs));
+      fun one ((T, R), take_const) =
+        let
+          val x = Free ("x", T);
+          val y = Free ("y", T);
+          val lhs = mk_capply (take_const $ n, x);
+          val rhs = mk_capply (take_const $ n, y);
+        in
+          mk_all (x, mk_all (y, mk_imp (R $ x $ y, mk_eq (lhs, rhs))))
+        end;
+      val goal =
+          mk_trp (foldr1 mk_conj (map one (newTs ~~ Rs ~~ take_consts)));
+      val rules = @{thm Rep_CFun_strict1} :: take_0_thms;
+      fun tacf {prems, context} =
+        let
+          val prem' = rewrite_rule [bisim_def_thm] (hd prems);
+          val prems' = Project_Rule.projections context prem';
+          val dests = map (fn th => th RS spec RS spec RS mp) prems';
+          fun one_tac (dest, rews) =
+              dtac dest 1 THEN safe_tac HOL_cs THEN
+              ALLGOALS (asm_simp_tac (HOL_basic_ss addsimps rews));
+        in
+          rtac @{thm nat.induct} 1 THEN
+          simp_tac (HOL_ss addsimps rules) 1 THEN
+          safe_tac HOL_cs THEN
+          EVERY (map one_tac (dests ~~ take_rews))
+        end
+    in
+      Goal.prove_global thy [] [assm] goal tacf
+    end;
+
+  (* prove individual coinduction rules *)
+  fun prove_coind ((T, R), take_lemma) =
+    let
+      val x = Free ("x", T);
+      val y = Free ("y", T);
+      val assm1 = mk_trp (list_comb (bisim_const, Rs));
+      val assm2 = mk_trp (R $ x $ y);
+      val goal = mk_trp (mk_eq (x, y));
+      fun tacf {prems, context} =
+        let
+          val rule = hd prems RS coind_lemma;
+        in
+          rtac take_lemma 1 THEN
+          asm_simp_tac (HOL_basic_ss addsimps (rule :: prems)) 1
+        end;
+    in
+      Goal.prove_global thy [] [assm1, assm2] goal tacf
+    end;
+  val coinds = map prove_coind (newTs ~~ Rs ~~ take_lemma_thms);
+  val coind_binds = map (Binding.qualified true "coinduct") dbinds;
+
+in
+  thy |> snd o Global_Theory.add_thms
+    (map Thm.no_attributes (coind_binds ~~ coinds))
+end; (* let *)
+
+(******************************************************************************)
+(******************************* main function ********************************)
+(******************************************************************************)
+
+fun comp_theorems
+    (comp_dbind : binding)
+    (dbinds : binding list)
+    (take_info : Domain_Take_Proofs.take_induct_info)
+    (constr_infos : Domain_Constructors.constr_info list)
+    (thy : theory) =
+let
+val comp_dname = Binding.name_of comp_dbind;
+
+(* Test for emptiness *)
+(* FIXME: reimplement emptiness test
+local
+  open Domain_Library;
+  val dnames = map (fst o fst) eqs;
+  val conss = map snd eqs;
+  fun rec_to ns lazy_rec (n,cons) = forall (exists (fn arg => 
+        is_rec arg andalso not (member (op =) ns (rec_of arg)) andalso
+        ((rec_of arg =  n andalso not (lazy_rec orelse is_lazy arg)) orelse 
+          rec_of arg <> n andalso rec_to (rec_of arg::ns) 
+            (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
+        ) o snd) cons;
+  fun warn (n,cons) =
+    if rec_to [] false (n,cons)
+    then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
+    else false;
+in
+  val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
+  val is_emptys = map warn n__eqs;
+end;
+*)
+
+(* Test for indirect recursion *)
+local
+  val newTs = map (#absT o #iso_info) constr_infos;
