merged
authorhaftmann
Mon, 01 Mar 2010 13:42:31 +0100
changeset 35417 47ee18b6ae32
parent 35415 1810b1ade437 (current diff)
parent 35416 d8d7d1b785af (diff)
child 35418 83b0f75810f0
merged
src/FOL/IFOL.thy
src/HOL/Bali/Basis.thy
src/HOL/Bali/Table.thy
src/HOL/HOL.thy
src/HOL/Hoare/Hoare_Logic_Abort.thy
src/HOL/Isar_Examples/Hoare.thy
src/HOL/MicroJava/BV/Correct.thy
src/HOL/MicroJava/BV/JVMType.thy
src/HOL/MicroJava/Comp/TranslCompTp.thy
src/HOL/MicroJava/DFA/Semilat.thy
src/HOL/MicroJava/J/Conform.thy
src/HOL/MicroJava/JVM/JVMDefensive.thy
src/HOL/MicroJava/JVM/JVMExec.thy
src/HOL/NanoJava/Equivalence.thy
src/HOL/NanoJava/State.thy
src/HOL/Nominal/Nominal.thy
src/HOL/UNITY/SubstAx.thy
src/HOL/UNITY/WFair.thy
src/Sequents/LK0.thy
--- a/doc-src/TutorialI/Advanced/Partial.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Advanced/Partial.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -34,7 +34,7 @@
 preconditions:
 *}
 
-constdefs subtract :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+definition subtract :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
 "n \<le> m \<Longrightarrow> subtract m n \<equiv> m - n"
 
 text{*
@@ -85,7 +85,7 @@
 Phrased differently, the relation
 *}
 
-constdefs step1 :: "('a \<Rightarrow> 'a) \<Rightarrow> ('a \<times> 'a)set"
+definition step1 :: "('a \<Rightarrow> 'a) \<Rightarrow> ('a \<times> 'a)set" where
   "step1 f \<equiv> {(y,x). y = f x \<and> y \<noteq> x}"
 
 text{*\noindent
@@ -160,7 +160,7 @@
 consider the following definition of function @{const find}:
 *}
 
-constdefs find2 :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
+definition find2 :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
   "find2 f x \<equiv>
    fst(while (\<lambda>(x,x'). x' \<noteq> x) (\<lambda>(x,x'). (x',f x')) (x,f x))"
 
--- a/doc-src/TutorialI/CTL/CTL.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/CTL/CTL.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -365,8 +365,7 @@
 *}
 
 (*<*)
-constdefs
- eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set"
+definition eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set" where
 "eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> `` T)"
 
 lemma "lfp(eufix A B) \<subseteq> eusem A B"
@@ -397,8 +396,7 @@
 done
 
 (*
-constdefs
- eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set"
+definition eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set" where
 "eusem A B \<equiv> {s. \<exists>p\<in>Paths s. \<exists>j. p j \<in> B \<and> (\<forall>i < j. p i \<in> A)}"
 
 axioms
@@ -414,8 +412,7 @@
 apply(blast intro: M_total[THEN someI_ex])
 done
 
-constdefs
- pcons :: "state \<Rightarrow> (nat \<Rightarrow> state) \<Rightarrow> (nat \<Rightarrow> state)"
+definition pcons :: "state \<Rightarrow> (nat \<Rightarrow> state) \<Rightarrow> (nat \<Rightarrow> state)" where
 "pcons s p == \<lambda>i. case i of 0 \<Rightarrow> s | Suc j \<Rightarrow> p j"
 
 lemma pcons_PathI: "[| (s,t) : M; p \<in> Paths t |] ==> pcons s p \<in> Paths s";
--- a/doc-src/TutorialI/Misc/Option2.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Misc/Option2.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -24,8 +24,7 @@
 *}
 (*<*)
 (*
-constdefs
- infplus :: "nat option \<Rightarrow> nat option \<Rightarrow> nat option"
+definition infplus :: "nat option \<Rightarrow> nat option \<Rightarrow> nat option" where
 "infplus x y \<equiv> case x of None \<Rightarrow> None
                | Some m \<Rightarrow> (case y of None \<Rightarrow> None | Some n \<Rightarrow> Some(m+n))"
 
--- a/doc-src/TutorialI/Overview/LNCS/FP1.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Overview/LNCS/FP1.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -62,7 +62,7 @@
 consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
 defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
 
-constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+definition nand :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
          "nand x y \<equiv> \<not>(x \<and> y)"
 
 lemma "\<not> xor x x"
--- a/doc-src/TutorialI/Overview/LNCS/Ordinal.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Overview/LNCS/Ordinal.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,8 +9,7 @@
   "pred (Succ a) n = Some a"
   "pred (Limit f) n = Some (f n)"
 
-constdefs
-  OpLim :: "(nat \<Rightarrow> (ordinal \<Rightarrow> ordinal)) \<Rightarrow> (ordinal \<Rightarrow> ordinal)"
+definition OpLim :: "(nat \<Rightarrow> (ordinal \<Rightarrow> ordinal)) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" where
   "OpLim F a \<equiv> Limit (\<lambda>n. F n a)"
   OpItw :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)"    ("\<Squnion>")
   "\<Squnion>f \<equiv> OpLim (power f)"
@@ -29,8 +28,7 @@
   "\<nabla>f (Succ a) = f (Succ (\<nabla>f a))"
   "\<nabla>f (Limit h) = Limit (\<lambda>n. \<nabla>f (h n))"
 
-constdefs
-  deriv :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)"
+definition deriv :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" where
   "deriv f \<equiv> \<nabla>(\<Squnion>f)"
 
 consts
@@ -40,8 +38,7 @@
   "veblen (Succ a) = \<nabla>(OpLim (power (veblen a)))"
   "veblen (Limit f) = \<nabla>(OpLim (\<lambda>n. veblen (f n)))"
 
-constdefs
-  veb :: "ordinal \<Rightarrow> ordinal"
+definition veb :: "ordinal \<Rightarrow> ordinal" where
   "veb a \<equiv> veblen a Zero"
   epsilon0 :: ordinal    ("\<epsilon>\<^sub>0")
   "\<epsilon>\<^sub>0 \<equiv> veb Zero"
--- a/doc-src/TutorialI/Protocol/Message.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Protocol/Message.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -46,8 +46,7 @@
 text{*The inverse of a symmetric key is itself; that of a public key
       is the private key and vice versa*}
 
-constdefs
-  symKeys :: "key set"
+definition symKeys :: "key set" where
   "symKeys == {K. invKey K = K}"
 (*>*)
 
@@ -92,8 +91,7 @@
   "{|x, y|}"      == "CONST MPair x y"
 
 
-constdefs
-  keysFor :: "msg set => key set"
+definition keysFor :: "msg set => key set" where
     --{*Keys useful to decrypt elements of a message set*}
   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 
--- a/doc-src/TutorialI/Rules/Primes.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Rules/Primes.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -99,8 +99,7 @@
 
 (**** The material below was omitted from the book ****)
 
-constdefs
-  is_gcd  :: "[nat,nat,nat] \<Rightarrow> bool"        (*gcd as a relation*)
+definition is_gcd :: "[nat,nat,nat] \<Rightarrow> bool" where        (*gcd as a relation*)
     "is_gcd p m n == p dvd m  \<and>  p dvd n  \<and>
                      (ALL d. d dvd m \<and> d dvd n \<longrightarrow> d dvd p)"
 
--- a/doc-src/TutorialI/Sets/Examples.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/TutorialI/Sets/Examples.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -156,8 +156,7 @@
 lemma "{x. P x \<longrightarrow> Q x} = -{x. P x} \<union> {x. Q x}"
 by blast
 
-constdefs
-  prime   :: "nat set"
+definition prime :: "nat set" where
     "prime == {p. 1<p & (ALL m. m dvd p --> m=1 | m=p)}"
 
 lemma "{p*q | p q. p\<in>prime \<and> q\<in>prime} = 
--- a/doc-src/ZF/If.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/ZF/If.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,8 +8,7 @@
 
 theory If imports FOL begin
 
-constdefs
-  "if" :: "[o,o,o]=>o"
+definition "if" :: "[o,o,o]=>o" where
   "if(P,Q,R) == P&Q | ~P&R"
 
 lemma ifI:
--- a/doc-src/ZF/ZF_examples.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/doc-src/ZF/ZF_examples.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -64,7 +64,7 @@
      "t \<in> bt(A) ==> \<forall>k \<in> nat. n_nodes_aux(t)`k = n_nodes(t) #+ k"
   by (induct_tac t, simp_all) 
 
-constdefs  n_nodes_tail :: "i => i"
+definition n_nodes_tail :: "i => i" where
    "n_nodes_tail(t) == n_nodes_aux(t) ` 0"
 
 lemma "t \<in> bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
--- a/src/FOL/IFOL.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/FOL/IFOL.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -760,8 +760,7 @@
 
 nonterminals letbinds letbind
 
-constdefs
-  Let :: "['a::{}, 'a => 'b] => ('b::{})"
+definition Let :: "['a::{}, 'a => 'b] => ('b::{})" where
     "Let(s, f) == f(s)"
 
 syntax
--- a/src/FOL/ex/If.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/FOL/ex/If.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,8 +7,7 @@
 
 theory If imports FOL begin
 
-constdefs
-  "if" :: "[o,o,o]=>o"
+definition "if" :: "[o,o,o]=>o" where
   "if(P,Q,R) == P&Q | ~P&R"
 
 lemma ifI:
--- a/src/FOLP/ex/If.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/FOLP/ex/If.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -4,8 +4,7 @@
 imports FOLP
 begin
 
-constdefs
-  "if" :: "[o,o,o]=>o"
+definition "if" :: "[o,o,o]=>o" where
   "if(P,Q,R) == P&Q | ~P&R"
 
 lemma ifI:
--- a/src/HOL/Algebra/AbelCoset.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/AbelCoset.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -38,15 +38,12 @@
                   ("racong\<index> _")
    "a_r_congruent G \<equiv> r_congruent \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>"
 
-constdefs
-  A_FactGroup :: "[('a,'b) ring_scheme, 'a set] \<Rightarrow> ('a set) monoid"
-     (infixl "A'_Mod" 65)
+definition A_FactGroup :: "[('a,'b) ring_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "A'_Mod" 65) where
     --{*Actually defined for groups rather than monoids*}
   "A_FactGroup G H \<equiv> FactGroup \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr> H"
 
-constdefs
-  a_kernel :: "('a, 'm) ring_scheme \<Rightarrow> ('b, 'n) ring_scheme \<Rightarrow> 
-             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" 
+definition a_kernel :: "('a, 'm) ring_scheme \<Rightarrow> ('b, 'n) ring_scheme \<Rightarrow> 
+             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" where 
     --{*the kernel of a homomorphism (additive)*}
   "a_kernel G H h \<equiv> kernel \<lparr>carrier = carrier G, mult = add G, one = zero G\<rparr>
                               \<lparr>carrier = carrier H, mult = add H, one = zero H\<rparr> h"
--- a/src/HOL/Algebra/Bij.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/Bij.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Algebra/Bij.thy
-    ID:         $Id$
     Author:     Florian Kammueller, with new proofs by L C Paulson
 *)
 
@@ -8,12 +7,11 @@
 
 section {* Bijections of a Set, Permutation and Automorphism Groups *}
 
-constdefs
-  Bij :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) set"
+definition Bij :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) set" where
     --{*Only extensional functions, since otherwise we get too many.*}
   "Bij S \<equiv> extensional S \<inter> {f. bij_betw f S S}"
 
-  BijGroup :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) monoid"
+definition BijGroup :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) monoid" where
   "BijGroup S \<equiv>
     \<lparr>carrier = Bij S,
      mult = \<lambda>g \<in> Bij S. \<lambda>f \<in> Bij S. compose S g f,
@@ -71,11 +69,10 @@
 done
 
 
-constdefs
-  auto :: "('a, 'b) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) set"
+definition auto :: "('a, 'b) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) set" where
   "auto G \<equiv> hom G G \<inter> Bij (carrier G)"
 
-  AutoGroup :: "('a, 'c) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) monoid"
+definition AutoGroup :: "('a, 'c) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) monoid" where
   "AutoGroup G \<equiv> BijGroup (carrier G) \<lparr>carrier := auto G\<rparr>"
 
 lemma (in group) id_in_auto: "(\<lambda>x \<in> carrier G. x) \<in> auto G"
--- a/src/HOL/Algebra/Coset.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/Coset.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -751,8 +751,7 @@
 
 subsection {*Order of a Group and Lagrange's Theorem*}
 
-constdefs
-  order :: "('a, 'b) monoid_scheme \<Rightarrow> nat"
+definition order :: "('a, 'b) monoid_scheme \<Rightarrow> nat" where
   "order S \<equiv> card (carrier S)"
 
 lemma (in group) rcosets_part_G:
@@ -822,9 +821,7 @@
 
 subsection {*Quotient Groups: Factorization of a Group*}
 
-constdefs
-  FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid"
-     (infixl "Mod" 65)
+definition FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "Mod" 65) where
     --{*Actually defined for groups rather than monoids*}
   "FactGroup G H \<equiv>
     \<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>"
@@ -890,9 +887,8 @@
 text{*The quotient by the kernel of a homomorphism is isomorphic to the 
   range of that homomorphism.*}
 
-constdefs
-  kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> 
-             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" 
+definition kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> 
+             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" where 
     --{*the kernel of a homomorphism*}
   "kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}"
 
--- a/src/HOL/Algebra/Divisibility.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/Divisibility.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -3630,8 +3630,7 @@
 
 text {* Number of factors for wellfoundedness *}
 
-constdefs
-  factorcount :: "_ \<Rightarrow> 'a \<Rightarrow> nat"
+definition factorcount :: "_ \<Rightarrow> 'a \<Rightarrow> nat" where
   "factorcount G a == THE c. (ALL as. set as \<subseteq> carrier G \<and> 
                                       wfactors G as a \<longrightarrow> c = length as)"
 
--- a/src/HOL/Algebra/FiniteProduct.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/FiniteProduct.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -26,8 +26,7 @@
 
 inductive_cases empty_foldSetDE [elim!]: "({}, x) \<in> foldSetD D f e"
 
-constdefs
-  foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a"
+definition foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" where
   "foldD D f e A == THE x. (A, x) \<in> foldSetD D f e"
 
 lemma foldSetD_closed:
--- a/src/HOL/Algebra/Group.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/Group.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -478,8 +478,7 @@
 
 subsection {* Direct Products *}
 
-constdefs
-  DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid"  (infixr "\<times>\<times>" 80)
+definition DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid" (infixr "\<times>\<times>" 80) where
   "G \<times>\<times> H \<equiv> \<lparr>carrier = carrier G \<times> carrier H,
                 mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')),
                 one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>"
@@ -545,8 +544,7 @@
   "[|h \<in> hom G H; i \<in> hom H I|] ==> compose (carrier G) i h \<in> hom G I"
 by (fastsimp simp add: hom_def compose_def)
 
-constdefs
-  iso :: "_ => _ => ('a => 'b) set"  (infixr "\<cong>" 60)
+definition iso :: "_ => _ => ('a => 'b) set" (infixr "\<cong>" 60) where
   "G \<cong> H == {h. h \<in> hom G H & bij_betw h (carrier G) (carrier H)}"
 
 lemma iso_refl: "(%x. x) \<in> G \<cong> G"
--- a/src/HOL/Algebra/IntRing.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/IntRing.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -22,8 +22,7 @@
 
 subsection {* @{text "\<Z>"}: The Set of Integers as Algebraic Structure *}
 
-constdefs
-  int_ring :: "int ring" ("\<Z>")
+definition int_ring :: "int ring" ("\<Z>") where
   "int_ring \<equiv> \<lparr>carrier = UNIV, mult = op *, one = 1, zero = 0, add = op +\<rparr>"
 
 lemma int_Zcarr [intro!, simp]:
@@ -324,8 +323,7 @@
 
 subsection {* Ideals and the Modulus *}
 
-constdefs
-   ZMod :: "int => int => int set"
+definition ZMod :: "int => int => int set" where
   "ZMod k r == (Idl\<^bsub>\<Z>\<^esub> {k}) +>\<^bsub>\<Z>\<^esub> r"
 
 lemmas ZMod_defs =
@@ -407,8 +405,7 @@
 
 subsection {* Factorization *}
 
-constdefs
-  ZFact :: "int \<Rightarrow> int set ring"
+definition ZFact :: "int \<Rightarrow> int set ring" where
   "ZFact k == \<Z> Quot (Idl\<^bsub>\<Z>\<^esub> {k})"
 
 lemmas ZFact_defs = ZFact_def FactRing_def
--- a/src/HOL/Algebra/Ring.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Algebra/Ring.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -198,8 +198,7 @@
   This definition makes it easy to lift lemmas from @{term finprod}.
 *}
 
-constdefs
-  finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b"
+definition finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b" where
   "finsum G f A == finprod (| carrier = carrier G,
      mult = add G, one = zero G |) f A"
 
--- a/src/HOL/Auth/CertifiedEmail.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/CertifiedEmail.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -25,8 +25,7 @@
   BothAuth :: nat
 
 text{*We formalize a fixed way of computing responses.  Could be better.*}
-constdefs
-  "response"    :: "agent => agent => nat => msg"
+definition "response" :: "agent => agent => nat => msg" where
    "response S R q == Hash {|Agent S, Key (shrK R), Nonce q|}"
 
 
--- a/src/HOL/Auth/Guard/Extensions.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Extensions.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -61,7 +61,7 @@
 
 subsubsection{*messages that are pairs*}
 
-constdefs is_MPair :: "msg => bool"
+definition is_MPair :: "msg => bool" where
 "is_MPair X == EX Y Z. X = {|Y,Z|}"
 
 declare is_MPair_def [simp]
@@ -96,7 +96,7 @@
 
 declare is_MPair_def [simp del]
 
-constdefs has_no_pair :: "msg set => bool"
+definition has_no_pair :: "msg set => bool" where
 "has_no_pair H == ALL X Y. {|X,Y|} ~:H"
 
 declare has_no_pair_def [simp]
@@ -117,7 +117,7 @@
 
 subsubsection{*lemmas on keysFor*}
 
-constdefs usekeys :: "msg set => key set"
+definition usekeys :: "msg set => key set" where
 "usekeys G == {K. EX Y. Crypt K Y:G}"
 
 lemma finite_keysFor [intro]: "finite G ==> finite (keysFor G)"
@@ -237,7 +237,7 @@
 
 subsubsection{*sets of keys*}
 
-constdefs keyset :: "msg set => bool"
+definition keyset :: "msg set => bool" where
 "keyset G == ALL X. X:G --> (EX K. X = Key K)"
 
 lemma keyset_in [dest]: "[| keyset G; X:G |] ==> EX K. X = Key K"
@@ -257,7 +257,7 @@
 
 subsubsection{*keys a priori necessary for decrypting the messages of G*}
 
-constdefs keysfor :: "msg set => msg set"
+definition keysfor :: "msg set => msg set" where
 "keysfor G == Key ` keysFor (parts G)"
 
 lemma keyset_keysfor [iff]: "keyset (keysfor G)"
@@ -295,7 +295,7 @@
 
 subsubsection{*general protocol properties*}
 
-constdefs is_Says :: "event => bool"
+definition is_Says :: "event => bool" where
 "is_Says ev == (EX A B X. ev = Says A B X)"
 
 lemma is_Says_Says [iff]: "is_Says (Says A B X)"
@@ -303,7 +303,7 @@
 
 (* one could also require that Gets occurs after Says
 but this is sufficient for our purpose *)
-constdefs Gets_correct :: "event list set => bool"
+definition Gets_correct :: "event list set => bool" where
 "Gets_correct p == ALL evs B X. evs:p --> Gets B X:set evs
 --> (EX A. Says A B X:set evs)"
 
@@ -312,7 +312,7 @@
 apply (simp add: Gets_correct_def)
 by (drule_tac x="Gets B X # evs" in spec, auto)
 
-constdefs one_step :: "event list set => bool"
+definition one_step :: "event list set => bool" where
 "one_step p == ALL evs ev. ev#evs:p --> evs:p"
 
 lemma one_step_Cons [dest]: "[| one_step p; ev#evs:p |] ==> evs:p"
@@ -324,7 +324,7 @@
 lemma trunc: "[| evs @ evs':p; one_step p |] ==> evs':p"
 by (induct evs, auto)
 
-constdefs has_only_Says :: "event list set => bool"
+definition has_only_Says :: "event list set => bool" where
 "has_only_Says p == ALL evs ev. evs:p --> ev:set evs
 --> (EX A B X. ev = Says A B X)"
 
@@ -450,7 +450,7 @@
       if A=A' then insert X (knows_max' A evs) else knows_max' A evs
   ))"
 
-constdefs knows_max :: "agent => event list => msg set"
+definition knows_max :: "agent => event list => msg set" where
 "knows_max A evs == knows_max' A evs Un initState A"
 
 abbreviation
@@ -512,7 +512,7 @@
     | Notes A X => parts {X} Un used' evs
   )"
 
-constdefs init :: "msg set"
+definition init :: "msg set" where
 "init == used []"
 
 lemma used_decomp: "used evs = init Un used' evs"
--- a/src/HOL/Auth/Guard/Guard.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Guard.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -76,7 +76,7 @@
 
 subsection{*guarded sets*}
 
-constdefs Guard :: "nat => key set => msg set => bool"
+definition Guard :: "nat => key set => msg set => bool" where
 "Guard n Ks H == ALL X. X:H --> X:guard n Ks"
 
 subsection{*basic facts about @{term Guard}*}
@@ -241,7 +241,7 @@
 
 subsection{*list corresponding to "decrypt"*}
 
-constdefs decrypt' :: "msg list => key => msg => msg list"
+definition decrypt' :: "msg list => key => msg => msg list" where
 "decrypt' l K Y == Y # remove l (Crypt K Y)"
 
 declare decrypt'_def [simp]
--- a/src/HOL/Auth/Guard/GuardK.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/GuardK.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -85,7 +85,7 @@
 
 subsection{*guarded sets*}
 
-constdefs GuardK :: "nat => key set => msg set => bool"
+definition GuardK :: "nat => key set => msg set => bool" where
 "GuardK n Ks H == ALL X. X:H --> X:guardK n Ks"
 
 subsection{*basic facts about @{term GuardK}*}
@@ -239,7 +239,7 @@
 
 subsection{*list corresponding to "decrypt"*}
 
-constdefs decrypt' :: "msg list => key => msg => msg list"
+definition decrypt' :: "msg list => key => msg => msg list" where
 "decrypt' l K Y == Y # remove l (Crypt K Y)"
 
 declare decrypt'_def [simp]
--- a/src/HOL/Auth/Guard/Guard_Public.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Guard_Public.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -19,7 +19,7 @@
 
 subsubsection{*signature*}
 
-constdefs sign :: "agent => msg => msg"
+definition sign :: "agent => msg => msg" where
 "sign A X == {|Agent A, X, Crypt (priK A) (Hash X)|}"
 
 lemma sign_inj [iff]: "(sign A X = sign A' X') = (A=A' & X=X')"
@@ -27,7 +27,7 @@
 
 subsubsection{*agent associated to a key*}
 
-constdefs agt :: "key => agent"
+definition agt :: "key => agent" where
 "agt K == @A. K = priK A | K = pubK A"
 
 lemma agt_priK [simp]: "agt (priK A) = A"
@@ -57,7 +57,7 @@
 
 subsubsection{*sets of private keys*}
 
-constdefs priK_set :: "key set => bool"
+definition priK_set :: "key set => bool" where
 "priK_set Ks == ALL K. K:Ks --> (EX A. K = priK A)"
 
 lemma in_priK_set: "[| priK_set Ks; K:Ks |] ==> EX A. K = priK A"
@@ -71,7 +71,7 @@
 
 subsubsection{*sets of good keys*}
 
-constdefs good :: "key set => bool"
+definition good :: "key set => bool" where
 "good Ks == ALL K. K:Ks --> agt K ~:bad"
 
 lemma in_good: "[| good Ks; K:Ks |] ==> agt K ~:bad"
@@ -99,7 +99,7 @@
 
 subsubsection{*function giving a new nonce*}
 
-constdefs new :: "event list => nat"
+definition new :: "event list => nat" where
 "new evs == Suc (greatest evs)"
 
 lemma new_isnt_used [iff]: "Nonce (new evs) ~:used evs"
@@ -151,7 +151,7 @@
 
 subsubsection{*regular protocols*}
 
-constdefs regular :: "event list set => bool"
+definition regular :: "event list set => bool" where
 "regular p == ALL evs A. evs:p --> (Key (priK A):parts (spies evs)) = (A:bad)"
 
 lemma priK_parts_iff_bad [simp]: "[| evs:p; regular p |] ==>
--- a/src/HOL/Auth/Guard/Guard_Shared.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Guard_Shared.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -25,7 +25,7 @@
 
 subsubsection{*agent associated to a key*}
 
-constdefs agt :: "key => agent"
+definition agt :: "key => agent" where
 "agt K == @A. K = shrK A"
 
 lemma agt_shrK [simp]: "agt (shrK A) = A"
@@ -52,7 +52,7 @@
 
 subsubsection{*sets of symmetric keys*}
 
-constdefs shrK_set :: "key set => bool"
+definition shrK_set :: "key set => bool" where
 "shrK_set Ks == ALL K. K:Ks --> (EX A. K = shrK A)"
 
 lemma in_shrK_set: "[| shrK_set Ks; K:Ks |] ==> EX A. K = shrK A"
@@ -66,7 +66,7 @@
 
 subsubsection{*sets of good keys*}
 
-constdefs good :: "key set => bool"
+definition good :: "key set => bool" where
 "good Ks == ALL K. K:Ks --> agt K ~:bad"
 
 lemma in_good: "[| good Ks; K:Ks |] ==> agt K ~:bad"
@@ -154,7 +154,7 @@
 
 subsubsection{*regular protocols*}
 
-constdefs regular :: "event list set => bool"
+definition regular :: "event list set => bool" where
 "regular p == ALL evs A. evs:p --> (Key (shrK A):parts (spies evs)) = (A:bad)"
 
 lemma shrK_parts_iff_bad [simp]: "[| evs:p; regular p |] ==>
--- a/src/HOL/Auth/Guard/Guard_Yahalom.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Guard_Yahalom.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -198,7 +198,7 @@
 
 subsection{*guardedness of NB*}
 
-constdefs ya_keys :: "agent => agent => nat => nat => event list => key set"
+definition ya_keys :: "agent => agent => nat => nat => event list => key set" where
 "ya_keys A B NA NB evs == {shrK A,shrK B} Un {K. ya3 A B NA NB K:set evs}"
 
 lemma Guard_NB [rule_format]: "[| evs:ya; A ~:bad; B ~:bad |] ==>
--- a/src/HOL/Auth/Guard/P1.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/P1.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -39,7 +39,7 @@
 subsubsection{*offer chaining:
 B chains his offer for A with the head offer of L for sending it to C*}
 
