--- a/src/HOL/List.thy Wed Apr 17 16:57:06 2019 +0000
+++ b/src/HOL/List.thy Thu Apr 18 06:06:54 2019 +0000
@@ -1995,6 +1995,9 @@
using longest_common_prefix[of "rev xs" "rev ys"]
unfolding rev_swap rev_append by (metis last_rev rev_is_Nil_conv)
+lemma butlast_rev [simp]: "butlast (rev xs) = rev (tl xs)"
+ by (cases xs) simp_all
+
subsubsection \<open>\<^const>\<open>take\<close> and \<^const>\<open>drop\<close>\<close>
@@ -3150,7 +3153,7 @@
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
by(simp add:upt_conv_Cons)
-lemma tl_upt: "tl [m..<n] = [Suc m..<n]"
+lemma tl_upt [simp]: "tl [m..<n] = [Suc m..<n]"
by (simp add: upt_rec)
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
--- a/src/HOL/Word/Bits_Bit.thy Wed Apr 17 16:57:06 2019 +0000
+++ b/src/HOL/Word/Bits_Bit.thy Thu Apr 18 06:06:54 2019 +0000
@@ -82,4 +82,8 @@
for a b :: bit
by (induct a) simp_all
+lemma bit_nand_same [simp]: "x AND NOT x = 0"
+ for x :: bit
+ by (cases x) simp_all
+
end
--- a/src/HOL/Word/Bits_Int.thy Wed Apr 17 16:57:06 2019 +0000
+++ b/src/HOL/Word/Bits_Int.thy Thu Apr 18 06:06:54 2019 +0000
@@ -775,4 +775,381 @@
end
+
+subsection \<open>More lemmas\<close>
+
+lemma twice_conv_BIT: "2 * x = x BIT False"
+ by (rule bin_rl_eqI) (simp_all, simp_all add: bin_rest_def bin_last_def)
+
+lemma not_int_cmp_0 [simp]:
+ fixes i :: int shows
+ "0 < NOT i \<longleftrightarrow> i < -1"
+ "0 \<le> NOT i \<longleftrightarrow> i < 0"
+ "NOT i < 0 \<longleftrightarrow> i \<ge> 0"
+ "NOT i \<le> 0 \<longleftrightarrow> i \<ge> -1"
+by(simp_all add: int_not_def) arith+
+
+lemma bbw_ao_dist2: "(x :: int) AND (y OR z) = x AND y OR x AND z"
+by(metis int_and_comm bbw_ao_dist)
+
+lemmas int_and_ac = bbw_lcs(1) int_and_comm int_and_assoc
+
+lemma int_nand_same [simp]: fixes x :: int shows "x AND NOT x = 0"
+by(induct x y\<equiv>"NOT x" rule: bitAND_int.induct)(subst bitAND_int.simps, clarsimp)
+
+lemma int_nand_same_middle: fixes x :: int shows "x AND y AND NOT x = 0"
+by (metis bbw_lcs(1) int_and_0 int_nand_same)
+
+lemma and_xor_dist: fixes x :: int shows
+ "x AND (y XOR z) = (x AND y) XOR (x AND z)"
+by(simp add: int_xor_def bbw_ao_dist2 bbw_ao_dist bbw_not_dist int_and_ac int_nand_same_middle)
+
+lemma BIT_lt0 [simp]: "x BIT b < 0 \<longleftrightarrow> x < 0"
+by(cases b)(auto simp add: Bit_def)
+
+lemma BIT_ge0 [simp]: "x BIT b \<ge> 0 \<longleftrightarrow> x \<ge> 0"
+by(cases b)(auto simp add: Bit_def)
+
+lemma [simp]:
+ shows bin_rest_lt0: "bin_rest i < 0 \<longleftrightarrow> i < 0"
+ and bin_rest_ge_0: "bin_rest i \<ge> 0 \<longleftrightarrow> i \<ge> 0"
+by(auto simp add: bin_rest_def)
+
+lemma bin_rest_gt_0 [simp]: "bin_rest x > 0 \<longleftrightarrow> x > 1"
+by(simp add: bin_rest_def add1_zle_eq pos_imp_zdiv_pos_iff) (metis add1_zle_eq one_add_one)
+
+lemma int_and_lt0 [simp]: fixes x y :: int shows