+  fun indirect_typ (Type (_, Ts)) =
+      exists (fn T => member (op =) newTs T orelse indirect_typ T) Ts
+    | indirect_typ _ = false;
+  fun indirect_arg (_, T) = indirect_typ T;
+  fun indirect_con (_, args) = exists indirect_arg args;
+  fun indirect_eq cons = exists indirect_con cons;
+in
+  val is_indirect = exists indirect_eq (map #con_specs constr_infos);
+  val _ =
+      if is_indirect
+      then message "Indirect recursion detected, skipping proofs of (co)induction rules"
+      else message ("Proving induction properties of domain "^comp_dname^" ...");
+end;
+
+(* theorems about take *)
+
+val (take_rewss, thy) =
+    take_theorems dbinds take_info constr_infos thy;
+
+val {take_lemma_thms, take_0_thms, take_strict_thms, ...} = take_info;
+
+val take_rews = take_0_thms @ take_strict_thms @ flat take_rewss;
+
+(* prove induction rules, unless definition is indirect recursive *)
+val thy =
+    if is_indirect then thy else
+    prove_induction comp_dbind constr_infos take_info take_rews thy;
+
+val thy =
+    if is_indirect then thy else
+    prove_coinduction (comp_dbind, dbinds) constr_infos take_info take_rewss thy;
+
+in
+  (take_rews, thy)
+end; (* let *)
+end; (* struct *)
--- a/src/HOLCF/Tools/Domain/domain_theorems.ML	Tue Oct 19 14:28:14 2010 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,438 +0,0 @@
-(*  Title:      HOLCF/Tools/Domain/domain_theorems.ML
-    Author:     David von Oheimb
-    Author:     Brian Huffman
-
-Proof generator for domain command.
-*)
-
-signature DOMAIN_THEOREMS =
-sig
-  val comp_theorems :
-      binding -> binding list ->
-      Domain_Take_Proofs.take_induct_info ->
-      Domain_Constructors.constr_info list ->
-      theory -> thm list * theory
-
-  val quiet_mode: bool Unsynchronized.ref;
-  val trace_domain: bool Unsynchronized.ref;
-end;
-
-structure Domain_Theorems :> DOMAIN_THEOREMS =
-struct
-
-val quiet_mode = Unsynchronized.ref false;
-val trace_domain = Unsynchronized.ref false;
-
-fun message s = if !quiet_mode then () else writeln s;
-fun trace s = if !trace_domain then tracing s else ();
-
-open HOLCF_Library;
-
-(******************************************************************************)
-(***************************** proofs about take ******************************)
-(******************************************************************************)
-
-fun take_theorems
-    (dbinds : binding list)
-    (take_info : Domain_Take_Proofs.take_induct_info)
-    (constr_infos : Domain_Constructors.constr_info list)
-    (thy : theory) : thm list list * theory =
-let
-  val {take_consts, take_Suc_thms, deflation_take_thms, ...} = take_info;
-  val deflation_thms = Domain_Take_Proofs.get_deflation_thms thy;
-
-  val n = Free ("n", @{typ nat});
-  val n' = @{const Suc} $ n;
-
-  local
-    val newTs = map (#absT o #iso_info) constr_infos;
-    val subs = newTs ~~ map (fn t => t $ n) take_consts;
-    fun is_ID (Const (c, _)) = (c = @{const_name ID})
-      | is_ID _              = false;
-  in
-    fun map_of_arg v T =
-      let val m = Domain_Take_Proofs.map_of_typ thy subs T;
-      in if is_ID m then v else mk_capply (m, v) end;
-  end
-
-  fun prove_take_apps
-      ((dbind, take_const), constr_info) thy =
-    let
-      val {iso_info, con_specs, con_betas, ...} = constr_info;
-      val {abs_inverse, ...} = iso_info;
-      fun prove_take_app (con_const, args) =