-constdefs chain :: "agent => nat => agent => msg => agent => msg"
+definition chain :: "agent => nat => agent => msg => agent => msg" where
 "chain B ofr A L C ==
 let m1= Crypt (pubK A) (Nonce ofr) in
 let m2= Hash {|head L, Agent C|} in
@@ -86,7 +86,7 @@
 
 subsubsection{*anchor of the offer list*}
 
-constdefs anchor :: "agent => nat => agent => msg"
+definition anchor :: "agent => nat => agent => msg" where
 "anchor A n B == chain A n A (cons nil nil) B"
 
 lemma anchor_inj [iff]: "(anchor A n B = anchor A' n' B')
@@ -107,7 +107,7 @@
 
 subsubsection{*request event*}
 
-constdefs reqm :: "agent => nat => nat => msg => agent => msg"
+definition reqm :: "agent => nat => nat => msg => agent => msg" where
 "reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
 cons (anchor A n B) nil|}"
 
@@ -118,7 +118,7 @@
 lemma Nonce_in_reqm [iff]: "Nonce n:parts {reqm A r n I B}"
 by (auto simp: reqm_def)
 
-constdefs req :: "agent => nat => nat => msg => agent => event"
+definition req :: "agent => nat => nat => msg => agent => event" where
 "req A r n I B == Says A B (reqm A r n I B)"
 
 lemma req_inj [iff]: "(req A r n I B = req A' r' n' I' B')
@@ -127,8 +127,8 @@
 
 subsubsection{*propose event*}
 
-constdefs prom :: "agent => nat => agent => nat => msg => msg =>
-msg => agent => msg"
+definition prom :: "agent => nat => agent => nat => msg => msg =>
+msg => agent => msg" where
 "prom B ofr A r I L J C == {|Agent A, Number r,
 app (J, del (Agent B, I)), cons (chain B ofr A L C) L|}"
 
@@ -140,8 +140,8 @@
 lemma Nonce_in_prom [iff]: "Nonce ofr:parts {prom B ofr A r I L J C}"
 by (auto simp: prom_def)
 
-constdefs pro :: "agent => nat => agent => nat => msg => msg =>
-msg => agent => event"
+definition pro :: "agent => nat => agent => nat => msg => msg =>
+msg => agent => event" where
 "pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)"
 
 lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B' ofr' A' r' I' L' J' C'
@@ -198,7 +198,7 @@
 
 subsubsection{*offers of an offer list*}
 
-constdefs offer_nonces :: "msg => msg set"
+definition offer_nonces :: "msg => msg set" where
 "offer_nonces L == {X. X:parts {L} & (EX n. X = Nonce n)}"
 
 subsubsection{*the originator can get the offers*}
@@ -252,7 +252,7 @@
 pro C (Suc ofr) A r I' L nil D
 # trace (B,Suc ofr,A,r,I'',tail L,K))"
 
-constdefs trace' :: "agent => nat => nat => msg => agent => nat => event list"
+definition trace' :: "agent => nat => nat => msg => agent => nat => event list" where
 "trace' A r n I B ofr == (
 let AI = cons (Agent A) I in
 let L = offer_list (A,n,B,AI,ofr) in
--- a/src/HOL/Auth/Guard/P2.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/P2.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -26,7 +26,7 @@
 subsubsection{*offer chaining:
 B chains his offer for A with the head offer of L for sending it to C*}
 
-constdefs chain :: "agent => nat => agent => msg => agent => msg"
+definition chain :: "agent => nat => agent => msg => agent => msg" where
 "chain B ofr A L C ==
 let m1= sign B (Nonce ofr) in
 let m2= Hash {|head L, Agent C|} in
@@ -73,7 +73,7 @@
 
 subsubsection{*anchor of the offer list*}
 
-constdefs anchor :: "agent => nat => agent => msg"
+definition anchor :: "agent => nat => agent => msg" where
 "anchor A n B == chain A n A (cons nil nil) B"
 
 lemma anchor_inj [iff]:
@@ -88,7 +88,7 @@
 
 subsubsection{*request event*}
 
-constdefs reqm :: "agent => nat => nat => msg => agent => msg"
+definition reqm :: "agent => nat => nat => msg => agent => msg" where
 "reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
 cons (anchor A n B) nil|}"
 
@@ -99,7 +99,7 @@
 lemma Nonce_in_reqm [iff]: "Nonce n:parts {reqm A r n I B}"
 by (auto simp: reqm_def)
 
-constdefs req :: "agent => nat => nat => msg => agent => event"
+definition req :: "agent => nat => nat => msg => agent => event" where
 "req A r n I B == Says A B (reqm A r n I B)"
 
 lemma req_inj [iff]: "(req A r n I B = req A' r' n' I' B')
@@ -108,8 +108,8 @@
 
 subsubsection{*propose event*}
 
-constdefs prom :: "agent => nat => agent => nat => msg => msg =>
-msg => agent => msg"
+definition prom :: "agent => nat => agent => nat => msg => msg =>
+msg => agent => msg" where
 "prom B ofr A r I L J C == {|Agent A, Number r,
 app (J, del (Agent B, I)), cons (chain B ofr A L C) L|}"
 
@@ -120,8 +120,8 @@
 lemma Nonce_in_prom [iff]: "Nonce ofr:parts {prom B ofr A r I L J C}"
 by (auto simp: prom_def)
 
-constdefs pro :: "agent => nat => agent => nat => msg => msg =>
-                  msg => agent => event"
+definition pro :: "agent => nat => agent => nat => msg => msg =>
+                  msg => agent => event" where
 "pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)"
 
 lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B' ofr' A' r' I' L' J' C'
--- a/src/HOL/Auth/Guard/Proto.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Guard/Proto.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -23,7 +23,7 @@
 
 types proto = "rule set"
 
-constdefs wdef :: "proto => bool"
+definition wdef :: "proto => bool" where
 "wdef p == ALL R k. R:p --> Number k:parts {msg' R}
 --> Number k:parts (msg`(fst R))"
 
@@ -35,19 +35,17 @@
   nb    :: "nat => msg"
   key   :: "key => key"
 
-consts apm :: "subs => msg => msg"
-
-primrec
-"apm s (Agent A) = Agent (agent s A)"
-"apm s (Nonce n) = Nonce (nonce s n)"
-"apm s (Number n) = nb s n"
-"apm s (Key K) = Key (key s K)"
-"apm s (Hash X) = Hash (apm s X)"
-"apm s (Crypt K X) = (
+primrec apm :: "subs => msg => msg" where
+  "apm s (Agent A) = Agent (agent s A)"
+| "apm s (Nonce n) = Nonce (nonce s n)"
+| "apm s (Number n) = nb s n"
+| "apm s (Key K) = Key (key s K)"
+| "apm s (Hash X) = Hash (apm s X)"
+| "apm s (Crypt K X) = (
 if (EX A. K = pubK A) then Crypt (pubK (agent s (agt K))) (apm s X)
 else if (EX A. K = priK A) then Crypt (priK (agent s (agt K))) (apm s X)
 else Crypt (key s K) (apm s X))"
-"apm s {|X,Y|} = {|apm s X, apm s Y|}"
+| "apm s {|X,Y|} = {|apm s X, apm s Y|}"
 
 lemma apm_parts: "X:parts {Y} ==> apm s X:parts {apm s Y}"
 apply (erule parts.induct, simp_all, blast)
@@ -69,12 +67,10 @@
 apply (drule_tac Y="msg x" and s=s in apm_parts, simp)
 by (blast dest: parts_parts)
 
-consts ap :: "subs => event => event"
-
-primrec
-"ap s (Says A B X) = Says (agent s A) (agent s B) (apm s X)"
-"ap s (Gets A X) = Gets (agent s A) (apm s X)"
-"ap s (Notes A X) = Notes (agent s A) (apm s X)"
+primrec ap :: "subs => event => event" where
+  "ap s (Says A B X) = Says (agent s A) (agent s B) (apm s X)"
+| "ap s (Gets A X) = Gets (agent s A) (apm s X)"
+| "ap s (Notes A X) = Notes (agent s A) (apm s X)"
 
 abbreviation
   ap' :: "subs => rule => event" where
@@ -94,7 +90,7 @@
 
 subsection{*nonces generated by a rule*}
 
-constdefs newn :: "rule => nat set"
+definition newn :: "rule => nat set" where
 "newn R == {n. Nonce n:parts {msg (snd R)} & Nonce n ~:parts (msg`(fst R))}"
 
 lemma newn_parts: "n:newn R ==> Nonce (nonce s n):parts {apm' s R}"
@@ -102,7 +98,7 @@
 
 subsection{*traces generated by a protocol*}
 
-constdefs ok :: "event list => rule => subs => bool"
+definition ok :: "event list => rule => subs => bool" where
 "ok evs R s == ((ALL x. x:fst R --> ap s x:set evs)
 & (ALL n. n:newn R --> Nonce (nonce s n) ~:used evs))"
 
@@ -124,7 +120,7 @@
 apply (unfold one_step_def, clarify)
 by (ind_cases "ev # evs:tr p" for ev evs, auto)
 
-constdefs has_only_Says' :: "proto => bool"
+definition has_only_Says' :: "proto => bool" where
 "has_only_Says' p == ALL R. R:p --> is_Says (snd R)"
 
 lemma has_only_Says'D: "[| R:p; has_only_Says' p |]
@@ -165,8 +161,8 @@
 
 subsection{*introduction of a fresh guarded nonce*}
 
-constdefs fresh :: "proto => rule => subs => nat => key set => event list
-=> bool"
+definition fresh :: "proto => rule => subs => nat => key set => event list
+=> bool" where
 "fresh p R s n Ks evs == (EX evs1 evs2. evs = evs2 @ ap' s R # evs1
 & Nonce n ~:used evs1 & R:p & ok evs1 R s & Nonce n:parts {apm' s R}
 & apm' s R:guard n Ks)"
@@ -226,7 +222,7 @@
 
 subsection{*safe keys*}
 
-constdefs safe :: "key set => msg set => bool"
+definition safe :: "key set => msg set => bool" where
 "safe Ks G == ALL K. K:Ks --> Key K ~:analz G"
 
 lemma safeD [dest]: "[| safe Ks G; K:Ks |] ==> Key K ~:analz G"
@@ -240,7 +236,7 @@
 
 subsection{*guardedness preservation*}
 
-constdefs preserv :: "proto => keyfun => nat => key set => bool"
+definition preserv :: "proto => keyfun => nat => key set => bool" where
 "preserv p keys n Ks == (ALL evs R' s' R s. evs:tr p -->
 Guard n Ks (spies evs) --> safe Ks (spies evs) --> fresh p R' s' n Ks evs -->
 keys R' s' n evs <= Ks --> R:p --> ok evs R s --> apm' s R:guard n Ks)"
@@ -257,7 +253,7 @@
 
 subsection{*monotonic keyfun*}
 
-constdefs monoton :: "proto => keyfun => bool"
+definition monoton :: "proto => keyfun => bool" where
 "monoton p keys == ALL R' s' n ev evs. ev # evs:tr p -->
 keys R' s' n evs <= keys R' s' n (ev # evs)"
 
@@ -323,7 +319,7 @@
 
 subsection{*unicity*}
 
-constdefs uniq :: "proto => secfun => bool"
+definition uniq :: "proto => secfun => bool" where
 "uniq p secret == ALL evs R R' n n' Ks s s'. R:p --> R':p -->
 n:newn R --> n':newn R' --> nonce s n = nonce s' n' -->
 Nonce (nonce s n):parts {apm' s R} --> Nonce (nonce s n):parts {apm' s' R'} -->
@@ -340,13 +336,13 @@
 secret R n s Ks = secret R' n' s' Ks"
 by (unfold uniq_def, blast)
 
-constdefs ord :: "proto => (rule => rule => bool) => bool"
+definition ord :: "proto => (rule => rule => bool) => bool" where
 "ord p inff == ALL R R'. R:p --> R':p --> ~ inff R R' --> inff R' R"
 
 lemma ordD: "[| ord p inff; ~ inff R R'; R:p; R':p |] ==> inff R' R"
 by (unfold ord_def, blast)
 
-constdefs uniq' :: "proto => (rule => rule => bool) => secfun => bool"
+definition uniq' :: "proto => (rule => rule => bool) => secfun => bool" where
 "uniq' p inff secret == ALL evs R R' n n' Ks s s'. R:p --> R':p -->
 inff R R' --> n:newn R --> n':newn R' --> nonce s n = nonce s' n' -->
 Nonce (nonce s n):parts {apm' s R} --> Nonce (nonce s n):parts {apm' s' R'} -->
@@ -372,13 +368,12 @@
 
 subsection{*Needham-Schroeder-Lowe*}
 
-constdefs
-a :: agent "a == Friend 0"
-b :: agent "b == Friend 1"
-a' :: agent "a' == Friend 2"
-b' :: agent "b' == Friend 3"
-Na :: nat "Na == 0"
-Nb :: nat "Nb == 1"
+definition a :: agent where "a == Friend 0"
+definition b :: agent where "b == Friend 1"
+definition a' :: agent where "a' == Friend 2"
+definition b' :: agent where "b' == Friend 3"
+definition Na :: nat where "Na == 0"
+definition Nb :: nat where "Nb == 1"
 
 abbreviation
   ns1 :: rule where
@@ -408,19 +403,19 @@
   ns3b :: event where
   "ns3b == Says b' a (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b|})"
 
-constdefs keys :: "keyfun"
+definition keys :: "keyfun" where
 "keys R' s' n evs == {priK' s' a, priK' s' b}"
 
 lemma "monoton ns keys"
 by (simp add: keys_def monoton_def)
 
-constdefs secret :: "secfun"
+definition secret :: "secfun" where
 "secret R n s Ks ==
 (if R=ns1 then apm s (Crypt (pubK b) {|Nonce Na, Agent a|})
 else if R=ns2 then apm s (Crypt (pubK a) {|Nonce Na, Nonce Nb, Agent b|})
 else Number 0)"
 
-constdefs inf :: "rule => rule => bool"
+definition inf :: "rule => rule => bool" where
 "inf R R' == (R=ns1 | (R=ns2 & R'~=ns1) | (R=ns3 & R'=ns3))"
 
 lemma inf_is_ord [iff]: "ord ns inf"
--- a/src/HOL/Auth/KerberosIV.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/KerberosIV.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -101,8 +101,7 @@
 
 
 (* Predicate formalising the association between authKeys and servKeys *)
-constdefs
-  AKcryptSK :: "[key, key, event list] => bool"
+definition AKcryptSK :: "[key, key, event list] => bool" where
   "AKcryptSK authK servK evs ==
      \<exists>A B Ts.
        Says Tgs A (Crypt authK
--- a/src/HOL/Auth/KerberosIV_Gets.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/KerberosIV_Gets.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -89,8 +89,7 @@
 
 
 (* Predicate formalising the association between authKeys and servKeys *)
-constdefs
-  AKcryptSK :: "[key, key, event list] => bool"
+definition AKcryptSK :: "[key, key, event list] => bool" where
   "AKcryptSK authK servK evs ==
      \<exists>A B Ts.
        Says Tgs A (Crypt authK
--- a/src/HOL/Auth/KerberosV.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/KerberosV.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -92,8 +92,7 @@
 
 
 (* Predicate formalising the association between authKeys and servKeys *)
-constdefs
-  AKcryptSK :: "[key, key, event list] => bool"
+definition AKcryptSK :: "[key, key, event list] => bool" where
   "AKcryptSK authK servK evs ==
      \<exists>A B tt.
        Says Tgs A \<lbrace>Crypt authK \<lbrace>Key servK, Agent B, tt\<rbrace>,
--- a/src/HOL/Auth/Message.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Message.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -32,8 +32,7 @@
 text{*The inverse of a symmetric key is itself; that of a public key
       is the private key and vice versa*}
 
-constdefs
-  symKeys :: "key set"
+definition symKeys :: "key set" where
   "symKeys == {K. invKey K = K}"
 
 datatype  --{*We allow any number of friendly agents*}
@@ -61,12 +60,11 @@
   "{|x, y|}"      == "CONST MPair x y"
 
 
-constdefs
-  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
+definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
     --{*Message Y paired with a MAC computed with the help of X*}
     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 
-  keysFor :: "msg set => key set"
+definition keysFor :: "msg set => key set" where
     --{*Keys useful to decrypt elements of a message set*}
   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 
--- a/src/HOL/Auth/Smartcard/ShoupRubin.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Smartcard/ShoupRubin.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
-(*  ID:         $Id$
-    Author:     Giampaolo Bella, Catania University
+(*  Author:     Giampaolo Bella, Catania University
 *)
 
 header{*Original Shoup-Rubin protocol*}
@@ -29,9 +28,7 @@
     between each agent and his smartcard*)
    shouprubin_assumes_securemeans [iff]: "evs \<in> sr \<Longrightarrow> secureM"
 
-constdefs
-
-  Unique :: "[event, event list] => bool" ("Unique _ on _")
+definition Unique :: "[event, event list] => bool" ("Unique _ on _") where
    "Unique ev on evs == 
       ev \<notin> set (tl (dropWhile (% z. z \<noteq> ev) evs))"
 
--- a/src/HOL/Auth/Smartcard/ShoupRubinBella.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Smartcard/ShoupRubinBella.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
-(*  ID:         $Id$
-    Author:     Giampaolo Bella, Catania University
+(*  Author:     Giampaolo Bella, Catania University
 *)
 
 header{*Bella's modification of the Shoup-Rubin protocol*}
@@ -35,9 +34,7 @@
     between each agent and his smartcard*)
    shouprubin_assumes_securemeans [iff]: "evs \<in> srb \<Longrightarrow> secureM"
 
-constdefs
-
-  Unique :: "[event, event list] => bool" ("Unique _ on _")
+definition Unique :: "[event, event list] => bool" ("Unique _ on _") where
    "Unique ev on evs == 
       ev \<notin> set (tl (dropWhile (% z. z \<noteq> ev) evs))"
 
--- a/src/HOL/Auth/Smartcard/Smartcard.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Smartcard/Smartcard.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -43,15 +43,11 @@
   shrK_disj_pin [iff]:  "shrK P \<noteq> pin Q"
   crdK_disj_pin [iff]:   "crdK C \<noteq> pin P"
 
-constdefs
-  legalUse :: "card => bool" ("legalUse (_)")
+definition legalUse :: "card => bool" ("legalUse (_)") where
   "legalUse C == C \<notin> stolen"
 
-consts  
-  illegalUse :: "card  => bool"
-primrec
-  illegalUse_def: 
-  "illegalUse (Card A) = ( (Card A \<in> stolen \<and> A \<in> bad)  \<or>  Card A \<in> cloned )"
+primrec illegalUse :: "card  => bool" where
+  illegalUse_def: "illegalUse (Card A) = ( (Card A \<in> stolen \<and> A \<in> bad)  \<or>  Card A \<in> cloned )"
 
 
 text{*initState must be defined with care*}
--- a/src/HOL/Auth/TLS.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/TLS.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -43,8 +43,7 @@
 
 theory TLS imports Public Nat_Int_Bij begin
 
-constdefs
-  certificate      :: "[agent,key] => msg"
+definition certificate :: "[agent,key] => msg" where
     "certificate A KA == Crypt (priSK Server) {|Agent A, Key KA|}"
 
 text{*TLS apparently does not require separate keypairs for encryption and
--- a/src/HOL/Auth/Yahalom.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/Yahalom.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -74,8 +74,7 @@
           ==> Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso \<in> yahalom"
 
 
-constdefs 
-  KeyWithNonce :: "[key, nat, event list] => bool"
+definition KeyWithNonce :: "[key, nat, event list] => bool" where
   "KeyWithNonce K NB evs ==
      \<exists>A B na X. 
        Says Server A {|Crypt (shrK A) {|Agent B, Key K, na, Nonce NB|}, X|} 
--- a/src/HOL/Auth/ZhouGollmann.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Auth/ZhouGollmann.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -21,8 +21,7 @@
 abbreviation f_con :: nat where "f_con == 4"
 
 
-constdefs
-  broken :: "agent set"    
+definition broken :: "agent set" where    
     --{*the compromised honest agents; TTP is included as it's not allowed to
         use the protocol*}
    "broken == bad - {Spy}"
--- a/src/HOL/Bali/AxCompl.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/AxCompl.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -20,9 +20,7 @@
            
 section "set of not yet initialzed classes"
 
-constdefs
-
-  nyinitcls :: "prog \<Rightarrow> state \<Rightarrow> qtname set"
+definition nyinitcls :: "prog \<Rightarrow> state \<Rightarrow> qtname set" where
  "nyinitcls G s \<equiv> {C. is_class G C \<and> \<not> initd C s}"
 
 lemma nyinitcls_subset_class: "nyinitcls G s \<subseteq> {C. is_class G C}"
@@ -115,8 +113,7 @@
 
 section "init-le"
 
-constdefs
-  init_le :: "prog \<Rightarrow> nat \<Rightarrow> state \<Rightarrow> bool"            ("_\<turnstile>init\<le>_"  [51,51] 50)
+definition init_le :: "prog \<Rightarrow> nat \<Rightarrow> state \<Rightarrow> bool" ("_\<turnstile>init\<le>_"  [51,51] 50) where
  "G\<turnstile>init\<le>n \<equiv> \<lambda>s. card (nyinitcls G s) \<le> n"
   
 lemma init_le_def2 [simp]: "(G\<turnstile>init\<le>n) s = (card (nyinitcls G s)\<le>n)"
@@ -135,9 +132,7 @@
 
 section "Most General Triples and Formulas"
 
-constdefs
-
-  remember_init_state :: "state assn"                ("\<doteq>")
+definition remember_init_state :: "state assn" ("\<doteq>") where
   "\<doteq> \<equiv> \<lambda>Y s Z. s = Z"
 
 lemma remember_init_state_def2 [simp]: "\<doteq> Y = op ="
@@ -579,8 +574,7 @@
 unroll the loop in iterated evaluations of the expression and evaluations of
 the loop body. *}
 
-constdefs
- unroll:: "prog \<Rightarrow> label \<Rightarrow> expr \<Rightarrow> stmt \<Rightarrow> (state \<times>  state) set"
+definition unroll :: "prog \<Rightarrow> label \<Rightarrow> expr \<Rightarrow> stmt \<Rightarrow> (state \<times>  state) set" where
 
  "unroll G l e c \<equiv> {(s,t). \<exists> v s1 s2.
                              G\<turnstile>s \<midarrow>e-\<succ>v\<rightarrow> s1 \<and> the_Bool v \<and> normal s1 \<and>
--- a/src/HOL/Bali/AxExample.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/AxExample.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,8 +8,7 @@
 imports AxSem Example
 begin
 
-constdefs
-  arr_inv :: "st \<Rightarrow> bool"
+definition arr_inv :: "st \<Rightarrow> bool" where
  "arr_inv \<equiv> \<lambda>s. \<exists>obj a T el. globs s (Stat Base) = Some obj \<and>
                               values obj (Inl (arr, Base)) = Some (Addr a) \<and>
                               heap s a = Some \<lparr>tag=Arr T 2,values=el\<rparr>"
--- a/src/HOL/Bali/AxSem.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/AxSem.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -63,8 +63,7 @@
       "res"    <= (type) "AxSem.res"
       "a assn" <= (type) "vals \<Rightarrow> state \<Rightarrow> a \<Rightarrow> bool"
 
-constdefs
-  assn_imp   :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> bool"             (infixr "\<Rightarrow>" 25)
+definition assn_imp :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> bool" (infixr "\<Rightarrow>" 25) where
  "P \<Rightarrow> Q \<equiv> \<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z"
   
 lemma assn_imp_def2 [iff]: "(P \<Rightarrow> Q) = (\<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z)"
@@ -77,8 +76,7 @@
 
 subsection "peek-and"
 
-constdefs
-  peek_and   :: "'a assn \<Rightarrow> (state \<Rightarrow>  bool) \<Rightarrow> 'a assn" (infixl "\<and>." 13)
+definition peek_and :: "'a assn \<Rightarrow> (state \<Rightarrow>  bool) \<Rightarrow> 'a assn" (infixl "\<and>." 13) where
  "P \<and>. p \<equiv> \<lambda>Y s Z. P Y s Z \<and> p s"
 
 lemma peek_and_def2 [simp]: "peek_and P p Y s = (\<lambda>Z. (P Y s Z \<and> p s))"
@@ -117,8 +115,7 @@
 
 subsection "assn-supd"
 
-constdefs
-  assn_supd  :: "'a assn \<Rightarrow> (state \<Rightarrow> state) \<Rightarrow> 'a assn" (infixl ";." 13)
+definition assn_supd :: "'a assn \<Rightarrow> (state \<Rightarrow> state) \<Rightarrow> 'a assn" (infixl ";." 13) where
  "P ;. f \<equiv> \<lambda>Y s' Z. \<exists>s. P Y s Z \<and> s' = f s"
 
 lemma assn_supd_def2 [simp]: "assn_supd P f Y s' Z = (\<exists>s. P Y s Z \<and> s' = f s)"
@@ -128,8 +125,7 @@
 
 subsection "supd-assn"
 
-constdefs
-  supd_assn  :: "(state \<Rightarrow> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn" (infixr ".;" 13)
+definition supd_assn :: "(state \<Rightarrow> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn" (infixr ".;" 13) where
  "f .; P \<equiv> \<lambda>Y s. P Y (f s)"
 
 
@@ -148,8 +144,7 @@
 
 subsection "subst-res"
 
-constdefs
-  subst_res   :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"              ("_\<leftarrow>_"  [60,61] 60)
+definition subst_res :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn" ("_\<leftarrow>_"  [60,61] 60) where
  "P\<leftarrow>w \<equiv> \<lambda>Y. P w"
 
 lemma subst_res_def2 [simp]: "(P\<leftarrow>w) Y = P w"
@@ -184,8 +179,7 @@
 
 subsection "subst-Bool"
 
-constdefs
-  subst_Bool  :: "'a assn \<Rightarrow> bool \<Rightarrow> 'a assn"             ("_\<leftarrow>=_" [60,61] 60)
+definition subst_Bool :: "'a assn \<Rightarrow> bool \<Rightarrow> 'a assn" ("_\<leftarrow>=_" [60,61] 60) where
  "P\<leftarrow>=b \<equiv> \<lambda>Y s Z. \<exists>v. P (Val v) s Z \<and> (normal s \<longrightarrow> the_Bool v=b)"
 
 lemma subst_Bool_def2 [simp]: 
@@ -200,8 +194,7 @@
 
 subsection "peek-res"
 