+ "x AND y < 0 \<longleftrightarrow> x < 0 \<and> y < 0"
+by(induct x y rule: bitAND_int.induct)(subst bitAND_int.simps, simp)
+
+lemma int_and_ge0 [simp]: fixes x y :: int shows
+ "x AND y \<ge> 0 \<longleftrightarrow> x \<ge> 0 \<or> y \<ge> 0"
+by (metis int_and_lt0 linorder_not_less)
+
+lemma int_and_1: fixes x :: int shows "x AND 1 = x mod 2"
+by(subst bitAND_int.simps)(simp add: Bit_def bin_last_def zmod_minus1)
+
+lemma int_1_and: fixes x :: int shows "1 AND x = x mod 2"
+by(subst int_and_comm)(simp add: int_and_1)
+
+lemma int_or_lt0 [simp]: fixes x y :: int shows
+ "x OR y < 0 \<longleftrightarrow> x < 0 \<or> y < 0"
+by(simp add: int_or_def)
+
+lemma int_xor_lt0 [simp]: fixes x y :: int shows
+ "x XOR y < 0 \<longleftrightarrow> ((x < 0) \<noteq> (y < 0))"
+by(auto simp add: int_xor_def)
+
+lemma int_xor_ge0 [simp]: fixes x y :: int shows
+ "x XOR y \<ge> 0 \<longleftrightarrow> ((x \<ge> 0) \<longleftrightarrow> (y \<ge> 0))"
+by (metis int_xor_lt0 linorder_not_le)
+
+lemma bin_last_conv_AND:
+ "bin_last i \<longleftrightarrow> i AND 1 \<noteq> 0"
+proof -
+ obtain x b where "i = x BIT b" by(cases i rule: bin_exhaust)
+ hence "i AND 1 = 0 BIT b"
+ by(simp add: BIT_special_simps(2)[symmetric] del: BIT_special_simps(2))
+ thus ?thesis using \<open>i = x BIT b\<close> by(cases b) simp_all
+qed
+
+lemma bitval_bin_last:
+ "of_bool (bin_last i) = i AND 1"
+proof -
+ obtain x b where "i = x BIT b" by(cases i rule: bin_exhaust)
+ hence "i AND 1 = 0 BIT b"
+ by(simp add: BIT_special_simps(2)[symmetric] del: BIT_special_simps(2))
+ thus ?thesis by(cases b)(simp_all add: bin_last_conv_AND)
+qed
+
+lemma bl_to_bin_BIT:
+ "bl_to_bin bs BIT b = bl_to_bin (bs @ [b])"
+by(simp add: bl_to_bin_append)
+
+lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \<longleftrightarrow> bs \<noteq> [] \<and> last bs"
+by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0])
+
+lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)"
+by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux)
+
+lemma bin_nth_numeral_unfold:
+ "bin_nth (numeral (num.Bit0 x)) n \<longleftrightarrow> n > 0 \<and> bin_nth (numeral x) (n - 1)"
+ "bin_nth (numeral (num.Bit1 x)) n \<longleftrightarrow> (n > 0 \<longrightarrow> bin_nth (numeral x) (n - 1))"
+by(case_tac [!] n) simp_all
+
+lemma bin_sign_and:
+ "bin_sign (i AND j) = - (bin_sign i * bin_sign j)"
+by(simp add: bin_sign_def)
+
+lemma minus_BIT_0: fixes x y :: int shows "x BIT b - y BIT False = (x - y) BIT b"
+by(simp add: Bit_def)
+
+lemma int_not_neg_numeral: "NOT (- numeral n) = (Num.sub n num.One :: int)"
+by(simp add: int_not_def)
+
+lemma sub_inc_One: "Num.sub (Num.inc n) num.One = numeral n"
+by (metis add_diff_cancel diff_minus_eq_add diff_numeral_special(2) diff_numeral_special(6))
+
+lemma inc_BitM: "Num.inc (Num.BitM n) = num.Bit0 n"