-        let
-          val Ts = map snd args;
-          val ns = Name.variant_list ["n"] (Datatype_Prop.make_tnames Ts);
-          val vs = map Free (ns ~~ Ts);
-          val lhs = mk_capply (take_const $ n', list_ccomb (con_const, vs));
-          val rhs = list_ccomb (con_const, map2 map_of_arg vs Ts);
-          val goal = mk_trp (mk_eq (lhs, rhs));
-          val rules =
-              [abs_inverse] @ con_betas @ @{thms take_con_rules}
-              @ take_Suc_thms @ deflation_thms @ deflation_take_thms;
-          val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
-        in
-          Goal.prove_global thy [] [] goal (K tac)
-        end;
-      val take_apps = map prove_take_app con_specs;
-    in
-      yield_singleton Global_Theory.add_thmss
-        ((Binding.qualified true "take_rews" dbind, take_apps),
-        [Simplifier.simp_add]) thy
-    end;
-in
-  fold_map prove_take_apps
-    (dbinds ~~ take_consts ~~ constr_infos) thy
-end;
-
-(******************************************************************************)
-(****************************** induction rules *******************************)
-(******************************************************************************)
-
-val case_UU_allI =
-    @{lemma "(!!x. x ~= UU ==> P x) ==> P UU ==> ALL x. P x" by metis};
-
-fun prove_induction
-    (comp_dbind : binding)
-    (constr_infos : Domain_Constructors.constr_info list)
-    (take_info : Domain_Take_Proofs.take_induct_info)
-    (take_rews : thm list)
-    (thy : theory) =
-let
-  val comp_dname = Binding.name_of comp_dbind;
-
-  val iso_infos = map #iso_info constr_infos;
-  val exhausts = map #exhaust constr_infos;
-  val con_rews = maps #con_rews constr_infos;
-  val {take_consts, take_induct_thms, ...} = take_info;
-
-  val newTs = map #absT iso_infos;
-  val P_names = Datatype_Prop.indexify_names (map (K "P") newTs);
-  val x_names = Datatype_Prop.indexify_names (map (K "x") newTs);
-  val P_types = map (fn T => T --> HOLogic.boolT) newTs;
-  val Ps = map Free (P_names ~~ P_types);
-  val xs = map Free (x_names ~~ newTs);
-  val n = Free ("n", HOLogic.natT);
-
-  fun con_assm defined p (con, args) =
-    let
-      val Ts = map snd args;
-      val ns = Name.variant_list P_names (Datatype_Prop.make_tnames Ts);
-      val vs = map Free (ns ~~ Ts);
-      val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
-      fun ind_hyp (v, T) t =
-          case AList.lookup (op =) (newTs ~~ Ps) T of NONE => t
-          | SOME p' => Logic.mk_implies (mk_trp (p' $ v), t);
-      val t1 = mk_trp (p $ list_ccomb (con, vs));
-      val t2 = fold_rev ind_hyp (vs ~~ Ts) t1;
-      val t3 = Logic.list_implies (map (mk_trp o mk_defined) nonlazy, t2);
-    in fold_rev Logic.all vs (if defined then t3 else t2) end;
-  fun eq_assms ((p, T), cons) =
-      mk_trp (p $ HOLCF_Library.mk_bottom T) :: map (con_assm true p) cons;
-  val assms = maps eq_assms (Ps ~~ newTs ~~ map #con_specs constr_infos);
-
-  val take_ss = HOL_ss addsimps (@{thm Rep_CFun_strict1} :: take_rews);
-  fun quant_tac ctxt i = EVERY
-    (map (fn name => res_inst_tac ctxt [(("x", 0), name)] spec i) x_names);
-
-  (* FIXME: move this message to domain_take_proofs.ML *)
-  val is_finite = #is_finite take_info;
-  val _ = if is_finite
-          then message ("Proving finiteness rule for domain "^comp_dname^" ...")