-constdefs
-  peek_res    :: "(res \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
+definition peek_res :: "(res \<Rightarrow> 'a assn) \<Rightarrow> 'a assn" where
  "peek_res Pf \<equiv> \<lambda>Y. Pf Y Y"
 
 syntax
@@ -229,8 +222,7 @@
 
 subsection "ign-res"
 
-constdefs
-  ign_res    ::  "        'a assn \<Rightarrow> 'a assn"            ("_\<down>" [1000] 1000)
+definition ign_res :: "        'a assn \<Rightarrow> 'a assn" ("_\<down>" [1000] 1000) where
   "P\<down>        \<equiv> \<lambda>Y s Z. \<exists>Y. P Y s Z"
 
 lemma ign_res_def2 [simp]: "P\<down> Y s Z = (\<exists>Y. P Y s Z)"
@@ -261,8 +253,7 @@
 
 subsection "peek-st"
 
-constdefs
-  peek_st    :: "(st \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
+definition peek_st :: "(st \<Rightarrow> 'a assn) \<Rightarrow> 'a assn" where
  "peek_st P \<equiv> \<lambda>Y s. P (store s) Y s"
 
 syntax
@@ -306,8 +297,7 @@
 
 subsection "ign-res-eq"
 
-constdefs
-  ign_res_eq :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"               ("_\<down>=_"  [60,61] 60)
+definition ign_res_eq :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn" ("_\<down>=_"  [60,61] 60) where
  "P\<down>=w       \<equiv> \<lambda>Y:. P\<down> \<and>. (\<lambda>s. Y=w)"
 
 lemma ign_res_eq_def2 [simp]: "(P\<down>=w) Y s Z = ((\<exists>Y. P Y s Z) \<and> Y=w)"
@@ -337,8 +327,7 @@
 
 subsection "RefVar"
 
-constdefs
-  RefVar    :: "(state \<Rightarrow> vvar \<times> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn"(infixr "..;" 13)
+definition RefVar :: "(state \<Rightarrow> vvar \<times> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn" (infixr "..;" 13) where
  "vf ..; P \<equiv> \<lambda>Y s. let (v,s') = vf s in P (Var v) s'"
  
 lemma RefVar_def2 [simp]: "(vf ..; P) Y s =  
@@ -349,12 +338,11 @@
 
 subsection "allocation"
 
-constdefs
-  Alloc      :: "prog \<Rightarrow> obj_tag \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+definition Alloc :: "prog \<Rightarrow> obj_tag \<Rightarrow> 'a assn \<Rightarrow> 'a assn" where
  "Alloc G otag P \<equiv> \<lambda>Y s Z.
                    \<forall>s' a. G\<turnstile>s \<midarrow>halloc otag\<succ>a\<rightarrow> s'\<longrightarrow> P (Val (Addr a)) s' Z"
 
-  SXAlloc     :: "prog \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+definition SXAlloc     :: "prog \<Rightarrow> 'a assn \<Rightarrow> 'a assn" where
  "SXAlloc G P \<equiv> \<lambda>Y s Z. \<forall>s'. G\<turnstile>s \<midarrow>sxalloc\<rightarrow> s' \<longrightarrow> P Y s' Z"
 
 
@@ -372,8 +360,7 @@
 
 section "validity"
 
-constdefs
-  type_ok  :: "prog \<Rightarrow> term \<Rightarrow> state \<Rightarrow> bool"
+definition type_ok :: "prog \<Rightarrow> term \<Rightarrow> state \<Rightarrow> bool" where
  "type_ok G t s \<equiv> 
     \<exists>L T C A. (normal s \<longrightarrow> \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T \<and> 
                             \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>dom (locals (store s))\<guillemotright>t\<guillemotright>A )
@@ -419,10 +406,8 @@
 apply auto
 done
 
-constdefs
-  mtriples  :: "('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<Rightarrow> 'sig \<Rightarrow> expr) \<Rightarrow> 
-                ('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<times>  'sig) set \<Rightarrow> 'a triples"
-                                     ("{{(1_)}/ _-\<succ>/ {(1_)} | _}"[3,65,3,65]75)
+definition mtriples :: "('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<Rightarrow> 'sig \<Rightarrow> expr) \<Rightarrow> 
+                ('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<times>  'sig) set \<Rightarrow> 'a triples" ("{{(1_)}/ _-\<succ>/ {(1_)} | _}"[3,65,3,65]75) where
  "{{P} tf-\<succ> {Q} | ms} \<equiv> (\<lambda>(C,sig). {Normal(P C sig)} tf C sig-\<succ> {Q C sig})`ms"
   
 consts
@@ -641,8 +626,7 @@
 axioms 
 *)
 
-constdefs
- adapt_pre :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
+definition adapt_pre :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn" where
 "adapt_pre P Q Q'\<equiv>\<lambda>Y s Z. \<forall>Y' s'. \<exists>Z'. P Y s Z' \<and> (Q Y' s' Z' \<longrightarrow> Q' Y' s' Z)"
 
 
--- a/src/HOL/Bali/Basis.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Basis.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -237,8 +237,7 @@
 
 text{* Deemed too special for theory Map. *}
 
-constdefs
-  chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
+definition chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" where
  "chg_map f a m == case m a of None => m | Some b => m(a|->f b)"
 
 lemma chg_map_new[simp]: "m a = None   ==> chg_map f a m = m"
@@ -253,8 +252,7 @@
 
 section "unique association lists"
 
-constdefs
-  unique   :: "('a \<times> 'b) list \<Rightarrow> bool"
+definition unique :: "('a \<times> 'b) list \<Rightarrow> bool" where
  "unique \<equiv> distinct \<circ> map fst"
 
 lemma uniqueD [rule_format (no_asm)]: 
--- a/src/HOL/Bali/Conform.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Conform.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -22,9 +22,7 @@
 section "extension of global store"
 
 
-constdefs
-
-  gext    :: "st \<Rightarrow> st \<Rightarrow> bool"                ("_\<le>|_"       [71,71]   70)
+definition gext :: "st \<Rightarrow> st \<Rightarrow> bool" ("_\<le>|_"       [71,71]   70) where
    "s\<le>|s' \<equiv> \<forall>r. \<forall>obj\<in>globs s r: \<exists>obj'\<in>globs s' r: tag obj'= tag obj"
 
 text {* For the the proof of type soundness we will need the 
@@ -98,9 +96,7 @@
 
 section "value conformance"
 
-constdefs
-
-  conf  :: "prog \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool"    ("_,_\<turnstile>_\<Colon>\<preceq>_"   [71,71,71,71] 70)
+definition conf :: "prog \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool" ("_,_\<turnstile>_\<Colon>\<preceq>_"   [71,71,71,71] 70) where
            "G,s\<turnstile>v\<Colon>\<preceq>T \<equiv> \<exists>T'\<in>typeof (\<lambda>a. Option.map obj_ty (heap s a)) v:G\<turnstile>T'\<preceq>T"
 
 lemma conf_cong [simp]: "G,set_locals l s\<turnstile>v\<Colon>\<preceq>T = G,s\<turnstile>v\<Colon>\<preceq>T"
@@ -181,10 +177,7 @@
 
 section "value list conformance"
 
-constdefs
-
-  lconf :: "prog \<Rightarrow> st \<Rightarrow> ('a, val) table \<Rightarrow> ('a, ty) table \<Rightarrow> bool"
-                                                ("_,_\<turnstile>_[\<Colon>\<preceq>]_" [71,71,71,71] 70)
+definition lconf :: "prog \<Rightarrow> st \<Rightarrow> ('a, val) table \<Rightarrow> ('a, ty) table \<Rightarrow> bool" ("_,_\<turnstile>_[\<Colon>\<preceq>]_" [71,71,71,71] 70) where
            "G,s\<turnstile>vs[\<Colon>\<preceq>]Ts \<equiv> \<forall>n. \<forall>T\<in>Ts n: \<exists>v\<in>vs n: G,s\<turnstile>v\<Colon>\<preceq>T"
 
 lemma lconfD: "\<lbrakk>G,s\<turnstile>vs[\<Colon>\<preceq>]Ts; Ts n = Some T\<rbrakk> \<Longrightarrow> G,s\<turnstile>(the (vs n))\<Colon>\<preceq>T"
@@ -267,10 +260,7 @@
 *}
 
   
-constdefs
-
-  wlconf :: "prog \<Rightarrow> st \<Rightarrow> ('a, val) table \<Rightarrow> ('a, ty) table \<Rightarrow> bool"
-                                          ("_,_\<turnstile>_[\<sim>\<Colon>\<preceq>]_" [71,71,71,71] 70)
+definition wlconf :: "prog \<Rightarrow> st \<Rightarrow> ('a, val) table \<Rightarrow> ('a, ty) table \<Rightarrow> bool" ("_,_\<turnstile>_[\<sim>\<Colon>\<preceq>]_" [71,71,71,71] 70) where
            "G,s\<turnstile>vs[\<sim>\<Colon>\<preceq>]Ts \<equiv> \<forall>n. \<forall>T\<in>Ts n: \<forall> v\<in>vs n: G,s\<turnstile>v\<Colon>\<preceq>T"
 
 lemma wlconfD: "\<lbrakk>G,s\<turnstile>vs[\<sim>\<Colon>\<preceq>]Ts; Ts n = Some T; vs n = Some v\<rbrakk> \<Longrightarrow> G,s\<turnstile>v\<Colon>\<preceq>T"
@@ -348,9 +338,7 @@
 
 section "object conformance"
 
-constdefs
-
-  oconf :: "prog \<Rightarrow> st \<Rightarrow> obj \<Rightarrow> oref \<Rightarrow> bool"  ("_,_\<turnstile>_\<Colon>\<preceq>\<surd>_"  [71,71,71,71] 70)
+definition oconf :: "prog \<Rightarrow> st \<Rightarrow> obj \<Rightarrow> oref \<Rightarrow> bool" ("_,_\<turnstile>_\<Colon>\<preceq>\<surd>_"  [71,71,71,71] 70) where
            "G,s\<turnstile>obj\<Colon>\<preceq>\<surd>r \<equiv> G,s\<turnstile>values obj[\<Colon>\<preceq>]var_tys G (tag obj) r \<and> 
                            (case r of 
                               Heap a \<Rightarrow> is_type G (obj_ty obj) 
@@ -385,9 +373,7 @@
 
 section "state conformance"
 
-constdefs
-
-  conforms :: "state \<Rightarrow> env' \<Rightarrow> bool"          (     "_\<Colon>\<preceq>_"   [71,71]      70)
+definition conforms :: "state \<Rightarrow> env' \<Rightarrow> bool"   ("_\<Colon>\<preceq>_"   [71,71]      70)  where
    "xs\<Colon>\<preceq>E \<equiv> let (G, L) = E; s = snd xs; l = locals s in
     (\<forall>r. \<forall>obj\<in>globs s r:           G,s\<turnstile>obj   \<Colon>\<preceq>\<surd>r) \<and>
                 \<spacespace>                   G,s\<turnstile>l    [\<sim>\<Colon>\<preceq>]L\<spacespace> \<and>
--- a/src/HOL/Bali/Decl.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Decl.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -206,8 +206,7 @@
   "mdecl" <= (type) "sig \<times> methd"
 
 
-constdefs 
-  mhead::"methd \<Rightarrow> mhead"
+definition mhead :: "methd \<Rightarrow> mhead" where
   "mhead m \<equiv> \<lparr>access=access m, static=static m, pars=pars m, resT=resT m\<rparr>"
 
 lemma access_mhead [simp]:"access (mhead m) = access m"
@@ -275,7 +274,7 @@
 lemma memberid_pair_simp1: "memberid p  = memberid (snd p)"
 by (simp add: pair_memberid_def)
 
-constdefs is_field :: "qtname \<times> memberdecl \<Rightarrow> bool"
+definition is_field :: "qtname \<times> memberdecl \<Rightarrow> bool" where
 "is_field m \<equiv> \<exists> declC f. m=(declC,fdecl f)"
   
 lemma is_fieldD: "is_field m \<Longrightarrow> \<exists> declC f. m=(declC,fdecl f)"
@@ -284,7 +283,7 @@
 lemma is_fieldI: "is_field (C,fdecl f)"
 by (simp add: is_field_def)
 
-constdefs is_method :: "qtname \<times> memberdecl \<Rightarrow> bool"
+definition is_method :: "qtname \<times> memberdecl \<Rightarrow> bool" where
 "is_method membr \<equiv> \<exists> declC m. membr=(declC,mdecl m)"
   
 lemma is_methodD: "is_method membr \<Longrightarrow> \<exists> declC m. membr=(declC,mdecl m)"
@@ -315,8 +314,7 @@
                       isuperIfs::qtname list,\<dots>::'a\<rparr>"
   "idecl" <= (type) "qtname \<times> iface"
 
-constdefs
-  ibody :: "iface \<Rightarrow> ibody"
+definition ibody :: "iface \<Rightarrow> ibody" where
   "ibody i \<equiv> \<lparr>access=access i,imethods=imethods i\<rparr>"
 
 lemma access_ibody [simp]: "(access (ibody i)) = access i"
@@ -351,8 +349,7 @@
                       super::qtname,superIfs::qtname list,\<dots>::'a\<rparr>"
   "cdecl" <= (type) "qtname \<times> class"
 
-constdefs
-  cbody :: "class \<Rightarrow> cbody"
+definition cbody :: "class \<Rightarrow> cbody" where
   "cbody c \<equiv> \<lparr>access=access c, cfields=cfields c,methods=methods c,init=init c\<rparr>"
 
 lemma access_cbody [simp]:"access (cbody c) = access c"
@@ -394,7 +391,7 @@
 lemma SXcptC_inject [simp]: "(SXcptC xn = SXcptC xm) = (xn = xm)"
 by (simp add: SXcptC_def)
 
-constdefs standard_classes :: "cdecl list"
+definition standard_classes :: "cdecl list" where
          "standard_classes \<equiv> [ObjectC, SXcptC Throwable,
                 SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,
                 SXcptC NegArrSize , SXcptC IndOutBound, SXcptC ArrStore]"
@@ -470,7 +467,7 @@
   where "G|-C <:C D == (C,D) \<in>(subcls1 G)^+"
 
 notation (xsymbols)
-  subcls1_syntax  ("_\<turnstile>_\<prec>\<^sub>C\<^sub>1_"  [71,71,71] 70) and
+  subcls1_syntax  ("_\<turnstile>_\<prec>\<^sub>C1_"  [71,71,71] 70) and
   subclseq_syntax  ("_\<turnstile>_\<preceq>\<^sub>C _"  [71,71,71] 70) and
   subcls_syntax  ("_\<turnstile>_\<prec>\<^sub>C _"  [71,71,71] 70)
 
@@ -510,7 +507,7 @@
 "\<lbrakk>G\<turnstile>C \<prec>\<^sub>C D\<rbrakk> \<Longrightarrow> \<exists> c. class G C = Some c"
 by (auto simp add: subcls1_def dest: tranclD)
 
-lemma no_subcls1_Object:"G\<turnstile>Object\<prec>\<^sub>C\<^sub>1 D \<Longrightarrow> P"
+lemma no_subcls1_Object:"G\<turnstile>Object\<prec>\<^sub>C1 D \<Longrightarrow> P"
 by (auto simp add: subcls1_def)
 
 lemma no_subcls_Object: "G\<turnstile>Object\<prec>\<^sub>C D \<Longrightarrow> P"
@@ -520,14 +517,13 @@
 
 section "well-structured programs"
 
-constdefs
-  ws_idecl :: "prog \<Rightarrow> qtname \<Rightarrow> qtname list \<Rightarrow> bool"
+definition ws_idecl :: "prog \<Rightarrow> qtname \<Rightarrow> qtname list \<Rightarrow> bool" where
  "ws_idecl G I si \<equiv> \<forall>J\<in>set si.  is_iface G J   \<and> (J,I)\<notin>(subint1 G)^+"
   
-  ws_cdecl :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool"
+definition ws_cdecl :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool" where
  "ws_cdecl G C sc \<equiv> C\<noteq>Object \<longrightarrow> is_class G sc \<and> (sc,C)\<notin>(subcls1 G)^+"
   
-  ws_prog  :: "prog \<Rightarrow> bool"
+definition ws_prog  :: "prog \<Rightarrow> bool" where
  "ws_prog G \<equiv> (\<forall>(I,i)\<in>set (ifaces  G). ws_idecl G I (isuperIfs i)) \<and> 
               (\<forall>(C,c)\<in>set (classes G). ws_cdecl G C (super c))"
 
@@ -680,7 +676,7 @@
   then have "is_class G C \<Longrightarrow> P C"  
   proof (induct rule: subcls1_induct)
     fix C
-    assume   hyp:"\<forall> S. G\<turnstile>C \<prec>\<^sub>C\<^sub>1 S \<longrightarrow> is_class G S \<longrightarrow> P S"
+    assume   hyp:"\<forall> S. G\<turnstile>C \<prec>\<^sub>C1 S \<longrightarrow> is_class G S \<longrightarrow> P S"
        and iscls:"is_class G C"
     show "P C"
     proof (cases "C=Object")
@@ -715,7 +711,7 @@
   then have "\<And> c. class G C = Some c\<Longrightarrow> P C c"  
   proof (induct rule: subcls1_induct)
     fix C c
-    assume   hyp:"\<forall> S. G\<turnstile>C \<prec>\<^sub>C\<^sub>1 S \<longrightarrow> (\<forall> s. class G S = Some s \<longrightarrow> P S s)"
+    assume   hyp:"\<forall> S. G\<turnstile>C \<prec>\<^sub>C1 S \<longrightarrow> (\<forall> s. class G S = Some s \<longrightarrow> P S s)"
        and iscls:"class G C = Some c"
     show "P C c"
     proof (cases "C=Object")
@@ -725,7 +721,7 @@
       with ws iscls obtain sc where
         sc: "class G (super c) = Some sc"
         by (auto dest: ws_prog_cdeclD)
-      from iscls False have "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 (super c)" by (rule subcls1I)
+      from iscls False have "G\<turnstile>C \<prec>\<^sub>C1 (super c)" by (rule subcls1I)
       with False ws step hyp iscls sc
       show "P C c" 
         by (auto)  
@@ -808,8 +804,7 @@
 apply simp
 done
 
-constdefs
-imethds:: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables"
+definition imethds :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
   --{* methods of an interface, with overriding and inheritance, cf. 9.2 *}
 "imethds G I 
   \<equiv> iface_rec (G,I)  
--- a/src/HOL/Bali/DeclConcepts.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/DeclConcepts.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,8 +8,7 @@
 
 section "access control (cf. 6.6), overriding and hiding (cf. 8.4.6.1)"
 
-constdefs
-is_public :: "prog \<Rightarrow> qtname \<Rightarrow> bool"
+definition is_public :: "prog \<Rightarrow> qtname \<Rightarrow> bool" where
 "is_public G qn \<equiv> (case class G qn of
                      None       \<Rightarrow> (case iface G qn of
                                       None       \<Rightarrow> False
@@ -38,14 +37,16 @@
 
 declare accessible_in_RefT_simp [simp del]
 
-constdefs
-  is_acc_class :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool"
+definition is_acc_class :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool" where
     "is_acc_class G P C \<equiv> is_class G C \<and> G\<turnstile>(Class C) accessible_in P"
-  is_acc_iface :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool"
+
+definition is_acc_iface :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> bool" where
     "is_acc_iface G P I \<equiv> is_iface G I \<and> G\<turnstile>(Iface I) accessible_in P"
-  is_acc_type  :: "prog \<Rightarrow> pname \<Rightarrow> ty     \<Rightarrow> bool"
+
+definition is_acc_type  :: "prog \<Rightarrow> pname \<Rightarrow> ty     \<Rightarrow> bool" where
     "is_acc_type  G P T \<equiv> is_type G T  \<and> G\<turnstile>T accessible_in P"
-  is_acc_reftype  :: "prog \<Rightarrow> pname \<Rightarrow> ref_ty \<Rightarrow> bool"
+
+definition is_acc_reftype  :: "prog \<Rightarrow> pname \<Rightarrow> ref_ty \<Rightarrow> bool" where
   "is_acc_reftype  G P T \<equiv> isrtype G T  \<and> G\<turnstile>T accessible_in' P"
 
 lemma is_acc_classD:
@@ -336,8 +337,7 @@
 text {* Convert a qualified method declaration (qualified with its declaring 
 class) to a qualified member declaration:  @{text methdMembr}  *}
 
-constdefs
-methdMembr :: "(qtname \<times> mdecl) \<Rightarrow> (qtname \<times> memberdecl)"
+definition methdMembr :: "(qtname \<times> mdecl) \<Rightarrow> (qtname \<times> memberdecl)" where
  "methdMembr m \<equiv> (fst m,mdecl (snd m))"
 
 lemma methdMembr_simp[simp]: "methdMembr (c,m) = (c,mdecl m)"
@@ -355,8 +355,7 @@
 text {* Convert a qualified method (qualified with its declaring 
 class) to a qualified member declaration:  @{text method}  *}
 
-constdefs
-method :: "sig \<Rightarrow> (qtname \<times> methd) \<Rightarrow> (qtname \<times> memberdecl)" 
+definition method :: "sig \<Rightarrow> (qtname \<times> methd) \<Rightarrow> (qtname \<times> memberdecl)" where 
 "method sig m \<equiv> (declclass m, mdecl (sig, mthd m))"
 
 lemma method_simp[simp]: "method sig (C,m) = (C,mdecl (sig,m))"
@@ -377,8 +376,7 @@
 lemma memberid_method_simp[simp]:  "memberid (method sig m) = mid sig"
   by (simp add: method_def) 
 
-constdefs
-fieldm :: "vname \<Rightarrow> (qtname \<times> field) \<Rightarrow> (qtname \<times> memberdecl)" 
+definition fieldm :: "vname \<Rightarrow> (qtname \<times> field) \<Rightarrow> (qtname \<times> memberdecl)" where 
 "fieldm n f \<equiv> (declclass f, fdecl (n, fld f))"
 
 lemma fieldm_simp[simp]: "fieldm n (C,f) = (C,fdecl (n,f))"
@@ -402,7 +400,7 @@
 text {* Select the signature out of a qualified method declaration:
  @{text msig} *}
 
-constdefs msig:: "(qtname \<times> mdecl) \<Rightarrow> sig"
+definition msig :: "(qtname \<times> mdecl) \<Rightarrow> sig" where
 "msig m \<equiv> fst (snd m)"
 
 lemma msig_simp[simp]: "msig (c,(s,m)) = s"
@@ -411,7 +409,7 @@
 text {* Convert a qualified method (qualified with its declaring 
 class) to a qualified method declaration:  @{text qmdecl}  *}
 
-constdefs qmdecl :: "sig \<Rightarrow> (qtname \<times> methd) \<Rightarrow> (qtname \<times> mdecl)"
+definition qmdecl :: "sig \<Rightarrow> (qtname \<times> methd) \<Rightarrow> (qtname \<times> mdecl)" where
 "qmdecl sig m \<equiv> (declclass m, (sig,mthd m))"
 
 lemma qmdecl_simp[simp]: "qmdecl sig (C,m) = (C,(sig,m))"
@@ -504,10 +502,8 @@
       it is not accessible for inheritance at all.
 \end{itemize}
 *}
-constdefs
-inheritable_in:: 
- "prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> pname \<Rightarrow> bool"
-                  ("_ \<turnstile> _ inheritable'_in _" [61,61,61] 60)
+definition inheritable_in :: "prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> pname \<Rightarrow> bool" ("_ \<turnstile> _ inheritable'_in _" [61,61,61] 60) where
+                  
 "G\<turnstile>membr inheritable_in pack 
   \<equiv> (case (accmodi membr) of
        Private   \<Rightarrow> False
@@ -529,25 +525,21 @@
 
 subsubsection "declared-in/undeclared-in"
 
-constdefs cdeclaredmethd:: "prog \<Rightarrow> qtname \<Rightarrow> (sig,methd) table"
+definition cdeclaredmethd :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,methd) table" where
 "cdeclaredmethd G C 
   \<equiv> (case class G C of
        None \<Rightarrow> \<lambda> sig. None
      | Some c \<Rightarrow> table_of (methods c)
     )"
 
-constdefs
-cdeclaredfield:: "prog \<Rightarrow> qtname \<Rightarrow> (vname,field) table"
+definition cdeclaredfield :: "prog \<Rightarrow> qtname \<Rightarrow> (vname,field) table" where
 "cdeclaredfield G C 
   \<equiv> (case class G C of
        None \<Rightarrow> \<lambda> sig. None
      | Some c \<Rightarrow> table_of (cfields c)
     )"
 
-
-constdefs
-declared_in:: "prog  \<Rightarrow> memberdecl \<Rightarrow> qtname \<Rightarrow> bool"
-                                 ("_\<turnstile> _ declared'_in _" [61,61,61] 60)
+definition declared_in :: "prog  \<Rightarrow> memberdecl \<Rightarrow> qtname \<Rightarrow> bool" ("_\<turnstile> _ declared'_in _" [61,61,61] 60) where
 "G\<turnstile>m declared_in C \<equiv> (case m of
                         fdecl (fn,f ) \<Rightarrow> cdeclaredfield G C fn  = Some f
                       | mdecl (sig,m) \<Rightarrow> cdeclaredmethd G C sig = Some m)"
@@ -567,10 +559,7 @@
 by (cases m) 
    (auto simp add: declared_in_def cdeclaredmethd_def cdeclaredfield_def)
 
-constdefs
-undeclared_in:: "prog  \<Rightarrow> memberid \<Rightarrow> qtname \<Rightarrow> bool"
-                                 ("_\<turnstile> _ undeclared'_in _" [61,61,61] 60)
-
+definition undeclared_in :: "prog  \<Rightarrow> memberid \<Rightarrow> qtname \<Rightarrow> bool" ("_\<turnstile> _ undeclared'_in _" [61,61,61] 60) where
 "G\<turnstile>m undeclared_in C \<equiv> (case m of
                             fid fn  \<Rightarrow> cdeclaredfield G C fn  = None
                           | mid sig \<Rightarrow> cdeclaredmethd G C sig = None)"
@@ -591,7 +580,7 @@
 
