New theory Leftist_Heap_List
authornipkow
Fri, 30 Jun 2023 13:12:10 +0200
changeset 78231 3e8d443b9512
parent 78230 7ca11a7ace41
child 78232 45c7b88d1609
New theory Leftist_Heap_List
src/HOL/Data_Structures/Leftist_Heap_List.thy
src/HOL/ROOT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Leftist_Heap_List.thy	Fri Jun 30 13:12:10 2023 +0200
@@ -0,0 +1,179 @@
+(* Author: Tobias Nipkow *)
+
+theory Leftist_Heap_List
+imports
+  Leftist_Heap
+  Complex_Main
+begin
+
+subsection "Converting a list into a leftist heap"
+
+fun merge_adj :: "('a::ord) lheap list \<Rightarrow> 'a lheap list" where
+"merge_adj [] = []" |
+"merge_adj [t] = [t]" |
+"merge_adj (t1 # t2 # ts) = merge t1 t2 # merge_adj ts"
+
+text \<open>For the termination proof of \<open>merge_all\<close> below.\<close>
+lemma length_merge_adjacent[simp]: "length (merge_adj ts) = (length ts + 1) div 2"
+by (induction ts rule: merge_adj.induct) auto
+
+fun merge_all :: "('a::ord) lheap list \<Rightarrow> 'a lheap" where
+"merge_all [] = Leaf" |
+"merge_all [t] = t" |
+"merge_all ts = merge_all (merge_adj ts)"
+
+
+subsubsection \<open>Functional correctness\<close>
+
+lemma heap_merge_adj: "\<forall>t \<in> set ts. heap t \<Longrightarrow> \<forall>t \<in> set (merge_adj ts). heap t"
+by(induction ts rule: merge_adj.induct) (auto simp: heap_merge)
+
+lemma ltree_merge_adj: "\<forall>t \<in> set ts. ltree t \<Longrightarrow> \<forall>t \<in> set (merge_adj ts). ltree t"
+by(induction ts rule: merge_adj.induct) (auto simp: ltree_merge)
+
+lemma heap_merge_all: "\<forall>t \<in> set ts. heap t \<Longrightarrow> heap (merge_all ts)"
+apply(induction ts rule: merge_all.induct)
+using [[simp_depth_limit=3]] by (auto simp add: heap_merge_adj)
+
+lemma ltree_merge_all: "\<forall>t \<in> set ts. ltree t \<Longrightarrow> ltree (merge_all ts)"
+apply(induction ts rule: merge_all.induct)
+using [[simp_depth_limit=3]] by (auto simp add: ltree_merge_adj)
+
+lemma mset_merge_adj:
+  "\<Sum>\<^sub># (image_mset mset_tree (mset (merge_adj ts))) =
+   \<Sum>\<^sub># (image_mset mset_tree (mset ts))"
+by(induction ts rule: merge_adj.induct) (auto simp: mset_merge)
+
+lemma mset_merge_all:
+  "mset_tree (merge_all ts) = \<Sum>\<^sub># (mset (map mset_tree ts))"
+by(induction ts rule: merge_all.induct) (auto simp: mset_merge mset_merge_adj)
+
+fun lheap_list :: "'a::ord list \<Rightarrow> 'a lheap" where
+"lheap_list xs = merge_all (map (\<lambda>x. Node Leaf (x,1) Leaf) xs)"
+
+lemma mset_lheap_list: "mset_tree (lheap_list xs) = mset xs"
+by (simp add: mset_merge_all o_def)
+
+lemma ltree_lheap_list: "ltree (lheap_list ts)"
+by(simp add: ltree_merge_all)
+
+lemma heap_lheap_list: "heap (lheap_list ts)"
+by(simp add: heap_merge_all)
+
+lemma size_merge: "size(merge t1 t2) = size t1 + size t2"
+by(induction t1 t2 rule: merge.induct) (auto simp: node_def)
+
+
+subsubsection \<open>Running time\<close>
+
+fun T_merge_adj :: "('a::ord) lheap list \<Rightarrow> nat" where
+"T_merge_adj [] = 0" |