-          else ();
-
-  val _ = trace " Proving finite_ind...";
-  val finite_ind =
-    let
-      val concls =
-          map (fn ((P, t), x) => P $ mk_capply (t $ n, x))
-              (Ps ~~ take_consts ~~ xs);
-      val goal = mk_trp (foldr1 mk_conj concls);
-
-      fun tacf {prems, context} =
-        let
-          (* Prove stronger prems, without definedness side conditions *)
-          fun con_thm p (con, args) =
-            let
-              val subgoal = con_assm false p (con, args);
-              val rules = prems @ con_rews @ simp_thms;
-              val simplify = asm_simp_tac (HOL_basic_ss addsimps rules);
-              fun arg_tac (lazy, _) =
-                  rtac (if lazy then allI else case_UU_allI) 1;
-              val tacs =
-                  rewrite_goals_tac @{thms atomize_all atomize_imp} ::
-                  map arg_tac args @
-                  [REPEAT (rtac impI 1), ALLGOALS simplify];
-            in
-              Goal.prove context [] [] subgoal (K (EVERY tacs))
-            end;
-          fun eq_thms (p, cons) = map (con_thm p) cons;
-          val conss = map #con_specs constr_infos;
-          val prems' = maps eq_thms (Ps ~~ conss);
-
-          val tacs1 = [
-            quant_tac context 1,
-            simp_tac HOL_ss 1,
-            InductTacs.induct_tac context [[SOME "n"]] 1,
-            simp_tac (take_ss addsimps prems) 1,
-            TRY (safe_tac HOL_cs)];
-          fun con_tac _ = 
-            asm_simp_tac take_ss 1 THEN
-            (resolve_tac prems' THEN_ALL_NEW etac spec) 1;
-          fun cases_tacs (cons, exhaust) =
-            res_inst_tac context [(("y", 0), "x")] exhaust 1 ::
-            asm_simp_tac (take_ss addsimps prems) 1 ::
-            map con_tac cons;
-          val tacs = tacs1 @ maps cases_tacs (conss ~~ exhausts)
-        in
-          EVERY (map DETERM tacs)
-        end;
-    in Goal.prove_global thy [] assms goal tacf end;
-
-  val _ = trace " Proving ind...";
-  val ind =
-    let
-      val concls = map (op $) (Ps ~~ xs);
-      val goal = mk_trp (foldr1 mk_conj concls);
-      val adms = if is_finite then [] else map (mk_trp o mk_adm) Ps;
-      fun tacf {prems, context} =
-        let
-          fun finite_tac (take_induct, fin_ind) =
-              rtac take_induct 1 THEN
-              (if is_finite then all_tac else resolve_tac prems 1) THEN
-              (rtac fin_ind THEN_ALL_NEW solve_tac prems) 1;
-          val fin_inds = Project_Rule.projections context finite_ind;
-        in
-          TRY (safe_tac HOL_cs) THEN
-          EVERY (map finite_tac (take_induct_thms ~~ fin_inds))
-        end;
-    in Goal.prove_global thy [] (adms @ assms) goal tacf end
-
-  (* case names for induction rules *)
-  val dnames = map (fst o dest_Type) newTs;
-  val case_ns =
-    let
-      val adms =
-          if is_finite then [] else
-          if length dnames = 1 then ["adm"] else
-          map (fn s => "adm_" ^ Long_Name.base_name s) dnames;
-      val bottoms =
-          if length dnames = 1 then ["bottom"] else
-          map (fn s => "bottom_" ^ Long_Name.base_name s) dnames;
-      fun one_eq bot constr_info =
-        let fun name_of (c, args) = Long_Name.base_name (fst (dest_Const c));
-        in bot :: map name_of (#con_specs constr_info) end;
-    in adms @ flat (map2 one_eq bottoms constr_infos) end;
-
-  val inducts = Project_Rule.projections (ProofContext.init_global thy) ind;
-  fun ind_rule (dname, rule) =
-      ((Binding.empty, rule),
-       [Rule_Cases.case_names case_ns, Induct.induct_type dname]);
-
-in
-  thy
-  |> snd o Global_Theory.add_thms [
-     ((Binding.qualified true "finite_induct" comp_dbind, finite_ind), []),