   Immediate: "\<lbrakk>G\<turnstile>mbr m declared_in C;declclass m = C\<rbrakk> \<Longrightarrow> G\<turnstile>m member_of C"
 | Inherited: "\<lbrakk>G\<turnstile>m inheritable_in (pid C); G\<turnstile>memberid m undeclared_in C; 
-               G\<turnstile>C \<prec>\<^sub>C\<^sub>1 S; G\<turnstile>(Class S) accessible_in (pid C);G\<turnstile>m member_of S 
+               G\<turnstile>C \<prec>\<^sub>C1 S; G\<turnstile>(Class S) accessible_in (pid C);G\<turnstile>m member_of S 
               \<rbrakk> \<Longrightarrow> G\<turnstile>m member_of C"
 text {* Note that in the case of an inherited member only the members of the
 direct superclass are concerned. If a member of a superclass of the direct
@@ -617,19 +606,16 @@
                            ("_ \<turnstile>Field _  _ member'_of _" [61,61,61] 60)
  where "G\<turnstile>Field n f member_of C == G\<turnstile>fieldm n f member_of C"
 
-constdefs
-inherits:: "prog \<Rightarrow> qtname \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> bool"
-                           ("_ \<turnstile> _ inherits _" [61,61,61] 60)
+definition inherits :: "prog \<Rightarrow> qtname \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> bool" ("_ \<turnstile> _ inherits _" [61,61,61] 60) where
 "G\<turnstile>C inherits m 
   \<equiv> G\<turnstile>m inheritable_in (pid C) \<and> G\<turnstile>memberid m undeclared_in C \<and> 
-    (\<exists> S. G\<turnstile>C \<prec>\<^sub>C\<^sub>1 S \<and> G\<turnstile>(Class S) accessible_in (pid C) \<and> G\<turnstile>m member_of S)"
+    (\<exists> S. G\<turnstile>C \<prec>\<^sub>C1 S \<and> G\<turnstile>(Class S) accessible_in (pid C) \<and> G\<turnstile>m member_of S)"
 
 lemma inherits_member: "G\<turnstile>C inherits m \<Longrightarrow> G\<turnstile>m member_of C"
 by (auto simp add: inherits_def intro: members.Inherited)
 
 
-constdefs member_in::"prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> qtname \<Rightarrow> bool"
-                           ("_ \<turnstile> _ member'_in _" [61,61,61] 60)
+definition member_in :: "prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> qtname \<Rightarrow> bool" ("_ \<turnstile> _ member'_in _" [61,61,61] 60) where
 "G\<turnstile>m member_in C \<equiv> \<exists> provC. G\<turnstile> C \<preceq>\<^sub>C provC \<and> G \<turnstile> m member_of provC"
 text {* A member is in a class if it is member of the class or a superclass.
 If a member is in a class we can select this member. This additional notion
@@ -676,7 +662,7 @@
            G\<turnstile>Method new declared_in (declclass new);  
            G\<turnstile>Method old declared_in (declclass old); 
            G\<turnstile>Method old inheritable_in pid (declclass new);
-           G\<turnstile>(declclass new) \<prec>\<^sub>C\<^sub>1 superNew;
+           G\<turnstile>(declclass new) \<prec>\<^sub>C1 superNew;
            G \<turnstile>Method old member_of superNew
            \<rbrakk> \<Longrightarrow> G\<turnstile>new overrides\<^sub>S old"
 
@@ -716,9 +702,7 @@
 
 subsubsection "Hiding"
 
-constdefs hides::
-"prog \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> bool" 
-                                ("_\<turnstile> _ hides _" [61,61,61] 60)
+definition hides :: "prog \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> (qtname \<times> mdecl) \<Rightarrow> bool" ("_\<turnstile> _ hides _" [61,61,61] 60) where 
 "G\<turnstile>new hides old
   \<equiv> is_static new \<and> msig new = msig old \<and>
     G\<turnstile>(declclass new) \<prec>\<^sub>C (declclass old) \<and>
@@ -777,11 +761,7 @@
 by (auto simp add: hides_def)
 
 subsubsection "permits access" 
-constdefs 
-permits_acc:: 
- "prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool"
-                   ("_ \<turnstile> _ in _ permits'_acc'_from _" [61,61,61,61] 60)
-
+definition permits_acc :: "prog \<Rightarrow> (qtname \<times> memberdecl) \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> bool" ("_ \<turnstile> _ in _ permits'_acc'_from _" [61,61,61,61] 60) where
 "G\<turnstile>membr in cls permits_acc_from accclass 
   \<equiv> (case (accmodi membr) of
        Private   \<Rightarrow> (declclass membr = accclass)
@@ -980,7 +960,7 @@
   next
     case (Inherited n C S)
     assume undecl: "G\<turnstile> memberid n undeclared_in C"
-    assume  super: "G\<turnstile>C\<prec>\<^sub>C\<^sub>1S"
+    assume  super: "G\<turnstile>C\<prec>\<^sub>C1S"
     assume    hyp: "\<lbrakk>G \<turnstile> m member_of S; memberid n = memberid m\<rbrakk> \<Longrightarrow> n = m"
     assume   eqid: "memberid n = memberid m"
     assume "G \<turnstile> m member_of C"
@@ -1011,7 +991,7 @@
        (auto simp add: declared_in_def cdeclaredmethd_def cdeclaredfield_def)
 next
   case (Inherited m C S)  
-  assume "G\<turnstile>C\<prec>\<^sub>C\<^sub>1S" and "is_class G S"
+  assume "G\<turnstile>C\<prec>\<^sub>C1S" and "is_class G S"
   then show "is_class G C"
     by - (rule subcls_is_class2,auto)
 qed
@@ -1043,7 +1023,7 @@
         intro: rtrancl_trans)
 
 lemma stat_override_declclasses_relation: 
-"\<lbrakk>G\<turnstile>(declclass new) \<prec>\<^sub>C\<^sub>1 superNew; G \<turnstile>Method old member_of superNew \<rbrakk>
+"\<lbrakk>G\<turnstile>(declclass new) \<prec>\<^sub>C1 superNew; G \<turnstile>Method old member_of superNew \<rbrakk>
 \<Longrightarrow> G\<turnstile>(declclass new) \<prec>\<^sub>C (declclass old)"
 apply (rule trancl_rtrancl_trancl)
 apply (erule r_into_trancl)
@@ -1257,7 +1237,7 @@
             "G\<turnstile> memberid m undeclared_in D"  
             "G \<turnstile> Class S accessible_in pid D" 
             "G \<turnstile> m member_of S"
-    assume super: "G\<turnstile>D\<prec>\<^sub>C\<^sub>1S"
+    assume super: "G\<turnstile>D\<prec>\<^sub>C1S"
     assume hyp: "\<lbrakk>G\<turnstile>S\<preceq>\<^sub>C C; G\<turnstile>C\<preceq>\<^sub>C declclass m\<rbrakk> \<Longrightarrow> G \<turnstile> m member_of C"
     assume subclseq_C_m: "G\<turnstile>C\<preceq>\<^sub>C declclass m"
     assume "G\<turnstile>D\<preceq>\<^sub>C C"
@@ -1399,24 +1379,21 @@
 translations 
   "fspec" <= (type) "vname \<times> qtname" 
 
-constdefs
-imethds:: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables"
+definition imethds :: "prog \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
 "imethds G I 
   \<equiv> iface_rec (G,I)  
               (\<lambda>I i ts. (Un_tables ts) \<oplus>\<oplus> 
                         (Option.set \<circ> table_of (map (\<lambda>(s,m). (s,I,m)) (imethods i))))"
 text {* methods of an interface, with overriding and inheritance, cf. 9.2 *}
 
-constdefs
-accimethds:: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables"
+definition accimethds :: "prog \<Rightarrow> pname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> mhead) tables" where
 "accimethds G pack I
   \<equiv> if G\<turnstile>Iface I accessible_in pack 
        then imethds G I
        else \<lambda> k. {}"
 text {* only returns imethds if the interface is accessible *}
 
-constdefs
-methd:: "prog \<Rightarrow> qtname  \<Rightarrow> (sig,qtname \<times> methd) table"
+definition methd :: "prog \<Rightarrow> qtname  \<Rightarrow> (sig,qtname \<times> methd) table" where
 
 "methd G C 
  \<equiv> class_rec (G,C) empty
@@ -1431,8 +1408,7 @@
      Every new method with the same signature coalesces the
      method of a superclass. *}
 
-constdefs                      
-accmethd:: "prog \<Rightarrow> qtname \<Rightarrow> qtname  \<Rightarrow> (sig,qtname \<times> methd) table"
+definition accmethd :: "prog \<Rightarrow> qtname \<Rightarrow> qtname  \<Rightarrow> (sig,qtname \<times> methd) table" where
 "accmethd G S C 
  \<equiv> filter_tab (\<lambda>sig m. G\<turnstile>method sig m of C accessible_from S) 
               (methd G C)"
@@ -1446,8 +1422,7 @@
     So we must test accessibility of method @{term m} of class @{term C} 
     (not @{term "declclass m"}) *}
 
-constdefs 
-dynmethd:: "prog  \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table"
+definition dynmethd :: "prog  \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table" where
 "dynmethd G statC dynC  
   \<equiv> \<lambda> sig. 
      (if G\<turnstile>dynC \<preceq>\<^sub>C statC
@@ -1473,8 +1448,7 @@
         filters the new methods (to get only those methods which actually
         override the methods of the static class) *}
 
-constdefs 
-dynimethd:: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table"
+definition dynimethd :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table" where
 "dynimethd G I dynC 
   \<equiv> \<lambda> sig. if imethds G I sig \<noteq> {}
                then methd G dynC sig
@@ -1493,8 +1467,7 @@
    down to the actual dynamic class.
  *}
 
-constdefs
-dynlookup::"prog  \<Rightarrow> ref_ty \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table"
+definition dynlookup :: "prog  \<Rightarrow> ref_ty \<Rightarrow> qtname \<Rightarrow> (sig,qtname \<times> methd) table" where
 "dynlookup G statT dynC
   \<equiv> (case statT of
        NullT        \<Rightarrow> empty
@@ -1506,8 +1479,7 @@
     In a wellformd context statT will not be NullT and in case
     statT is an array type, dynC=Object *}
 
-constdefs
-fields:: "prog \<Rightarrow> qtname \<Rightarrow> ((vname \<times> qtname) \<times> field) list"
+definition fields :: "prog \<Rightarrow> qtname \<Rightarrow> ((vname \<times> qtname) \<times> field) list" where
 "fields G C 
   \<equiv> class_rec (G,C) [] (\<lambda>C c ts. map (\<lambda>(n,t). ((n,C),t)) (cfields c) @ ts)"
 text {* @{term "fields G C"} 
@@ -1515,8 +1487,7 @@
      (private, inherited and hidden ones) not only the accessible ones
      (an instance of a object allocates all these fields *}
 
-constdefs
-accfield:: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (vname, qtname  \<times>  field) table"
+definition accfield :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> (vname, qtname  \<times>  field) table" where
 "accfield G S C
   \<equiv> let field_tab = table_of((map (\<lambda>((n,d),f).(n,(d,f)))) (fields G C))
     in filter_tab (\<lambda>n (declC,f). G\<turnstile> (declC,fdecl (n,f)) of C accessible_from S)
@@ -1531,12 +1502,10 @@
    inheritance, too. So we must test accessibility of field @{term f} of class 
    @{term C} (not @{term "declclass f"}) *} 
 
-constdefs
-
-  is_methd :: "prog \<Rightarrow> qtname  \<Rightarrow> sig \<Rightarrow> bool"
+definition is_methd :: "prog \<Rightarrow> qtname  \<Rightarrow> sig \<Rightarrow> bool" where
  "is_methd G \<equiv> \<lambda>C sig. is_class G C \<and> methd G C sig \<noteq> None"
 
-constdefs efname:: "((vname \<times> qtname) \<times> field) \<Rightarrow> (vname \<times> qtname)"
+definition efname :: "((vname \<times> qtname) \<times> field) \<Rightarrow> (vname \<times> qtname)" where
 "efname \<equiv> fst"
 
 lemma efname_simp[simp]:"efname (n,f) = n"
@@ -2300,8 +2269,7 @@
 
 section "calculation of the superclasses of a class"
 
-constdefs 
- superclasses:: "prog \<Rightarrow> qtname \<Rightarrow> qtname set"
+definition superclasses :: "prog \<Rightarrow> qtname \<Rightarrow> qtname set" where
  "superclasses G C \<equiv> class_rec (G,C) {} 
                        (\<lambda> C c superclss. (if C=Object 
                                             then {} 
--- a/src/HOL/Bali/DefiniteAssignment.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/DefiniteAssignment.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -74,7 +74,7 @@
 "jumpNestingOkS jmps (FinA a c) = False"
 
 
-constdefs jumpNestingOk :: "jump set \<Rightarrow> term \<Rightarrow> bool"
+definition jumpNestingOk :: "jump set \<Rightarrow> term \<Rightarrow> bool" where
 "jumpNestingOk jmps t \<equiv> (case t of
                       In1 se \<Rightarrow> (case se of
                                    Inl e \<Rightarrow> True
@@ -156,7 +156,7 @@
 "assignsEs     [] = {}"
 "assignsEs (e#es) = assignsE e \<union> assignsEs es"
 
-constdefs assigns:: "term \<Rightarrow> lname set"
+definition assigns :: "term \<Rightarrow> lname set" where
 "assigns t \<equiv> (case t of
                 In1 se \<Rightarrow> (case se of
                              Inl e \<Rightarrow> assignsE e
@@ -429,20 +429,14 @@
 
 subsection {* Lifting set operations to range of tables (map to a set) *}
 
-constdefs 
- union_ts:: "('a,'b) tables \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables"
-                    ("_ \<Rightarrow>\<union> _" [67,67] 65)
+definition union_ts :: "('a,'b) tables \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables" ("_ \<Rightarrow>\<union> _" [67,67] 65) where
  "A \<Rightarrow>\<union> B \<equiv> \<lambda> k. A k \<union> B k"
 
-constdefs
- intersect_ts:: "('a,'b) tables \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables"
-                    ("_ \<Rightarrow>\<inter>  _" [72,72] 71)
+definition intersect_ts :: "('a,'b) tables \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables" ("_ \<Rightarrow>\<inter>  _" [72,72] 71) where
  "A \<Rightarrow>\<inter>  B \<equiv> \<lambda> k. A k \<inter> B k"
 
-constdefs
- all_union_ts:: "('a,'b) tables \<Rightarrow> 'b set \<Rightarrow> ('a,'b) tables" 
-                                                     (infixl "\<Rightarrow>\<union>\<^sub>\<forall>" 40)
-"A \<Rightarrow>\<union>\<^sub>\<forall> B \<equiv> \<lambda> k. A k \<union> B"
+definition all_union_ts :: "('a,'b) tables \<Rightarrow> 'b set \<Rightarrow> ('a,'b) tables" (infixl "\<Rightarrow>\<union>\<^sub>\<forall>" 40) where 
+ "A \<Rightarrow>\<union>\<^sub>\<forall> B \<equiv> \<lambda> k. A k \<union> B"
   
 subsubsection {* Binary union of tables *}
 
@@ -513,15 +507,15 @@
          brk :: "breakass" --{* Definetly assigned variables for 
                                 abrupt completion with a break *}
 
-constdefs rmlab :: "'a \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables"
+definition rmlab :: "'a \<Rightarrow> ('a,'b) tables \<Rightarrow> ('a,'b) tables" where
 "rmlab k A \<equiv> \<lambda> x. if x=k then UNIV else A x"
  
 (*
-constdefs setbrk :: "breakass \<Rightarrow> assigned \<Rightarrow> breakass set"
+definition setbrk :: "breakass \<Rightarrow> assigned \<Rightarrow> breakass set" where
 "setbrk b A \<equiv> {b} \<union> {a| a. a\<in> brk A \<and> lab a \<noteq> lab b}"
 *)
 
-constdefs range_inter_ts :: "('a,'b) tables \<Rightarrow> 'b set" ("\<Rightarrow>\<Inter>_" 80)
+definition range_inter_ts :: "('a,'b) tables \<Rightarrow> 'b set" ("\<Rightarrow>\<Inter>_" 80) where 
  "\<Rightarrow>\<Inter>A \<equiv> {x |x. \<forall> k. x \<in> A k}"
 
 text {*
--- a/src/HOL/Bali/Eval.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Eval.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -140,8 +140,7 @@
   lst_inj_vals  ("\<lfloor>_\<rfloor>\<^sub>l" 1000)
   where "\<lfloor>es\<rfloor>\<^sub>l == In3 es"
 
-constdefs
-  undefined3 :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> vals"
+definition undefined3 :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> vals" where
  "undefined3 \<equiv> sum3_case (In1 \<circ> sum_case (\<lambda>x. undefined) (\<lambda>x. Unit))
                      (\<lambda>x. In2 undefined) (\<lambda>x. In3 undefined)"
 
@@ -160,8 +159,7 @@
 
 section "exception throwing and catching"
 
-constdefs
-  throw :: "val \<Rightarrow> abopt \<Rightarrow> abopt"
+definition throw :: "val \<Rightarrow> abopt \<Rightarrow> abopt" where
  "throw a' x \<equiv> abrupt_if True (Some (Xcpt (Loc (the_Addr a')))) (np a' x)"
 
 lemma throw_def2: 
@@ -170,8 +168,7 @@
 apply (simp (no_asm))
 done
 
-constdefs
-  fits    :: "prog \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool" ("_,_\<turnstile>_ fits _"[61,61,61,61]60)
+definition fits :: "prog \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool" ("_,_\<turnstile>_ fits _"[61,61,61,61]60) where
  "G,s\<turnstile>a' fits T  \<equiv> (\<exists>rt. T=RefT rt) \<longrightarrow> a'=Null \<or> G\<turnstile>obj_ty(lookup_obj s a')\<preceq>T"
 
 lemma fits_Null [simp]: "G,s\<turnstile>Null fits T"
@@ -195,8 +192,7 @@
 apply iprover
 done
 
-constdefs
-  catch ::"prog \<Rightarrow> state \<Rightarrow> qtname \<Rightarrow> bool"      ("_,_\<turnstile>catch _"[61,61,61]60)
+definition catch :: "prog \<Rightarrow> state \<Rightarrow> qtname \<Rightarrow> bool" ("_,_\<turnstile>catch _"[61,61,61]60) where
  "G,s\<turnstile>catch C\<equiv>\<exists>xc. abrupt s=Some (Xcpt xc) \<and> 
                     G,store s\<turnstile>Addr (the_Loc xc) fits Class C"
 
@@ -221,8 +217,7 @@
 apply (simp (no_asm))
 done
 
-constdefs
-  new_xcpt_var :: "vname \<Rightarrow> state \<Rightarrow> state"
+definition new_xcpt_var :: "vname \<Rightarrow> state \<Rightarrow> state" where
  "new_xcpt_var vn \<equiv> 
      \<lambda>(x,s). Norm (lupd(VName vn\<mapsto>Addr (the_Loc (the_Xcpt (the x)))) s)"
 
@@ -237,9 +232,7 @@
 
 section "misc"
 
-constdefs
-
-  assign     :: "('a \<Rightarrow> state \<Rightarrow> state) \<Rightarrow> 'a \<Rightarrow> state \<Rightarrow> state"
+definition assign :: "('a \<Rightarrow> state \<Rightarrow> state) \<Rightarrow> 'a \<Rightarrow> state \<Rightarrow> state" where
  "assign f v \<equiv> \<lambda>(x,s). let (x',s') = (if x = None then f v else id) (x,s)
                    in  (x',if x' = None then s' else s)"
 
@@ -300,9 +293,7 @@
 done
 *)
 
-constdefs
-
-  init_comp_ty :: "ty \<Rightarrow> stmt"
+definition init_comp_ty :: "ty \<Rightarrow> stmt" where
  "init_comp_ty T \<equiv> if (\<exists>C. T = Class C) then Init (the_Class T) else Skip"
 
 lemma init_comp_ty_PrimT [simp]: "init_comp_ty (PrimT pt) = Skip"
@@ -310,9 +301,7 @@
 apply (simp (no_asm))
 done
 
-constdefs
-
- invocation_class  :: "inv_mode \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ref_ty \<Rightarrow> qtname"
+definition invocation_class :: "inv_mode \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ref_ty \<Rightarrow> qtname" where
  "invocation_class m s a' statT 
     \<equiv> (case m of
          Static \<Rightarrow> if (\<exists> statC. statT = ClassT statC) 
@@ -321,7 +310,7 @@
        | SuperM \<Rightarrow> the_Class (RefT statT)
        | IntVir \<Rightarrow> obj_class (lookup_obj s a'))"
 
-invocation_declclass::"prog \<Rightarrow> inv_mode \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ref_ty \<Rightarrow> sig \<Rightarrow> qtname"
+definition invocation_declclass::"prog \<Rightarrow> inv_mode \<Rightarrow> st \<Rightarrow> val \<Rightarrow> ref_ty \<Rightarrow> sig \<Rightarrow> qtname" where
 "invocation_declclass G m s a' statT sig 
    \<equiv> declclass (the (dynlookup G statT 
                                 (invocation_class m s a' statT)
@@ -341,9 +330,8 @@
                                             else Object)"
 by (simp add: invocation_class_def)
 
-constdefs
-  init_lvars :: "prog \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> inv_mode \<Rightarrow> val \<Rightarrow> val list \<Rightarrow>
-                   state \<Rightarrow> state"
+definition init_lvars :: "prog \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> inv_mode \<Rightarrow> val \<Rightarrow> val list \<Rightarrow>
+                   state \<Rightarrow> state" where
  "init_lvars G C sig mode a' pvs 
    \<equiv> \<lambda> (x,s). 
       let m = mthd (the (methd G C sig));
@@ -376,8 +364,7 @@
 apply (simp (no_asm) add: Let_def)
 done
 
-constdefs
-  body :: "prog \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> expr"
+definition body :: "prog \<Rightarrow> qtname \<Rightarrow> sig \<Rightarrow> expr" where
  "body G C sig \<equiv> let m = the (methd G C sig) 
                  in Body (declclass m) (stmt (mbody (mthd m)))"
 
@@ -390,12 +377,10 @@
 
 section "variables"
 
-constdefs
-
-  lvar :: "lname \<Rightarrow> st \<Rightarrow> vvar"
+definition lvar :: "lname \<Rightarrow> st \<Rightarrow> vvar" where
  "lvar vn s \<equiv> (the (locals s vn), \<lambda>v. supd (lupd(vn\<mapsto>v)))"
 
-  fvar :: "qtname \<Rightarrow> bool \<Rightarrow> vname \<Rightarrow> val \<Rightarrow> state \<Rightarrow> vvar \<times> state"
+definition fvar :: "qtname \<Rightarrow> bool \<Rightarrow> vname \<Rightarrow> val \<Rightarrow> state \<Rightarrow> vvar \<times> state" where
  "fvar C stat fn a' s 
     \<equiv> let (oref,xf) = if stat then (Stat C,id)
                               else (Heap (the_Addr a'),np a');
@@ -403,7 +388,7 @@
                   f = (\<lambda>v. supd (upd_gobj oref n v)) 
       in ((the (values (the (globs (store s) oref)) n),f),abupd xf s)"
 
-  avar :: "prog \<Rightarrow> val \<Rightarrow> val \<Rightarrow> state \<Rightarrow> vvar \<times> state"
+definition avar :: "prog \<Rightarrow> val \<Rightarrow> val \<Rightarrow> state \<Rightarrow> vvar \<times> state" where
  "avar G i' a' s 
     \<equiv> let   oref = Heap (the_Addr a'); 
                i = the_Intg i'; 
@@ -446,9 +431,7 @@
 apply (simp (no_asm) add: Let_def split_beta)
 done
 
-constdefs
-check_field_access::
-"prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> vname \<Rightarrow> bool \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state"
+definition check_field_access :: "prog \<Rightarrow> qtname \<Rightarrow> qtname \<Rightarrow> vname \<Rightarrow> bool \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state" where
 "check_field_access G accC statDeclC fn stat a' s
  \<equiv> let oref = if stat then Stat statDeclC
                       else Heap (the_Addr a');
@@ -461,9 +444,7 @@
                   AccessViolation)
         s"
 
-constdefs
-check_method_access:: 
-  "prog \<Rightarrow> qtname \<Rightarrow> ref_ty \<Rightarrow> inv_mode \<Rightarrow>  sig \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state"
+definition check_method_access :: "prog \<Rightarrow> qtname \<Rightarrow> ref_ty \<Rightarrow> inv_mode \<Rightarrow>  sig \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state" where
 "check_method_access G accC statT mode sig  a' s
  \<equiv> let invC = invocation_class mode (store s) a' statT;
        dynM = the (dynlookup G statT invC sig)
--- a/src/HOL/Bali/Example.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Example.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -153,23 +153,18 @@
   
   foo    :: mname
 
-constdefs
-  
-  foo_sig   :: sig
- "foo_sig   \<equiv> \<lparr>name=foo,parTs=[Class Base]\<rparr>"
+definition foo_sig :: sig
+ where "foo_sig   \<equiv> \<lparr>name=foo,parTs=[Class Base]\<rparr>"
   
-  foo_mhead :: mhead
- "foo_mhead \<equiv> \<lparr>access=Public,static=False,pars=[z],resT=Class Base\<rparr>"
+definition foo_mhead :: mhead
+ where "foo_mhead \<equiv> \<lparr>access=Public,static=False,pars=[z],resT=Class Base\<rparr>"
 
-constdefs
-  
-  Base_foo :: mdecl
- "Base_foo \<equiv> (foo_sig, \<lparr>access=Public,static=False,pars=[z],resT=Class Base,
+definition Base_foo :: mdecl
+ where "Base_foo \<equiv> (foo_sig, \<lparr>access=Public,static=False,pars=[z],resT=Class Base,
                         mbody=\<lparr>lcls=[],stmt=Return (!!z)\<rparr>\<rparr>)"
 
-constdefs
-  Ext_foo  :: mdecl
- "Ext_foo  \<equiv> (foo_sig, 
+definition Ext_foo :: mdecl
+ where "Ext_foo  \<equiv> (foo_sig, 
               \<lparr>access=Public,static=False,pars=[z],resT=Class Ext,
                mbody=\<lparr>lcls=[]
                      ,stmt=Expr({Ext,Ext,False}Cast (Class Ext) (!!z)..vee := 
@@ -177,12 +172,10 @@
                                 Return (Lit Null)\<rparr>
               \<rparr>)"
 
-constdefs
-  
-arr_viewed_from :: "qtname \<Rightarrow> qtname \<Rightarrow> var"
+definition arr_viewed_from :: "qtname \<Rightarrow> qtname \<Rightarrow> var" where
 "arr_viewed_from accC C \<equiv> {accC,Base,True}StatRef (ClassT C)..arr"
 