+by(simp add: BitM_plus_one[symmetric] add_One)
+
+lemma int_neg_numeral_pOne_conv_not: "- numeral (n + num.One) = (NOT (numeral n) :: int)"
+by(simp add: int_not_def)
+
+lemma int_lsb_BIT [simp]: fixes x :: int shows
+ "lsb (x BIT b) \<longleftrightarrow> b"
+by(simp add: lsb_int_def)
+
+lemma bin_last_conv_lsb: "bin_last = lsb"
+by(clarsimp simp add: lsb_int_def fun_eq_iff)
+
+lemma int_lsb_numeral [simp]:
+ "lsb (0 :: int) = False"
+ "lsb (1 :: int) = True"
+ "lsb (Numeral1 :: int) = True"
+ "lsb (- 1 :: int) = True"
+ "lsb (- Numeral1 :: int) = True"
+ "lsb (numeral (num.Bit0 w) :: int) = False"
+ "lsb (numeral (num.Bit1 w) :: int) = True"
+ "lsb (- numeral (num.Bit0 w) :: int) = False"
+ "lsb (- numeral (num.Bit1 w) :: int) = True"
+by(simp_all add: lsb_int_def)
+
+lemma int_set_bit_0 [simp]: fixes x :: int shows
+ "set_bit x 0 b = bin_rest x BIT b"
+by(auto simp add: set_bit_int_def intro: bin_rl_eqI)
+
+lemma int_set_bit_Suc: fixes x :: int shows
+ "set_bit x (Suc n) b = set_bit (bin_rest x) n b BIT bin_last x"
+by(auto simp add: set_bit_int_def twice_conv_BIT intro: bin_rl_eqI)
+
+lemma bin_last_set_bit:
+ "bin_last (set_bit x n b) = (if n > 0 then bin_last x else b)"
+by(cases n)(simp_all add: int_set_bit_Suc)
+
+lemma bin_rest_set_bit:
+ "bin_rest (set_bit x n b) = (if n > 0 then set_bit (bin_rest x) (n - 1) b else bin_rest x)"
+by(cases n)(simp_all add: int_set_bit_Suc)
+
+lemma int_set_bit_numeral: fixes x :: int shows
+ "set_bit x (numeral w) b = set_bit (bin_rest x) (pred_numeral w) b BIT bin_last x"
+by(simp add: set_bit_int_def)
+
+lemmas int_set_bit_numerals [simp] =
+ int_set_bit_numeral[where x="numeral w'"]
+ int_set_bit_numeral[where x="- numeral w'"]
+ int_set_bit_numeral[where x="Numeral1"]
+ int_set_bit_numeral[where x="1"]
+ int_set_bit_numeral[where x="0"]
+ int_set_bit_Suc[where x="numeral w'"]
+ int_set_bit_Suc[where x="- numeral w'"]
+ int_set_bit_Suc[where x="Numeral1"]
+ int_set_bit_Suc[where x="1"]
+ int_set_bit_Suc[where x="0"]
+ for w'
+
+lemma int_shiftl_BIT: fixes x :: int
+ shows int_shiftl0 [simp]: "x << 0 = x"
+ and int_shiftl_Suc [simp]: "x << Suc n = (x << n) BIT False"
+by(auto simp add: shiftl_int_def Bit_def)
+
+lemma int_0_shiftl [simp]: "0 << n = (0 :: int)"
+by(induct n) simp_all
+
+lemma bin_last_shiftl: "bin_last (x << n) \<longleftrightarrow> n = 0 \<and> bin_last x"
+by(cases n)(simp_all)
+
+lemma bin_rest_shiftl: "bin_rest (x << n) = (if n > 0 then x << (n - 1) else bin_rest x)"
+by(cases n)(simp_all)
+
+lemma bin_nth_shiftl [simp]: "bin_nth (x << n) m \<longleftrightarrow> n \<le> m \<and> bin_nth x (m - n)"
+proof(induct n arbitrary: x m)
+ case (Suc n)
+ thus ?case by(cases m) simp_all
+qed simp
+
+lemma int_shiftr_BIT [simp]: fixes x :: int
+ shows int_shiftr0: "x >> 0 = x"
