new standard proof of lemma LIM_inverse
authorhuffman
Thu, 12 Apr 2007 01:53:02 +0200
changeset 22637 3f158760b68f
parent 22636 c40465deaf20
child 22638 7cea3e27d05f
new standard proof of lemma LIM_inverse
src/HOL/Hyperreal/Lim.thy
--- a/src/HOL/Hyperreal/Lim.thy	Wed Apr 11 19:42:43 2007 +0200
+++ b/src/HOL/Hyperreal/Lim.thy	Thu Apr 12 01:53:02 2007 +0200
@@ -374,6 +374,68 @@
   shows "(\<lambda>x. f x ^ n) -- a --> l ^ n"
 by (induct n, simp, simp add: power_Suc LIM_mult f)
 
+lemma LIM_inverse_lemma:
+  fixes x :: "'a::real_normed_div_algebra"
+  assumes r: "0 < r"
+  assumes x: "norm (x - 1) < min (1/2) (r/2)"
+  shows "norm (inverse x - 1) < r"
+proof -
+  from r have r2: "0 < r/2" by simp
+  from x have 0: "x \<noteq> 0" by clarsimp
+  from x have x': "norm (1 - x) < min (1/2) (r/2)"
+    by (simp only: norm_minus_commute)
+  hence less1: "norm (1 - x) < r/2" by simp
+  have "norm (1::'a) - norm x \<le> norm (1 - x)" by (rule norm_triangle_ineq2)
+  also from x' have "norm (1 - x) < 1/2" by simp
+  finally have "1/2 < norm x" by simp
+  hence "inverse (norm x) < inverse (1/2)"
+    by (rule less_imp_inverse_less, simp)
+  hence less2: "norm (inverse x) < 2"
+    by (simp add: nonzero_norm_inverse 0)
+  from less1 less2 r2 norm_ge_zero
+  have "norm (1 - x) * norm (inverse x) < (r/2) * 2"
+    by (rule mult_strict_mono)
+  thus "norm (inverse x - 1) < r"
+    by (simp only: norm_mult [symmetric] left_diff_distrib, simp add: 0)
+qed
+
+lemma LIM_inverse_fun:
+  assumes a: "a \<noteq> (0::'a::real_normed_div_algebra)"
+  shows "inverse -- a --> inverse a"
+proof (rule LIM_equal2)
+  from a show "0 < norm a" by simp
+next
+  fix x assume "norm (x - a) < norm a"
+  hence "x \<noteq> 0" by auto
+  with a show "inverse x = inverse (inverse a * x) * inverse a"
+    by (simp add: nonzero_inverse_mult_distrib
+                  nonzero_imp_inverse_nonzero
+                  nonzero_inverse_inverse_eq mult_assoc)
+next
+  have 1: "inverse -- 1 --> inverse (1::'a)"
+    apply (rule LIM_I)
+    apply (rule_tac x="min (1/2) (r/2)" in exI)
+    apply (simp add: LIM_inverse_lemma)
+    done
+  have "(\<lambda>x. inverse a * x) -- a --> inverse a * a"
+    by (intro LIM_mult LIM_self LIM_const)
+  hence "(\<lambda>x. inverse a * x) -- a --> 1"
+    by (simp add: a)
+  with 1 have "(\<lambda>x. inverse (inverse a * x)) -- a --> inverse 1"
+    by (rule LIM_compose)
+  hence "(\<lambda>x. inverse (inverse a * x)) -- a --> 1"
+    by simp
+  hence "(\<lambda>x. inverse (inverse a * x) * inverse a) -- a --> 1 * inverse a"
+    by (intro LIM_mult LIM_const)
+  thus "(\<lambda>x. inverse (inverse a * x) * inverse a) -- a --> inverse a"
+    by simp
+qed
+
+lemma LIM_inverse:
+  fixes L :: "'a::real_normed_div_algebra"
+  shows "\<lbrakk>f -- a --> L; L \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>x. inverse (f x)) -- a --> inverse L"
+by (rule LIM_inverse_fun [THEN LIM_compose])
+
 subsubsection {* Purely nonstandard proofs *}
 
 lemma NSLIM_I:
@@ -543,14 +605,6 @@
 theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"
 by (blast intro: LIM_NSLIM NSLIM_LIM)
 
-subsubsection {* Derived theorems about @{term LIM} *}
-
-lemma LIM_inverse:
-  fixes L :: "'a::real_normed_div_algebra"
-  shows "[| f -- a --> L; L \<noteq> 0 |]
-      ==> (%x. inverse(f(x))) -- a --> (inverse L)"
-by (simp add: LIM_NSLIM_iff NSLIM_inverse)
-
 
 subsection {* Continuity *}