-BaseCl :: "class"
+definition BaseCl :: "class" where
 "BaseCl \<equiv> \<lparr>access=Public,
            cfields=[(arr, \<lparr>access=Public,static=True ,type=PrimT Boolean.[]\<rparr>),
                     (vee, \<lparr>access=Public,static=False,type=Iface HasFoo    \<rparr>)],
@@ -192,7 +185,7 @@
            super=Object,
            superIfs=[HasFoo]\<rparr>"
   
-ExtCl  :: "class"
+definition ExtCl  :: "class" where
 "ExtCl  \<equiv> \<lparr>access=Public,
            cfields=[(vee, \<lparr>access=Public,static=False,type= PrimT Integer\<rparr>)], 
            methods=[Ext_foo],
@@ -200,7 +193,7 @@
            super=Base,
            superIfs=[]\<rparr>"
 
-MainCl :: "class"
+definition MainCl :: "class" where
 "MainCl \<equiv> \<lparr>access=Public,
            cfields=[], 
            methods=[], 
@@ -209,16 +202,14 @@
            superIfs=[]\<rparr>"
 (* The "main" method is modeled seperately (see tprg) *)
 
-constdefs
-  
-  HasFooInt :: iface
- "HasFooInt \<equiv> \<lparr>access=Public,imethods=[(foo_sig, foo_mhead)],isuperIfs=[]\<rparr>"
+definition HasFooInt :: iface
+ where "HasFooInt \<equiv> \<lparr>access=Public,imethods=[(foo_sig, foo_mhead)],isuperIfs=[]\<rparr>"
 
-  Ifaces ::"idecl list"
- "Ifaces \<equiv> [(HasFoo,HasFooInt)]"
+definition Ifaces ::"idecl list"
+ where "Ifaces \<equiv> [(HasFoo,HasFooInt)]"
 
- "Classes" ::"cdecl list"
- "Classes \<equiv> [(Base,BaseCl),(Ext,ExtCl),(Main,MainCl)]@standard_classes"
+definition "Classes" ::"cdecl list"
+ where "Classes \<equiv> [(Base,BaseCl),(Ext,ExtCl),(Main,MainCl)]@standard_classes"
 
 lemmas table_classes_defs = 
      Classes_def standard_classes_def ObjectC_def SXcptC_def
@@ -273,8 +264,7 @@
   tprg :: prog where
   "tprg == \<lparr>ifaces=Ifaces,classes=Classes\<rparr>"
 
-constdefs
-  test    :: "(ty)list \<Rightarrow> stmt"
+definition test :: "(ty)list \<Rightarrow> stmt" where
  "test pTs \<equiv> e:==NewC Ext;; 
            \<spacespace> Try Expr({Main,ClassT Base,IntVir}!!e\<cdot>foo({pTs}[Lit Null]))
            \<spacespace> Catch((SXcpt NullPointer) z)
--- a/src/HOL/Bali/State.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/State.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -38,9 +38,7 @@
   "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option\<rparr>"
   "obj"   <= (type) "\<lparr>tag::obj_tag, values::vn \<Rightarrow> val option,\<dots>::'a\<rparr>"
 
-constdefs
-  
-  the_Arr :: "obj option \<Rightarrow> ty \<times> int \<times> (vn, val) table"
+definition the_Arr :: "obj option \<Rightarrow> ty \<times> int \<times> (vn, val) table" where
  "the_Arr obj \<equiv> SOME (T,k,t). obj = Some \<lparr>tag=Arr T k,values=t\<rparr>"
 
 lemma the_Arr_Arr [simp]: "the_Arr (Some \<lparr>tag=Arr T k,values=cs\<rparr>) = (T,k,cs)"
@@ -52,9 +50,7 @@
 apply (auto simp add: the_Arr_def)
 done
 
-constdefs
-
-  upd_obj       :: "vn \<Rightarrow> val \<Rightarrow> obj \<Rightarrow> obj" 
+definition upd_obj :: "vn \<Rightarrow> val \<Rightarrow> obj \<Rightarrow> obj" where 
  "upd_obj n v \<equiv> \<lambda> obj . obj \<lparr>values:=(values obj)(n\<mapsto>v)\<rparr>"
 
 lemma upd_obj_def2 [simp]: 
@@ -62,8 +58,7 @@
 apply (auto simp: upd_obj_def)
 done
 
-constdefs
-  obj_ty        :: "obj \<Rightarrow> ty"
+definition obj_ty :: "obj \<Rightarrow> ty" where
  "obj_ty obj    \<equiv> case tag obj of 
                     CInst C \<Rightarrow> Class C 
                   | Arr T k \<Rightarrow> T.[]"
@@ -102,9 +97,7 @@
 apply (auto split add: obj_tag.split_asm)
 done
 
-constdefs
-
-  obj_class :: "obj \<Rightarrow> qtname"
+definition obj_class :: "obj \<Rightarrow> qtname" where
  "obj_class obj \<equiv> case tag obj of 
                     CInst C \<Rightarrow> C 
                   | Arr T k \<Rightarrow> Object"
@@ -143,9 +136,7 @@
   "Stat" => "CONST Inr"
   "oref" <= (type) "loc + qtname"
 
-constdefs
-  fields_table::
-    "prog \<Rightarrow> qtname \<Rightarrow> (fspec \<Rightarrow> field \<Rightarrow> bool)  \<Rightarrow> (fspec, ty) table"
+definition fields_table :: "prog \<Rightarrow> qtname \<Rightarrow> (fspec \<Rightarrow> field \<Rightarrow> bool)  \<Rightarrow> (fspec, ty) table" where
  "fields_table G C P 
     \<equiv> Option.map type \<circ> table_of (filter (split P) (DeclConcepts.fields G C))"
 
@@ -182,14 +173,13 @@
 apply simp
 done
 
-constdefs
-  in_bounds :: "int \<Rightarrow> int \<Rightarrow> bool"            ("(_/ in'_bounds _)" [50, 51] 50)
+definition in_bounds :: "int \<Rightarrow> int \<Rightarrow> bool" ("(_/ in'_bounds _)" [50, 51] 50) where
  "i in_bounds k \<equiv> 0 \<le> i \<and> i < k"
 
-  arr_comps :: "'a \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a option"
+definition arr_comps :: "'a \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a option" where
  "arr_comps T k \<equiv> \<lambda>i. if i in_bounds k then Some T else None"
   
-  var_tys       :: "prog \<Rightarrow> obj_tag \<Rightarrow> oref \<Rightarrow> (vn, ty) table"
+definition var_tys       :: "prog \<Rightarrow> obj_tag \<Rightarrow> oref \<Rightarrow> (vn, ty) table" where
 "var_tys G oi r 
   \<equiv> case r of 
       Heap a \<Rightarrow> (case oi of 
@@ -232,15 +222,13 @@
 
 subsection "access"
 
-constdefs
-
-  globs  :: "st \<Rightarrow> globs"
+definition globs :: "st \<Rightarrow> globs" where
  "globs  \<equiv> st_case (\<lambda>g l. g)"
   
-  locals :: "st \<Rightarrow> locals"
+definition locals :: "st \<Rightarrow> locals" where
  "locals \<equiv> st_case (\<lambda>g l. l)"
 
-  heap   :: "st \<Rightarrow> heap"
+definition heap   :: "st \<Rightarrow> heap" where
  "heap s \<equiv> globs s \<circ> Heap"
 
 
@@ -262,8 +250,7 @@
 
 subsection "memory allocation"
 
-constdefs
-  new_Addr     :: "heap \<Rightarrow> loc option"
+definition new_Addr :: "heap \<Rightarrow> loc option" where
  "new_Addr h   \<equiv> if (\<forall>a. h a \<noteq> None) then None else Some (SOME a. h a = None)"
 
 lemma new_AddrD: "new_Addr h = Some a \<Longrightarrow> h a = None"
@@ -303,20 +290,19 @@
 
 subsection "update"
 
-constdefs
-  gupd       :: "oref  \<Rightarrow> obj \<Rightarrow> st \<Rightarrow> st"        ("gupd'(_\<mapsto>_')"[10,10]1000)
+definition gupd :: "oref  \<Rightarrow> obj \<Rightarrow> st \<Rightarrow> st" ("gupd'(_\<mapsto>_')"[10,10]1000) where
  "gupd r obj  \<equiv> st_case (\<lambda>g l. st (g(r\<mapsto>obj)) l)"
 
-  lupd       :: "lname \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st"        ("lupd'(_\<mapsto>_')"[10,10]1000)
+definition lupd       :: "lname \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st" ("lupd'(_\<mapsto>_')"[10,10]1000) where
  "lupd vn v   \<equiv> st_case (\<lambda>g l. st g (l(vn\<mapsto>v)))"
 
-  upd_gobj   :: "oref \<Rightarrow> vn \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st"
+definition upd_gobj   :: "oref \<Rightarrow> vn \<Rightarrow> val \<Rightarrow> st \<Rightarrow> st" where
  "upd_gobj r n v \<equiv> st_case (\<lambda>g l. st (chg_map (upd_obj n v) r g) l)"
 
-  set_locals  :: "locals \<Rightarrow> st \<Rightarrow> st"
+definition set_locals  :: "locals \<Rightarrow> st \<Rightarrow> st" where
  "set_locals l \<equiv> st_case (\<lambda>g l'. st g l)"
 
-  init_obj    :: "prog \<Rightarrow> obj_tag \<Rightarrow> oref \<Rightarrow> st \<Rightarrow> st"
+definition init_obj    :: "prog \<Rightarrow> obj_tag \<Rightarrow> oref \<Rightarrow> st \<Rightarrow> st" where
  "init_obj G oi r \<equiv> gupd(r\<mapsto>\<lparr>tag=oi, values=init_vals (var_tys G oi r)\<rparr>)"
 
 abbreviation
@@ -476,8 +462,7 @@
 
         
 
-constdefs
-  abrupt_if    :: "bool \<Rightarrow> abopt \<Rightarrow> abopt \<Rightarrow> abopt"
+definition abrupt_if :: "bool \<Rightarrow> abopt \<Rightarrow> abopt \<Rightarrow> abopt" where
  "abrupt_if c x' x \<equiv> if c \<and> (x = None) then x' else x"
 
 lemma abrupt_if_True_None [simp]: "abrupt_if True x None = x"
@@ -557,8 +542,7 @@
 apply auto
 done
 
-constdefs
-   absorb :: "jump \<Rightarrow> abopt \<Rightarrow> abopt"
+definition absorb :: "jump \<Rightarrow> abopt \<Rightarrow> abopt" where
   "absorb j a \<equiv> if a=Some (Jump j) then None else a"
 
 lemma absorb_SomeD [dest!]: "absorb j a = Some x \<Longrightarrow> a = Some x"
@@ -611,9 +595,7 @@
 apply clarsimp
 done
 
-constdefs
-
-  normal     :: "state \<Rightarrow> bool"
+definition normal :: "state \<Rightarrow> bool" where
  "normal \<equiv> \<lambda>s. abrupt s = None"
 
 lemma normal_def2 [simp]: "normal s = (abrupt s = None)"
@@ -621,8 +603,7 @@
 apply (simp (no_asm))
 done
 
-constdefs
-  heap_free :: "nat \<Rightarrow> state \<Rightarrow> bool"
+definition heap_free :: "nat \<Rightarrow> state \<Rightarrow> bool" where
  "heap_free n \<equiv> \<lambda>s. atleast_free (heap (store s)) n"
 
 lemma heap_free_def2 [simp]: "heap_free n s = atleast_free (heap (store s)) n"
@@ -632,12 +613,10 @@
 
 subsection "update"
 
-constdefs
- 
-  abupd     :: "(abopt \<Rightarrow> abopt) \<Rightarrow> state \<Rightarrow> state"
+definition abupd :: "(abopt \<Rightarrow> abopt) \<Rightarrow> state \<Rightarrow> state" where
  "abupd f \<equiv> prod_fun f id"
 
-  supd     :: "(st \<Rightarrow> st) \<Rightarrow> state \<Rightarrow> state" 
+definition supd     :: "(st \<Rightarrow> st) \<Rightarrow> state \<Rightarrow> state" where
  "supd \<equiv> prod_fun id"
   
 lemma abupd_def2 [simp]: "abupd f (x,s) = (f x,s)"
@@ -692,12 +671,10 @@
 
 section "initialisation test"
 
-constdefs
-
-  inited   :: "qtname \<Rightarrow> globs \<Rightarrow> bool"
+definition inited :: "qtname \<Rightarrow> globs \<Rightarrow> bool" where
  "inited C g \<equiv> g (Stat C) \<noteq> None"
 
-  initd    :: "qtname \<Rightarrow> state \<Rightarrow> bool"
+definition initd    :: "qtname \<Rightarrow> state \<Rightarrow> bool" where
  "initd C \<equiv> inited C \<circ> globs \<circ> store"
 
 lemma not_inited_empty [simp]: "\<not>inited C empty"
@@ -731,7 +708,7 @@
 done
 
 section {* @{text error_free} *}
-constdefs error_free:: "state \<Rightarrow> bool"
+definition error_free :: "state \<Rightarrow> bool" where
 "error_free s \<equiv> \<not> (\<exists> err. abrupt s = Some (Error err))"
 
 lemma error_free_Norm [simp,intro]: "error_free (Norm s)"
--- a/src/HOL/Bali/Table.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Table.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -51,9 +51,7 @@
 by (simp add: map_add_def)
 
 section {* Conditional Override *}
-constdefs
-cond_override:: 
-  "('b \<Rightarrow>'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b) table"
+definition cond_override :: "('b \<Rightarrow>'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b)table \<Rightarrow> ('a, 'b) table" where
 
 --{* when merging tables old and new, only override an entry of table old when  
    the condition cond holds *}
@@ -98,8 +96,7 @@
 
 section {* Filter on Tables *}
 
-constdefs
-filter_tab:: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table"
+definition filter_tab :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table" where
 "filter_tab c t \<equiv> \<lambda> k. (case t k of 
                            None   \<Rightarrow> None
                          | Some x \<Rightarrow> if c k x then Some x else None)"
--- a/src/HOL/Bali/Term.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Term.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -261,9 +261,7 @@
   StatRef :: "ref_ty \<Rightarrow> expr"
   where "StatRef rt == Cast (RefT rt) (Lit Null)"
   
-constdefs
-
-  is_stmt :: "term \<Rightarrow> bool"
+definition is_stmt :: "term \<Rightarrow> bool" where
  "is_stmt t \<equiv> \<exists>c. t=In1r c"
 
 ML {* bind_thms ("is_stmt_rews", sum3_instantiate @{context} @{thm is_stmt_def}) *}
@@ -467,7 +465,7 @@
 "eval_binop CondAnd v1 v2 = Bool ((the_Bool v1) \<and> (the_Bool v2))"
 "eval_binop CondOr  v1 v2 = Bool ((the_Bool v1) \<or> (the_Bool v2))"
 
-constdefs need_second_arg :: "binop \<Rightarrow> val \<Rightarrow> bool"
+definition need_second_arg :: "binop \<Rightarrow> val \<Rightarrow> bool" where
 "need_second_arg binop v1 \<equiv> \<not> ((binop=CondAnd \<and>  \<not> the_Bool v1) \<or>
                                (binop=CondOr  \<and> the_Bool v1))"
 text {* @{term CondAnd} and @{term CondOr} only evalulate the second argument
--- a/src/HOL/Bali/Trans.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Trans.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,7 +9,7 @@
 
 theory Trans imports Evaln begin
 
-constdefs groundVar:: "var \<Rightarrow> bool"
+definition groundVar :: "var \<Rightarrow> bool" where
 "groundVar v \<equiv> (case v of
                    LVar ln \<Rightarrow> True
                  | {accC,statDeclC,stat}e..fn \<Rightarrow> \<exists> a. e=Lit a
@@ -34,7 +34,7 @@
     done
 qed
 
-constdefs groundExprs:: "expr list \<Rightarrow> bool"
+definition groundExprs :: "expr list \<Rightarrow> bool" where
 "groundExprs es \<equiv> list_all (\<lambda> e. \<exists> v. e=Lit v) es"
   
 consts the_val:: "expr \<Rightarrow> val"
--- a/src/HOL/Bali/Type.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/Type.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -41,8 +41,7 @@
 abbreviation Array :: "ty \<Rightarrow> ty"  ("_.[]" [90] 90)
   where "T.[] == RefT (ArrayT T)"
 
-constdefs
-  the_Class :: "ty \<Rightarrow> qtname"
+definition the_Class :: "ty \<Rightarrow> qtname" where
  "the_Class T \<equiv> SOME C. T = Class C" (** primrec not possible here **)
  
 lemma the_Class_eq [simp]: "the_Class (Class C)= C"
--- a/src/HOL/Bali/TypeRel.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/TypeRel.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -65,7 +65,7 @@
 done
 
 lemma subcls1I1:
- "\<lbrakk>class G C = Some c; C \<noteq> Object;D=super c\<rbrakk> \<Longrightarrow> G\<turnstile>C\<prec>\<^sub>C\<^sub>1 D"
+ "\<lbrakk>class G C = Some c; C \<noteq> Object;D=super c\<rbrakk> \<Longrightarrow> G\<turnstile>C\<prec>\<^sub>C1 D"
 apply (auto dest: subcls1I)
 done
 
@@ -126,7 +126,7 @@
 done
 
 lemma single_inheritance: 
-"\<lbrakk>G\<turnstile>A \<prec>\<^sub>C\<^sub>1 B; G\<turnstile>A \<prec>\<^sub>C\<^sub>1 C\<rbrakk> \<Longrightarrow> B = C"
+"\<lbrakk>G\<turnstile>A \<prec>\<^sub>C1 B; G\<turnstile>A \<prec>\<^sub>C1 C\<rbrakk> \<Longrightarrow> B = C"
 by (auto simp add: subcls1_def)
   
 lemma subcls_compareable:
@@ -134,11 +134,11 @@
  \<rbrakk> \<Longrightarrow> G\<turnstile>X \<preceq>\<^sub>C Y \<or> G\<turnstile>Y \<preceq>\<^sub>C X"
 by (rule triangle_lemma)  (auto intro: single_inheritance) 
 
-lemma subcls1_irrefl: "\<lbrakk>G\<turnstile>C \<prec>\<^sub>C\<^sub>1 D; ws_prog G \<rbrakk>
+lemma subcls1_irrefl: "\<lbrakk>G\<turnstile>C \<prec>\<^sub>C1 D; ws_prog G \<rbrakk>
  \<Longrightarrow> C \<noteq> D"
 proof 
   assume ws: "ws_prog G" and
-    subcls1: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 D" and
+    subcls1: "G\<turnstile>C \<prec>\<^sub>C1 D" and
      eq_C_D: "C=D"
   from subcls1 obtain c 
     where
@@ -167,7 +167,7 @@
   then show ?thesis
   proof (induct rule: converse_trancl_induct)
     fix C
-    assume subcls1_C_D: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 D"
+    assume subcls1_C_D: "G\<turnstile>C \<prec>\<^sub>C1 D"
     then obtain c  where
         "C\<noteq>Object" and
         "class G C = Some c" and
@@ -178,7 +178,7 @@
       by (auto dest: ws_prog_cdeclD)
   next
     fix C Z
-    assume subcls1_C_Z: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 Z" and
+    assume subcls1_C_Z: "G\<turnstile>C \<prec>\<^sub>C1 Z" and
             subcls_Z_D: "G\<turnstile>Z \<prec>\<^sub>C D" and
            nsubcls_D_Z: "\<not> G\<turnstile>D \<prec>\<^sub>C Z"
     show "\<not> G\<turnstile>D \<prec>\<^sub>C C"
@@ -213,13 +213,13 @@
   then show ?thesis
   proof (induct rule: converse_trancl_induct)
     fix C
-    assume "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 D"
+    assume "G\<turnstile>C \<prec>\<^sub>C1 D"
     with ws 
     show "C\<noteq>D" 
       by (blast dest: subcls1_irrefl)
   next
     fix C Z
-    assume subcls1_C_Z: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 Z" and
+    assume subcls1_C_Z: "G\<turnstile>C \<prec>\<^sub>C1 Z" and
             subcls_Z_D: "G\<turnstile>Z \<prec>\<^sub>C D" and
                neq_Z_D: "Z \<noteq> D"
     show "C\<noteq>D"
@@ -298,7 +298,7 @@
   assume       clsC: "class G C = Some c"
   assume subcls_C_C: "G\<turnstile>C \<prec>\<^sub>C D"
   then obtain S where 
-                  "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 S" and
+                  "G\<turnstile>C \<prec>\<^sub>C1 S" and
     subclseq_S_D: "G\<turnstile>S \<preceq>\<^sub>C D"
     by (blast dest: tranclD)
   with clsC 
@@ -341,9 +341,9 @@
 where
   direct:         "G\<turnstile>C\<leadsto>1J     \<spacespace>\<spacespace>     \<Longrightarrow> G\<turnstile>C\<leadsto>J"
 | subint:        "\<lbrakk>G\<turnstile>C\<leadsto>1I; G\<turnstile>I\<preceq>I J\<rbrakk>  \<Longrightarrow> G\<turnstile>C\<leadsto>J"
-| subcls1:       "\<lbrakk>G\<turnstile>C\<prec>\<^sub>C\<^sub>1D; G\<turnstile>D\<leadsto>J \<rbrakk>  \<Longrightarrow> G\<turnstile>C\<leadsto>J"
+| subcls1:       "\<lbrakk>G\<turnstile>C\<prec>\<^sub>C1D; G\<turnstile>D\<leadsto>J \<rbrakk>  \<Longrightarrow> G\<turnstile>C\<leadsto>J"
 
-lemma implmtD: "G\<turnstile>C\<leadsto>J \<Longrightarrow> (\<exists>I. G\<turnstile>C\<leadsto>1I \<and> G\<turnstile>I\<preceq>I J) \<or> (\<exists>D. G\<turnstile>C\<prec>\<^sub>C\<^sub>1D \<and> G\<turnstile>D\<leadsto>J)" 
+lemma implmtD: "G\<turnstile>C\<leadsto>J \<Longrightarrow> (\<exists>I. G\<turnstile>C\<leadsto>1I \<and> G\<turnstile>I\<preceq>I J) \<or> (\<exists>D. G\<turnstile>C\<prec>\<^sub>C1D \<and> G\<turnstile>D\<leadsto>J)" 
 apply (erule implmt.induct)
 apply fast+
 done
@@ -568,8 +568,7 @@
 apply (fast dest: widen_Class_Class widen_Class_Iface)
 done
 
-constdefs
-  widens :: "prog \<Rightarrow> [ty list, ty list] \<Rightarrow> bool" ("_\<turnstile>_[\<preceq>]_" [71,71,71] 70)
+definition widens :: "prog \<Rightarrow> [ty list, ty list] \<Rightarrow> bool" ("_\<turnstile>_[\<preceq>]_" [71,71,71] 70) where
  "G\<turnstile>Ts[\<preceq>]Ts' \<equiv> list_all2 (\<lambda>T T'. G\<turnstile>T\<preceq>T') Ts Ts'"
 
 lemma widens_Nil [simp]: "G\<turnstile>[][\<preceq>][]"
--- a/src/HOL/Bali/TypeSafe.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/TypeSafe.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -95,17 +95,13 @@
 
 section "result conformance"
 
-constdefs
-  assign_conforms :: "st \<Rightarrow> (val \<Rightarrow> state \<Rightarrow> state) \<Rightarrow> ty \<Rightarrow> env' \<Rightarrow> bool"
-          ("_\<le>|_\<preceq>_\<Colon>\<preceq>_"                                        [71,71,71,71] 70)
+definition assign_conforms :: "st \<Rightarrow> (val \<Rightarrow> state \<Rightarrow> state) \<Rightarrow> ty \<Rightarrow> env' \<Rightarrow> bool" ("_\<le>|_\<preceq>_\<Colon>\<preceq>_" [71,71,71,71] 70) where
 "s\<le>|f\<preceq>T\<Colon>\<preceq>E \<equiv>
  (\<forall>s' w. Norm s'\<Colon>\<preceq>E \<longrightarrow> fst E,s'\<turnstile>w\<Colon>\<preceq>T \<longrightarrow> s\<le>|s' \<longrightarrow> assign f w (Norm s')\<Colon>\<preceq>E) \<and>
  (\<forall>s' w. error_free s' \<longrightarrow> (error_free (assign f w s')))"      
 
 
-constdefs
-  rconf :: "prog \<Rightarrow> lenv \<Rightarrow> st \<Rightarrow> term \<Rightarrow> vals \<Rightarrow> tys \<Rightarrow> bool"
-          ("_,_,_\<turnstile>_\<succ>_\<Colon>\<preceq>_"                               [71,71,71,71,71,71] 70)
+definition rconf :: "prog \<Rightarrow> lenv \<Rightarrow> st \<Rightarrow> term \<Rightarrow> vals \<Rightarrow> tys \<Rightarrow> bool" ("_,_,_\<turnstile>_\<succ>_\<Colon>\<preceq>_" [71,71,71,71,71,71] 70) where
   "G,L,s\<turnstile>t\<succ>v\<Colon>\<preceq>T 
     \<equiv> case T of
         Inl T  \<Rightarrow> if (\<exists> var. t=In2 var)
@@ -330,11 +326,8 @@
 
 declare fun_upd_apply [simp del]
 
-
-constdefs
-  DynT_prop::"[prog,inv_mode,qtname,ref_ty] \<Rightarrow> bool" 
-                                              ("_\<turnstile>_\<rightarrow>_\<preceq>_"[71,71,71,71]70)
- "G\<turnstile>mode\<rightarrow>D\<preceq>t \<equiv> mode = IntVir \<longrightarrow> is_class G D \<and> 
+definition DynT_prop :: "[prog,inv_mode,qtname,ref_ty] \<Rightarrow> bool" ("_\<turnstile>_\<rightarrow>_\<preceq>_"[71,71,71,71]70) where
+  "G\<turnstile>mode\<rightarrow>D\<preceq>t \<equiv> mode = IntVir \<longrightarrow> is_class G D \<and> 
                      (if (\<exists>T. t=ArrayT T) then D=Object else G\<turnstile>Class D\<preceq>RefT t)"
 
 lemma DynT_propI: 
--- a/src/HOL/Bali/WellForm.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/WellForm.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -31,8 +31,7 @@
 text  {* well-formed field declaration (common part for classes and interfaces),
         cf. 8.3 and (9.3) *}
 