+ and int_shiftr_Suc: "x BIT b >> Suc n = x >> n"
+proof -
+ show "x >> 0 = x" by (simp add: shiftr_int_def)
+ show "x BIT b >> Suc n = x >> n" by (cases b)
+ (simp_all add: shiftr_int_def Bit_def add.commute pos_zdiv_mult_2)
+qed
+
+lemma bin_last_shiftr: "bin_last (x >> n) \<longleftrightarrow> x !! n"
+proof(induct n arbitrary: x)
+ case 0 thus ?case by simp
+next
+ case (Suc n)
+ thus ?case by(cases x rule: bin_exhaust) simp
+qed
+
+lemma bin_rest_shiftr [simp]: "bin_rest (x >> n) = x >> Suc n"
+proof(induct n arbitrary: x)
+ case 0
+ thus ?case by(cases x rule: bin_exhaust) auto
+next
+ case (Suc n)
+ thus ?case by(cases x rule: bin_exhaust) auto
+qed
+
+lemma bin_nth_shiftr [simp]: "bin_nth (x >> n) m = bin_nth x (n + m)"
+proof(induct n arbitrary: x m)
+ case (Suc n)
+ thus ?case by(cases x rule: bin_exhaust) simp_all
+qed simp
+
+lemma bin_nth_conv_AND:
+ fixes x :: int shows
+ "bin_nth x n \<longleftrightarrow> x AND (1 << n) \<noteq> 0"
+proof(induct n arbitrary: x)
+ case 0
+ thus ?case by(simp add: int_and_1 bin_last_def)
+next
+ case (Suc n)
+ thus ?case by(cases x rule: bin_exhaust)(simp_all add: bin_nth_ops Bit_eq_0_iff)
+qed
+
+lemma int_shiftl_numeral [simp]:
+ "(numeral w :: int) << numeral w' = numeral (num.Bit0 w) << pred_numeral w'"
+ "(- numeral w :: int) << numeral w' = - numeral (num.Bit0 w) << pred_numeral w'"
+by(simp_all add: numeral_eq_Suc Bit_def shiftl_int_def)
+ (metis add_One mult_inc semiring_norm(11) semiring_norm(13) semiring_norm(2) semiring_norm(6) semiring_norm(87))+
+
+lemma int_shiftl_One_numeral [simp]: "(1 :: int) << numeral w = 2 << pred_numeral w"
+by(metis int_shiftl_numeral numeral_One)
+
+lemma shiftl_ge_0 [simp]: fixes i :: int shows "i << n \<ge> 0 \<longleftrightarrow> i \<ge> 0"
+by(induct n) simp_all
+
+lemma shiftl_lt_0 [simp]: fixes i :: int shows "i << n < 0 \<longleftrightarrow> i < 0"
+by (metis not_le shiftl_ge_0)
+
+lemma int_shiftl_test_bit: "(n << i :: int) !! m \<longleftrightarrow> m \<ge> i \<and> n !! (m - i)"
+proof(induction i)
+ case (Suc n)
+ thus ?case by(cases m) simp_all
+qed simp
+
+lemma int_0shiftr [simp]: "(0 :: int) >> x = 0"
+by(simp add: shiftr_int_def)
+
+lemma int_minus1_shiftr [simp]: "(-1 :: int) >> x = -1"
+by(simp add: shiftr_int_def div_eq_minus1)
+
+lemma int_shiftr_ge_0 [simp]: fixes i :: int shows "i >> n \<ge> 0 \<longleftrightarrow> i \<ge> 0"
+proof(induct n arbitrary: i)
+ case (Suc n)
+ thus ?case by(cases i rule: bin_exhaust) simp_all
+qed simp
+
+lemma int_shiftr_lt_0 [simp]: fixes i :: int shows "i >> n < 0 \<longleftrightarrow> i < 0"
+by (metis int_shiftr_ge_0 not_less)
+
+lemma uminus_Bit_eq:
+ "- k BIT b = (- k - of_bool b) BIT b"
+ by (cases b) (simp_all add: Bit_def)
+
+lemma int_shiftr_numeral [simp]:
+ "(1 :: int) >> numeral w' = 0"
+ "(numeral num.One :: int) >> numeral w' = 0"