+"T_merge_adj [t] = 0" |
+"T_merge_adj (t1 # t2 # ts) = T_merge t1 t2 + T_merge_adj ts"
+
+fun T_merge_all :: "('a::ord) lheap list  \<Rightarrow> nat" where
+"T_merge_all [] = 0" |
+"T_merge_all [t] = 0" |
+"T_merge_all ts = T_merge_adj ts + T_merge_all (merge_adj ts)"
+
+fun T_lheap_list :: "'a::ord list \<Rightarrow> nat" where
+"T_lheap_list xs = T_merge_all (map (\<lambda>x. Node Leaf (x,1) Leaf) xs)"
+
+abbreviation Tm where
+"Tm n == 2 * log 2 (n+1) + 1"
+
+lemma T_merge_adj: "\<lbrakk> \<forall>t \<in> set ts. ltree t; \<forall>t \<in> set ts. size t = n \<rbrakk>
+  \<Longrightarrow> T_merge_adj ts \<le> (length ts div 2) * Tm n"
+proof(induction ts rule: T_merge_adj.induct)
+  case 1 thus ?case by simp
+next
+  case 2 thus ?case by simp
+next
+  case (3 t1 t2) thus ?case using T_merge_log[of t1 t2] by (simp add: algebra_simps size1_size)
+qed
+
+lemma size_merge_adj:
+  "\<lbrakk> even(length ts); \<forall>t \<in> set ts. ltree t; \<forall>t \<in> set ts. size t = n \<rbrakk>
+   \<Longrightarrow> \<forall>t \<in> set (merge_adj ts). size t = 2*n"
+by(induction ts rule: merge_adj.induct) (auto simp: size_merge)
+
+lemma T_merge_all:
+ "\<lbrakk> \<forall>t \<in> set ts. ltree t; \<forall>t \<in> set ts. size t = n; length ts = 2^k \<rbrakk>
+  \<Longrightarrow> T_merge_all ts \<le> (\<Sum>i=1..k. 2^(k-i) * Tm(2 ^ (i-1) * n))"
+proof (induction ts arbitrary: k n rule: merge_all.induct)
+  case 1 thus ?case by simp
+next
+  case 2 thus ?case by simp
+next
+  case (3 t1 t2 ts)
+  let ?ts = "t1 # t2 # ts"
+  let ?ts2 = "merge_adj ?ts"
+  obtain k' where k': "k = Suc k'" using "3.prems"(3)
+    by (metis length_Cons nat.inject nat_power_eq_Suc_0_iff nat.exhaust)
+  have 1: "\<forall>x \<in> set(merge_adj ?ts). ltree x"
+    by(rule ltree_merge_adj[OF "3.prems"(1)])
+  have "even (length ts)" using "3.prems"(3) even_Suc_Suc_iff by fastforce
+  from "3.prems"(2) size_merge_adj[OF this] "3.prems"(1)
+  have 2: "\<forall>x \<in> set(merge_adj ?ts). size x = 2*n" by(auto simp: size_merge)
+  have 3: "length ?ts2 = 2 ^ k'" using "3.prems"(3) k' by auto
+  have 4: "length ?ts div 2 = 2 ^ k'"
+    using "3.prems"(3) k' by(simp add: power_eq_if[of 2 k] split: if_splits)
+  have "T_merge_all ?ts = T_merge_adj ?ts + T_merge_all ?ts2" by simp
+  also have "\<dots> \<le> 2^k' * Tm n + T_merge_all ?ts2"
+    using 4 T_merge_adj[OF "3.prems"(1,2)] by auto
+  also have "\<dots> \<le> 2^k' * Tm n + (\<Sum>i=1..k'. 2^(k'-i) * Tm(2 ^ (i-1) * (2*n)))"
+    using "3.IH"[OF 1 2 3] by simp
+  also have "\<dots> = 2^k' * Tm n + (\<Sum>i=1..k'. 2^(k'-i) * Tm(2 ^ (Suc(i-1)) * n))"
+    by (simp add: mult_ac cong del: sum.cong)
+  also have "\<dots> = 2^k' * Tm n + (\<Sum>i=1..k'. 2^(k'-i) * Tm(2 ^ i * n))"
+     by (simp)
+  also have "\<dots> = (\<Sum>i=1..k. 2^(k-i) * Tm(2 ^ (i-1) * real n))"
+    by(simp add: sum.atLeast_Suc_atMost[of "Suc 0" "Suc k'"] sum.atLeast_Suc_atMost_Suc_shift[of _ "Suc 0"] k'
+        del: sum.cl_ivl_Suc)
+  finally show ?case .
