author | wenzelm |
Tue, 16 May 2006 13:01:22 +0200 | |
changeset 19640 | 40ec89317425 |
parent 19639 | d9079a9ccbfb |
child 19641 | f1de44e61ec1 |
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Complex/ex/Ferrante_Rackoff_Ex.thy Tue May 16 13:01:22 2006 +0200 @@ -0,0 +1,169 @@ +(* + ID: $Id$ + Author: Amine Chaieb, TU Muenchen + +Examples for Ferrante and Rackoff Algorithm. +*) + +theory Ferrante_Rackoff_Ex +imports Complex_Main +begin + +lemma "~ (ALL (x::real) y. x < y --> 10*x < 11*y)" +apply ferrack +done + +lemma "ALL (x::real) y. x < y --> (10*(x + 5*y + -1) < 60*y)" +apply ferrack +done + +lemma "EX (x::real) y. x ~= y --> x < y" + apply ferrack + done + +lemma "EX (x::real) y. (x ~= y & 10*x ~= 9*y & 10*x < y) --> x < y" + apply ferrack + done +lemma "ALL (x::real) y. (x ~= y & 5*x <= y) --> 500*x <= 100*y" + apply ferrack + done + + (* 1 Alternations *) +lemma "ALL (x::real). (EX (y::real). 4*x + 3*y <= 0 & 4*x + 3*y >= -1)" + by ferrack +lemma "ALL (x::real) < 0. (EX (y::real) > 0. 7*x + y > 0 & x - y <= 9)" + by ferrack +lemma "EX (x::real). (0 < x & x < 1) --> (ALL y > 1. x + y ~= 1)" + apply ferrack + done +lemma "EX (x::real). (ALL y. y < 2 --> 2*(y - x) \<le> 0 )" + apply ferrack + done +lemma "ALL (x::real). x < 10 | x > 20 | (EX y. y>= 0 & y <= 10 & x+y = 20)" + apply ferrack + done + (* Formulae with 3 quantifiers *) + (* 0 Alternations *) +lemma "ALL (x::real) y z. x + y < z --> y >= z --> x < 0" +apply ferrack +done +lemma "EX (x::real) y z. x + 7*y < 5* z & 5*y >= 7*z & x < 0" +apply ferrack +done +lemma "ALL (x::real) y z. abs (x + y) <= z --> (abs z = z)" +apply ferrack +done + +lemma "EX (x::real) y z. x + 7*y - 5* z < 0 & 5*y + 7*z + 3*x < 0" +apply ferrack +done + +lemma "ALL (x::real) y z. (abs (5*x+3*y+z) <= 5*x+3*y+z & abs (5*x+3*y+z) >= - (5*x+3*y+z)) | (abs (5*x+3*y+z) >= 5*x+3*y+z & abs (5*x+3*y+z) <= - (5*x+3*y+z))" +apply ferrack +done + (* 1 Alternations *) +lemma "ALL (x::real) y. x < y --> (EX z>0. x+z = y)" + by ferrack +lemma "ALL (x::real) y. (EX z>0. abs (x - y) <= z )" + by ferrack + +lemma "EX (x::real) y. (ALL z<0. (z < x --> z <= y) & (z > y --> z >= x))" + apply ferrack + done + +lemma "EX (x::real) y. (ALL z>=0. abs (3*x+7*y) <= 2*z + 1)" + apply ferrack + done +lemma "EX (x::real) y. (ALL z<0. (z < x --> z <= y) & (z > y --> z >= x))" + apply ferrack + done + (* 2 Alternations *) +lemma "EX (x::real)>0. (ALL y. (EX z. 13* abs z \<noteq> abs (12*y - x) & 5*x - 3*(abs y) <= 7*z))" + apply ferrack + done +lemma "EX (x::real). abs (4*x + 17) < 4 & (ALL y . abs (x*34 - 34*y - 9) \<noteq> 0 \<longrightarrow> (EX z. 5*x - 3*abs y <= 7*z))" + apply ferrack + done + +lemma "ALL (x::real). (EX y > abs (23*x - 9). (ALL z > abs (3*y - 19* abs x). x+z > 2*y))" + apply ferrack + done + +lemma "ALL (x::real). (EX y< abs (3*x - 1). (ALL z >= (3*abs x - 1). abs (12*x - 13*y + 19*z) > abs (23*x) ))" + apply ferrack + done + +lemma "EX (x::real). abs x < 100 & (ALL y > x. (EX z<2*y - x. 5*x - 3*y <= 7*z))" + apply ferrack + done + + (* Formulae with 4 quantifiers *) + (* 0 Alternations *) +lemma "ALL (x::real) y z w. 7*x<3*y --> 5*y < 7*z --> z < 2*w --> 7*(2*w-x) > 2*y" + apply ferrack + done +lemma "ALL (x::real) y. ALL z >x. ALL w > y. abs (z-x) + abs (y-w + x) <= z - x + w-y+abs x" + apply ferrack + done +lemma "EX (x::real) y z w. 5*x + 3*z - 17*w + abs (y - 8*x + z) <= 89" + apply ferrack + done + +lemma "EX (x::real) y z w. 5*x + 3*z - 17*w + 7* (y - 8*x + z) <= max y (7*z - x + w)" + apply ferrack + done + +lemma "EX (x::real) y z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w)" + apply ferrack + done + (* 1 Alternations *) +lemma "ALL (x::real) y z. (EX w >= (x+y+z). w <= abs x + abs y + abs z)" + apply ferrack + done +lemma "~(ALL (x::real). (EX y z w. 3* x + z*4 = 3*y & x + y < z & x> w & 3*x < w + y))" + apply ferrack + done +lemma "ALL (x::real) y. (EX z w. abs (x-y) = (z-w) & z*1234 < 233*x & w ~= y)" + apply ferrack + done +lemma "ALL (x::real). (EX y z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w))" + apply ferrack + done +lemma "EX (x::real) y z. (ALL w >= abs (x+y+z). w >= abs x + abs y + abs z)" + apply ferrack + done + (* 2 Alternations *) +lemma "EX z. (ALL (x::real) y. (EX w >= (x+y+z). w <= abs x + abs y + abs z))" + apply ferrack + done +lemma "EX z. (ALL (x::real) < abs z. (EX y w. x< y & x < z & x> w & 3*x < w + y))" + apply ferrack + done +lemma "ALL (x::real) y. (EX z. (ALL w. abs (x-y) = abs (z-w) --> z < x & w ~= y))" + apply ferrack + done +lemma "EX y. (ALL (x::real). (EX z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w)))" + apply ferrack + done +lemma "EX (x::real) z. (ALL w >= 13*x - 4*z. (EX y. w >= abs x + abs y + z))" + apply ferrack + done + (* 3 Alternations *) +lemma "EX (x::real). (ALL y < x. (EX z > (x+y). + (ALL w. 5*w + 10*x - z >= y --> w + 7*x + 3*z >= 2*y)))" + apply ferrack + done +lemma "EX (x::real). (ALL y. (EX z > y. + (ALL w . w < 13 --> w + 10*x - z >= y --> 5*w + 7*x + 13*z >= 2*y)))" + apply ferrack + done +lemma "ALL (x::real). (EX y. (ALL z>19. y <= x + z & (EX w. abs (y - x) < w)))" + apply ferrack + done +lemma "ALL (x::real). (EX y. (ALL z>19. y <= x + z & (EX w. abs (x + z) < w - y)))" + apply ferrack + done +lemma "ALL (x::real). (EX y. abs y ~= abs x & (ALL z> max x y. (EX w. w ~= y & w ~= z & 3*w - z >= x + y)))" + apply ferrack + done +end
--- a/src/HOL/Complex/ex/ROOT.ML Tue May 16 09:19:12 2006 +0200 +++ b/src/HOL/Complex/ex/ROOT.ML Tue May 16 13:01:22 2006 +0200 @@ -20,3 +20,5 @@ no_document use_thy "NatPair"; use_thy "DenumRat"; + +use_thy "Ferrante_Rackoff_Ex";
--- a/src/HOL/IsaMakefile Tue May 16 09:19:12 2006 +0200 +++ b/src/HOL/IsaMakefile Tue May 16 13:01:22 2006 +0200 @@ -156,11 +156,11 @@ HOL-Complex: HOL $(OUT)/HOL-Complex $(OUT)/HOL-Complex: $(OUT)/HOL Complex/ROOT.ML Library/Zorn.thy \ - Real/Lubs.thy Real/rat_arith.ML \ - Real/Rational.thy Real/PReal.thy Real/RComplete.thy \ - Real/ROOT.ML Real/Real.thy Real/real_arith.ML Real/RealDef.thy \ - Real/RealPow.thy Real/document/root.tex \ - Real/Float.thy Real/Float.ML \ + Real/ContNotDenum.thy Real/Ferrante_Rackoff.thy Real/Float.ML \ + Real/Float.thy Real/Lubs.thy Real/PReal.thy Real/RComplete.thy \ + Real/ROOT.ML Real/Rational.thy Real/Real.thy Real/RealDef.thy \ + Real/RealPow.thy Real/document/root.tex Real/ferrante_rackoff_proof.ML \ + Real/ferrante_rackoff.ML Real/rat_arith.ML Real/real_arith.ML \ Hyperreal/StarDef.thy Hyperreal/StarClasses.thy \ Hyperreal/EvenOdd.thy Hyperreal/Fact.thy Hyperreal/HLog.thy \ Hyperreal/Filter.thy Hyperreal/HSeries.thy Hyperreal/transfer.ML \ @@ -185,7 +185,7 @@ $(LOG)/HOL-Complex-ex.gz: $(OUT)/HOL-Complex Library/Primes.thy \ Complex/ex/ROOT.ML Complex/ex/document/root.tex \ - Complex/ex/BigO_Complex.thy Complex/ex/BinEx.thy \ + Complex/ex/BigO_Complex.thy Complex/ex/BinEx.thy Complex/ex/Ferrante_Rackoff_Ex.thy \ Complex/ex/NSPrimes.thy Complex/ex/Sqrt.thy Complex/ex/Sqrt_Script.thy @cd Complex; $(ISATOOL) usedir $(OUT)/HOL-Complex ex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/Ferrante_Rackoff.thy Tue May 16 13:01:22 2006 +0200 @@ -0,0 +1,487 @@ +(* + ID: $Id$ + Author: Amine Chaieb, TU Muenchen + +Ferrante and Rackoff Algorithm: LCF-proof-synthesis version. +*) + +theory Ferrante_Rackoff +imports RealPow +uses ("ferrante_rackoff_proof.ML") ("ferrante_rackoff.ML") +begin + + (* Synthesis of \<exists>z. \<forall>x<z. P x = P1 *) +lemma minf: + "\<exists>(z::real) . \<forall>x<z. x < t = True " "\<exists>(z::real) . \<forall>x<z. x > t = False " + "\<exists>(z::real) . \<forall>x<z. x \<le> t = True " "\<exists>(z::real) . \<forall>x<z. x \<ge> t = False " + "\<exists>(z::real) . \<forall>x<z. (x = t) = False " "\<exists>(z::real) . \<forall>x<z. (x \<noteq> t) = True " + "\<exists>z. \<forall>(x::real)<z. (P::bool) = P" + "\<lbrakk>\<exists>(z1::real). \<forall>x<z1. P1 x = P1'; \<exists>z2. \<forall>x<z2. P2 x = P2'\<rbrakk> \<Longrightarrow> + \<exists>z. \<forall>x<z. (P1 x \<and> P2 x) = (P1' \<and> P2')" + "\<lbrakk>\<exists>(z1::real). \<forall>x<z1. P1 x = P1'; \<exists>z2. \<forall>x<z2. P2 x = P2'\<rbrakk> \<Longrightarrow> + \<exists>z. \<forall>x<z. (P1 x \<or> P2 x) = (P1' \<or> P2')" + by (rule_tac x="t" in exI,simp)+ +(clarsimp,rule_tac x="min z1 z2" in exI,simp)+ + +lemma minf_ex: "\<lbrakk>\<exists>z. \<forall>x<z. P (x::real) = P1 ; P1\<rbrakk> \<Longrightarrow> \<exists> x. P x" + by clarsimp (rule_tac x="z - 1" in exI, auto) + + (* Synthesis of \<exists>z. \<forall>x>z. P x = P1 *) +lemma pinf: + "\<exists>(z::real) . \<forall>x>z. x < t = False " "\<exists>(z::real) . \<forall>x>z. x > t = True " + "\<exists>(z::real) . \<forall>x>z. x \<le> t = False " "\<exists>(z::real) . \<forall>x>z. x \<ge> t = True " + "\<exists>(z::real) . \<forall>x>z. (x = t) = False " "\<exists>(z::real) . \<forall>x>z. (x \<noteq> t) = True " + "\<exists>z. \<forall>(x::real)>z. (P::bool) = P" + "\<lbrakk>\<exists>(z1::real). \<forall>x>z1. P1 x = P1'; \<exists>z2. \<forall>x>z2. P2 x = P2'\<rbrakk> \<Longrightarrow> + \<exists>z. \<forall>x>z. (P1 x \<and> P2 x) = (P1' \<and> P2')" + "\<lbrakk>\<exists>(z1::real). \<forall>x>z1. P1 x = P1'; \<exists>z2. \<forall>x>z2. P2 x = P2'\<rbrakk> \<Longrightarrow> + \<exists>z. \<forall>x>z. (P1 x \<or> P2 x) = (P1' \<or> P2')" + by (rule_tac x="t" in exI,simp)+ +(clarsimp,rule_tac x="max z1 z2" in exI,simp)+ + +lemma pinf_ex: "\<lbrakk>\<exists>z. \<forall>x>z. P (x::real) = P1 ; P1\<rbrakk> \<Longrightarrow> \<exists> x. P x" + by clarsimp (rule_tac x="z+1" in exI, auto) + + (* The ~P1 \<and> ~P2 \<and> P x \<longrightarrow> \<exists> u,u' \<in> U. u \<le> x \<le> u'*) +lemma nmilbnd: + "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> (x::real) < t \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) > t \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> (x::real) \<le> t \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) \<ge> t \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) = t \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "t \<in> U \<Longrightarrow>\<forall>x. \<not>True \<and> (x::real) \<noteq> t \<longrightarrow> (\<exists> u\<in> U. u \<le> x )" + "\<forall> (x::real). ~P \<and> P \<longrightarrow> (\<exists> u\<in> U. u \<le> x )" + "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<le> x) ; + \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<le> x )\<rbrakk> \<Longrightarrow> + \<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<le> x) ; + \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<le> x )\<rbrakk> \<Longrightarrow> + \<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + by auto (rule_tac x="t" in bexI,simp,simp) + +lemma npiubnd: + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) < t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> (x::real) > t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) \<le> t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> (x::real) \<ge> t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> (x::real) = t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> (x::real) \<noteq> t \<longrightarrow> (\<exists> u\<in> U. u \<ge> x )" + "\<forall> (x::real). ~P \<and> P \<longrightarrow> (\<exists> u\<in> U. u \<ge> x )" + "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<ge> x) ; \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<ge> x )\<rbrakk> + \<Longrightarrow> \<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<ge> x) ; \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<ge> x )\<rbrakk> + \<Longrightarrow> \<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + by auto (rule_tac x="t" in bexI,simp,simp) +lemma npmibnd: "\<lbrakk>\<forall>x. \<not> MP \<and> P (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<le> x); \<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)\<rbrakk> + \<Longrightarrow> \<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<le> x \<and> x \<le> u')" +by auto + + (* Synthesis of (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x<u \<and> P x \<and> l < y < u \<longrightarrow> P y*) +lemma lin_dense_lt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) < t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y< t)" +proof(clarsimp) + fix x l u y assume tU: "t \<in> U" and noU: "\<forall>t\<Colon>real. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" + and xu: "x<u" and px: "x < t" and ly: "l<y" and yu:"y < u" + from tU noU ly yu have tny: "t\<noteq>y" by auto + {assume H: "y> t" hence "l < t \<and> t < u" using px lx yu by simp + with tU noU have "False" by auto} hence "\<not> y>t" by auto hence "y \<le> t" by auto + thus "y < t" using tny by simp +qed + +lemma lin_dense_gt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) > t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y> t)" +proof(clarsimp) + fix x l u y + assume tU: "t \<in> U" and noU: "\<forall>t\<Colon>real. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u" + and px: "x > t" and ly: "l<y" and yu:"y < u" + from tU noU ly yu have tny: "t\<noteq>y" by auto + {assume H: "y< t" hence "l < t \<and> t < u" using px xu ly by simp + with tU noU have "False" by auto} + hence "\<not> y<t" by auto hence "y \<ge> t" by auto + thus "y > t" using tny by simp +qed +lemma lin_dense_le: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) \<le> t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y\<le> t)" +proof(clarsimp) + fix x l u y + assume tU: "t \<in> U" and noU: "\<forall>t\<Colon>real. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u" + and px: "x \<le> t" and ly: "l<y" and yu:"y < u" + from tU noU ly yu have tny: "t\<noteq>y" by auto + {assume H: "y> t" hence "l < t \<and> t < u" using px lx yu by simp + with tU noU have "False" by auto} + hence "\<not> y>t" by auto thus "y \<le> t" by auto +qed + +lemma lin_dense_ge: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) \<ge> t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y\<ge> t)" +proof(clarsimp) + fix x l u y + assume tU: "t \<in> U" and noU: "\<forall>t\<Colon>real. l < t \<and> t < u \<longrightarrow> t \<notin> U" and lx: "l < x" and xu: "x<u" + and px: "x \<ge> t" and ly: "l<y" and yu:"y < u" + from tU noU ly yu have tny: "t\<noteq>y" by auto + {assume H: "y< t" hence "l < t \<and> t < u" using px xu ly by simp + with tU noU have "False" by auto} + hence "\<not> y<t" by auto thus "y \<ge> t" by auto +qed +lemma lin_dense_eq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) = t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y= t)" by auto +lemma lin_dense_neq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (x::real) \<noteq> t \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> y\<noteq> t)" by auto +lemma lin_dense_fm: "\<forall>(x::real) l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P)" by auto + +lemma lin_dense_conj: + "\<lbrakk>\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P1 (x::real) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P1 y) ; + \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P2 (x::real) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow> + \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (P1 x \<and> P2 x) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> (P1 y \<and> P2 y))" + by blast +lemma lin_dense_disj: + "\<lbrakk>\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P1 (x::real) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P1 y) ; + \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P2 (x::real) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow> + \<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> (P1 x \<or> P2 x) + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> (P1 y \<or> P2 y))" + by blast + +lemma finite_set_intervals: + assumes px: "P (x::real)" and lx: "l \<le> x" and xu: "x \<le> u" and linS: "l\<in> S" + and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" + shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x" +proof- + let ?Mx = "{y. y\<in> S \<and> y \<le> x}" + let ?xM = "{y. y\<in> S \<and> x \<le> y}" + let ?a = "Max ?Mx" + let ?b = "Min ?xM" + have MxS: "?Mx \<subseteq> S" by blast + hence fMx: "finite ?Mx" using fS finite_subset by auto + from lx linS have linMx: "l \<in> ?Mx" by blast + hence Mxne: "?Mx \<noteq> {}" by blast + have xMS: "?xM \<subseteq> S" by blast + hence fxM: "finite ?xM" using fS finite_subset by auto + from xu uinS have linxM: "u \<in> ?xM" by blast + hence xMne: "?xM \<noteq> {}" by blast + have ax:"?a \<le> x" using Mxne fMx by auto + have xb:"x \<le> ?b" using xMne fxM by auto + have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast + have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast + have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S" + proof(clarsimp) + fix y assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S" + from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by auto + moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by simp} + moreover {assume "y \<in> ?xM" hence "y \<ge> ?b" using xMne fxM by auto with yb have "False" by simp} + ultimately show "False" by blast + qed + from ainS binS noy ax xb px show ?thesis by blast +qed + +lemma finite_set_intervals2: + assumes px: "P (x::real)" and lx: "l \<le> x" and xu: "x \<le> u" and linS: "l\<in> S" + and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" + shows "(\<exists> s\<in> S. P s) \<or> (\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a < x \<and> x < b \<and> P