-constdefs
-  wf_fdecl :: "prog \<Rightarrow> pname \<Rightarrow> fdecl \<Rightarrow> bool"
+definition wf_fdecl :: "prog \<Rightarrow> pname \<Rightarrow> fdecl \<Rightarrow> bool" where
  "wf_fdecl G P \<equiv> \<lambda>(fn,f). is_acc_type G P (type f)"
 
 lemma wf_fdecl_def2: "\<And>fd. wf_fdecl G P fd = is_acc_type G P (type (snd fd))"
@@ -55,8 +54,7 @@
 \item the parameter names are unique
 \end{itemize} 
 *}
-constdefs
-  wf_mhead :: "prog \<Rightarrow> pname \<Rightarrow> sig \<Rightarrow> mhead \<Rightarrow> bool"
+definition wf_mhead :: "prog \<Rightarrow> pname \<Rightarrow> sig \<Rightarrow> mhead \<Rightarrow> bool" where
  "wf_mhead G P \<equiv> \<lambda> sig mh. length (parTs sig) = length (pars mh) \<and>
                             \<spacespace> ( \<forall>T\<in>set (parTs sig). is_acc_type G P T) \<and> 
                             is_acc_type G P (resTy mh) \<and>
@@ -78,7 +76,7 @@
 \end{itemize}
 *}
 
-constdefs callee_lcl:: "qtname \<Rightarrow> sig \<Rightarrow> methd \<Rightarrow> lenv"
+definition callee_lcl :: "qtname \<Rightarrow> sig \<Rightarrow> methd \<Rightarrow> lenv" where
 "callee_lcl C sig m 
  \<equiv> \<lambda> k. (case k of
             EName e 
@@ -88,12 +86,11 @@
                 | Res \<Rightarrow> Some (resTy m))
           | This \<Rightarrow> if is_static m then None else Some (Class C))"
 
-constdefs parameters :: "methd \<Rightarrow> lname set"
+definition parameters :: "methd \<Rightarrow> lname set" where
 "parameters m \<equiv>  set (map (EName \<circ> VNam) (pars m)) 
                   \<union> (if (static m) then {} else {This})"
 
-constdefs
-  wf_mdecl :: "prog \<Rightarrow> qtname \<Rightarrow> mdecl \<Rightarrow> bool"
+definition wf_mdecl :: "prog \<Rightarrow> qtname \<Rightarrow> mdecl \<Rightarrow> bool" where
  "wf_mdecl G C \<equiv> 
       \<lambda>(sig,m).
           wf_mhead G (pid C) sig (mhead m) \<and> 
@@ -219,8 +216,7 @@
       superinterfaces widens to each of the corresponding result types
 \end{itemize}
 *}
-constdefs
-  wf_idecl :: "prog  \<Rightarrow> idecl \<Rightarrow> bool"
+definition wf_idecl :: "prog  \<Rightarrow> idecl \<Rightarrow> bool" where
  "wf_idecl G \<equiv> 
     \<lambda>(I,i). 
         ws_idecl G I (isuperIfs i) \<and> 
@@ -321,8 +317,7 @@
 \end{itemize}
 *}
 (* to Table *)
-constdefs entails:: "('a,'b) table \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
-                                 ("_ entails _" 20)
+definition entails :: "('a,'b) table \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool" ("_ entails _" 20) where
 "t entails P \<equiv> \<forall>k. \<forall> x \<in> t k: P x"
 
 lemma entailsD:
@@ -332,8 +327,7 @@
 lemma empty_entails[simp]: "empty entails P"
 by (simp add: entails_def)
 
-constdefs
- wf_cdecl :: "prog \<Rightarrow> cdecl \<Rightarrow> bool"
+definition wf_cdecl :: "prog \<Rightarrow> cdecl \<Rightarrow> bool" where
 "wf_cdecl G \<equiv> 
    \<lambda>(C,c).
       \<not>is_iface G C \<and>
@@ -361,8 +355,7 @@
             ))"
 
 (*
-constdefs
- wf_cdecl :: "prog \<Rightarrow> cdecl \<Rightarrow> bool"
+definition wf_cdecl :: "prog \<Rightarrow> cdecl \<Rightarrow> bool" where
 "wf_cdecl G \<equiv> 
    \<lambda>(C,c).
       \<not>is_iface G C \<and>
@@ -518,8 +511,7 @@
 \item all defined classes are wellformed
 \end{itemize}
 *}
-constdefs
-  wf_prog  :: "prog \<Rightarrow> bool"
+definition wf_prog :: "prog \<Rightarrow> bool" where
  "wf_prog G \<equiv> let is = ifaces G; cs = classes G in
                  ObjectC \<in> set cs \<and> 
                 (\<forall> m\<in>set Object_mdecls. accmodi m \<noteq> Package) \<and>
@@ -919,7 +911,7 @@
      inheritable: "G \<turnstile>Method old inheritable_in pid C" and
          subclsC: "G\<turnstile>C\<prec>\<^sub>C declclass old"
     from cls_C neq_C_Obj  
-    have super: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 super c" 
+    have super: "G\<turnstile>C \<prec>\<^sub>C1 super c" 
       by (rule subcls1I)
     from wf cls_C neq_C_Obj
     have accessible_super: "G\<turnstile>(Class (super c)) accessible_in (pid C)" 
@@ -1385,7 +1377,7 @@
       moreover note wf False cls_C  
       ultimately have "G\<turnstile>super c \<preceq>\<^sub>C declclass m"  
         by (auto intro: Hyp [rule_format])
-      moreover from cls_C False have  "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 super c" by (rule subcls1I)
+      moreover from cls_C False have  "G\<turnstile>C \<prec>\<^sub>C1 super c" by (rule subcls1I)
       ultimately show ?thesis by - (rule rtrancl_into_rtrancl2)
     next
       case Some
@@ -1539,7 +1531,7 @@
     by (auto intro: method_declared_inI)
   note trancl_rtrancl_tranc = trancl_rtrancl_trancl [trans] (* ### in Basis *)
   from clsC neq_C_Obj
-  have subcls1_C_super: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 super c"
+  have subcls1_C_super: "G\<turnstile>C \<prec>\<^sub>C1 super c"
     by (rule subcls1I)
   then have "G\<turnstile>C \<prec>\<^sub>C super c" ..
   also from old wf is_cls_super
@@ -1609,7 +1601,7 @@
       by (auto dest: ws_prog_cdeclD)
     from clsC wf neq_C_Obj 
     have superAccessible: "G\<turnstile>(Class (super c)) accessible_in (pid C)" and
-         subcls1_C_super: "G\<turnstile>C \<prec>\<^sub>C\<^sub>1 super c"
+         subcls1_C_super: "G\<turnstile>C \<prec>\<^sub>C1 super c"
       by (auto dest: wf_prog_cdecl wf_cdecl_supD is_acc_classD
               intro: subcls1I)
     show "\<exists>new. ?Constraint C new old"
--- a/src/HOL/Bali/WellType.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Bali/WellType.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -53,11 +53,10 @@
   emhead = "ref_ty \<times> mhead"
 
 --{* Some mnemotic selectors for emhead *}
-constdefs 
-  "declrefT" :: "emhead \<Rightarrow> ref_ty"
+definition "declrefT" :: "emhead \<Rightarrow> ref_ty" where
   "declrefT \<equiv> fst"
 
-  "mhd"     :: "emhead \<Rightarrow> mhead"
+definition "mhd"     :: "emhead \<Rightarrow> mhead" where
   "mhd \<equiv> snd"
 
 lemma declrefT_simp[simp]:"declrefT (r,m) = r"
@@ -138,11 +137,10 @@
 done
 
 
-constdefs
-  empty_dt :: "dyn_ty"
+definition empty_dt :: "dyn_ty" where
  "empty_dt \<equiv> \<lambda>a. None"
 
-  invmode :: "('a::type)member_scheme \<Rightarrow> expr \<Rightarrow> inv_mode"
+definition invmode :: "('a::type)member_scheme \<Rightarrow> expr \<Rightarrow> inv_mode" where
 "invmode m e \<equiv> if is_static m 
                   then Static 
                   else if e=Super then SuperM else IntVir"
--- a/src/HOL/Decision_Procs/Cooper.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Decision_Procs/Cooper.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -293,10 +293,10 @@
 by (induct p, simp_all)
 
 
-constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
+definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
   "djf f p q \<equiv> (if q=T then T else if q=F then f p else 
   (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
-constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
+definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
   "evaldjf f ps \<equiv> foldr (djf f) ps F"
 
 lemma djf_Or: "Ifm bbs bs (djf f p q) = Ifm bbs bs (Or (f p) q)"
@@ -340,7 +340,7 @@
   thus ?thesis by (simp only: list_all_iff)
 qed
 
-constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "DJ f p \<equiv> evaldjf f (disjuncts p)"
 
 lemma DJ: assumes fdj: "\<forall> p q. f (Or p q) = Or (f p) (f q)"
@@ -395,7 +395,7 @@
   "lex_ns ([], ms) = True"
   "lex_ns (ns, []) = False"
   "lex_ns (n#ns, m#ms) = (n<m \<or> ((n = m) \<and> lex_ns (ns,ms))) "
-constdefs lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool"
+definition lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool" where
   "lex_bnd t s \<equiv> lex_ns (bnds t, bnds s)"
 
 consts
@@ -455,10 +455,10 @@
 lemma nummul_nb: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul i t)"
 by (induct t rule: nummul.induct, auto simp add: numadd_nb)
 
-constdefs numneg :: "num \<Rightarrow> num"
+definition numneg :: "num \<Rightarrow> num" where
   "numneg t \<equiv> nummul (- 1) t"
 
-constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num"
+definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" where
   "numsub s t \<equiv> (if s = t then C 0 else numadd (s, numneg t))"
 
 lemma numneg: "Inum bs (numneg t) = Inum bs (Neg t)"
@@ -505,7 +505,7 @@
 lemma not_bn: "bound0 p \<Longrightarrow> bound0 (not p)"
 by (cases p, auto)
 
-constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else And p q)"
 lemma conj: "Ifm bbs bs (conj p q) = Ifm bbs bs (And p q)"
 by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all)
@@ -515,7 +515,7 @@
 lemma conj_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"
 using conj_def by auto 
 
-constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p else Or p q)"
 
 lemma disj: "Ifm bbs bs (disj p q) = Ifm bbs bs (Or p q)"
@@ -525,7 +525,7 @@
 lemma disj_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
 using disj_def by auto 
 
-constdefs   imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "imp p q \<equiv> (if (p = F \<or> q=T) then T else if p=T then q else if q=F then not p else Imp p q)"
 lemma imp: "Ifm bbs bs (imp p q) = Ifm bbs bs (Imp p q)"
 by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) (simp_all add: not)
@@ -534,7 +534,7 @@
 lemma imp_nb: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)"
 using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def,cases p) simp_all
 
-constdefs   iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "iff p q \<equiv> (if (p = q) then T else if (p = not q \<or> not p = q) then F else 
        if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
   Iff p q)"
@@ -1749,7 +1749,7 @@
   shows "(\<exists> x. Ifm bbs (x#bs) p) = ((\<exists> j\<in> {1 .. d}. Ifm bbs (j#bs) (minusinf p)) \<or> (\<exists> j\<in> {1.. d}. \<exists> b\<in> (Inum (i#bs)) ` set (\<beta> p). Ifm bbs ((b+j)#bs) p))"
   using cp_thm[OF lp up dd dp,where i="i"] by auto
 
-constdefs unit:: "fm \<Rightarrow> fm \<times> num list \<times> int"
+definition unit :: "fm \<Rightarrow> fm \<times> num list \<times> int" where
   "unit p \<equiv> (let p' = zlfm p ; l = \<zeta> p' ; q = And (Dvd l (CN 0 1 (C 0))) (a\<beta> p' l); d = \<delta> q;
              B = remdups (map simpnum (\<beta> q)) ; a = remdups (map simpnum (\<alpha> q))
              in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
@@ -1814,7 +1814,7 @@
 qed
     (* Cooper's Algorithm *)
 
-constdefs cooper :: "fm \<Rightarrow> fm"
+definition cooper :: "fm \<Rightarrow> fm" where
   "cooper p \<equiv> 
   (let (q,B,d) = unit p; js = iupt 1 d;
        mq = simpfm (minusinf q);
--- a/src/HOL/Decision_Procs/Ferrack.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Decision_Procs/Ferrack.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -169,26 +169,26 @@
 lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)"
 by (cases p) auto
 
-constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else 
    if p = q then p else And p q)"
 lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)"
 by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all)
 
-constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p 
        else if p=q then p else Or p q)"
 
 lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)"
 by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all)
 
-constdefs  imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p 
     else Imp p q)"
 lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)"
 by (cases "p=F \<or> q=T",simp_all add: imp_def) 
 
-constdefs   iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "iff p q \<equiv> (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else 
        if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
   Iff p q)"
@@ -369,10 +369,10 @@
 lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
 by (induct p, simp_all)
 
-constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
+definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
   "djf f p q \<equiv> (if q=T then T else if q=F then f p else 
   (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
-constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
+definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
   "evaldjf f ps \<equiv> foldr (djf f) ps F"
 
 lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)"
@@ -423,7 +423,7 @@
   thus ?thesis by (simp only: list_all_iff)
 qed
 
-constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "DJ f p \<equiv> evaldjf f (disjuncts p)"
 
 lemma DJ: assumes fdj: "\<forall> p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))"
@@ -653,10 +653,10 @@
 lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)"
 by (induct t rule: nummul.induct, auto )
 
-constdefs numneg :: "num \<Rightarrow> num"
+definition numneg :: "num \<Rightarrow> num" where
   "numneg t \<equiv> nummul t (- 1)"
 
-constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num"
+definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" where
   "numsub s t \<equiv> (if s = t then C 0 else numadd (s,numneg t))"
 
 lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)"
@@ -724,7 +724,7 @@
   from maxcoeff_nz[OF nz th] show ?thesis .
 qed
 
-constdefs simp_num_pair:: "(num \<times> int) \<Rightarrow> num \<times> int"
+definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int" where
   "simp_num_pair \<equiv> (\<lambda> (t,n). (if n = 0 then (C 0, 0) else
    (let t' = simpnum t ; g = numgcd t' in 
       if g > 1 then (let g' = gcd n g in 
@@ -1779,7 +1779,7 @@
 
 
     (* Implement the right hand side of Ferrante and Rackoff's Theorem. *)
-constdefs ferrack:: "fm \<Rightarrow> fm"
+definition ferrack :: "fm \<Rightarrow> fm" where
   "ferrack p \<equiv> (let p' = rlfm (simpfm p); mp = minusinf p'; pp = plusinf p'
                 in if (mp = T \<or> pp = T) then T else 
                    (let U = remdps(map simp_num_pair 
--- a/src/HOL/Decision_Procs/MIR.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Decision_Procs/MIR.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -566,7 +566,7 @@
   thus ?thesis by (simp only: list_all_iff)
 qed
 
-constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "DJ f p \<equiv> evaldjf f (disjuncts p)"
 
 lemma DJ: assumes fdj: "\<forall> p q. f (Or p q) = Or (f p) (f q)"
@@ -623,7 +623,7 @@
   "lex_ns ([], ms) = True"
   "lex_ns (ns, []) = False"
   "lex_ns (n#ns, m#ms) = (n<m \<or> ((n = m) \<and> lex_ns (ns,ms))) "
-constdefs lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool"
+definition lex_bnd :: "num \<Rightarrow> num \<Rightarrow> bool" where
   "lex_bnd t s \<equiv> lex_ns (bnds t, bnds s)"
 
 consts 
@@ -873,10 +873,10 @@
 lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)"
 by (induct t rule: nummul.induct, auto)
 
-constdefs numneg :: "num \<Rightarrow> num"
+definition numneg :: "num \<Rightarrow> num" where
   "numneg t \<equiv> nummul t (- 1)"
 
-constdefs numsub :: "num \<Rightarrow> num \<Rightarrow> num"
+definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" where
   "numsub s t \<equiv> (if s = t then C 0 else numadd (s,numneg t))"
 
 lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)"
@@ -1038,7 +1038,7 @@
   from maxcoeff_nz[OF nz th] show ?thesis .
 qed
 
-constdefs simp_num_pair:: "(num \<times> int) \<Rightarrow> num \<times> int"
+definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int" where
   "simp_num_pair \<equiv> (\<lambda> (t,n). (if n = 0 then (C 0, 0) else
    (let t' = simpnum t ; g = numgcd t' in 
       if g > 1 then (let g' = gcd n g in 
@@ -1137,7 +1137,7 @@
 lemma not_nb[simp]: "bound0 p \<Longrightarrow> bound0 (not p)"
 by (induct p, auto)
 
-constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else 
    if p = q then p else And p q)"
 lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)"
@@ -1148,7 +1148,7 @@
 lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"
 using conj_def by auto 
 
-constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p 
        else if p=q then p else Or p q)"
 
@@ -1159,7 +1159,7 @@
 lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
 using disj_def by auto 
 
-constdefs   imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p 
     else Imp p q)"
 lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)"
@@ -1169,7 +1169,7 @@
 lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)"
 using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def) 
 
-constdefs   iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "iff p q \<equiv> (if (p = q) then T else if (p = not q \<or> not p = q) then F else 
        if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
   Iff p q)"
@@ -1216,7 +1216,7 @@
   thus "real d rdvd real c * t" using d rdvd_mult[OF gnz, where n="d div g" and x="real (c div g) * t"] real_of_int_div[OF gnz gd] real_of_int_div[OF gnz gc] by simp
 qed
 
-constdefs simpdvd:: "int \<Rightarrow> num \<Rightarrow> (int \<times> num)"
+definition simpdvd :: "int \<Rightarrow> num \<Rightarrow> (int \<times> num)" where
   "simpdvd d t \<equiv> 
    (let g = numgcd t in 
       if g > 1 then (let g' = gcd d g in 
@@ -1479,7 +1479,7 @@
 
   (* Generic quantifier elimination *)
 
-constdefs list_conj :: "fm list \<Rightarrow> fm"
+definition list_conj :: "fm list \<Rightarrow> fm" where
   "list_conj ps \<equiv> foldr conj ps T"
 lemma list_conj: "Ifm bs (list_conj ps) = (\<forall>p\<in> set ps. Ifm bs p)"
   by (induct ps, auto simp add: list_conj_def)
@@ -1487,7 +1487,7 @@
   by (induct ps, auto simp add: list_conj_def)
 lemma list_conj_nb: " \<forall>p\<in> set ps. bound0 p \<Longrightarrow> bound0 (list_conj ps)"
   by (induct ps, auto simp add: list_conj_def)
-constdefs CJNB:: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition CJNB :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "CJNB f p \<equiv> (let cjs = conjuncts p ; (yes,no) = List.partition bound0 cjs
                    in conj (decr (list_conj yes)) (f (list_conj no)))"
 
@@ -2954,7 +2954,7 @@
                                             else (NDvd (i*k) (CN 0 c (Mul k e))))"
   "a\<rho> p = (\<lambda> k. p)"
 
-constdefs \<sigma> :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm"
+definition \<sigma> :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> fm" where
   "\<sigma> p k t \<equiv> And (Dvd k t) (\<sigma>\<rho> p (t,k))"
 
 lemma \<sigma>\<rho>:
@@ -3517,7 +3517,7 @@
   "isrlfm (Ge  (CN 0 c e)) = (c>0 \<and> numbound0 e)"
   "isrlfm p = (isatom p \<and> (bound0 p))"
 
-constdefs fp :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> int \<Rightarrow> fm"
+definition fp :: "fm \<Rightarrow> int \<Rightarrow> num \<Rightarrow> int \<Rightarrow> fm" where
   "fp p n s j \<equiv> (if n > 0 then 
             (And p (And (Ge (CN 0 n (Sub s (Add (Floor s) (C j)))))
                         (Lt (CN 0 n (Sub s (Add (Floor s) (C (j+1))))))))
@@ -3836,7 +3836,7 @@
 
     (* Linearize a formula where Bound 0 ranges over [0,1) *)
 
-constdefs rsplit :: "(int \<Rightarrow> num \<Rightarrow> fm) \<Rightarrow> num \<Rightarrow> fm"
+definition rsplit :: "(int \<Rightarrow> num \<Rightarrow> fm) \<Rightarrow> num \<Rightarrow> fm" where
   "rsplit f a \<equiv> foldr disj (map (\<lambda> (\<phi>, n, s). conj \<phi> (f n s)) (rsplit0 a)) F"
 
 lemma foldr_disj_map: "Ifm bs (foldr disj (map f xs) F) = (\<exists> x \<in> set xs. Ifm bs (f x))"
@@ -5103,7 +5103,7 @@
 
     (* Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff. *)
 
-constdefs ferrack01:: "fm \<Rightarrow> fm"
+definition ferrack01 :: "fm \<Rightarrow> fm" where
   "ferrack01 p \<equiv> (let p' = rlfm(And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (- 1))))) p);
                     U = remdups(map simp_num_pair 
                      (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m))
@@ -5350,7 +5350,7 @@
   shows "(\<exists> (x::int). Ifm (real x#bs) p) = ((\<exists> j\<in> {1 .. d}. Ifm (real j#bs) (minusinf p)) \<or> (\<exists> j\<in> {1.. d}. \<exists> b\<in> (Inum (real i#bs)) ` set (\<beta> p). Ifm ((b+real j)#bs) p))"
   using cp_thm[OF lp up dd dp] by auto
 
-constdefs unit:: "fm \<Rightarrow> fm \<times> num list \<times> int"
+definition unit :: "fm \<Rightarrow> fm \<times> num list \<times> int" where
   "unit p \<equiv> (let p' = zlfm p ; l = \<zeta> p' ; q = And (Dvd l (CN 0 1 (C 0))) (a\<beta> p' l); d = \<delta> q;
              B = remdups (map simpnum (\<beta> q)) ; a = remdups (map simpnum (\<alpha> q))
              in if length B \<le> length a then (q,B,d) else (mirror q, a,d))"
@@ -5417,7 +5417,7 @@
 qed
     (* Cooper's Algorithm *)
 
-constdefs cooper :: "fm \<Rightarrow> fm"
+definition cooper :: "fm \<Rightarrow> fm" where
   "cooper p \<equiv> 
   (let (q,B,d) = unit p; js = iupt (1,d);
        mq = simpfm (minusinf q);
@@ -5561,7 +5561,7 @@
   shows "(\<exists> (x::int). Ifm (real x#bs) p) = ((\<exists> j\<in> {1 .. \<delta> p}. Ifm (real j#bs) (minusinf p)) \<or> (\<exists> (e,c) \<in> R. \<exists> j\<in> {1.. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j)))))"
   using rl_thm[OF lp] \<rho>_cong[OF iszlfm_gen[OF lp, rule_format, where y="a"] R] by simp 
 
-constdefs chooset:: "fm \<Rightarrow> fm \<times> ((num\<times>int) list) \<times> int"
+definition chooset :: "fm \<Rightarrow> fm \<times> ((num\<times>int) list) \<times> int" where
   "chooset p \<equiv> (let q = zlfm p ; d = \<delta> q;
              B = remdups (map (\<lambda> (t,k). (simpnum t,k)) (\<rho> q)) ; 
              a = remdups (map (\<lambda> (t,k). (simpnum t,k)) (\<alpha>\<rho> q))
@@ -5621,7 +5621,7 @@
   ultimately show ?thes by blast
 qed
 
-constdefs stage:: "fm \<Rightarrow> int \<Rightarrow> (num \<times> int) \<Rightarrow> fm"
+definition stage :: "fm \<Rightarrow> int \<Rightarrow> (num \<times> int) \<Rightarrow> fm" where
   "stage p d \<equiv> (\<lambda> (e,c). evaldjf (\<lambda> j. simpfm (\<sigma> p c (Add e (C j)))) (iupt (1,c*d)))"
 lemma stage:
   shows "Ifm bs (stage p d (e,c)) = (\<exists> j\<in>{1 .. c*d}. Ifm bs (\<sigma> p c (Add e (C j))))"
@@ -5641,7 +5641,7 @@
   from evaldjf_bound0[OF th] show ?thesis by (unfold stage_def split_def) simp
 qed
 
-constdefs redlove:: "fm \<Rightarrow> fm"
+definition redlove :: "fm \<Rightarrow> fm" where
   "redlove p \<equiv> 
   (let (q,B,d) = chooset p;
        mq = simpfm (minusinf q);
--- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -273,10 +273,10 @@
   assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero, field})"
   shows "allpolys isnpoly t \<Longrightarrow> isnpoly c \<Longrightarrow> allpolys isnpoly (tmmul t c)" by (induct t rule: tmmul.induct, simp_all add: Let_def polymul_norm)
 
-constdefs tmneg :: "tm \<Rightarrow> tm"
+definition tmneg :: "tm \<Rightarrow> tm" where
   "tmneg t \<equiv> tmmul t (C (- 1,1))"
 
-constdefs tmsub :: "tm \<Rightarrow> tm \<Rightarrow> tm"
+definition tmsub :: "tm \<Rightarrow> tm \<Rightarrow> tm" where
   "tmsub s t \<equiv> (if s = t then CP 0\<^sub>p else tmadd (s,tmneg t))"
 
 lemma tmneg[simp]: "Itm vs bs (tmneg t) = Itm vs bs (Neg t)"
@@ -477,26 +477,26 @@
 lemma not[simp]: "Ifm vs bs (not p) = Ifm vs bs (NOT p)"
 by (induct p rule: not.induct) auto
 
-constdefs conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "conj p q \<equiv> (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else 
    if p = q then p else And p q)"
 lemma conj[simp]: "Ifm vs bs (conj p q) = Ifm vs bs (And p q)"
 by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all)
 
-constdefs disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "disj p q \<equiv> (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p 
        else if p=q then p else Or p q)"
 
 lemma disj[simp]: "Ifm vs bs (disj p q) = Ifm vs bs (Or p q)"
 by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all)
 
-constdefs  imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "imp p q \<equiv> (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p 
     else Imp p q)"
 lemma imp[simp]: "Ifm vs bs (imp p q) = Ifm vs bs (Imp p q)"
 by (cases "p=F \<or> q=T",simp_all add: imp_def) 
 
-constdefs   iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
+definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where
   "iff p q \<equiv> (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else 
        if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
   Iff p q)"
@@ -776,10 +776,10 @@
 lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
 by (induct p, simp_all)
 
-constdefs djf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
+definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
   "djf f p q \<equiv> (if q=T then T else if q=F then f p else 
   (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
-constdefs evaldjf:: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
+definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
   "evaldjf f ps \<equiv> foldr (djf f) ps F"
 
 lemma djf_Or: "Ifm vs bs (djf f p q) = Ifm vs bs (Or (f p) q)"
@@ -823,7 +823,7 @@
   thus ?thesis by (simp only: list_all_iff)
 qed
 