+qed
+
+lemma summation: "(\<Sum>i=1..k. 2^(k-i) * ((2::real)*i+1)) = 5*2^k - (2::real)*k - 5"
+proof (induction k)
+  case 0 thus ?case by simp
+next
+  case (Suc k)
+  have "(\<Sum>i=1..Suc k. 2^(Suc k - i) * ((2::real)*i+1))
+    = (\<Sum>i=1..k. 2^(k+1-i) * ((2::real)*i+1)) + 2*k+3"
+    by(simp)
+  also have "\<dots> = (\<Sum>i=1..k. (2::real)*(2^(k-i) * ((2::real)*i+1))) + 2*k+3"
+    by (simp add: Suc_diff_le mult.assoc)
+  also have "\<dots> = 2*(\<Sum>i=1..k. 2^(k-i) * ((2::real)*i+1)) + 2*k+3"
+    by(simp add: sum_distrib_left)
+  also have "\<dots> = (2::real)*(5*2^k - (2::real)*k - 5) + 2*k+3"
+    using Suc.IH by simp
+  also have "\<dots> = 5*2^(Suc k) - (2::real)*(Suc k) - 5"
+    by simp
+  finally show ?case .
+qed
+
+lemma T_lheap_list: assumes "length xs = 2 ^ k"
+shows "T_lheap_list xs \<le> 5 * length xs"
+proof -
+  let ?ts = "map (\<lambda>x. Node Leaf (x,1) Leaf) xs"
+  have "T_lheap_list xs = T_merge_all ?ts" by simp
+  also have "\<dots> \<le> (\<Sum>i = 1..k. 2^(k-i) * (2 * log 2 (2^(i-1) + 1) + 1))"
+    using T_merge_all[of ?ts 1 k] assms by (simp)
+  also have "\<dots> \<le> (\<Sum>i = 1..k. 2^(k-i) * (2 * log 2 (2*2^(i-1)) + 1))"
+    apply(rule sum_mono)
+    using zero_le_power[of "2::real"] by (simp add: add_pos_nonneg)
+  also have "\<dots> = (\<Sum>i = 1..k. 2^(k-i) * (2 * log 2 (2^(1+(i-1))) + 1))"
+    by (simp del: Suc_pred)
+  also have "\<dots> = (\<Sum>i = 1..k. 2^(k-i) * (2 * log 2 (2^i) + 1))"
+    by (simp)
+  also have "\<dots> = (\<Sum>i = 1..k. 2^(k-i) * ((2::real)*i+1))"
+    by (simp add:log_nat_power algebra_simps)
+  also have "\<dots> = 5*(2::real)^k - (2::real)*k - 5"
+    using summation by (simp)
+  also have "\<dots> \<le> 5*(2::real)^k"
+    by linarith
+  finally show ?thesis
+    using assms of_nat_le_iff by fastforce
+qed
+
+end
\ No newline at end of file
--- a/src/HOL/ROOT	Fri Jun 30 08:17:27 2023 +0200
+++ b/src/HOL/ROOT	Fri Jun 30 13:12:10 2023 +0200
@@ -308,6 +308,7 @@
     Queue_2Lists
     Heaps
     Leftist_Heap
+    Leftist_Heap_List
     Binomial_Heap
     Selection
   document_files "root.tex" "root.bib"