x)" +proof- + from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su] + obtain a and b where + as: "a\<in> S" and bs: "b\<in> S" and noS:"\<forall>y. a < y \<and> y < b \<longrightarrow> y \<notin> S" + and axb: "a \<le> x \<and> x \<le> b \<and> P x" by auto + from axb have "x= a \<or> x= b \<or> (a < x \<and> x < b)" by auto + thus ?thesis using px as bs noS by blast +qed + +lemma rinf_U: + assumes fU: "finite U" + and lin_dense: "\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P x + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P y )" + and nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<le> x \<and> x \<le> u')" + and nmi: "\<not> MP" and npi: "\<not> PP" and ex: "\<exists> x. P (x::real)" + shows "\<exists> u\<in> U. \<exists> u' \<in> U. P ((u + u') / 2)" +proof- + from ex obtain x where px: "P x" by blast + from px nmi npi nmpiU have "\<exists> u\<in> U. \<exists> u' \<in> U. u \<le> x \<and> x \<le> u'" by auto + then obtain u and u' where uU:"u\<in> U" and uU': "u' \<in> U" and ux:"u \<le> x" and xu':"x \<le> u'" by auto + from uU have Une: "U \<noteq> {}" by auto + let ?l = "Min U" + let ?u = "Max U" + have linM: "?l \<in> U" using fU Une by simp + have uinM: "?u \<in> U" using fU Une by simp + have lM: "\<forall> t\<in> U. ?l \<le> t" using Une fU by auto + have Mu: "\<forall> t\<in> U. t \<le> ?u" using Une fU by auto + have "?l \<le> u" using uU Une lM by auto hence lx: "?l \<le> x" using ux by simp + have "u' \<le> ?u" using uU' Une Mu by simp hence xu: "x \<le> ?u" using xu' by simp + from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu] + have "(\<exists> s\<in> U. P s) \<or> + (\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> U) \<and> t1 < x \<and> x < t2 \<and> P x)" . + moreover { fix u assume um: "u\<in>U" and pu: "P u" + have "(u + u) / 2 = u" by auto + with um pu have "P ((u + u) / 2)" by simp + with um have ?thesis by blast} + moreover{ + assume "\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> U) \<and> t1 < x \<and> x < t2 \<and> P x" + then obtain t1 and t2 where t1M: "t1 \<in> U" and t2M: "t2\<in> U" + and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> U" and t1x: "t1 < x" and xt2: "x < t2" and px: "P x" + by blast + from t1x xt2 have t1t2: "t1 < t2" by simp + let ?u = "(t1 + t2) / 2" + from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto + from lin_dense[rule_format, OF] noM t1x xt2 px t1lu ut2 have "P ?u" by blast + with t1M t2M have ?thesis by blast} + ultimately show ?thesis by blast + qed + +theorem fr_eq: + assumes fU: "finite U" + and lin_dense: "\<forall>x l u. (\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> U) \<and> l< x \<and> x < u \<and> P x + \<longrightarrow> (\<forall> y. l < y \<and> y < u \<longrightarrow> P y )" + and nmibnd: "\<forall>x. \<not> MP \<and> P (x::real) \<longrightarrow> (\<exists> u\<in> U. u \<le> x)" + and npibnd: "\<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<ge> x)" + and mi: "\<exists>z. \<forall>x<z. P x = MP" and pi: "\<exists>z. \<forall>x>z. P x = PP" + shows "(\<exists> x. P (x::real)) = (MP \<or> PP \<or> (\<exists> u \<in> U. \<exists> u'\<in> U. P ((u + u') / 2)))" + (is "_ = (_ \<or> _ \<or> ?F)" is "?E = ?D") +proof + assume px: "\<exists> x. P x" + have "MP \<or> PP \<or> (\<not> MP \<and> \<not> PP)" by blast + moreover {assume "MP \<or> PP" hence "?D" by blast} + moreover {assume nmi: "\<not> MP" and npi: "\<not> PP" + from npmibnd[OF nmibnd npibnd] + have nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<le> x \<and> x \<le> u')" . + from rinf_U[OF fU lin_dense nmpiU nmi npi px] have "?D" by blast} + ultimately show "?D" by blast +next + assume "?D" + moreover {assume m:"MP" from minf_ex[OF mi m] have "?E" .} + moreover {assume p: "PP" from pinf_ex[OF pi p] have "?E" . } + moreover {assume f:"?F" hence "?E" by blast} + ultimately show "?E" by blast +qed + +lemma fr_simps: + "(True | P) = True" "(P | True) = True" "(True & P) = P" "(P & True) = P" + "(P & P) = P" "(P & (P & P')) = (P & P')" "(P & (P | P')) = P" "(False | P) = P" + "(P | False) = P" "(False & P) = False" "(P & False) = False" "(P | P) = P" + "(P | (P | P')) = (P | P')" "(P | (P & P')) = P" "(~ True) = False" "(~ False) = True" + "(x::real) \<le> x" "(\<exists> u\<in> {}. Q u) = False" + "(\<exists> u\<in> (insert (x::real) U). \<exists>u'\<in> (insert x U). R ((u+u') / 2)) = + ((R x) \<or> (\<exists>u\<in>U. R((x+u) / 2))\<or> (\<exists> u\<in> U. \<exists> u'\<in> U. R ((u + u') /2)))" + "(\<exists> u\<in> (insert (x::real) U). R u) = (R x \<or> (\<exists> u\<in> U. R u))" + "Q' (((t::real) + t)/2) = Q' t" +by (auto simp add: add_ac) + +lemma fr_prepqelim: + "(\<exists> x. True) = True" "(\<exists> x. False) = False" "(ALL x. A x) = (~ (EX x. ~ (A x)))" + "(P \<longrightarrow> Q) = ((\<not> P) \<or> Q)" "(\<not> (P \<longrightarrow> Q)) = (P \<and> (\<not> Q))" "(\<not> (P = Q)) = ((\<not> P) = Q)" + "(\<not> (P \<and> Q)) = ((\<not> P) \<or> (\<not> Q))" "(\<not> (P \<or> Q)) = ((\<not> P) \<and> (\<not> Q))" +by auto + (* Lemmas for the normalization of Expressions *) +lemma nadd_cong: + assumes m: "m'*m = l" and n: "n'*n = (l::real)" + and mz: "m \<noteq> 0" and nz: "n \<noteq> 0" and lz: "l \<noteq> 0" + and ad: "(m'*t + n'*s) = t'" + shows "t/m + s/n = (t' / l)" +proof- + from lz m n have mz': "m'\<noteq>0" and nz':"n' \<noteq> 0" by auto + have "t' / l = (m'*t + n'*s) / l" using ad by simp + also have "\<dots> = (m'*t) / l + (n'*s) / l" by (simp add: add_divide_distrib) + also have "\<dots> = (m'*t) /(m'*m) + (n'*s) /(n'*n)" using m n by simp + also have "\<dots> = t/m + s/n" using mz nz mz' nz' by simp + finally show ?thesis by simp +qed + +lemma nadd_cong_same: "\<lbrakk> (n::real) = m ; t+s = t'\<rbrakk> \<Longrightarrow> t/n + s/m = t'/n" + by (simp add: add_divide_distrib[symmetric]) +lemma plus_cong: "\<lbrakk>t = t'; s = s'; t' + s' = r\<rbrakk> \<Longrightarrow> t+s = r" + by simp +lemma diff_cong: "\<lbrakk>t = t'; s = s'; t' - s' = r\<rbrakk> \<Longrightarrow> t-s = r" + by simp +lemma mult_cong2: "\<lbrakk>(t ::real) = t'; c*t' = r\<rbrakk> \<Longrightarrow> t*c = r" + by (simp add: mult_ac) +lemma mult_cong: "\<lbrakk>(t ::real) = t'; c*t' = r\<rbrakk> \<Longrightarrow> c*t = r" + by simp +lemma divide_cong: "\<lbrakk> (t::real) = t' ; t'/n = r\<rbrakk> \<Longrightarrow> t/n = r" + by simp +lemma naddh_cong_ts: "\<lbrakk>t1 + (s::real) = t'\<rbrakk> \<Longrightarrow> (x + t1) + s = x + t'" by simp +lemma naddh_cong_st: "\<lbrakk>(t::real) + s = t'\<rbrakk> \<Longrightarrow> t+ (x + s) = x + t'" by simp +lemma naddh_cong_same: "\<lbrakk>(c1::real) + c2 = c ; t1 + t2 = t\<rbrakk> \<Longrightarrow> (c1*x + t1) + (c2*x+t2) = c*x + t" + by (simp add: ring_eq_simps,simp only: ring_distrib(2)[symmetric]) +lemma naddh_cong_same0: "\<lbrakk>(c1::real) + c2 = 0 ; t1 + t2 = t\<rbrakk> \<Longrightarrow> (c1*x + t1) + (c2*x+t2) = t" + by (simp add: ring_eq_simps,simp only: ring_distrib(2)[symmetric]) simp +lemma ncmul_congh: "\<lbrakk> c*c' = (k::real) ; c*t = t'\<rbrakk> \<Longrightarrow> c*(c'*x + t) = k*x + t'" + by (simp add: ring_eq_simps) +lemma ncmul_cong: "\<lbrakk> c / n = c'/n' ; c'*t = (t'::real)\<rbrakk> \<Longrightarrow> c* (t/n) = t'/n'" +proof- + assume "c / n = c'/n'" and "c'*t = (t'::real)" + have "\<lbrakk> c' / n' = c/n ; (t'::real) = c'*t\<rbrakk> \<Longrightarrow> c* (t/n) = t'/n'" + by (simp add: divide_inverse ring_eq_simps) thus ?thesis using prems by simp +qed + +lemma nneg_cong: "(-1 ::real)*t = t' \<Longrightarrow> - t = t'" by simp +lemma uminus_cong: "\<lbrakk> t = t' ; - t' = r\<rbrakk> \<Longrightarrow> - t = r" by simp +lemma nsub_cong: "\<lbrakk>- (s::real) = s'; t + s' = t'\<rbrakk> \<Longrightarrow> t - s = t'" by simp +lemma ndivide_cong: "m*n = (m'::real) \<Longrightarrow> (t/m) / n = t / m'" by simp +lemma normalizeh_var: "(x::real) = (1*x + 0) / 1" by simp +lemma nrefl: "(x::real) = x/1" by simp + + (* cong rules for atoms normalization *) + (* the < -case *) +lemma normalize_ltxpos_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cnp: "n/c > 0" and rr': "r/c + r'/c' = 0" + shows "(s < t) = (x < r'/c')" +proof- + from cnp have cnz: "c \<noteq> 0" by auto + from cnp have nnz: "n\<noteq>0" by auto + from rr' have rr'': "-(r/c) = r'/c'" by simp + have "s < t = (s - t < 0)" by simp + also have "\<dots> = ((c*x+r) / n < 0)" using smt by simp + also have "\<dots> = ((c/n)*x + r/n < 0)" by (simp add: add_divide_distrib) + also have "\<dots> = ( (n/c)*((c/n)*x + r/n) < (n/c)*0)" + using cnp mult_less_cancel_left[where c="(n/c)" and b="0"] by simp + also have "\<dots> = (x + r/c < 0)" + using cnz nnz by (simp add: add_divide_distrib ring_eq_simps) + also have "\<dots> = (x < - (r/c))" by auto + finally show ?thesis using rr'' by simp +qed + +lemma