-constdefs DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "DJ f p \<equiv> evaldjf f (disjuncts p)"
 
 lemma DJ: assumes fdj: "\<forall> p q. Ifm vs bs (f (Or p q)) = Ifm vs bs (Or (f p) (f q))"
@@ -869,10 +869,10 @@
   "conjuncts T = []"
   "conjuncts p = [p]"
 
-constdefs list_conj :: "fm list \<Rightarrow> fm"
+definition list_conj :: "fm list \<Rightarrow> fm" where
   "list_conj ps \<equiv> foldr conj ps T"
 
-constdefs CJNB:: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
+definition CJNB :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where
   "CJNB f p \<equiv> (let cjs = conjuncts p ; (yes,no) = partition bound0 cjs
                    in conj (decr0 (list_conj yes)) (f (list_conj no)))"
 
@@ -1158,7 +1158,7 @@
   "conjs p = [p]"
 lemma conjs_ci: "(\<forall> q \<in> set (conjs p). Ifm vs bs q) = Ifm vs bs p"
 by (induct p rule: conjs.induct, auto)
-constdefs list_disj :: "fm list \<Rightarrow> fm"
+definition list_disj :: "fm list \<Rightarrow> fm" where
   "list_disj ps \<equiv> foldr disj ps F"
 
 lemma list_conj: "Ifm vs bs (list_conj ps) = (\<forall>p\<in> set ps. Ifm vs bs p)"
--- a/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -188,12 +188,12 @@
 | "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
 | "poly_cmul y p = C y *\<^sub>p p"
 
-constdefs monic:: "poly \<Rightarrow> (poly \<times> bool)"
+definition monic :: "poly \<Rightarrow> (poly \<times> bool)" where
   "monic p \<equiv> (let h = headconst p in if h = 0\<^sub>N then (p,False) else ((C (Ninv h)) *\<^sub>p p, 0>\<^sub>N h))"
 
 subsection{* Pseudo-division *}
 
-constdefs shift1:: "poly \<Rightarrow> poly"
+definition shift1 :: "poly \<Rightarrow> poly" where
   "shift1 p \<equiv> CN 0\<^sub>p 0 p"
 consts funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 
@@ -212,7 +212,7 @@
   by pat_completeness auto
 
 
-constdefs polydivide:: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)"
+definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)" where
   "polydivide s p \<equiv> polydivide_aux (head p,degree p,p,0, s)"
 
 fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" where
@@ -262,7 +262,7 @@
 lemma isnpolyh_mono: "\<lbrakk>n' \<le> n ; isnpolyh p n\<rbrakk> \<Longrightarrow> isnpolyh p n'"
 by (induct p rule: isnpolyh.induct, auto)
 
-constdefs isnpoly:: "poly \<Rightarrow> bool"
+definition isnpoly :: "poly \<Rightarrow> bool" where
   "isnpoly p \<equiv> isnpolyh p 0"
 
 text{* polyadd preserves normal forms *}
--- a/src/HOL/Finite_Set.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Finite_Set.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -2528,8 +2528,7 @@
   fold1Set_insertI [intro]:
    "\<lbrakk> fold_graph f a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x"
 
-constdefs
-  fold1 :: "('a => 'a => 'a) => 'a set => 'a"
+definition fold1 :: "('a => 'a => 'a) => 'a set => 'a" where
   "fold1 f A == THE x. fold1Set f A x"
 
 lemma fold1Set_nonempty:
--- a/src/HOL/Fun.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Fun.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -119,8 +119,9 @@
 
 subsection {* Injectivity and Surjectivity *}
 
-constdefs
-  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
+definition
+  inj_on :: "['a => 'b, 'a set] => bool" where
+  -- "injective"
   "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
 
 text{*A common special case: functions injective over the entire domain type.*}
@@ -132,11 +133,14 @@
   bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
   [code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
 
-constdefs
-  surj :: "('a => 'b) => bool"                   (*surjective*)
+definition
+  surj :: "('a => 'b) => bool" where
+  -- "surjective"
   "surj f == ! y. ? x. y=f(x)"
 
-  bij :: "('a => 'b) => bool"                    (*bijective*)
+definition
+  bij :: "('a => 'b) => bool" where
+  -- "bijective"
   "bij f == inj f & surj f"
 
 lemma injI:
@@ -377,8 +381,8 @@
 
 subsection{*Function Updating*}
 
-constdefs
-  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
+definition
+  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
   "fun_upd f a b == % x. if x=a then b else f x"
 
 nonterminals
--- a/src/HOL/HOL.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/HOL.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1122,8 +1122,7 @@
   its premise.
 *}
 
-constdefs
-  simp_implies :: "[prop, prop] => prop"  (infixr "=simp=>" 1)
+definition simp_implies :: "[prop, prop] => prop"  (infixr "=simp=>" 1) where
   [code del]: "simp_implies \<equiv> op ==>"
 
 lemma simp_impliesI:
@@ -1396,13 +1395,23 @@
 )
 *}
 
-constdefs
-  induct_forall where "induct_forall P == \<forall>x. P x"
-  induct_implies where "induct_implies A B == A \<longrightarrow> B"
-  induct_equal where "induct_equal x y == x = y"
-  induct_conj where "induct_conj A B == A \<and> B"
-  induct_true where "induct_true == True"
-  induct_false where "induct_false == False"
+definition induct_forall where
+  "induct_forall P == \<forall>x. P x"
+
+definition induct_implies where
+  "induct_implies A B == A \<longrightarrow> B"
+
+definition induct_equal where
+  "induct_equal x y == x = y"
+
+definition induct_conj where
+  "induct_conj A B == A \<and> B"
+
+definition induct_true where
+  "induct_true == True"
+
+definition induct_false where
+  "induct_false == False"
 
 lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
   by (unfold atomize_all induct_forall_def)
--- a/src/HOL/Hilbert_Choice.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hilbert_Choice.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -307,8 +307,8 @@
 
 subsection {* Least value operator *}
 
-constdefs
-  LeastM :: "['a => 'b::ord, 'a => bool] => 'a"
+definition
+  LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where
   "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
 
 syntax
@@ -360,11 +360,12 @@
 
 subsection {* Greatest value operator *}
 
-constdefs
-  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"
+definition
+  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where
   "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
 
-  Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
+definition
+  Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
   "Greatest == GreatestM (%x. x)"
 
 syntax
--- a/src/HOL/Hoare/Arith2.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Arith2.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Hoare/Arith2.thy
-    ID:         $Id$
     Author:     Norbert Galm
     Copyright   1995 TUM
 
@@ -10,11 +9,10 @@
 imports Main
 begin
 
-constdefs
-  "cd"    :: "[nat, nat, nat] => bool"
+definition "cd" :: "[nat, nat, nat] => bool" where
   "cd x m n  == x dvd m & x dvd n"
 
-  gcd     :: "[nat, nat] => nat"
+definition gcd     :: "[nat, nat] => nat" where
   "gcd m n     == @x.(cd x m n) & (!y.(cd y m n) --> y<=x)"
 
 consts fac     :: "nat => nat"
--- a/src/HOL/Hoare/Heap.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Heap.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Hoare/Heap.thy
-    ID:         $Id$
     Author:     Tobias Nipkow
     Copyright   2002 TUM
 
@@ -19,19 +18,17 @@
 lemma not_Ref_eq [iff]: "(ALL y. x ~= Ref y) = (x = Null)"
   by (induct x) auto
 
-consts addr :: "'a ref \<Rightarrow> 'a"
-primrec "addr(Ref a) = a"
+primrec addr :: "'a ref \<Rightarrow> 'a" where
+  "addr (Ref a) = a"
 
 
 section "The heap"
 
 subsection "Paths in the heap"
 
-consts
- Path :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool"
-primrec
-"Path h x [] y = (x = y)"
-"Path h x (a#as) y = (x = Ref a \<and> Path h (h a) as y)"
+primrec Path :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool" where
+  "Path h x [] y \<longleftrightarrow> x = y"
+| "Path h x (a#as) y \<longleftrightarrow> x = Ref a \<and> Path h (h a) as y"
 
 lemma [iff]: "Path h Null xs y = (xs = [] \<and> y = Null)"
 apply(case_tac xs)
@@ -60,8 +57,7 @@
 
 subsection "Non-repeating paths"
 
-constdefs
-  distPath :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool"
+definition distPath :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> 'a ref \<Rightarrow> bool" where
   "distPath h x as y   \<equiv>   Path h x as y  \<and>  distinct as"
 
 text{* The term @{term"distPath h x as y"} expresses the fact that a
@@ -86,8 +82,7 @@
 
 subsubsection "Relational abstraction"
 
-constdefs
- List :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> bool"
+definition List :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list \<Rightarrow> bool" where
 "List h x as == Path h x as Null"
 
 lemma [simp]: "List h x [] = (x = Null)"
@@ -138,10 +133,10 @@
 
 subsection "Functional abstraction"
 
-constdefs
- islist :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> bool"
+definition islist :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> bool" where
 "islist h p == \<exists>as. List h p as"
- list :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list"
+
+definition list :: "('a \<Rightarrow> 'a ref) \<Rightarrow> 'a ref \<Rightarrow> 'a list" where
 "list h p == SOME as. List h p as"
 
 lemma List_conv_islist_list: "List h p as = (islist h p \<and> as = list h p)"
--- a/src/HOL/Hoare/Hoare_Logic.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Hoare_Logic.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -40,7 +40,7 @@
                                       (s ~: b --> Sem c2 s s'))"
 "Sem(While b x c) s s' = (? n. iter n b (Sem c) s s')"
 
-constdefs Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool"
+definition Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool" where
   "Valid p c q == !s s'. Sem c s s' --> s : p --> s' : q"
 
 
--- a/src/HOL/Hoare/Hoare_Logic_Abort.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Hoare_Logic_Abort.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -42,7 +42,7 @@
 "Sem(While b x c) s s' =
  (if s = None then s' = None else \<exists>n. iter n b (Sem c) s s')"
 
-constdefs Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool"
+definition Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool" where
   "Valid p c q == \<forall>s s'. Sem c s s' \<longrightarrow> s : Some ` p \<longrightarrow> s' : Some ` q"
 
 
--- a/src/HOL/Hoare/Pointer_Examples.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Pointer_Examples.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -216,10 +216,10 @@
 
 text"This is still a bit rough, especially the proof."
 
-constdefs
- cor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+definition cor :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
 "cor P Q == if P then True else Q"
- cand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
+
+definition cand :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
 "cand P Q == if P then Q else False"
 
 consts merge :: "'a list * 'a list * ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list"
@@ -481,7 +481,7 @@
 
 subsection "Storage allocation"
 
-constdefs new :: "'a set \<Rightarrow> 'a"
+definition new :: "'a set \<Rightarrow> 'a" where
 "new A == SOME a. a \<notin> A"
 
 
--- a/src/HOL/Hoare/Pointers0.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Pointers0.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -73,8 +73,7 @@
 
 subsubsection "Relational abstraction"
 
-constdefs
- List :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> bool"
+definition List :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> bool" where
 "List h x as == Path h x as Null"
 
 lemma [simp]: "List h x [] = (x = Null)"
@@ -122,10 +121,10 @@
 
 subsection "Functional abstraction"
 
-constdefs
- islist :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool"
+definition islist :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool" where
 "islist h p == \<exists>as. List h p as"
- list :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list"
+
+definition list :: "('a::ref \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list" where
 "list h p == SOME as. List h p as"
 
 lemma List_conv_islist_list: "List h p as = (islist h p \<and> as = list h p)"
@@ -407,7 +406,7 @@
 
 subsection "Storage allocation"
 
-constdefs new :: "'a set \<Rightarrow> 'a::ref"
+definition new :: "'a set \<Rightarrow> 'a::ref" where
 "new A == SOME a. a \<notin> A & a \<noteq> Null"
 
 
--- a/src/HOL/Hoare/SepLogHeap.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/SepLogHeap.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -41,8 +41,7 @@
 
 subsection "Lists on the heap"
 
-constdefs
- List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"
+definition List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool" where
 "List h x as == Path h x as 0"
 
 lemma [simp]: "List h x [] = (x = 0)"
--- a/src/HOL/Hoare/Separation.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare/Separation.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -16,20 +16,19 @@
 
 text{* The semantic definition of a few connectives: *}
 
-constdefs
- ortho:: "heap \<Rightarrow> heap \<Rightarrow> bool" (infix "\<bottom>" 55)
+definition ortho :: "heap \<Rightarrow> heap \<Rightarrow> bool" (infix "\<bottom>" 55) where
 "h1 \<bottom> h2 == dom h1 \<inter> dom h2 = {}"
 
- is_empty :: "heap \<Rightarrow> bool"
+definition is_empty :: "heap \<Rightarrow> bool" where
 "is_empty h == h = empty"
 
- singl:: "heap \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+definition singl:: "heap \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where
 "singl h x y == dom h = {x} & h x = Some y"
 
- star:: "(heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool)"
+definition star:: "(heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool)" where
 "star P Q == \<lambda>h. \<exists>h1 h2. h = h1++h2 \<and> h1 \<bottom> h2 \<and> P h1 \<and> Q h2"
 
- wand:: "(heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool)"
+definition wand:: "(heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool) \<Rightarrow> (heap \<Rightarrow> bool)" where
 "wand P Q == \<lambda>h. \<forall>h'. h' \<bottom> h \<and> P h' \<longrightarrow> Q(h++h')"
 
 text{*This is what assertions look like without any syntactic sugar: *}
--- a/src/HOL/Hoare_Parallel/Gar_Coll.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/Gar_Coll.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -31,8 +31,7 @@
 under which the selected edge @{text "R"} and node @{text "T"} are
 valid: *}
 
-constdefs
-  Mut_init :: "gar_coll_state \<Rightarrow> bool"
+definition Mut_init :: "gar_coll_state \<Rightarrow> bool" where
   "Mut_init \<equiv> \<guillemotleft> T \<in> Reach \<acute>E \<and> R < length \<acute>E \<and> T < length \<acute>M \<guillemotright>"
 
 text {* \noindent For the mutator we
@@ -40,14 +39,13 @@
 @{text "\<acute>z"} is set to false if the mutator has already redirected an
 edge but has not yet colored the new target.   *}
 
-constdefs
-  Redirect_Edge :: "gar_coll_state ann_com"
+definition Redirect_Edge :: "gar_coll_state ann_com" where
   "Redirect_Edge \<equiv> .{\<acute>Mut_init \<and> \<acute>z}. \<langle>\<acute>E:=\<acute>E[R:=(fst(\<acute>E!R), T)],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
 
-  Color_Target :: "gar_coll_state ann_com"
+definition Color_Target :: "gar_coll_state ann_com" where
   "Color_Target \<equiv> .{\<acute>Mut_init \<and> \<not>\<acute>z}. \<langle>\<acute>M:=\<acute>M[T:=Black],, \<acute>z:= (\<not>\<acute>z)\<rangle>"
 
-  Mutator :: "gar_coll_state ann_com"
+definition Mutator :: "gar_coll_state ann_com" where
   "Mutator \<equiv>
   .{\<acute>Mut_init \<and> \<acute>z}. 
   WHILE True INV .{\<acute>Mut_init \<and> \<acute>z}. 
@@ -88,22 +86,20 @@
 
 consts  M_init :: nodes
 
-constdefs
-  Proper_M_init :: "gar_coll_state \<Rightarrow> bool"
+definition Proper_M_init :: "gar_coll_state \<Rightarrow> bool" where
   "Proper_M_init \<equiv>  \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>"
  
-  Proper :: "gar_coll_state \<Rightarrow> bool"
+definition Proper :: "gar_coll_state \<Rightarrow> bool" where
   "Proper \<equiv> \<guillemotleft> Proper_Roots \<acute>M \<and> Proper_Edges(\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<guillemotright>"
 
-  Safe :: "gar_coll_state \<Rightarrow> bool"
+definition Safe :: "gar_coll_state \<Rightarrow> bool" where
   "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>"
 
 lemmas collector_defs = Proper_M_init_def Proper_def Safe_def
 
 subsubsection {* Blackening the roots *}
 
-constdefs
-  Blacken_Roots :: " gar_coll_state ann_com"
+definition Blacken_Roots :: " gar_coll_state ann_com" where
   "Blacken_Roots \<equiv> 
   .{\<acute>Proper}.
   \<acute>ind:=0;;
@@ -133,13 +129,11 @@
 
 subsubsection {* Propagating black *}
 
-constdefs
-  PBInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition PBInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "PBInv \<equiv> \<guillemotleft> \<lambda>ind. \<acute>obc < Blacks \<acute>M \<or> (\<forall>i <ind. \<not>BtoW (\<acute>E!i, \<acute>M) \<or>
    (\<not>\<acute>z \<and> i=R \<and> (snd(\<acute>E!R)) = T \<and> (\<exists>r. ind \<le> r \<and> r < length \<acute>E \<and> BtoW(\<acute>E!r,\<acute>M))))\<guillemotright>"
 
-constdefs  
-  Propagate_Black_aux :: "gar_coll_state ann_com"
+definition Propagate_Black_aux :: "gar_coll_state ann_com" where
   "Propagate_Black_aux \<equiv>
   .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
   \<acute>ind:=0;;
@@ -214,14 +208,12 @@
 
 subsubsection {* Refining propagating black *}
 
-constdefs
-  Auxk :: "gar_coll_state \<Rightarrow> bool"
+definition Auxk :: "gar_coll_state \<Rightarrow> bool" where
   "Auxk \<equiv> \<guillemotleft>\<acute>k<length \<acute>M \<and> (\<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> 
           \<acute>obc<Blacks \<acute>M \<or> (\<not>\<acute>z \<and> \<acute>ind=R \<and> snd(\<acute>E!R)=T  
           \<and> (\<exists>r. \<acute>ind<r \<and> r<length \<acute>E \<and> BtoW(\<acute>E!r, \<acute>M))))\<guillemotright>"
 
-constdefs  
-  Propagate_Black :: " gar_coll_state ann_com"
+definition Propagate_Black :: " gar_coll_state ann_com" where
   "Propagate_Black \<equiv>
   .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M}.
   \<acute>ind:=0;;
@@ -328,12 +320,10 @@
 
 subsubsection {* Counting black nodes *}
 
-constdefs
-  CountInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition CountInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 
-constdefs
-  Count :: " gar_coll_state ann_com"
+definition Count :: " gar_coll_state ann_com" where
   "Count \<equiv>
   .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M 
     \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
@@ -398,12 +388,10 @@
   Append_to_free2: "i \<notin> Reach e 
      \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)"
 
-constdefs
-  AppendInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition AppendInv :: "gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "AppendInv \<equiv> \<guillemotleft>\<lambda>ind. \<forall>i<length \<acute>M. ind\<le>i \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black\<guillemotright>"
 
-constdefs
-  Append :: " gar_coll_state ann_com"
+definition Append :: " gar_coll_state ann_com" where
    "Append \<equiv>
   .{\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
   \<acute>ind:=0;;
@@ -444,8 +432,7 @@
 
 subsubsection {* Correctness of the Collector *}
 
-constdefs 
-  Collector :: " gar_coll_state ann_com"
+definition Collector :: " gar_coll_state ann_com" where
   "Collector \<equiv>
 .{\<acute>Proper}.  
  WHILE True INV .{\<acute>Proper}. 
--- a/src/HOL/Hoare_Parallel/Graph.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/Graph.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -13,20 +13,19 @@
 
 consts Roots :: "nat set"
 
-constdefs
-  Proper_Roots :: "nodes \<Rightarrow> bool"
+definition Proper_Roots :: "nodes \<Rightarrow> bool" where
   "Proper_Roots M \<equiv> Roots\<noteq>{} \<and> Roots \<subseteq> {i. i<length M}"
 
-  Proper_Edges :: "(nodes \<times> edges) \<Rightarrow> bool"
+definition Proper_Edges :: "(nodes \<times> edges) \<Rightarrow> bool" where
   "Proper_Edges \<equiv> (\<lambda>(M,E). \<forall>i<length E. fst(E!i)<length M \<and> snd(E!i)<length M)"
 
-  BtoW :: "(edge \<times> nodes) \<Rightarrow> bool"
+definition BtoW :: "(edge \<times> nodes) \<Rightarrow> bool" where
   "BtoW \<equiv> (\<lambda>(e,M). (M!fst e)=Black \<and> (M!snd e)\<noteq>Black)"
 
-  Blacks :: "nodes \<Rightarrow> nat set"
+definition Blacks :: "nodes \<Rightarrow> nat set" where
   "Blacks M \<equiv> {i. i<length M \<and> M!i=Black}"
 
-  Reach :: "edges \<Rightarrow> nat set"
+definition Reach :: "edges \<Rightarrow> nat set" where
   "Reach E \<equiv> {x. (\<exists>path. 1<length path \<and> path!(length path - 1)\<in>Roots \<and> x=path!0
               \<and> (\<forall>i<length path - 1. (\<exists>j<length E. E!j=(path!(i+1), path!i))))
               \<or> x\<in>Roots}"
--- a/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/Mul_Gar_Coll.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -26,24 +26,23 @@
 
 subsection {* The Mutators *}
 
-constdefs 
-  Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E 
                           \<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>"
 
-  Mul_Redirect_Edge  :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com"
+definition Mul_Redirect_Edge  :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where
   "Mul_Redirect_Edge j n \<equiv>
   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
   \<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN  
   \<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, 
   \<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>"
 
-  Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com"
+definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where
   "Mul_Color_Target j n \<equiv>
   .{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}. 
   \<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>"
 
-  Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Mutator j n \<equiv>
   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
   WHILE True  
@@ -156,28 +155,25 @@
 
 subsection {* The Collector *}
 
-constdefs
-  Queue :: "mul_gar_coll_state \<Rightarrow> nat"
+definition Queue :: "mul_gar_coll_state \<Rightarrow> nat" where
  "Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>"
 
 consts  M_init :: nodes
 
-constdefs
-  Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool"
+definition Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" where
   "Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>"
 
-  Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>"
 
-  Safe :: "mul_gar_coll_state \<Rightarrow> bool"
+definition Safe :: "mul_gar_coll_state \<Rightarrow> bool" where
   "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>"
 
 lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def
 
 subsubsection {* Blackening Roots *}
 
-constdefs
-  Mul_Blacken_Roots :: "nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Blacken_Roots :: "nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Blacken_Roots n \<equiv>
   .{\<acute>Mul_Proper n}.
   \<acute>ind:=0;;
@@ -208,16 +204,14 @@
 
 subsubsection {* Propagating Black *} 
 
-constdefs
-  Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool"
+definition Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" where
   "Mul_PBInv \<equiv>  \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue 
                  \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>"
 
-  Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool"
+definition Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" where
   "Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>"
 
-constdefs
-  Mul_Propagate_Black :: "nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Propagate_Black :: "nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Propagate_Black n \<equiv>
  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
   \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}. 
@@ -296,11 +290,10 @@
 
 subsubsection {* Counting Black Nodes *}
 
-constdefs
-  Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
- "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
+definition Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
+  "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 
-  Mul_Count :: "nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Count :: "nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Count n \<equiv> 
   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
     \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
@@ -396,11 +389,10 @@
   Append_to_free2: "i \<notin> Reach e 
            \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)"
 
-constdefs
-  Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool"
+definition Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where
   "Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>"
 
-  Mul_Append :: "nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Append :: "nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Append n \<equiv> 
   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
   \<acute>ind:=0;;
@@ -438,8 +430,7 @@
 
 subsubsection {* Collector *}
 
-constdefs 
-  Mul_Collector :: "nat \<Rightarrow>  mul_gar_coll_state ann_com"
+definition Mul_Collector :: "nat \<Rightarrow>  mul_gar_coll_state ann_com" where
   "Mul_Collector n \<equiv>
 .{\<acute>Mul_Proper n}.  
 WHILE True INV .{\<acute>Mul_Proper n}. 
--- a/src/HOL/Hoare_Parallel/OG_Hoare.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/OG_Hoare.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -27,12 +27,12 @@
 consts post :: "'a ann_triple_op \<Rightarrow> 'a assn"
 primrec "post (c, q) = q"
 
-constdefs  interfree_aux :: "('a ann_com_op \<times> 'a assn \<times> 'a ann_com_op) \<Rightarrow> bool"
+definition interfree_aux :: "('a ann_com_op \<times> 'a assn \<times> 'a ann_com_op) \<Rightarrow> bool" where
   "interfree_aux \<equiv> \<lambda>(co, q, co'). co'= None \<or>  
                     (\<forall>(r,a) \<in> atomics (the co'). \<parallel>= (q \<inter> r) a q \<and>
                     (co = None \<or> (\<forall>p \<in> assertions (the co). \<parallel>= (p \<inter> r) a p)))"
 
-constdefs interfree :: "(('a ann_triple_op) list) \<Rightarrow> bool" 
+definition interfree :: "(('a ann_triple_op) list) \<Rightarrow> bool" where 
   "interfree Ts \<equiv> \<forall>i j. i < length Ts \<and> j < length Ts \<and> i \<noteq> j \<longrightarrow> 
                          interfree_aux (com (Ts!i), post (Ts!i), com (Ts!j)) "
 
--- a/src/HOL/Hoare_Parallel/OG_Tactics.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/OG_Tactics.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -171,8 +171,7 @@
   "\<parallel>- (q \<inter> (r \<inter> b)) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r b a))"
 by(simp add: interfree_aux_def oghoare_sound)
 
-constdefs 
-  interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) \<Rightarrow> bool"
+definition interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) \<Rightarrow> bool" where
   "interfree_swap == \<lambda>(x, xs). \<forall>y\<in>set xs. interfree_aux (com x, post x, com y)
   \<and> interfree_aux(com y, post y, com x)"
 
@@ -208,7 +207,7 @@
   \<Longrightarrow> interfree (map (\<lambda>k. (c k, Q k)) [a..<b])"
 by(force simp add: interfree_def less_diff_conv)
 
-constdefs map_ann_hoare :: "(('a ann_com_op * 'a assn) list) \<Rightarrow> bool " ("[\<turnstile>] _" [0] 45)
+definition map_ann_hoare :: "(('a ann_com_op * 'a assn) list) \<Rightarrow> bool " ("[\<turnstile>] _" [0] 45) where
   "[\<turnstile>] Ts == (\<forall>i<length Ts. \<exists>c q. Ts!i=(Some c, q) \<and> \<turnstile> c q)"
 
 lemma MapAnnEmpty: "[\<turnstile>] []"
--- a/src/HOL/Hoare_Parallel/OG_Tran.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/OG_Tran.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,14 +7,13 @@
   'a ann_com_op = "('a ann_com) option"
   'a ann_triple_op = "('a ann_com_op \<times> 'a assn)"
   