-     ((Binding.qualified true "induct"        comp_dbind, ind       ), [])]
-  |> (snd o Global_Theory.add_thms (map ind_rule (dnames ~~ inducts)))
-end; (* prove_induction *)
-
-(******************************************************************************)
-(************************ bisimulation and coinduction ************************)
-(******************************************************************************)
-
-fun prove_coinduction
-    (comp_dbind : binding, dbinds : binding list)
-    (constr_infos : Domain_Constructors.constr_info list)
-    (take_info : Domain_Take_Proofs.take_induct_info)
-    (take_rews : thm list list)
-    (thy : theory) : theory =
-let
-  val iso_infos = map #iso_info constr_infos;
-  val newTs = map #absT iso_infos;
-
-  val {take_consts, take_0_thms, take_lemma_thms, ...} = take_info;
-
-  val R_names = Datatype_Prop.indexify_names (map (K "R") newTs);
-  val R_types = map (fn T => T --> T --> boolT) newTs;
-  val Rs = map Free (R_names ~~ R_types);
-  val n = Free ("n", natT);
-  val reserved = "x" :: "y" :: R_names;
-
-  (* declare bisimulation predicate *)
-  val bisim_bind = Binding.suffix_name "_bisim" comp_dbind;
-  val bisim_type = R_types ---> boolT;
-  val (bisim_const, thy) =
-      Sign.declare_const ((bisim_bind, bisim_type), NoSyn) thy;
-
-  (* define bisimulation predicate *)
-  local
-    fun one_con T (con, args) =
-      let
-        val Ts = map snd args;
-        val ns1 = Name.variant_list reserved (Datatype_Prop.make_tnames Ts);
-        val ns2 = map (fn n => n^"'") ns1;
-        val vs1 = map Free (ns1 ~~ Ts);
-        val vs2 = map Free (ns2 ~~ Ts);
-        val eq1 = mk_eq (Free ("x", T), list_ccomb (con, vs1));
-        val eq2 = mk_eq (Free ("y", T), list_ccomb (con, vs2));
-        fun rel ((v1, v2), T) =
-            case AList.lookup (op =) (newTs ~~ Rs) T of
-              NONE => mk_eq (v1, v2) | SOME r => r $ v1 $ v2;
-        val eqs = foldr1 mk_conj (map rel (vs1 ~~ vs2 ~~ Ts) @ [eq1, eq2]);
-      in
-        Library.foldr mk_ex (vs1 @ vs2, eqs)
-      end;
-    fun one_eq ((T, R), cons) =
-      let
-        val x = Free ("x", T);
-        val y = Free ("y", T);
-        val disj1 = mk_conj (mk_eq (x, mk_bottom T), mk_eq (y, mk_bottom T));
-        val disjs = disj1 :: map (one_con T) cons;
-      in
-        mk_all (x, mk_all (y, mk_imp (R $ x $ y, foldr1 mk_disj disjs)))
-      end;
-    val conjs = map one_eq (newTs ~~ Rs ~~ map #con_specs constr_infos);
-    val bisim_rhs = lambdas Rs (Library.foldr1 mk_conj conjs);
-    val bisim_eqn = Logic.mk_equals (bisim_const, bisim_rhs);
-  in
-    val (bisim_def_thm, thy) = thy |>
-        yield_singleton (Global_Theory.add_defs false)
-         ((Binding.qualified true "bisim_def" comp_dbind, bisim_eqn), []);
-  end (* local *)
-
-  (* prove coinduction lemma *)
-  val coind_lemma =
-    let
-      val assm = mk_trp (list_comb (bisim_const, Rs));
-      fun one ((T, R), take_const) =
-        let
-          val x = Free ("x", T);
-          val y = Free ("y", T);
-          val lhs = mk_capply (take_const $ n, x);
-          val rhs = mk_capply (take_const $ n, y);
-        in
-          mk_all (x, mk_all (y, mk_imp (R $ x $ y, mk_eq (lhs, rhs))))
-        end;
-      val goal =
-          mk_trp (foldr1 mk_conj (map one (newTs ~~ Rs ~~ take_consts)));
-      val rules = @{thm Rep_CFun_strict1} :: take_0_thms;
-      fun tacf {prems, context} =
-        let
-          val prem' = rewrite_rule [bisim_def_thm] (hd prems);
-          val prems' = Project_Rule.projections context prem';
-          val dests = map (fn th => th RS spec RS spec RS mp) prems';
-          fun one_tac (dest, rews) =
-              dtac dest 1 THEN safe_tac HOL_cs THEN
-              ALLGOALS (asm_simp_tac (HOL_basic_ss addsimps rews));