normalize_ltxneg_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cnp: "n/c < 0" and rr': "r/c + r'/c' = 0" + shows "(s < t) = (x > r'/c')" +proof- + from cnp have cnz: "c \<noteq> 0" by auto + from cnp have nnz: "n\<noteq>0" by auto + from cnp have cnp': "\<not> (n/c > 0)" by simp + from rr' have rr'': "-(r/c) = r'/c'" by simp + have "s < t = (s - t < 0)" by simp + also have "\<dots> = ((c*x+r) / n < 0)" using smt by simp + also have "\<dots> = ((c/n)*x + r/n < 0)" by (simp add: add_divide_distrib) + also have "\<dots> = ( (n/c)*((c/n)*x + r/n) > 0)" + using zero_less_mult_iff[where a="n/c" and b="(c/n)*x + r/n", simplified cnp cnp' simp_thms] + by simp + also have "\<dots> = (x + r/c > 0)" + using cnz nnz by (simp add: add_divide_distrib ring_eq_simps) + also have "\<dots> = (x > - (r/c))" by auto + finally show ?thesis using rr'' by simp +qed +lemma normalize_ltground_cong: "\<lbrakk> s -t = (r::real) ; r < 0 = P\<rbrakk> \<Longrightarrow> s < t = P" by auto +lemma normalize_ltnoxpos_cong: + assumes st: "s - t = (r::real) / n" and mp: "n > 0" + shows "s < t = (r <0)" +proof- + have "s < t = (s - t < 0)" by simp + also have "\<dots> = (r / n < 0)" using st by simp + also have "\<dots> = (n* (r/n) < 0)" using mult_less_0_iff[where a="n" and b="r/n"] mp by simp + finally show ?thesis using mp by auto +qed + +lemma normalize_ltnoxneg_cong: + assumes st: "s - t = (r::real) / n" and mp: "n < 0" + shows "s < t = (r > 0)" +proof- + have "s < t = (s - t < 0)" by simp + also have "\<dots> = (r / n < 0)" using st by simp + also have "\<dots> = (n* (r/n) > 0)" using zero_less_mult_iff[where a="n" and b="r/n"] mp by simp + finally show ?thesis using mp by auto +qed + + (* the <= -case *) +lemma normalize_lexpos_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cnp: "n/c > 0" and rr': "r/c + r'/c' = 0" + shows "(s \<le> t) = (x \<le> r'/c')" +proof- + from cnp have cnz: "c \<noteq> 0" by auto + from cnp have nnz: "n\<noteq>0" by auto + from rr' have rr'': "-(r/c) = r'/c'" by simp + have "s \<le> t = (s - t \<le> 0)" by simp + also have "\<dots> = ((c*x+r) / n \<le> 0)" using smt by simp + also have "\<dots> = ((c/n)*x + r/n \<le> 0)" by (simp add: add_divide_distrib) + also have "\<dots> = ( (n/c)*((c/n)*x + r/n) \<le> (n/c)*0)" + using cnp mult_le_cancel_left[where c="(n/c)" and b="0"] by simp + also have "\<dots> = (x + r/c \<le> 0)" + using cnz nnz by (simp add: add_divide_distrib ring_eq_simps) + also have "\<dots> = (x \<le> - (r/c))" by auto + finally show ?thesis using rr'' by simp +qed + +lemma normalize_lexneg_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cnp: "n/c < 0" and rr': "r/c + r'/c' = 0" + shows "(s \<le> t) = (x \<ge> r'/c')" +proof- + from cnp have cnz: "c \<noteq> 0" by auto + from cnp have nnz: "n\<noteq>0" by auto + from cnp have cnp': "\<not> (n/c \<ge> 0) \<and> n/c \<le> 0" by simp + from rr' have rr'': "-(r/c) = r'/c'" by simp + have "s \<le> t = (s - t \<le> 0)" by simp + also have "\<dots> = ((c*x+r) / n \<le> 0)" using smt by simp + also have "\<dots> = ((c/n)*x + r/n \<le> 0)" by (simp add: add_divide_distrib) + also have "\<dots> = ( (n/c)*((c/n)*x + r/n) \<ge> 0)" + using zero_le_mult_iff[where a="n/c" and b="(c/n)*x + r/n", simplified cnp' simp_thms] + by simp + also have "\<dots> = (x + r/c \<ge> 0)" + using cnz nnz by (simp add: add_divide_distrib ring_eq_simps) + also have "\<dots> = (x \<ge> - (r/c))" by auto + finally show ?thesis using rr'' by simp +qed +lemma normalize_leground_cong: "\<lbrakk> s -t = (r::real) ; r \<le> 0 = P\<rbrakk> \<Longrightarrow> s \<le> t = P" by auto +lemma normalize_lenoxpos_cong: + assumes st: "s - t = (r::real) / n" and mp: "n > 0" + shows "s \<le> t = (r \<le>0)" +proof- + have "s \<le> t = (s - t \<le> 0)" by simp + also have "\<dots> = (r / n \<le> 0)" using st by simp + also have "\<dots> = (n* (r/n) \<le> 0)" using mult_le_0_iff[where a="n" and b="r/n"] mp by simp + finally show ?thesis using mp by auto +qed + +lemma normalize_lenoxneg_cong: + assumes st: "s - t = (r::real) / n" and mp: "n < 0" + shows "s \<le> t = (r \<ge> 0)" +proof- + have "s \<le> t = (s - t \<le> 0)" by simp + also have "\<dots> = (r / n \<le> 0)" using st by simp + also have "\<dots> = (n* (r/n) \<ge> 0)" using zero_le_mult_iff[where a="n" and b="r/n"] mp by simp + finally show ?thesis using mp by auto +qed + (* The = -case *) + +lemma normalize_eqxpos_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cp: "c > 0" and nnz: "n \<noteq> 0" and rr': "r+ r' = 0" + shows "(s = t) = (x = r'/c)" +proof- + from rr' have rr'': "-r = r'" by simp + have "(s = t) = (s - t = 0)" by simp + also have "\<dots> = ((c*x + r) /n = 0)" using smt by simp + also have "\<dots> = (c*x = -r)" using nnz by auto + also have "\<dots> = (x = (-r) / c)" using cp eq_divide_eq[where c="c" and a="x" and b="-r"] + by (simp add: mult_ac) + finally show ?thesis using rr'' by simp +qed + +lemma normalize_eqxneg_cong: assumes smt: "s - t = (c*x+r) / (n::real)" + and cp: "c < 0" and nnz: "n \<noteq> 0" and cc': "c+ c' = 0" + shows "(s = t) = (x = r/c')" +proof- + from cc' have cc'': "-c = c'" by simp + have "(s = t) = (s - t = 0)" by simp + also have "\<dots> = ((c*x + r) /n = 0)" using smt by simp + also have "\<dots> = ((-c)*x = r)" using nnz by auto + also have "\<dots> = (x = r / (-c))" using cp eq_divide_eq[where c="-c" and a="x" and b="r"] + by (simp add: mult_ac) + finally show ?thesis using cc'' by simp +qed + +lemma normalize_eqnox_cong: "\<lbrakk>s - t = (r::real) / n;n \<noteq> 0\<rbrakk> \<Longrightarrow> s = t = (r = 0)" by auto + +lemma normalize_eqground_cong: "\<lbrakk>s - t =(r::real)/n;n \<noteq> 0;(r = 0) = P \<rbrakk> \<Longrightarrow> s=t = P" by auto + +lemma trivial_sum_of_opposites: "-t = t' \<Longrightarrow> t + t' = (0::real)" by simp +lemma sum_of_opposite_denoms: + assumes cc': "(c::real) + c' = 0" shows "r/c + r/c' = 0" +proof- + from cc' have "c' = -c" by simp + thus ?thesis by simp +qed +lemma sum_of_same_denoms: " -r = (r'::real) \<Longrightarrow> r/c + r'/c = 0" by auto +lemma normalize_not_lt: "t \<le> (s::real) = P \<Longrightarrow> (\<not> s<t) = P" by auto +lemma normalize_not_le: "t < (s::real) = P \<Longrightarrow> (\<not> s\<le>t) = P" by auto +lemma normalize_not_eq: "\<lbrakk> t = (s::real) = P ; (~P) = P' \<rbrakk> \<Longrightarrow> (s\<noteq>t) = P'" by auto +lemma ex_eq_cong: "(!! x. A x = B x) \<Longrightarrow> ((\<exists>x. A x) = (\<exists> x. B x))" by blast + +use "ferrante_rackoff_proof.ML" +use "ferrante_rackoff.ML" +setup "Ferrante_Rackoff.setup" + +end
--- a/src/HOL/Real/Real.thy Tue May 16 09:19:12 2006 +0200 +++ b/src/HOL/Real/Real.thy Tue May 16 13:01:22 2006 +0200 @@ -1,4 +1,7 @@ + +(* $Id$ *) + theory Real -imports ContNotDenum RealPow +imports ContNotDenum Ferrante_Rackoff begin -end \ No newline at end of file +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/ferrante_rackoff.ML Tue May 16 13:01:22 2006 +0200 @@ -0,0 +1,129 @@ +(* + ID: $Id$ + Author: Amine Chaieb, TU Muenchen + +Ferrante and Rackoff Algorithm. +*) + +structure Ferrante_Rackoff: +sig + val trace : bool ref + val ferrack_tac : bool -> int -> tactic + val setup : theory -> theory +end = +struct + +val trace = ref false; +fun trace_msg s = if !trace then tracing s else (); + +val context_ss = simpset_of (the_context ()); + +val nT = HOLogic.natT; +val binarith = map thm + ["Pls_0_eq", "Min_1_eq", + "bin_pred_Pls","bin_pred_Min","bin_pred_1","bin_pred_0", + "bin_succ_Pls", "bin_succ_Min", "bin_succ_1", "bin_succ_0", + "bin_add_Pls", "bin_add_Min", "bin_add_BIT_0", "bin_add_BIT_10", + "bin_add_BIT_11", "bin_minus_Pls", "bin_minus_Min", "bin_minus_1", + "bin_minus_0", "bin_mult_Pls", "bin_mult_Min", "bin_mult_1", "bin_mult_0", + "bin_add_Pls_right", "bin_add_Min_right"]; + val intarithrel = + (map thm ["int_eq_number_of_eq","int_neg_number_of_BIT", + "int_le_number_of_eq","int_iszero_number_of_0", + "int_less_number_of_eq_neg"]) @ + (map (fn s => thm s RS thm "lift_bool") + ["int_iszero_number_of_Pls","int_iszero_number_of_1", + "int_neg_number_of_Min"])@ + (map (fn s => thm s RS thm "nlift_bool") + ["int_nonzero_number_of_Min","int_not_neg_number_of_Pls"]); + +val intarith = map thm ["int_number_of_add_sym", "int_number_of_minus_sym", + "int_number_of_diff_sym", "int_number_of_mult_sym"]; +val natarith = map thm ["add_nat_number_of", "diff_nat_number_of", + "mult_nat_number_of", "eq_nat_number_of", + "less_nat_number_of"] +val powerarith = + (map thm ["nat_number_of", "zpower_number_of_even", + "zpower_Pls", "zpower_Min"]) @ + [(Tactic.simplify true [thm "zero_eq_Numeral0_nring", + thm "one_eq_Numeral1_nring"] + (thm "zpower_number_of_odd"))] + +val comp_arith = binarith @ intarith @ intarithrel @ natarith + @ powerarith @[thm"not_false_eq_true", thm "not_true_eq_false"]; + +fun