+ "(numeral (num.Bit0 w) :: int) >> numeral w' = numeral w >> pred_numeral w'"
+ "(numeral (num.Bit1 w) :: int) >> numeral w' = numeral w >> pred_numeral w'"
+ "(- numeral (num.Bit0 w) :: int) >> numeral w' = - numeral w >> pred_numeral w'"
+ "(- numeral (num.Bit1 w) :: int) >> numeral w' = - numeral (Num.inc w) >> pred_numeral w'"
+ by (simp_all only: numeral_One expand_BIT numeral_eq_Suc int_shiftr_Suc BIT_special_simps(2)[symmetric] int_0shiftr add_One uminus_Bit_eq)
+ (simp_all add: add_One)
+
+lemma int_shiftr_numeral_Suc0 [simp]:
+ "(1 :: int) >> Suc 0 = 0"
+ "(numeral num.One :: int) >> Suc 0 = 0"
+ "(numeral (num.Bit0 w) :: int) >> Suc 0 = numeral w"
+ "(numeral (num.Bit1 w) :: int) >> Suc 0 = numeral w"
+ "(- numeral (num.Bit0 w) :: int) >> Suc 0 = - numeral w"
+ "(- numeral (num.Bit1 w) :: int) >> Suc 0 = - numeral (Num.inc w)"
+by(simp_all only: One_nat_def[symmetric] numeral_One[symmetric] int_shiftr_numeral pred_numeral_simps int_shiftr0)
+
+lemma bin_nth_minus_p2:
+ assumes sign: "bin_sign x = 0"
+ and y: "y = 1 << n"
+ and m: "m < n"
+ and x: "x < y"
+ shows "bin_nth (x - y) m = bin_nth x m"
+using sign m x unfolding y
+proof(induction m arbitrary: x y n)
+ case 0
+ thus ?case
+ by(simp add: bin_last_def shiftl_int_def) (metis (hide_lams, no_types) mod_diff_right_eq mod_self neq0_conv numeral_One power_eq_0_iff power_mod diff_zero zero_neq_numeral)
+next
+ case (Suc m)
+ from \<open>Suc m < n\<close> obtain n' where [simp]: "n = Suc n'" by(cases n) auto
+ obtain x' b where [simp]: "x = x' BIT b" by(cases x rule: bin_exhaust)
+ from \<open>bin_sign x = 0\<close> have "bin_sign x' = 0" by simp
+ moreover from \<open>x < 1 << n\<close> have "x' < 1 << n'"
+ by(cases b)(simp_all add: Bit_def shiftl_int_def)
+ moreover have "(2 * x' + of_bool b - 2 * 2 ^ n') div 2 = x' + (- (2 ^ n') + of_bool b div 2)"
+ by(simp only: add_diff_eq[symmetric] add.commute div_mult_self2[OF zero_neq_numeral[symmetric]])
+ ultimately show ?case using Suc.IH[of x' n'] Suc.prems
+ by(cases b)(simp_all add: Bit_def bin_rest_def shiftl_int_def)
+qed
+
+lemma bin_clr_conv_NAND:
+ "bin_sc n False i = i AND NOT (1 << n)"
+by(induct n arbitrary: i)(auto intro: bin_rl_eqI)
+
+lemma bin_set_conv_OR:
+ "bin_sc n True i = i OR (1 << n)"
+by(induct n arbitrary: i)(auto intro: bin_rl_eqI)
+
+lemma int_set_bits_K_True [simp]: "(BITS _. True) = (-1 :: int)"
+by(auto simp add: set_bits_int_def bin_last_bl_to_bin)
+
+lemma int_set_bits_K_False [simp]: "(BITS _. False) = (0 :: int)"
+by(auto simp add: set_bits_int_def)
+
+lemma msb_conv_bin_sign: "msb x \<longleftrightarrow> bin_sign x = -1"
+by(simp add: bin_sign_def not_le msb_int_def)
+
+lemma msb_BIT [simp]: "msb (x BIT b) = msb x"
+by(simp add: msb_int_def)
+
+lemma msb_bin_rest [simp]: "msb (bin_rest x) = msb x"
+by(simp add: msb_int_def)
+