-        in
-          rtac @{thm nat.induct} 1 THEN
-          simp_tac (HOL_ss addsimps rules) 1 THEN
-          safe_tac HOL_cs THEN
-          EVERY (map one_tac (dests ~~ take_rews))
-        end
-    in
-      Goal.prove_global thy [] [assm] goal tacf
-    end;
-
-  (* prove individual coinduction rules *)
-  fun prove_coind ((T, R), take_lemma) =
-    let
-      val x = Free ("x", T);
-      val y = Free ("y", T);
-      val assm1 = mk_trp (list_comb (bisim_const, Rs));
-      val assm2 = mk_trp (R $ x $ y);
-      val goal = mk_trp (mk_eq (x, y));
-      fun tacf {prems, context} =
-        let
-          val rule = hd prems RS coind_lemma;
-        in
-          rtac take_lemma 1 THEN
-          asm_simp_tac (HOL_basic_ss addsimps (rule :: prems)) 1
-        end;
-    in
-      Goal.prove_global thy [] [assm1, assm2] goal tacf
-    end;
-  val coinds = map prove_coind (newTs ~~ Rs ~~ take_lemma_thms);
-  val coind_binds = map (Binding.qualified true "coinduct") dbinds;
-
-in
-  thy |> snd o Global_Theory.add_thms
-    (map Thm.no_attributes (coind_binds ~~ coinds))
-end; (* let *)
-
-(******************************************************************************)
-(******************************* main function ********************************)
-(******************************************************************************)
-
-fun comp_theorems
-    (comp_dbind : binding)
-    (dbinds : binding list)
-    (take_info : Domain_Take_Proofs.take_induct_info)
-    (constr_infos : Domain_Constructors.constr_info list)
-    (thy : theory) =
-let
-val comp_dname = Binding.name_of comp_dbind;
-
-(* Test for emptiness *)
-(* FIXME: reimplement emptiness test
-local
-  open Domain_Library;
-  val dnames = map (fst o fst) eqs;
-  val conss = map snd eqs;
-  fun rec_to ns lazy_rec (n,cons) = forall (exists (fn arg => 
-        is_rec arg andalso not (member (op =) ns (rec_of arg)) andalso
-        ((rec_of arg =  n andalso not (lazy_rec orelse is_lazy arg)) orelse 
-          rec_of arg <> n andalso rec_to (rec_of arg::ns) 
-            (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
-        ) o snd) cons;
-  fun warn (n,cons) =
-    if rec_to [] false (n,cons)
-    then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
-    else false;
-in
-  val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
-  val is_emptys = map warn n__eqs;
-end;
-*)
-
-(* Test for indirect recursion *)
-local
-  val newTs = map (#absT o #iso_info) constr_infos;
-  fun indirect_typ (Type (_, Ts)) =
-      exists (fn T => member (op =) newTs T orelse indirect_typ T) Ts
-    | indirect_typ _ = false;
-  fun indirect_arg (_, T) = indirect_typ T;
-  fun indirect_con (_, args) = exists indirect_arg args;
-  fun indirect_eq cons = exists indirect_con cons;
-in
-  val is_indirect = exists indirect_eq (map #con_specs constr_infos);
-  val _ =
-      if is_indirect
-      then message "Indirect recursion detected, skipping proofs of (co)induction rules"
-      else message ("Proving induction properties of domain "^comp_dname^" ...");
-end;
-
-(* theorems about take *)
-
-val (take_rewss, thy) =
-    take_theorems dbinds take_info constr_infos thy;
-
-val {take_lemma_thms, take_0_thms, take_strict_thms, ...} = take_info;
-
-val take_rews = take_0_thms @ take_strict_thms @ flat take_rewss;
-
-(* prove induction rules, unless definition is indirect recursive *)
-val thy =
-    if is_indirect then thy else
-    prove_induction comp_dbind constr_infos take_info take_rews thy;
-
-val thy =
-    if is_indirect then thy else
-    prove_coinduction (comp_dbind, dbinds) constr_infos take_info take_rewss thy;
-
-in
-  (take_rews, thy)
-end; (* let *)
-end; (* struct *)