author | huffman |
Mon, 09 Apr 2007 21:28:24 +0200 | |
changeset 22616 | 4747e87ac5c4 |
parent 22615 | d650e51b5970 |
child 22617 | 1fb7fb24c799 |
--- a/src/HOL/Finite_Set.thy Mon Apr 09 04:51:28 2007 +0200 +++ b/src/HOL/Finite_Set.thy Mon Apr 09 21:28:24 2007 +0200 @@ -1258,7 +1258,7 @@ qed lemma setsum_product: - fixes f :: "nat => ('a::semiring_0_cancel)" + fixes f :: "'a => ('b::semiring_0_cancel)" shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)