+lemma int_msb_and [simp]: "msb ((x :: int) AND y) \<longleftrightarrow> msb x \<and> msb y"
+by(simp add: msb_int_def)
+
+lemma int_msb_or [simp]: "msb ((x :: int) OR y) \<longleftrightarrow> msb x \<or> msb y"
+by(simp add: msb_int_def)
+
+lemma int_msb_xor [simp]: "msb ((x :: int) XOR y) \<longleftrightarrow> msb x \<noteq> msb y"
+by(simp add: msb_int_def)
+
+lemma int_msb_not [simp]: "msb (NOT (x :: int)) \<longleftrightarrow> \<not> msb x"
+by(simp add: msb_int_def not_less)
+
+lemma msb_shiftl [simp]: "msb ((x :: int) << n) \<longleftrightarrow> msb x"
+by(simp add: msb_int_def)
+
+lemma msb_shiftr [simp]: "msb ((x :: int) >> r) \<longleftrightarrow> msb x"
+by(simp add: msb_int_def)
+
+lemma msb_bin_sc [simp]: "msb (bin_sc n b x) \<longleftrightarrow> msb x"
+by(simp add: msb_conv_bin_sign)
+
+lemma msb_set_bit [simp]: "msb (set_bit (x :: int) n b) \<longleftrightarrow> msb x"
+by(simp add: msb_conv_bin_sign set_bit_int_def)
+
+lemma msb_0 [simp]: "msb (0 :: int) = False"
+by(simp add: msb_int_def)
+
+lemma msb_1 [simp]: "msb (1 :: int) = False"
+by(simp add: msb_int_def)
+
+lemma msb_numeral [simp]:
+ "msb (numeral n :: int) = False"
+ "msb (- numeral n :: int) = True"
+by(simp_all add: msb_int_def)
+
end
--- a/src/HOL/Word/Word.thy Wed Apr 17 16:57:06 2019 +0000
+++ b/src/HOL/Word/Word.thy Thu Apr 18 06:06:54 2019 +0000
@@ -96,7 +96,7 @@
instantiation word :: (len0) size
begin
-definition word_size: "size (w :: 'a word) = len_of TYPE('a)"
+definition word_size: "size (w :: 'a word) = LENGTH('a)"
instance ..
@@ -1883,8 +1883,7 @@
for x y :: "'a::len word"
by (simp add: uint_nat unat_mod zmod_int)
-
-subsection \<open>Definition of \<open>unat_arith\<close> tactic\<close>
+text \<open>Definition of \<open>unat_arith\<close> tactic\<close>
lemma unat_split: "P (unat x) \<longleftrightarrow> (\<forall>n. of_nat n = x \<and> n < 2^len_of TYPE('a) \<longrightarrow> P n)"
for x :: "'a::len word"
@@ -2065,16 +2064,20 @@
apply (rule bl_to_bin_lt2p)
done
+lemma unatSuc: "1 + n \<noteq> 0 \<Longrightarrow> unat (1 + n) = Suc (unat n)"
+ for n :: "'a::len word"
+ by unat_arith
+
subsection \<open>Cardinality, finiteness of set of words\<close>
instance word :: (len0) finite
by standard (simp add: type_definition.univ [OF type_definition_word])
-lemma card_word: "CARD('a::len0 word) = 2 ^ len_of TYPE('a)"
+lemma card_word: "CARD('a word) = 2 ^ LENGTH('a::len0)"
by (simp add: type_definition.card [OF type_definition_word] nat_power_eq)
-lemma card_word_size: "card (UNIV :: 'a word set) = (2 ^ size x)"
+lemma card_word_size: "CARD('a word) = 2 ^ size x"
for x :: "'a::len0 word"
unfolding word_size by (rule card_word)
@@ -2583,6 +2586,10 @@
apply simp
done
+lemma set_bit_beyond:
+ "size x \<le> n \<Longrightarrow> set_bit x n b = x" for x :: "'a :: len0 word"