prepare_for_linr sg q fm = + let + val ps = Logic.strip_params fm + val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm) + val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm) + fun mk_all ((s, T), (P,n)) = + if 0 mem loose_bnos P then + (HOLogic.all_const T $ Abs (s, T, P), n) + else (incr_boundvars ~1 P, n-1) + fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t; + val rhs = hs +(* val (rhs,irhs) = List.partition (relevant (rev ps)) hs *) + val np = length ps + val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n))) + (foldr HOLogic.mk_imp c rhs, np) ps + val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT) + (term_frees fm' @ term_vars fm'); + val fm2 = foldr mk_all2 fm' vs + in (fm2, np + length vs, length rhs) end; + +(*Object quantifier to meta --*) +fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ; + +(* object implication to meta---*) +fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp; + + +fun ferrack_tac q i = ObjectLogic.atomize_tac i THEN (fn st => + let + val g = List.nth (prems_of st, i - 1) + val sg = sign_of_thm st + (* Transform the term*) + val (t,np,nh) = prepare_for_linr sg q g + (* Some simpsets for dealing with mod div abs and nat*) + val simpset0 = HOL_basic_ss addsimps comp_arith addsplits [split_min, split_max] + (* simp rules for elimination of abs *) + val simpset3 = HOL_basic_ss addsplits [abs_split] + val ct = cterm_of sg (HOLogic.mk_Trueprop t) + (* Theorem for the nat --> int transformation *) + val pre_thm = Seq.hd (EVERY + [simp_tac simpset0 1, + TRY (simp_tac simpset3 1), TRY (simp_tac context_ss 1)] + (trivial ct)) + fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i) + (* The result of the quantifier elimination *) + val (th, tac) = case (prop_of pre_thm) of + Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ => + let val pth = Ferrante_Rackoff_Proof.qelim (cterm_of sg (Pattern.eta_long [] t1)) + in + (trace_msg ("calling procedure with term:\n" ^ + Sign.string_of_term sg t1); + ((pth RS iffD2) RS pre_thm, + assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))) + end + | _ => (pre_thm, assm_tac i) + in (rtac (((mp_step nh) o (spec_step np)) th) i + THEN tac) st + end handle Subscript => no_tac st | Ferrante_Rackoff_Proof.FAILURE _ => no_tac st); + +fun ferrack_args meth = + let val parse_flag = + Args.$$$ "no_quantify" >> (K (K false)); + in + Method.simple_args + (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >> + curry (Library.foldl op |>) true) + (fn q => fn _ => meth q 1) + end; + +val setup = + Method.add_method ("ferrack", + ferrack_args (Method.SIMPLE_METHOD oo ferrack_tac), + "LCF-proof-producing decision procedure for linear real arithmetic"); + +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/ferrante_rackoff_proof.ML Tue May 16 13:01:22 2006 +0200 @@ -0,0 +1,818 @@ +(* + ID: $Id$ + Author: Amine Chaieb, TU Muenchen + +LCF proof synthesis for Ferrante and Rackoff. +*) + +structure Ferrante_Rackoff_Proof: +sig + val qelim: cterm -> thm + exception FAILURE of string +end = +struct + + (* Some certified types *) +val cbT = ctyp_of (the_context()) HOLogic.boolT; +val rT = Type("RealDef.real",[]); +val crT = ctyp_of (the_context()) (Type("RealDef.real",[])); + (* Normalization*) + + + (* Computation of uset *) +fun uset x fm = + case fm of + Const("op &",_)$p$q => (uset x p) union (uset x q) + | Const("op |",_)$p$q => (uset x p) union (uset x q) + | Const("Orderings.less",_)$s$t => if s=x then [t] + else if t = x then [s] + else [] + | Const("Orderings.less_eq",_)$s$t => if s=x then [t] + else if t = x then [s] + else [] + | Const("op =",_)$s$t => if s=x then [t] + else [] + | Const("Not",_)$ (Const("op =",_)$s$t) => if s=x then [t] + else [] + | _ => []; +val rsT = Type("set",[rT]); +fun holrealset [] = Const("{}",rsT) + | holrealset (x::xs) = Const("insert",[rT,rsT] ---> rsT)$x$(holrealset xs); +fun prove_bysimp thy ss t = Goal.prove thy [] [] + (HOLogic.mk_Trueprop t) (fn _ => simp_tac ss 1); + +fun inusetthms sg x fm = + let val U = uset x fm + val hU = holrealset U + fun inC T = Const("op :",[T,Type("set",[T])] ---> HOLogic.boolT); + val ss = simpset_of sg + fun proveinU t = prove_bysimp sg ss ((inC rT)$t$hU) + val uf = prove_bysimp sg ss ((inC rsT)$hU$Const("Finite_Set.Finites",Type("set",[rsT]))) + in (U,cterm_of sg hU,map proveinU U,uf) + end; + + (* Theorems for minus/plusinfinity *) +val [minf_lt,minf_gt,minf_le,minf_ge,minf_eq,minf_neq,minf_fm,minf_conj,minf_disj] = thms"minf"; +val [pinf_lt,pinf_gt,pinf_le,pinf_ge,pinf_eq,pinf_neq,pinf_fm,pinf_conj,pinf_disj] = thms"pinf"; + (* Theorems for boundedness from below/above *) +val [nmilbnd_lt,nmilbnd_gt,nmilbnd_le,nmilbnd_ge,nmilbnd_eq,nmilbnd_neq,nmilbnd_fm,nmilbnd_conj,nmilbnd_disj] = thms"nmilbnd"; +val [npiubnd_lt,npiubnd_gt,npiubnd_le,npiubnd_ge,npiubnd_eq,npiubnd_neq,npiubnd_fm,npiubnd_conj,npiubnd_disj] = thms"npiubnd"; + + (* Theorems for no changes over smallest intervals in U *) +val lin_dense_lt = thm "lin_dense_lt"; +val lin_dense_le = thm "lin_dense_le"; +val lin_dense_gt = thm "lin_dense_gt"; +val lin_dense_ge = thm "lin_dense_ge"; +val lin_dense_eq = thm "lin_dense_eq"; +val lin_dense_neq = thm "lin_dense_neq"; +val lin_dense_conj = thm "lin_dense_conj"; +val lin_dense_disj = thm "lin_dense_disj"; +val lin_dense_fm = thm "lin_dense_fm"; +val fr_eq = thm "fr_eq"; +val fr_simps = thms "fr_simps"; + +fun dest5 [] = ([],[],[],[],[]) + | dest5 ((x,y,z,w,v)::xs) = + let val (x',y',z',w',v') = dest5 xs + in (x::x',y::y',z::z',w::w',v::v') end ; + +fun dest2 [] = ([],[]) + | dest2 ((x,y)::xs) = let val (x',y') = dest2 xs + in (x::x',y::y') end ; +fun myfwd (th1,th2,th3,th4,th5) xs = + let val (ths1,ths2,ths3,ths4,ths5) = dest5 xs + in (ths1 MRS th1,ths2 MRS th2,ths3 MRS th3,ths4 MRS th4, ths5 MRS th5) + end; + +fun myfwd2 (th1,th2) xs = + let val (ths1,ths2) = dest2 xs + in (ths1 MRS th1,ths2 MRS th2) + end; + +fun decomp_mpinf sg x (U,CU,uths) fm = + let val cx = cterm_of sg x in + (case fm of + Const("op &",_)$p$q => + ([p,q],myfwd (minf_conj,pinf_conj, nmilbnd_conj, npiubnd_conj,lin_dense_conj)) + | Const("op |",_)$p$q => + ([p,q],myfwd (minf_disj,pinf_disj, nmilbnd_disj,npiubnd_disj,lin_dense_disj)) + | Const("Orderings.less",_)$s$t => + if s= x then + let val ct = cterm_of sg t + val tinU = nth uths (find_index (fn a => a=t) U) + val mith = instantiate' [] [SOME ct] minf_lt + val pith = instantiate' [] [SOME ct] pinf_lt + val nmilth = tinU RS nmilbnd_lt + val npiuth = tinU RS npiubnd_lt + val lindth = tinU RS lin_dense_lt + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + else if t = x then + let val ct = cterm_of sg s + val tinU = nth uths (find_index (fn a => a=s) U) + val mith = instantiate' [] [SOME ct] minf_gt + val pith = instantiate' [] [SOME ct] pinf_gt + val nmilth = tinU RS nmilbnd_gt + val npiuth = tinU RS npiubnd_gt + val lindth = tinU RS lin_dense_gt + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + + else + let val cfm = cterm_of sg fm + val mith = instantiate' [] [SOME cfm] minf_fm + val pith = instantiate' [] [SOME cfm] pinf_fm + val nmilth = instantiate' [] [SOME cfm, SOME CU] nmilbnd_fm + val npiuth = instantiate' [] [SOME cfm, SOME CU] npiubnd_fm + val lindth = instantiate' [] [SOME CU, SOME cfm] lin_dense_fm + in ([], myfwd (mith,pith,nmilth,npiuth,lindth)) + end + | Const("Orderings.less_eq",_)$s$t => + if s= x then + let val ct = cterm_of sg t + val tinU = nth uths (find_index (fn a => a=t) U) + val mith = instantiate' [] [SOME ct] minf_le + val pith = instantiate' [] [SOME ct] pinf_le + val nmilth = tinU RS nmilbnd_le + val npiuth = tinU RS npiubnd_le + val lindth = tinU RS lin_dense_le + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + else if t = x then + let val ct = cterm_of sg s + val tinU = nth uths (find_index (fn a => a=s) U) + val mith = instantiate' [] [SOME ct] minf_ge + val pith = instantiate' [] [SOME ct] pinf_ge + val nmilth = tinU RS nmilbnd_ge + val npiuth = tinU RS npiubnd_ge + val lindth = tinU RS lin_dense_ge + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + + else + let val cfm = cterm_of sg fm + val mith = instantiate' [] [SOME cfm] minf_fm + val pith = instantiate' [] [SOME cfm] pinf_fm + val nmilth = instantiate' [] [SOME cfm, SOME CU] nmilbnd_fm + val npiuth = instantiate' [] [SOME cfm, SOME CU] npiubnd_fm + val lindth = instantiate' [] [SOME CU, SOME cfm] lin_dense_fm + in ([], myfwd (mith,pith,nmilth,npiuth,lindth)) + end + | Const("op =",_)$s$t => + if s= x then + let val ct = cterm_of sg t + val tinU = nth uths (find_index (fn a => a=t) U) + val mith = instantiate' [] [SOME ct] minf_eq + val pith = instantiate' [] [SOME ct] pinf_eq + val nmilth = tinU RS nmilbnd_eq + val npiuth = tinU RS npiubnd_eq + val lindth = tinU RS lin_dense_eq + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + else + let val cfm = cterm_of sg fm + val mith = instantiate' [] [SOME cfm] minf_fm + val pith = instantiate' [] [SOME cfm] pinf_fm + val nmilth = instantiate' [] [SOME cfm, SOME CU] nmilbnd_fm + val npiuth = instantiate' [] [SOME cfm, SOME CU] npiubnd_fm + val lindth = instantiate' [] [SOME CU, SOME cfm] lin_dense_fm + in ([], myfwd (mith,pith,nmilth,npiuth,lindth)) + end + + | Const("Not",_)$(Const("op =",_)$s$t) => + if s= x then + let val ct = cterm_of sg t + val tinU = nth uths (find_index (fn a => a=t) U) + val mith = instantiate' [] [SOME ct] minf_neq + val pith = instantiate' [] [SOME ct] pinf_neq + val nmilth = tinU RS nmilbnd_neq + val npiuth = tinU RS npiubnd_neq + val lindth = tinU RS lin_dense_neq + in ([],myfwd (mith,pith,nmilth,npiuth,lindth)) + end + else + let val cfm = cterm_of sg fm + val mith = instantiate' [] [SOME cfm] minf_fm + val pith = instantiate' [] [SOME cfm] pinf_fm + val nmilth = instantiate' [] [SOME cfm, SOME CU] nmilbnd_fm + val npiuth = instantiate' [] [SOME cfm, SOME CU] npiubnd_fm + val lindth = instantiate' [] [SOME CU, SOME cfm] lin_dense_fm + in ([], myfwd (mith,pith,nmilth,npiuth,lindth)) + end + | _ => let val cfm = cterm_of sg fm + val mith = instantiate' [] [SOME cfm] minf_fm + val pith = instantiate' [] [SOME cfm] pinf_fm + val nmilth = instantiate' [] [SOME cfm, SOME CU] nmilbnd_fm + val npiuth = instantiate' [] [SOME cfm, SOME CU] npiubnd_fm + val lindth = instantiate' [] [SOME CU, SOME cfm] lin_dense_fm + in ([], myfwd (mith,pith,nmilth,npiuth,lindth)) + end) + end; + +fun ferrack_eq thy p = + case p of + Const("Ex",_)$Abs(x1,T,p1) => + let val (xn,fm) = variant_abs(x1,T,p1) + val x = Free(xn,T) + val (u,cu,uths,uf) = inusetthms thy x fm + val (mi,pi,nmi,npi,lind) = divide_and_conquer (decomp_mpinf thy x (u,cu,uths)) fm + val frth = [uf,lind,nmi,npi,mi,pi] MRS fr_eq + val (cTp,ceq) = Thm.dest_comb (cprop_of frth) + val qth = (Simplifier.rewrite (HOL_basic_ss addsimps fr_simps addsimps [refl]) + (snd (Thm.dest_comb ceq))) RS meta_eq_to_obj_eq + in [frth,qth] MRS trans + end + | _ => instantiate' [SOME cbT] [SOME (cterm_of thy p)] refl; + +(* Code for normalization of terms and Formulae *) + (* For NNF reuse the CooperProof methods*) + (*FIXME:: This is copied from cooper_proof.ML *) +val FWD = fn th => fn ths => ths MRS th; + +val qe_Not = thm "qe_Not"; +val qe_conjI = thm "qe_conjI"; +val qe_disjI = thm "qe_disjI"; +val qe_impI = thm "qe_impI"; +val qe_eqI = thm "qe_eqI"; +val qe_exI = thm "qe_exI"; +val qe_ALLI = thm "qe_ALLI"; + +val nnf_nn = thm "nnf_nn"; +val nnf_im = thm "nnf_im"; +val nnf_eq = thm "nnf_eq"; +val nnf_sdj = thm "nnf_sdj"; +val nnf_ncj = thm "nnf_ncj"; +val nnf_nim = thm "nnf_nim"; +val nnf_neq = thm "nnf_neq"; +val nnf_ndj = thm "nnf_ndj"; + +fun decomp_cnnf lfnp P = + case P of + Const ("op &",_) $ p $q => ([p,q] , FWD qe_conjI ) + | Const ("op |",_) $ p $q => ([p,q] , FWD qe_disjI) + | Const ("Not",_) $ (Const("Not",_) $ p) => ([p], FWD nnf_nn) + | Const("Not",_) $ (Const(opn,T) $ p $ q) => + if opn = "op |" + then + (case (p,q) of + (A as (Const ("op &",_) $ r $ s),B as (Const ("op &",_) $ r1 $ t)) => + if r1 = CooperDec.negate r + then ([r,HOLogic.Not$s,r1,HOLogic.Not$t], + fn [th1_1,th1_2,th2_1,th2_2] => + [[th1_1,th1_1] MRS qe_conjI,[th2_1,th2_2] MRS qe_conjI] MRS nnf_sdj) + + else ([HOLogic.Not $ p,HOLogic.Not $ q ], FWD nnf_ndj) + | (_,_) => ([HOLogic.Not $ p,HOLogic.Not $ q ], FWD nnf_ndj)) + else ( + case (opn,T) of + ("op &",_) => ([HOLogic.Not $ p,HOLogic.Not $ q ], FWD nnf_ncj ) + | ("op -->",_) => ([p,HOLogic.Not $ q ], FWD nnf_nim ) + | ("op =",Type ("fun",[Type ("bool", []),_])) => + ([HOLogic.conj $ p $ (HOLogic.Not $ q),HOLogic.conj $ (HOLogic.Not $ p) $ q], + FWD nnf_neq) + | (_,_) => ([], fn [] => lfnp P)) + | (Const ("op -->",_) $ p $ q) => ([HOLogic.Not$p,q], FWD nnf_im) + | (Const ("op =", Type ("fun",[Type ("bool", []),_])) $ p $ q) => + ([HOLogic.conj $ p $ q,HOLogic.conj $ (HOLogic.Not $ p) $ (HOLogic.Not $ q) ], FWD nnf_eq ) + | _ => ([], fn [] => lfnp P); + +fun nnfp afnp vs p = + let val th = divide_and_conquer (decomp_cnnf (afnp vs)) p + val Pth = (Simplifier.rewrite + (HOL_basic_ss addsimps fr_simps addsimps [refl]) + (snd(Thm.dest_comb(snd(Thm.dest_comb (cprop_of th)))))) + RS meta_eq_to_obj_eq + in [th,Pth] MRS trans + end; + + + (* Normalization of arithmetical expressions *) +val rzero = Const("0",rT); +val rone = Const("1",rT); +fun mk_real i = + case i of + 0 => rzero + | 1 => rone + | _ => (HOLogic.number_of_const rT)$(HOLogic.mk_binum i); + +fun dest_real (Const("0",_)) = 0 + | dest_real (Const("1",_)) = 1 + | dest_real (Const("Numeral.number_of",_)$b) = HOLogic.dest_binum b; + + (* Normal form for terms is: + (c0*x0 + ... + cn*xn + k) / c , where ci!=0 and x0<..<xn ordered according to vs*) + (* functions to prove trivial properties about numbers *) +fun proveq thy n m = prove_bysimp thy (simpset_of thy) (HOLogic.mk_eq(mk_real n,mk_real m)); +fun provenz thy n = + prove_bysimp thy (simpset_of thy) (HOLogic.Not$(HOLogic.mk_eq(mk_real n,rzero))); + +fun proveprod thy m n = + prove_bysimp thy (simpset_of thy) + (HOLogic.mk_eq(HOLogic.mk_binop "HOL.times" (mk_real m,mk_real n),mk_real (m*n))); +fun proveadd thy m n = + prove_bysimp thy (simpset_of thy) + (HOLogic.mk_eq(HOLogic.mk_binop "HOL.plus" (mk_real m,mk_real n),mk_real (m+n))); +fun provediv thy m n = + let val g = gcd (m,n) + val m' = m div g + val n'= n div g + in + (prove_bysimp thy (simpset_of thy) + (HOLogic.mk_eq(HOLogic.mk_binop "HOL.divide" (mk_real m,mk_real n), + HOLogic.mk_binop "HOL.divide" + (mk_real m',mk_real n'))),m') + end; + (* Multiplication of a normal term by a constant *) +val ncmul_congh = thm "ncmul_congh"; +val ncmul_cong = thm "ncmul_cong"; +fun decomp_ncmulh thy c t = + if c = 0 then ([],fn _ => instantiate' [SOME crT] [SOME (cterm_of thy t)] mult_zero_left) else + case t of + Const("HOL.plus",_)$(Const("HOL.times",_)$c'$v)$b => + ([b],FWD (instantiate' [] [NONE, NONE, SOME (cterm_of thy v)] + ((proveprod thy c (dest_real c')) RS ncmul_congh))) + | _ => ([],fn _ => proveprod thy c (dest_real t)); + +fun prove_ncmulh thy c = divide_and_conquer (decomp_ncmulh thy c); + + (* prove_ncmul thy n t n = a theorem : "c*(t/n) = (t'/n')*) +fun prove_ncmul thy c (t,m) = + let val (eq1,c') = provediv thy c m + val tt' = prove_ncmulh thy c' t + in [eq1,tt'] MRS ncmul_cong + end; + + (* prove_nneg returns "-(t/n) = t'/n'" ; normally t'=t and n' = -n*) +val nneg_cong = thm "nneg_cong"; +fun prove_nneg thy (t,m) = (prove_ncmul thy ~1 (t, m)) RS nneg_cong; + +(* Addition of 2 expressions in normal form*) +val naddh_cong_same = thm "naddh_cong_same"; +val naddh_cong_same0 = thm "naddh_cong_same0"; +val naddh_cong_ts = thm "naddh_cong_ts"; +val naddh_cong_st = thm "naddh_cong_st"; + +fun earlier [] x y = false + | earlier (h::t) x y = + if h = y then false + else if h = x then true + else earlier t x y ; + +fun decomp_naddh thy vs (t,s) = + case (t,s) of + (Const("HOL.plus",_)$(ctv as Const("HOL.times",_)$tc$tv)$tr, + Const("HOL.plus",_)$(csv as Const("HOL.times",_)$sc$sv)$sr) => + if tv = sv then + let val ntc = dest_real tc + val nsc = dest_real sc + val addth = proveadd thy ntc nsc + in if ntc + nsc = 0 + then ([(tr,sr)], FWD (instantiate' [] [NONE,NONE,NONE,SOME (cterm_of thy tv)] + (addth RS naddh_cong_same0))) + else ([(tr,sr)], FWD (instantiate' [] [NONE,NONE,NONE,SOME (cterm_of thy tv)] + (addth RS naddh_cong_same))) + end + else if earlier vs tv sv + then ([(tr,s)],FWD (instantiate' [] [NONE,NONE,NONE,SOME(cterm_of thy ctv)] naddh_cong_ts)) + else ([(t,sr)],FWD (instantiate' [] [NONE,NONE,NONE,SOME(cterm_of thy csv)] naddh_cong_st)) + | (Const("HOL.plus",_)$(ctv as Const("HOL.times",_)$tc$tv)$tr,_) => + ([(tr,s)],FWD (instantiate' [] [NONE,NONE,NONE,SOME(cterm_of thy ctv)] naddh_cong_ts)) + | (_,Const("HOL.plus",_)$(csv as Const("HOL.times",_)$sc$sv)$sr) => + ([(t,sr)],FWD (instantiate' [] [NONE,NONE,NONE,SOME(cterm_of thy csv)] naddh_cong_st)) + | (_,_) => ([], fn _ => proveadd thy (dest_real t) (dest_real s)); + + (* prove_naddh returns "t + s = t'*) +fun prove_naddh thy vs = divide_and_conquer (decomp_naddh thy vs); + +val nadd_cong_same = thm "nadd_cong_same"; +val nadd_cong = thm "nadd_cong"; +val plus_cong = thm "plus_cong"; + (* prove_nadd resturns: "t/m + s/n = t'/m'"*) +fun prove_nadd thy vs (t,m) (s,n) = + if n=m then + let val nm = proveq thy n m + val ts = prove_naddh thy vs (t,s) + in [nm,ts] MRS nadd_cong_same + end + else let val l = lcm (m,n) + val m' = l div m + val n' = l div n + val mml = proveprod thy m' m + val nnl = proveprod thy n' n + val mnz = provenz thy m + val nnz = provenz thy n + val lnz = provenz thy l + val mt = prove_ncmulh