Meta-level conjunction.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/conjunction.ML Thu Apr 13 12:00:53 2006 +0200
@@ -0,0 +1,206 @@
+(* Title: Pure/conjunction.ML
+ ID: $Id$
+ Author: Makarius
+
+Meta-level conjunction.
+*)
+
+signature CONJUNCTION =
+sig
+ val conjunction: cterm
+ val mk_conjunction: cterm * cterm -> cterm
+ val dest_conjunction: cterm -> cterm * cterm
+ val cong: thm -> thm -> thm
+ val conv: int -> (int -> cterm -> thm) -> cterm -> thm
+ val conjunctionD1: thm
+ val conjunctionD2: thm
+ val conjunctionI: thm
+ val intr: thm -> thm -> thm
+ val intr_list: thm list -> thm
+ val elim: thm -> thm * thm
+ val elim_list: thm -> thm list
+ val elim_precise: int list -> thm -> thm list list
+ val curry: int -> thm -> thm
+ val uncurry: int -> thm -> thm
+ val split_defined: int -> thm -> thm * thm list
+end;
+
+structure Conjunction: CONJUNCTION =
+struct
+
+
+(** abstract syntax **)
+
+fun read s = Thm.read_cterm ProtoPure.thy (s, propT);
+val cert = Thm.cterm_of ProtoPure.thy;
+
+val conjunction = cert Logic.conjunction;
+fun mk_conjunction (A, B) = Thm.capply (Thm.capply conjunction A) B;
+
+fun dest_conjunction ct =
+ (case Thm.term_of ct of
+ (Const ("ProtoPure.conjunction", _) $ _ $ _) => Drule.dest_binop ct
+ | _ => raise TERM ("dest_conjunction", [term_of ct]));
+
+
+
+(** derived rules **)
+
+(* conversion *)
+
+(*rewrite the A's in A1 && ... && An*)
+
+val cong = Thm.combination o Thm.combination (Thm.reflexive conjunction);
+
+fun conv 0 _ = reflexive
+ | conv n cv =
+ let
+ fun cnv i ct =
+ if i = n then cv i ct
+ else
+ (case try dest_conjunction ct of
+ NONE => cv i ct
+ | SOME (A, B) => cong (cv i A) (cnv (i + 1) B));
+ in cnv 1 end;
+
+
+(* intro/elim *)
+
+local
+
+val A = read "PROP A";
+val B = read "PROP B";
+val C = read "PROP C";
+val ABC = read "PROP A ==> PROP B ==> PROP C";
+val A_B = read "PROP ProtoPure.conjunction(A, B)"
+
+val conjunction_def = #1 (freeze_thaw ProtoPure.conjunction_def);
+
+fun conjunctionD which =
+ Drule.implies_intr_list [A, B] (Thm.assume (which (A, B))) COMP
+ Drule.forall_elim_vars 0 (Thm.equal_elim conjunction_def (Thm.assume A_B));
+
+in
+
+val conjunctionD1 = Drule.store_standard_thm "conjunctionD1" (conjunctionD #1);
+val conjunctionD2 = Drule.store_standard_thm "conjunctionD2" (conjunctionD #2);
+
+val conjunctionI = Drule.store_standard_thm "conjunctionI"
+ (Drule.implies_intr_list [A, B]
+ (Thm.equal_elim
+ (Thm.symmetric conjunction_def)
+ (Thm.forall_intr C (Thm.implies_intr ABC
+ (Drule.implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B])))));
+
+fun intr tha thb = thb COMP (tha COMP Drule.incr_indexes2 tha thb conjunctionI);
+
+fun intr_list [] = asm_rl
+ | intr_list ths = foldr1 (uncurry intr) ths;
+
+fun elim th =
+ (th COMP Drule.incr_indexes th conjunctionD1,
+ th COMP Drule.incr_indexes th conjunctionD2);
+
+(*((A && B) && C) && D && E -- flat*)
+fun elim_list th =
+ let val (th1, th2) = elim th
+ in elim_list th1 @ elim_list th2 end handle THM _ => [th];
+
+(*(A1 && B1 && C1) && (A2 && B2 && C2 && D2) && A3 && B3 -- improper*)
+fun elim_precise spans =
+ let
+ fun elm 0 _ = []
+ | elm 1 th = [th]
+ | elm n th =
+ let val (th1, th2) = elim th
+ in th1 :: elm (n - 1) th2 end;
+ fun elms (0 :: ns) ths = [] :: elms ns ths
+ | elms (n :: ns) (th :: ths) = elm n th :: elms ns ths
+ | elms _ _ = [];
+ in elms spans o elm (length (filter_out (equal 0) spans)) end;
+
+end;
+
+
+(* currying *)
+
+local
+
+fun conjs m =
+ let val As = map (fn i => Free ("A" ^ string_of_int i, propT)) (1 upto m)
+ in (As, Logic.mk_conjunction_list As) end;
+
+val B = Free ("B", propT);
+
+fun comp_rule th rule =
+ Thm.adjust_maxidx_thm (th COMP
+ (rule |> Drule.forall_intr_frees |> Drule.forall_elim_vars (Thm.maxidx_of th + 1)));
+
+in
+
+(*
+ A1 && ... && An ==> B
+ -----------------------
+ A1 ==> ... ==> An ==> B
+*)
+fun curry n th =
+ let
+ val k =
+ (case try Logic.dest_implies (Thm.prop_of th) of
+ NONE => 0
+ | SOME (prem, _) => length (Logic.dest_conjunction_list prem));
+ val m = if n = ~1 then k else Int.min (n, k);
+ in
+ if m < 2 then th
+ else
+ let
+ val (As, C) = conjs m;
+ val cAs = map cert As;
+ val D = Logic.mk_implies (Logic.mk_conjunction_list As, B) |> cert;
+ in
+ comp_rule th
+ (Thm.implies_elim (Thm.assume D) (intr_list (map Thm.assume cAs))
+ |> Drule.implies_intr_list (D :: cAs))
+ end
+ end;
+
+(*
+ A1 ==> ... ==> An ==> B
+ -----------------------
+ A1 && ... && An ==> B
+*)
+fun uncurry n th =
+ let
+ val k = Thm.nprems_of th;
+ val m = if n = ~1 then k else Int.min (n, k);
+ in
+ if m < 2 then th
+ else
+ let
+ val (As, C) = conjs m ||> cert;
+ val D = Logic.list_implies (As, B) |> cert;
+ in
+ comp_rule th
+ (Drule.implies_elim_list (Thm.assume D) (elim_list (Thm.assume C))
+ |> Drule.implies_intr_list [D, C])
+ end
+ end;
+
+end;
+
+
+(* defined conjunctions *)
+
+fun project th 1 = (th RS conjunctionD1 handle THM _ => th)
+ | project th k = project (th RS conjunctionD2) (k - 1);
+
+fun split_defined n eq =
+ let
+ val intro =
+ (eq RS Drule.equal_elim_rule2)
+ |> curry n
+ |> K (n = 0) ? Thm.eq_assumption 1;
+ val dests = map (project (eq RS Drule.equal_elim_rule1)) (1 upto n);
+ in (intro, dests) end;
+
+end;