+ by (auto intro: word_eqI simp add: test_bit_set_gen word_size)
+
subsection \<open>Shifting, Rotating, and Splitting Words\<close>
@@ -2794,8 +2801,6 @@
apply (unfold word_reverse_def)
apply (rule word_bl.Rep_inverse' [symmetric])
apply (simp add: bl_shiftl1' bl_shiftr1' word_bl.Abs_inverse)
- apply (cases "to_bl w")
- apply auto
done
lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)"
@@ -3162,6 +3167,9 @@
using word_of_int_Ex [where x=x]
by (auto simp: and_mask_wi' word_of_int_power_hom word.abs_eq_iff bintrunc_mod2p mod_simps)
+lemma mask_full [simp]: "mask LENGTH('a) = (- 1 :: 'a::len word)"
+ by (simp add: mask_def word_size shiftl_zero_size)
+
subsubsection \<open>Revcast\<close>
@@ -3411,6 +3419,10 @@
simp)+
done
+lemma shiftr_zero_size: "size x \<le> n \<Longrightarrow> x >> n = 0"
+ for x :: "'a :: len0 word"
+ by (rule word_eqI) (auto simp add: nth_shiftr dest: test_bit_size)
+
subsection \<open>Split and cat\<close>
@@ -4493,9 +4505,63 @@
apply simp
done
-lemma unatSuc: "1 + n \<noteq> 0 \<Longrightarrow> unat (1 + n) = Suc (unat n)"
- for n :: "'a::len word"
- by unat_arith
+
+subsection \<open>More\<close>
+
+lemma set_bits_K_False [simp]:
+ "set_bits (\<lambda>_. False) = (0 :: 'a :: len0 word)"
+ by (rule word_eqI) (simp add: test_bit.eq_norm)
+
+lemma test_bit_1' [simp]:
+ "(1 :: 'a :: len0 word) !! n \<longleftrightarrow> 0 < len_of TYPE('a) \<and> n = 0"
+ by (cases n) (simp_all only: one_word_def test_bit_wi bin_nth.simps, simp_all)
+
+lemma mask_0 [simp]:
+ "mask 0 = 0"
+ by (simp add: Word.mask_def)
+
+lemma shiftl0 [simp]:
+ "x << 0 = (x :: 'a :: len0 word)"
+ by (metis shiftl_rev shiftr_x_0 word_rev_gal)
+
+lemma mask_1: "mask 1 = 1"
+ by (simp add: mask_def)
+
+lemma mask_Suc_0: "mask (Suc 0) = 1"
+ by (simp add: mask_def)
+
+lemma mask_numeral: "mask (numeral n) = 2 * mask (pred_numeral n) + 1"
+ by (simp add: mask_def neg_numeral_class.sub_def numeral_eq_Suc numeral_pow)
+
+lemma bin_last_bintrunc: "bin_last (bintrunc l n) = (l > 0 \<and> bin_last n)"
+ by (cases l) simp_all
+
+lemma word_and_1:
+ "n AND 1 = (if n !! 0 then 1 else 0)" for n :: "_ word"
+ by transfer (rule bin_rl_eqI, simp_all add: bin_rest_trunc bin_last_bintrunc)
+
+lemma bintrunc_shiftl:
+ "bintrunc n (m << i) = bintrunc (n - i) m << i"
+proof (induction i arbitrary: n)
+ case 0
+ show ?case
+ by simp
+next
+ case (Suc i)
+ then show ?case by (cases n) simp_all
+qed
+
+lemma shiftl_transfer [transfer_rule]:
+ includes lifting_syntax
+ shows "(pcr_word ===> (=) ===> pcr_word) (<<) (<<)"
+ by (auto intro!: rel_funI word_eqI simp add: word.pcr_cr_eq cr_word_def word_size nth_shiftl)
+
+lemma uint_shiftl:
+ "uint (n << i) = bintrunc (size n) (uint n << i)"
+ unfolding word_size by transfer (simp add: bintrunc_shiftl)
+
+
+subsection \<open>Misc\<close>
declare bin_to_bl_def [simp]