thy m' t + val ns = prove_ncmulh thy n' s + val _$(_$_$t') = prop_of mt + val _$(_$_$s') = prop_of ns + in [mml,nnl,mnz,nnz,lnz,[mt,ns,prove_naddh thy vs (t',s')] MRS plus_cong] + MRS nadd_cong + end; + + (* prove_nsub returns: "t/m - s/n = t'/m'"*) +val nsub_cong = thm "nsub_cong"; +fun prove_nsub thy vs (t,m) (s,n) = + let val nsm = prove_nneg thy (s,n) + val _$(_$_$(_$s'$n')) = prop_of nsm + val ts = prove_nadd thy vs (t,m) (s',dest_real n') + in [nsm,ts] MRS nsub_cong + end; + +val ndivide_cong = thm "ndivide_cong"; +fun prove_ndivide thy (t,m) n = instantiate' [] [SOME(cterm_of thy t)] + ((proveprod thy m n) RS ndivide_cong); + +exception FAILURE of string; + +val divide_cong = thm"divide_cong"; +val diff_cong = thm"diff_cong"; +val uminus_cong = thm"uminus_cong"; +val mult_cong = thm"mult_cong"; +val mult_cong2 = thm"mult_cong2"; +val normalizeh_var = thm "normalizeh_var"; +val nrefl = thm "nrefl"; + +fun decomp_normalizeh thy vs t = + case t of + Free _ => ([], fn _ => instantiate' [] [SOME(cterm_of thy t)] normalizeh_var) + | Const("HOL.uminus",_)$a => + ([a], + fn [tha] => let val _$(_$_$(_$a'$n')) = prop_of tha + in [tha,prove_nneg thy (a',dest_real n')] + MRS uminus_cong + end ) + | Const("HOL.plus",_)$a$b => + ([a,b], + fn [tha,thb] => let val _$(_$_$(_$a'$n')) = prop_of tha + val _$(_$_$(_$b'$m')) = prop_of thb + in [tha,thb,prove_nadd thy vs (a',dest_real n') (b',dest_real m')] + MRS plus_cong + end ) + | Const("HOL.minus",_)$a$b => + ([a,b], + fn [tha,thb] => let val _$(_$_$(_$a'$n')) = prop_of tha + val _$(_$_$(_$b'$m')) = prop_of thb + in [tha,thb,prove_nsub thy vs (a',dest_real n') (b',dest_real m')] + MRS diff_cong + end ) + | Const("HOL.times",_)$a$b => + if can dest_real a + then ([b], fn [thb] => + let val _$(_$_$(_$b'$m')) = prop_of thb + in [thb, prove_ncmul thy (dest_real a) (b',dest_real m')] MRS mult_cong + end ) + else if can dest_real b + then ([a], fn [tha] => + let val _$(_$_$(_$a'$m')) = prop_of tha + in [tha, prove_ncmul thy (dest_real b) (a',dest_real m')] MRS mult_cong2 + end ) + else raise FAILURE "decomp_normalizeh: non linear term" + | Const("HOL.divide",_)$a$b => + if can dest_real b + then ([a], fn [tha] => + let val _$(_$_$(_$a'$m')) = prop_of tha + in [tha, prove_ndivide thy (a',dest_real m') (dest_real b)] MRS divide_cong + end ) + else raise FAILURE "decomp_normalizeh: non linear term" + | _ => ([], fn _ => instantiate' [] [SOME (cterm_of thy t)] nrefl); +fun prove_normalizeh thy vs = divide_and_conquer (decomp_normalizeh thy vs); +fun dest_xth vs th = + let val _$(_$_$(_$t$n)) = prop_of th + in (case t of + Const("HOL.plus",_)$(Const("HOL.times",_)$c$y)$r => + if vs = [] then (0,t,dest_real n) + else if hd vs = y then (dest_real c, r,dest_real n) + else (0,t,dest_real n) + | _ => (0,t,dest_real n)) + end; + +fun prove_strictsign thy n = + prove_bysimp thy (simpset_of thy) + (HOLogic.mk_binrel "Orderings.less" + (if n > 0 then (rzero, mk_real n) else (mk_real n, rzero))); +fun prove_fracsign thy (m,n) = + let val mn = HOLogic.mk_binop "HOL.divide" (mk_real m, mk_real n) + in prove_bysimp thy (simpset_of thy) + (HOLogic.mk_binrel "Orderings.less" + (if m*n > 0 then (rzero, mn) else (mn, rzero))) + end; + +fun holbool_of true = HOLogic.true_const + | holbool_of false = HOLogic.false_const; + +fun prove_fracsign_eq thy s (m,n) = + let fun f s = the (AList.lookup (op =) [("Orderings.less", op <),("Orderings.less_eq", op <=),("op =", op =)] s) + in + prove_bysimp thy (simpset_of thy) (HOLogic.mk_eq + (HOLogic.mk_binrel s + (HOLogic.mk_binop "HOL.divide" (mk_real m, mk_real n),rzero), + holbool_of (f s (m*n,0)))) + end; + +fun proveq_eq thy n m = + prove_bysimp thy (simpset_of thy) + (HOLogic.mk_eq + (HOLogic.mk_eq(mk_real n, mk_real m),holbool_of (n = m))); + +val sum_of_same_denoms = thm "sum_of_same_denoms"; +val sum_of_opposite_denoms = thm "sum_of_opposite_denoms"; +val trivial_sum_of_opposites = thm "trivial_sum_of_opposites"; +val normalize_ltground_cong = thm "normalize_ltground_cong"; +val normalize_ltnoxpos_cong = thm "normalize_ltnoxpos_cong"; +val normalize_ltnoxneg_cong = thm "normalize_ltnoxneg_cong"; +val normalize_ltxpos_cong = thm "normalize_ltxpos_cong"; +val normalize_ltxneg_cong = thm "normalize_ltxneg_cong"; + +val normalize_leground_cong = thm "normalize_leground_cong"; +val normalize_lenoxpos_cong = thm "normalize_lenoxpos_cong"; +val normalize_lenoxneg_cong = thm "normalize_lenoxneg_cong"; +val normalize_lexpos_cong = thm "normalize_lexpos_cong"; +val normalize_lexneg_cong = thm "normalize_lexneg_cong"; + +val normalize_eqground_cong = thm "normalize_eqground_cong"; +val normalize_eqnox_cong = thm "normalize_eqnox_cong"; +val normalize_eqxpos_cong = thm "normalize_eqxpos_cong"; +val normalize_eqxneg_cong = thm "normalize_eqxneg_cong"; + +val normalize_not_lt = thm "normalize_not_lt"; +val normalize_not_le = thm "normalize_not_le"; +val normalize_not_eq = thm "normalize_not_eq"; + +fun prove_normalize thy vs at = + case at of + Const("Orderings.less",_)$s$t => + let val smtth = prove_normalizeh thy vs (HOLogic.mk_binop "HOL.minus" (s,t)) + val (cx,r,n) = dest_xth vs smtth + in if cx = 0 then if can dest_real r + then [smtth, prove_fracsign_eq thy "Orderings.less" (dest_real r, n)] + MRS normalize_ltground_cong + else [smtth, prove_strictsign thy n] + MRS (if n > 0 then normalize_ltnoxpos_cong + else normalize_ltnoxneg_cong) + else let val srn = prove_fracsign thy (n,cx) + val rr' = if cx < 0 + then instantiate' [] [SOME (cterm_of thy r)] + ((proveadd thy cx (~cx)) RS sum_of_opposite_denoms) + else instantiate' [] [SOME (cterm_of thy (mk_real cx))] + (((prove_ncmulh thy ~1 r) RS nneg_cong) + RS sum_of_same_denoms) + in [smtth,srn,rr'] MRS (if n*cx < 0 then normalize_ltxneg_cong + else normalize_ltxpos_cong) + end + end + | Const("Orderings.less_eq",_)$s$t => + let val smtth = prove_normalizeh thy vs (HOLogic.mk_binop "HOL.minus" (s,t)) + val (cx,r,n) = dest_xth vs smtth + in if cx = 0 then if can dest_real r + then [smtth, prove_fracsign_eq thy "Orderings.less_eq" (dest_real r, n)] + MRS normalize_leground_cong + else [smtth, prove_strictsign thy n] + MRS (if n > 0 then normalize_lenoxpos_cong + else normalize_lenoxneg_cong) + else let val srn = prove_fracsign thy (n,cx) + val rr' = if cx < 0 + then instantiate' [] [SOME (cterm_of thy r)] + ((proveadd thy cx (~cx)) RS sum_of_opposite_denoms) + else instantiate' [] [SOME (cterm_of thy (mk_real cx))] + (((prove_ncmulh thy ~1 r) RS nneg_cong) + RS sum_of_same_denoms) + in [smtth,srn,rr'] MRS (if n*cx < 0 then normalize_lexneg_cong + else normalize_lexpos_cong) + end + end + | Const("op =",_)$s$t => + let val smtth = prove_normalizeh thy vs (HOLogic.mk_binop "HOL.minus" (s,t)) + val (cx,r,n) = dest_xth vs smtth + in if cx = 0 then if can dest_real r + then [smtth, provenz thy n, + proveq_eq thy (dest_real r) 0] + MRS normalize_eqground_cong + else [smtth, provenz thy n] + MRS normalize_eqnox_cong + else let val scx = prove_strictsign thy cx + val nnz = provenz thy n + val rr' = if cx < 0 + then proveadd thy cx (~cx) + else ((prove_ncmulh thy ~1 r) RS nneg_cong) + RS trivial_sum_of_opposites + in [smtth,scx,nnz,rr'] MRS (if cx < 0 then normalize_eqxneg_cong + else normalize_eqxpos_cong) + end + end + | Const("Not",_)$(Const("Orderings.less",T)$s$t) => + (prove_normalize thy vs (Const("Orderings.less_eq",T)$t$s)) RS normalize_not_lt + | Const("Not",_)$(Const("Orderings.less_eq",T)$s$t) => + (prove_normalize thy vs (Const("Orderings.less",T)$t$s)) RS normalize_not_le + | (nt as Const("Not",_))$(Const("op =",T)$s$t) => + (prove_normalize thy vs (Const("op =",T)$s$t)) RS qe_Not + | _ => instantiate' [SOME cbT] [SOME (cterm_of thy at)] refl; + + (* Generic quantifier elimination *) + + +val qe_ex_conj = thm "qe_ex_conj"; +val qe_ex_nconj = thm "qe_ex_nconj"; +val qe_ALL = thm "qe_ALL"; +val ex_eq_cong = thm "ex_eq_cong"; + +fun decomp_genqelim thy afnp nfnp qfnp (P,vs) = + case P of + (Const("op &",_)$A$B) => ([(A,vs),(B,vs)], fn [th1,th2] => [th1,th2] MRS qe_conjI) + | (Const("op |",_)$A$B) => ([(A,vs),(B,vs)], fn [th1,th2] => [th1,th2] MRS qe_disjI) + | (Const("op -->",_)$A$B) => ([(A,vs),(B,vs)], fn [th1,th2] => [th1,th2] MRS qe_impI) + | (Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => + ([(A,vs),(B,vs)], fn [th1,th2] => [th1,th2] MRS qe_eqI) + | (Const("Not",_)$p) => ([(p,vs)],fn [th] => th RS qe_Not) + | (Const("Ex",_)$Abs(xn,xT,p)) => + let val (xn1,p1) = variant_abs(xn,xT,p) + val x= Free(xn1,xT) + in ([(p1,x::vs)], + fn [th1_1] => + let val th2 = [th1_1,nfnp (x::vs) (snd (CooperProof.qe_get_terms th1_1))] MRS trans + val eth1 = (forall_intr (cterm_of thy (Free(xn1,xT))) th2) COMP ex_eq_cong + val th3 = qfnp (snd(CooperProof.qe_get_terms eth1)) + in [eth1,th3] MRS trans + end ) + end + | (Const("All",_)$Abs(xn,xT,p)) => + ([((HOLogic.exists_const xT)$Abs(xn,xT,HOLogic.Not $ p),vs)], fn [th] => th RS qe_ALL) + | _ => ([], fn [] => afnp vs P); + +val fr_prepqelim = thms "fr_prepqelim"; +val prepare_qelim_ss = HOL_basic_ss + addsimps simp_thms + addsimps (List.take(ex_simps,4)) + addsimps fr_prepqelim + addsimps [not_all,ex_disj_distrib]; + +fun prove_genqelim thy afnp nfnp qfnp P = + let val thP = (Simplifier.rewrite prepare_qelim_ss P) RS meta_eq_to_obj_eq + val _$(_$_$P') = prop_of thP + val vs = term_frees P' + val qeth = divide_and_conquer (decomp_genqelim thy afnp nfnp qfnp) (Pattern.eta_long [] P',vs) + val _$(_$_$p'') = prop_of qeth + val thp' = nfnp vs p'' + in [[thP, qeth] MRS trans, thp'] MRS trans + end; + +fun qelim P = + let val {thy, ...} = Thm.rep_cterm P + in prove_genqelim thy (prove_normalize thy) (nnfp (prove_normalize thy)) (ferrack_eq thy) P end; + + + (* Just for testing!! *) +(* +val thy = the_context(); +fun parseb s = term_of (read_cterm thy (s,HOLogic.boolT)); +fun parser s = term_of (read_cterm thy (s,rT)); +val fm = parseb "(x::real) < y + t & (y - 5 < x | 34 < y + t) & (x = s + 3*y) | (x ~= y - s)"; + +provediv thy 4 2; +provediv thy ~4 2; +provediv thy 4 ~2; +provediv thy 44 32; +provediv thy ~34 20000; +provediv thy ~4000000 ~27676; + +val vs = [Free("x",rT),Free("y",rT),Free("z",rT)] ; +prove_nsub thy vs + (parser "4*(x::real) + (3*y + 5)" ,54) (parser "3*(y::real) + (4*z + 5)",9); + +prove_ndivide thy (parser "4*(x::real) + (3*y + 5)" ,5) 4; +prove_normalizeh thy [Free("x",rT),Free("y",rT),Free("z",rT)] + (parser "4*(x::real) + 3* ((3*y + 5) + x)"); +prove_normalizeh thy [Free("x",rT),Free("y",rT),Free("z",rT)] + (parser "4*(x::real) - 3* ((3*y + 5)*9 + x)"); +prove_normalizeh thy [Free("x",rT),Free("y",rT),Free("z",rT)] + (parser "- x"); +prove_normalizeh thy [Free("x",rT),Free("y",rT),Free("z",rT)] + (parser "4*(x::real) +3* ((3*y + 5) / 3 - (- x))"); + + + + + + +fun test xn s = ferrack_eq thy (parseb ("EX (" ^ xn ^ "::real)." ^ s)); +test "x" "(x::real) < y + t & (y - 5 < x | 34 < y + t) & (x = s + 3*y) | (x ~= y - s) & (x::real) <= y + t & (y - 5 <= x)"; +test "x" "(x::real) < y + t & y - 5 < x & (x ~= y - s)"; +test "x" "(x::real) < y + t"; +test "x" "(x::real) > y + t"; +test "x" "(x::real) = y + t"; +test "x" "(x::real) ~= y + t"; +test "x" "34 < y + (t::real)"; +test "x" "(x::real) ~= y + t & 34 < y + (t::real)"; +test "x" "(x::real) ~= y + t & (x::real) < y + t"; + +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 <= x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 <= 3*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 <= (-1)*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 <= x + 3 + 4* (y - 15*z) / 3 "); + +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 < x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 < 3*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 < (-1)*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 < x + 3 + 4* (y - 15*z) / 3 "); + +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 = x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 = 3*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 = (-1)*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 = x + 3 + 4* (y - 15*z) / 3 "); + +prove_normalize thy vs (parseb "~ ((x::real) + 4* (y - 15*z) / 3 <= x + y)"); +prove_normalize thy vs (parseb "~ ((x::real) + 4* (y - 15*z) / 3 <= 3*x + y)"); +prove_normalize thy vs (parseb "~ ((x::real) + 4* (y - 15*z) / 3 <= (-1)*x + y)"); +prove_normalize thy vs (parseb "~ ((x::real) + 4* (y - 15*z) / 3 <= x + 3 + 4* (y - 15*z) / 3 )"); + +prove_normalize thy vs (parseb "~((x::real) + 4* (y - 15*z) / 3 < x + y)"); +prove_normalize thy vs (parseb "~((x::real) + 4* (y - 15*z) / 3 < 3*x + y)"); +prove_normalize thy vs (parseb "~((x::real) + 4* (y - 15*z) / 3 < (-1)*x + y)"); +prove_normalize thy vs (parseb "~((x::real) + 4* (y - 15*z) / 3 < x + 3 + 4* (y - 15*z) / 3 )"); + +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 ~= x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 ~= 3*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 ~= (-1)*x + y"); +prove_normalize thy vs (parseb "(x::real) + 4* (y - 15*z) / 3 ~= x + 3 + 4* (y - 15*z) / 3 "); + + +nnfp (prove_normalize thy) vs + (parseb "~((x::real) + 4* (y - 15*z) / 3 ~= x + 3 + 4* (y - 15*z) / 3 | (~ (~((x::real) + 4* (y - 15*z) / 3 < x + 3 + 4* (y - 15*z) / 3 ) & (x::real) + 4* (y - 15*z) / 3 <= x + y)))"); +nnfp (prove_normalize thy) vs + (parseb "~ ~((x::real) + 4* (y - 15*z) / 3 ~= x + 3 + 4* (y - 15*z) / 3 | (~ (~((x::real) + 4* (y - 15*z) / 3 < x + 3 + 4* (y - 15*z) / 3 ) & (x::real) + 4* (y - 15*z) / 3 <= x + y)))"); + +fun frtest s = frqelim thy (read_cterm thy (s,HOLogic.boolT)); +frtest "~ (ALL (x::real) y. x < y --> 10*x < 11*y)"; +frtest "ALL (x::real) y. x < y --> (10*(x + 5*y + -1) < 60*y)"; +frtest "EX (x::real) y. x ~= y --> x < y"; +frtest "EX (x::real) y. (x ~= y & 10*x ~= 9*y & 10*x < y) --> x < y"; +frtest "ALL (x::real) y. (x ~= y & 5*x <= y) --> 500*x <= 100*y"; +*) + (* 1 Alternations *) +(* +frtest "ALL (x::real). (EX (y::real). 4*x + 3*y <= 0 & 4*x + 3*y >= -1)"; +frtest "ALL (x::real) < 0. (EX (y::real) > 0. 7*x + y > 0 & x - y <= 9)"; +frtest "EX (x::real). (0 < x & x < 1) --> (ALL y > 1. x + y ~= 1)"; +frtest "EX (x::real). 0 < x & x < 1 & (ALL y. (1 < y & y < 2) --> (1 < 2*(y - x) & 2*(y - x) <3))"; +frtest "ALL (x::real). x < 10 | x > 20 | (EX y. y>= 0 & y <= 10 & x+y = 20)"; +*) + (* Formulae with 3 quantifiers *) + (* 0 Alternations *) +(* +frtest "ALL (x::real) y z. x + y < z --> y >= z --> x < 0"; +frtest "EX (x::real) y z. x + 7*y < 5* z & 5*y >= 7*z & x < 0"; +frtest "ALL (x::real) y z. abs (x + y) <= z --> (abs z = z)"; +frtest "EX (x::real) y z. x + 7*y - 5* z < 0 & 5*y + 7*z + 3*x < 0"; +frtest "ALL (x::real) y z. (abs (5*x+3*y+z) <= 5*x+3*y+z & abs (5*x+3*y+z) >= - (5*x+3*y+z)) | (abs (5*x+3*y+z) >= 5*x+3*y+z & abs (5*x+3*y+z) <= - (5*x+3*y+z))"; +*) + (* 1 Alternations *) +(* +frtest "ALL (x::real) y. x < y --> (EX z>0. x+z = y)"; +frtest "ALL (x::real) y. (EX z>0. abs (x - y) <= z )"; +frtest "EX (x::real) y. (ALL z>0. (z < x --> z <= 5) & (z > y --> z >= x))"; +frtest "EX (x::real) y. (ALL z<0. (z < x --> z <= y) & (z > y --> z >= x))"; +frtest "EX (x::real) y. (ALL z>0. abs (3*x - 7*y) >= 5 & abs (3*x+7*y) <= 2*z + 1)"; +*) + (* 2 Alternations *) +(* +frtest "EX (x::real)>0. (ALL y >0. (EX z>7. 5*x - 3*y <= 7*z))"; +frtest "EX (x::real). abs x < 4 & (ALL y > 0. (EX z. 5*x - 3*y <= 7*z))"; +frtest "ALL (x::real). (EX y > x. (ALL z < y. x+z < 2*y))" ; +frtest "ALL (x::real). (EX y<(3*x - 1). (ALL z >= (3*x - 1). x - y + z > x ))" ; +frtest "EX (x::real). abs x < 100 & (ALL y > x. (EX z<2*y - x. 5*x - 3*y <= 7*z))"; +*) + (* Formulae with 4 quantifiers *) + (* 0 Alternations *) +(* +frtest "ALL (x::real) y z w. 7*x<3*y --> 5*y < 7*z --> z < 2*w --> 7*(2*w-x) > 2*y"; +frtest "ALL (x::real) y. ALL z >x. ALL w > y. abs (z-x) + abs (y-w + x) <= z - x + w-y+abs x"; +frtest "EX (x::real) y z w. 5*x + 3*z - 17*w + abs (y - 8*x + z) <= 89"; +frtest "EX (x::real) y z w. abs (5*x + 3*z - 17*w) + 7* abs (y - 8*x + z) <= max y (7*z - x + w)"; +frtest "EX (x::real) y z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w)"; +*) + (* 1 Alternations *) +(* +frtest "ALL (x::real) y z. (EX w >= abs (x+y+z). w <= abs x + abs y + abs z)"; +frtest "ALL (x::real). (EX y z w. x< y & x < z & x> w & 3*x < w + y)"; +frtest "ALL (x::real) y. (EX z w. abs (x-y) = abs (z-w) & z < x & w ~= y)"; +frtest "ALL (x::real). (EX y z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w))"; +frtest "EX (x::real) y z. (ALL w >= abs (x+y+z). w >= abs x + abs y + abs z)"; +*) + (* 2 Alternations *) +(* +frtest "EX z. (ALL (x::real) y. (EX w >= abs (x+y+z). w <= abs x + abs y + abs z))"; +frtest "EX z. (ALL (x::real) < z. (EX y w. x< y & x < z & x> w & 3*x < w + y))"; +frtest "ALL (x::real) y. (EX z. (ALL w. abs (x-y) = abs (z-w) --> z < x & w ~= y))"; +frtest "EX y. (ALL (x::real). (EX z w. min (5*x + 3*z) (17*w) + 5* abs (y - 8*x + z) <= max y (7*z - x + w)))"; +frtest "EX (x::real) z. (ALL w >= abs (x+z). (EX y. w >= abs x + abs y + abs z))"; +*) + (* 3 Alternations *) +(* +frtest "EX (x::real). (ALL y < x. (EX z > (x+y). (ALL w. 5*w + 10*x - z >= y --> w + 7*x + 3*z >= 2*y)))"; +frtest "EX (x::real). (ALL y < 3*x. (EX z > max x y. + (ALL w . abs w < 13 --> w + 10*x - z >= y --> 5*w + 7*x + 13*z >= 2*y)))"; +frtest "ALL (x::real). (EX y. (ALL z>19. y <= x + z & (EX w. abs (y - x) < w)))"; +frtest "ALL (x::real). (EX y. (ALL z>19. abs (y) <= abs (x + z) & (EX w. abs (x + z) < w - y)))"; +frtest "ALL (x::real). (EX y. abs y ~= abs x & (ALL z> max x y. (EX w. w ~= y & w ~= z & 3*w - z >= x + y)))"; +*) +end