-consts com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op"
-primrec "com (c, q) = c"
+primrec com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op" where
+  "com (c, q) = c"
 
-consts post :: "'a ann_triple_op \<Rightarrow> 'a assn"
-primrec "post (c, q) = q"
+primrec post :: "'a ann_triple_op \<Rightarrow> 'a assn" where
+  "post (c, q) = q"
 
-constdefs
-  All_None :: "'a ann_triple_op list \<Rightarrow> bool"
+definition All_None :: "'a ann_triple_op list \<Rightarrow> bool" where
   "All_None Ts \<equiv> \<forall>(c, q) \<in> set Ts. c = None"
 
 subsection {* The Transition Relation *}
@@ -88,26 +87,24 @@
 
 subsection {* Definition of Semantics *}
 
-constdefs
-  ann_sem :: "'a ann_com \<Rightarrow> 'a \<Rightarrow> 'a set"
+definition ann_sem :: "'a ann_com \<Rightarrow> 'a \<Rightarrow> 'a set" where
   "ann_sem c \<equiv> \<lambda>s. {t. (Some c, s) -*\<rightarrow> (None, t)}"
 
-  ann_SEM :: "'a ann_com \<Rightarrow> 'a set \<Rightarrow> 'a set"
+definition ann_SEM :: "'a ann_com \<Rightarrow> 'a set \<Rightarrow> 'a set" where
   "ann_SEM c S \<equiv> \<Union>ann_sem c ` S"  
 
-  sem :: "'a com \<Rightarrow> 'a \<Rightarrow> 'a set"
+definition sem :: "'a com \<Rightarrow> 'a \<Rightarrow> 'a set" where
   "sem c \<equiv> \<lambda>s. {t. \<exists>Ts. (c, s) -P*\<rightarrow> (Parallel Ts, t) \<and> All_None Ts}"
 
-  SEM :: "'a com \<Rightarrow> 'a set \<Rightarrow> 'a set"
+definition SEM :: "'a com \<Rightarrow> 'a set \<Rightarrow> 'a set" where
   "SEM c S \<equiv> \<Union>sem c ` S "
 
 abbreviation Omega :: "'a com"    ("\<Omega>" 63)
   where "\<Omega> \<equiv> While UNIV UNIV (Basic id)"
 
-consts fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com"
-primrec 
-   "fwhile b c 0 = \<Omega>"
-   "fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)"
+primrec fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com" where
+    "fwhile b c 0 = \<Omega>"
+  | "fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)"
 
 subsubsection {* Proofs *}
 
@@ -299,11 +296,10 @@
 
 section {* Validity of Correctness Formulas *}
 
-constdefs 
-  com_validity :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool"  ("(3\<parallel>= _// _//_)" [90,55,90] 50)
+definition com_validity :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool" ("(3\<parallel>= _// _//_)" [90,55,90] 50) where
   "\<parallel>= p c q \<equiv> SEM c p \<subseteq> q"
 
-  ann_com_validity :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool"   ("\<Turnstile> _ _" [60,90] 45)
+definition ann_com_validity :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile> _ _" [60,90] 45) where
   "\<Turnstile> c q \<equiv> ann_SEM c (pre c) \<subseteq> q"
 
 end
\ No newline at end of file
--- a/src/HOL/Hoare_Parallel/RG_Hoare.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/RG_Hoare.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,8 +7,7 @@
 declare Un_subset_iff [simp del] le_sup_iff [simp del]
 declare Cons_eq_map_conv [iff]
 
-constdefs
-  stable :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  
+definition stable :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where  
   "stable \<equiv> \<lambda>f g. (\<forall>x y. x \<in> f \<longrightarrow> (x, y) \<in> g \<longrightarrow> y \<in> f)" 
 
 inductive
@@ -39,16 +38,19 @@
              \<turnstile> P sat [pre', rely', guar', post'] \<rbrakk>
             \<Longrightarrow> \<turnstile> P sat [pre, rely, guar, post]"
 
-constdefs 
-  Pre :: "'a rgformula \<Rightarrow> 'a set"
+definition Pre :: "'a rgformula \<Rightarrow> 'a set" where
   "Pre x \<equiv> fst(snd x)"
-  Post :: "'a rgformula \<Rightarrow> 'a set"
+
+definition Post :: "'a rgformula \<Rightarrow> 'a set" where
   "Post x \<equiv> snd(snd(snd(snd x)))"
-  Rely :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set"
+
+definition Rely :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set" where
   "Rely x \<equiv> fst(snd(snd x))"
-  Guar :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set"
+
+definition Guar :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set" where
   "Guar x \<equiv> fst(snd(snd(snd x)))"
-  Com :: "'a rgformula \<Rightarrow> 'a com"
+
+definition Com :: "'a rgformula \<Rightarrow> 'a com" where
   "Com x \<equiv> fst x"
 
 subsection {* Proof System for Parallel Programs *}
@@ -1093,8 +1095,7 @@
 
 subsection {* Soundness of the System for Parallel Programs *}
 
-constdefs
-  ParallelCom :: "('a rgformula) list \<Rightarrow> 'a par_com"
+definition ParallelCom :: "('a rgformula) list \<Rightarrow> 'a par_com" where
   "ParallelCom Ps \<equiv> map (Some \<circ> fst) Ps" 
 
 lemma two: 
--- a/src/HOL/Hoare_Parallel/RG_Tran.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Hoare_Parallel/RG_Tran.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -81,8 +81,7 @@
 | CptnEnv: "(P, t)#xs \<in> cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> cptn"
 | CptnComp: "\<lbrakk>(P,s) -c\<rightarrow> (Q,t); (Q, t)#xs \<in> cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> cptn"
 
-constdefs
-  cp :: "('a com) option \<Rightarrow> 'a \<Rightarrow> ('a confs) set"
+definition cp :: "('a com) option \<Rightarrow> 'a \<Rightarrow> ('a confs) set" where
   "cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> cptn}"  
 
 subsubsection {* Parallel computations *}
@@ -95,14 +94,12 @@
 | ParCptnEnv: "(P,t)#xs \<in> par_cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> par_cptn"
 | ParCptnComp: "\<lbrakk> (P,s) -pc\<rightarrow> (Q,t); (Q,t)#xs \<in> par_cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> par_cptn"
 
-constdefs
-  par_cp :: "'a par_com \<Rightarrow> 'a \<Rightarrow> ('a par_confs) set"
+definition par_cp :: "'a par_com \<Rightarrow> 'a \<Rightarrow> ('a par_confs) set" where
   "par_cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> par_cptn}"  
 
 subsection{* Modular Definition of Computation *}
 
-constdefs 
-  lift :: "'a com \<Rightarrow> 'a conf \<Rightarrow> 'a conf"
+definition lift :: "'a com \<Rightarrow> 'a conf \<Rightarrow> 'a conf" where
   "lift Q \<equiv> \<lambda>(P, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))"
 
 inductive_set cptn_mod :: "('a confs) set"
@@ -380,38 +377,36 @@
 
 types 'a rgformula = "'a com \<times> 'a set \<times> ('a \<times> 'a) set \<times> ('a \<times> 'a) set \<times> 'a set"
 
-constdefs
-  assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a confs) set"
+definition assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a confs) set" where
   "assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow> 
                c!i -e\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}"
 
-  comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a confs) set"
+definition comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a confs) set" where
   "comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow> 
                c!i -c\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and> 
                (fst (last c) = None \<longrightarrow> snd (last c) \<in> post)}"
 
-  com_validity :: "'a com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool" 
-                 ("\<Turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45)
+definition com_validity :: "'a com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool" 
+                 ("\<Turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45) where
   "\<Turnstile> P sat [pre, rely, guar, post] \<equiv> 
    \<forall>s. cp (Some P) s \<inter> assum(pre, rely) \<subseteq> comm(guar, post)"
 
 subsection {* Validity for Parallel Programs. *}
 
-constdefs
-  All_None :: "(('a com) option) list \<Rightarrow> bool"
+definition All_None :: "(('a com) option) list \<Rightarrow> bool" where
   "All_None xs \<equiv> \<forall>c\<in>set xs. c=None"
 
-  par_assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a par_confs) set"
+definition par_assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a par_confs) set" where
   "par_assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow> 
              c!i -pe\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}"
 
-  par_comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a par_confs) set"
+definition par_comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a par_confs) set" where
   "par_comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow>   
         c!i -pc\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and> 
          (All_None (fst (last c)) \<longrightarrow> snd( last c) \<in> post)}"
 
-  par_com_validity :: "'a  par_com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set 
-\<Rightarrow> 'a set \<Rightarrow> bool"  ("\<Turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45)
+definition par_com_validity :: "'a  par_com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set 
+\<Rightarrow> 'a set \<Rightarrow> bool"  ("\<Turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45) where
   "\<Turnstile> Ps SAT [pre, rely, guar, post] \<equiv> 
    \<forall>s. par_cp Ps s \<inter> par_assum(pre, rely) \<subseteq> par_comm(guar, post)"
 
@@ -419,23 +414,22 @@
 
 subsubsection {* Definition of the conjoin operator *}
 
-constdefs
-  same_length :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"
+definition same_length :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
   "same_length c clist \<equiv> (\<forall>i<length clist. length(clist!i)=length c)"
  
-  same_state :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"
+definition same_state :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
   "same_state c clist \<equiv> (\<forall>i <length clist. \<forall>j<length c. snd(c!j) = snd((clist!i)!j))"
 
-  same_program :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"
+definition same_program :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
   "same_program c clist \<equiv> (\<forall>j<length c. fst(c!j) = map (\<lambda>x. fst(nth x j)) clist)"
 
-  compat_label :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"
+definition compat_label :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where
   "compat_label c clist \<equiv> (\<forall>j. Suc j<length c \<longrightarrow> 
          (c!j -pc\<rightarrow> c!Suc j \<and> (\<exists>i<length clist. (clist!i)!j -c\<rightarrow> (clist!i)! Suc j \<and> 
                        (\<forall>l<length clist. l\<noteq>i \<longrightarrow> (clist!l)!j -e\<rightarrow> (clist!l)! Suc j))) \<or> 
          (c!j -pe\<rightarrow> c!Suc j \<and> (\<forall>i<length clist. (clist!i)!j -e\<rightarrow> (clist!i)! Suc j)))"
 
-  conjoin :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"  ("_ \<propto> _" [65,65] 64)
+definition conjoin :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool"  ("_ \<propto> _" [65,65] 64) where
   "c \<propto> clist \<equiv> (same_length c clist) \<and> (same_state c clist) \<and> (same_program c clist) \<and> (compat_label c clist)"
 
 subsubsection {* Some previous lemmas *}
--- a/src/HOL/IOA/Solve.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/IOA/Solve.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -10,9 +10,7 @@
 imports IOA
 begin
 
-constdefs
-
-  is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool"
+definition is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool" where
   "is_weak_pmap f C A ==
    (!s:starts_of(C). f(s):starts_of(A)) &
    (!s t a. reachable C s &
--- a/src/HOL/Import/HOL/HOL4Base.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL/HOL4Base.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -4,22 +4,19 @@
 
 ;setup_theory bool
 
-constdefs
-  ARB :: "'a" 
+definition ARB :: "'a" where 
   "ARB == SOME x::'a::type. True"
 
 lemma ARB_DEF: "ARB = (SOME x::'a::type. True)"
   by (import bool ARB_DEF)
 
-constdefs
-  IN :: "'a => ('a => bool) => bool" 
+definition IN :: "'a => ('a => bool) => bool" where 
   "IN == %(x::'a::type) f::'a::type => bool. f x"
 
 lemma IN_DEF: "IN = (%(x::'a::type) f::'a::type => bool. f x)"
   by (import bool IN_DEF)
 
-constdefs
-  RES_FORALL :: "('a => bool) => ('a => bool) => bool" 
+definition RES_FORALL :: "('a => bool) => ('a => bool) => bool" where 
   "RES_FORALL ==
 %(p::'a::type => bool) m::'a::type => bool. ALL x::'a::type. IN x p --> m x"
 
@@ -28,8 +25,7 @@
     ALL x::'a::type. IN x p --> m x)"
   by (import bool RES_FORALL_DEF)
 
-constdefs
-  RES_EXISTS :: "('a => bool) => ('a => bool) => bool" 
+definition RES_EXISTS :: "('a => bool) => ('a => bool) => bool" where 
   "RES_EXISTS ==
 %(p::'a::type => bool) m::'a::type => bool. EX x::'a::type. IN x p & m x"
 
@@ -37,8 +33,7 @@
 (%(p::'a::type => bool) m::'a::type => bool. EX x::'a::type. IN x p & m x)"
   by (import bool RES_EXISTS_DEF)
 
-constdefs
-  RES_EXISTS_UNIQUE :: "('a => bool) => ('a => bool) => bool" 
+definition RES_EXISTS_UNIQUE :: "('a => bool) => ('a => bool) => bool" where 
   "RES_EXISTS_UNIQUE ==
 %(p::'a::type => bool) m::'a::type => bool.
    RES_EXISTS p m &
@@ -52,8 +47,7 @@
      (%x::'a::type. RES_FORALL p (%y::'a::type. m x & m y --> x = y)))"
   by (import bool RES_EXISTS_UNIQUE_DEF)
 
-constdefs
-  RES_SELECT :: "('a => bool) => ('a => bool) => 'a" 
+definition RES_SELECT :: "('a => bool) => ('a => bool) => 'a" where 
   "RES_SELECT ==
 %(p::'a::type => bool) m::'a::type => bool. SOME x::'a::type. IN x p & m x"
 
@@ -264,15 +258,13 @@
 
 ;setup_theory combin
 
-constdefs
-  K :: "'a => 'b => 'a" 
+definition K :: "'a => 'b => 'a" where 
   "K == %(x::'a::type) y::'b::type. x"
 
 lemma K_DEF: "K = (%(x::'a::type) y::'b::type. x)"
   by (import combin K_DEF)
 
-constdefs
-  S :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c" 
+definition S :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c" where 
   "S ==
 %(f::'a::type => 'b::type => 'c::type) (g::'a::type => 'b::type)
    x::'a::type. f x (g x)"
@@ -282,8 +274,7 @@
     x::'a::type. f x (g x))"
   by (import combin S_DEF)
 
-constdefs
-  I :: "'a => 'a" 
+definition I :: "'a => 'a" where 
   "(op ==::('a::type => 'a::type) => ('a::type => 'a::type) => prop)
  (I::'a::type => 'a::type)
  ((S::('a::type => ('a::type => 'a::type) => 'a::type)
@@ -299,16 +290,14 @@
    (K::'a::type => 'a::type => 'a::type))"
   by (import combin I_DEF)
 
-constdefs
-  C :: "('a => 'b => 'c) => 'b => 'a => 'c" 
+definition C :: "('a => 'b => 'c) => 'b => 'a => 'c" where 
   "C == %(f::'a::type => 'b::type => 'c::type) (x::'b::type) y::'a::type. f y x"
 
 lemma C_DEF: "C =
 (%(f::'a::type => 'b::type => 'c::type) (x::'b::type) y::'a::type. f y x)"
   by (import combin C_DEF)
 
-constdefs
-  W :: "('a => 'a => 'b) => 'a => 'b" 
+definition W :: "('a => 'a => 'b) => 'a => 'b" where 
   "W == %(f::'a::type => 'a::type => 'b::type) x::'a::type. f x x"
 
 lemma W_DEF: "W = (%(f::'a::type => 'a::type => 'b::type) x::'a::type. f x x)"
@@ -582,8 +571,7 @@
 
 ;setup_theory relation
 
-constdefs
-  TC :: "('a => 'a => bool) => 'a => 'a => bool" 
+definition TC :: "('a => 'a => bool) => 'a => 'a => bool" where 
   "TC ==
 %(R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
    ALL P::'a::type => 'a::type => bool.
@@ -601,8 +589,7 @@
        P a b)"
   by (import relation TC_DEF)
 
-constdefs
-  RTC :: "('a => 'a => bool) => 'a => 'a => bool" 
+definition RTC :: "('a => 'a => bool) => 'a => 'a => bool" where 
   "RTC ==
 %(R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
    ALL P::'a::type => 'a::type => bool.
@@ -644,8 +631,7 @@
    (ALL (x::'a::type) (y::'a::type) z::'a::type. R x y & R y z --> R x z)"
   by (import relation transitive_def)
 
-constdefs
-  pred_reflexive :: "('a => 'a => bool) => bool" 
+definition pred_reflexive :: "('a => 'a => bool) => bool" where 
   "pred_reflexive == %R::'a::type => 'a::type => bool. ALL x::'a::type. R x x"
 
 lemma reflexive_def: "ALL R::'a::type => 'a::type => bool.
@@ -788,8 +774,7 @@
    (ALL (x::'a::type) y::'a::type. RTC R x y --> RTC Q x y)"
   by (import relation RTC_MONOTONE)
 
-constdefs
-  WF :: "('a => 'a => bool) => bool" 
+definition WF :: "('a => 'a => bool) => bool" where 
   "WF ==
 %R::'a::type => 'a::type => bool.
    ALL B::'a::type => bool.
@@ -814,8 +799,7 @@
    WF x --> x xa xb --> xa ~= xb"
   by (import relation WF_NOT_REFL)
 
-constdefs
-  EMPTY_REL :: "'a => 'a => bool" 
+definition EMPTY_REL :: "'a => 'a => bool" where 
   "EMPTY_REL == %(x::'a::type) y::'a::type. False"
 
 lemma EMPTY_REL_DEF: "ALL (x::'a::type) y::'a::type. EMPTY_REL x y = False"
@@ -847,8 +831,7 @@
    WF R --> WF (relation.inv_image R f)"
   by (import relation WF_inv_image)
 
-constdefs
-  RESTRICT :: "('a => 'b) => ('a => 'a => bool) => 'a => 'a => 'b" 
+definition RESTRICT :: "('a => 'b) => ('a => 'a => bool) => 'a => 'a => 'b" where 
   "RESTRICT ==
 %(f::'a::type => 'b::type) (R::'a::type => 'a::type => bool) (x::'a::type)
    y::'a::type. if R y x then f y else ARB"
@@ -891,8 +874,7 @@
    the_fun R M x = Eps (approx R M x)"
   by (import relation the_fun_def)
 
-constdefs
-  WFREC :: "('a => 'a => bool) => (('a => 'b) => 'a => 'b) => 'a => 'b" 
+definition WFREC :: "('a => 'a => bool) => (('a => 'b) => 'a => 'b) => 'a => 'b" where 
   "WFREC ==
 %(R::'a::type => 'a::type => bool)
    (M::('a::type => 'b::type) => 'a::type => 'b::type) x::'a::type.
@@ -1052,8 +1034,7 @@
    split xb x = split f' xa"
   by (import pair pair_case_cong)
 
-constdefs
-  LEX :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool" 
+definition LEX :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool" where 
   "LEX ==
 %(R1::'a::type => 'a::type => bool) (R2::'b::type => 'b::type => bool)
    (s::'a::type, t::'b::type) (u::'a::type, v::'b::type).
@@ -1069,8 +1050,7 @@
    WF x & WF xa --> WF (LEX x xa)"
   by (import pair WF_LEX)
 
-constdefs
-  RPROD :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool" 
+definition RPROD :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool" where 
   "RPROD ==
 %(R1::'a::type => 'a::type => bool) (R2::'b::type => 'b::type => bool)
    (s::'a::type, t::'b::type) (u::'a::type, v::'b::type). R1 s u & R2 t v"
@@ -1113,8 +1093,7 @@
 lemma NOT_LESS_EQ: "ALL (m::nat) n::nat. m = n --> ~ m < n"
   by (import prim_rec NOT_LESS_EQ)
 
-constdefs
-  SIMP_REC_REL :: "(nat => 'a) => 'a => ('a => 'a) => nat => bool" 
+definition SIMP_REC_REL :: "(nat => 'a) => 'a => ('a => 'a) => nat => bool" where 
   "(op ==::((nat => 'a::type)
          => 'a::type => ('a::type => 'a::type) => nat => bool)
         => ((nat => 'a::type)
@@ -1187,8 +1166,7 @@
    (ALL m::nat. SIMP_REC x f (Suc m) = f (SIMP_REC x f m))"
   by (import prim_rec SIMP_REC_THM)
 
-constdefs
-  PRE :: "nat => nat" 
+definition PRE :: "nat => nat" where 
   "PRE == %m::nat. if m = 0 then 0 else SOME n::nat. m = Suc n"
 
 lemma PRE_DEF: "ALL m::nat. PRE m = (if m = 0 then 0 else SOME n::nat. m = Suc n)"
@@ -1197,8 +1175,7 @@
 lemma PRE: "PRE 0 = 0 & (ALL m::nat. PRE (Suc m) = m)"
   by (import prim_rec PRE)
 
-constdefs
-  PRIM_REC_FUN :: "'a => ('a => nat => 'a) => nat => nat => 'a" 
+definition PRIM_REC_FUN :: "'a => ('a => nat => 'a) => nat => nat => 'a" where 
   "PRIM_REC_FUN ==
 %(x::'a::type) f::'a::type => nat => 'a::type.
    SIMP_REC (%n::nat. x) (%(fun::nat => 'a::type) n::nat. f (fun (PRE n)) n)"
@@ -1214,8 +1191,7 @@
        PRIM_REC_FUN x f (Suc m) n = f (PRIM_REC_FUN x f m (PRE n)) n)"
   by (import prim_rec PRIM_REC_EQN)
 
-constdefs
-  PRIM_REC :: "'a => ('a => nat => 'a) => nat => 'a" 
+definition PRIM_REC :: "'a => ('a => nat => 'a) => nat => 'a" where 
   "PRIM_REC ==
 %(x::'a::type) (f::'a::type => nat => 'a::type) m::nat.
    PRIM_REC_FUN x f m (PRE m)"
@@ -1286,8 +1262,7 @@
 
 ;setup_theory arithmetic
 
-constdefs
-  nat_elim__magic :: "nat => nat" 
+definition nat_elim__magic :: "nat => nat" where 
   "nat_elim__magic == %n::nat. n"
 
 lemma nat_elim__magic: "ALL n::nat. nat_elim__magic n = n"
@@ -1746,22 +1721,19 @@
 
 ;setup_theory hrat
 
-constdefs
-  trat_1 :: "nat * nat" 
+definition trat_1 :: "nat * nat" where 
   "trat_1 == (0, 0)"
 
 lemma trat_1: "trat_1 = (0, 0)"
   by (import hrat trat_1)
 
-constdefs
-  trat_inv :: "nat * nat => nat * nat" 
+definition trat_inv :: "nat * nat => nat * nat" where 
   "trat_inv == %(x::nat, y::nat). (y, x)"
 
 lemma trat_inv: "ALL (x::nat) y::nat. trat_inv (x, y) = (y, x)"
   by (import hrat trat_inv)
 
-constdefs
-  trat_add :: "nat * nat => nat * nat => nat * nat" 
+definition trat_add :: "nat * nat => nat * nat => nat * nat" where 
   "trat_add ==
 %(x::nat, y::nat) (x'::nat, y'::nat).
    (PRE (Suc x * Suc y' + Suc x' * Suc y), PRE (Suc y * Suc y'))"
@@ -1771,8 +1743,7 @@
    (PRE (Suc x * Suc y' + Suc x' * Suc y), PRE (Suc y * Suc y'))"
   by (import hrat trat_add)
 
-constdefs
-  trat_mul :: "nat * nat => nat * nat => nat * nat" 
+definition trat_mul :: "nat * nat => nat * nat => nat * nat" where 
   "trat_mul ==
 %(x::nat, y::nat) (x'::nat, y'::nat).
    (PRE (Suc x * Suc x'), PRE (Suc y * Suc y'))"
@@ -1788,8 +1759,7 @@
 (ALL n::nat. trat_sucint (Suc n) = trat_add (trat_sucint n) trat_1)"
   by (import hrat trat_sucint)
 
-constdefs
-  trat_eq :: "nat * nat => nat * nat => bool" 
+definition trat_eq :: "nat * nat => nat * nat => bool" where 
   "trat_eq ==
 %(x::nat, y::nat) (x'::nat, y'::nat). Suc x * Suc y' = Suc x' * Suc y"
 
@@ -1901,23 +1871,20 @@
     (EX x::nat * nat. r = trat_eq x) = (dest_hrat (mk_hrat r) = r))"
   by (import hrat hrat_tybij)
 
-constdefs
-  hrat_1 :: "hrat" 
+definition hrat_1 :: "hrat" where 
   "hrat_1 == mk_hrat (trat_eq trat_1)"
 
 lemma hrat_1: "hrat_1 = mk_hrat (trat_eq trat_1)"
   by (import hrat hrat_1)
 
-constdefs
-  hrat_inv :: "hrat => hrat" 
+definition hrat_inv :: "hrat => hrat" where 
   "hrat_inv == %T1::hrat. mk_hrat (trat_eq (trat_inv (Eps (dest_hrat T1))))"
 
 lemma hrat_inv: "ALL T1::hrat.
    hrat_inv T1 = mk_hrat (trat_eq (trat_inv (Eps (dest_hrat T1))))"
   by (import hrat hrat_inv)
 
-constdefs
-  hrat_add :: "hrat => hrat => hrat" 
+definition hrat_add :: "hrat => hrat => hrat" where 
   "hrat_add ==
 %(T1::hrat) T2::hrat.
    mk_hrat (trat_eq (trat_add (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
@@ -1927,8 +1894,7 @@
    mk_hrat (trat_eq (trat_add (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
   by (import hrat hrat_add)
 
-constdefs
-  hrat_mul :: "hrat => hrat => hrat" 
+definition hrat_mul :: "hrat => hrat => hrat" where 
   "hrat_mul ==
 %(T1::hrat) T2::hrat.
    mk_hrat (trat_eq (trat_mul (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
@@ -1938,8 +1904,7 @@
    mk_hrat (trat_eq (trat_mul (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
   by (import hrat hrat_mul)
 
-constdefs
-  hrat_sucint :: "nat => hrat" 
+definition hrat_sucint :: "nat => hrat" where 
   "hrat_sucint == %T1::nat. mk_hrat (trat_eq (trat_sucint T1))"
 
 lemma hrat_sucint: "ALL T1::nat. hrat_sucint T1 = mk_hrat (trat_eq (trat_sucint T1))"
@@ -1987,8 +1952,7 @@
 
 ;setup_theory hreal
 
-constdefs
-  hrat_lt :: "hrat => hrat => bool" 
+definition hrat_lt :: "hrat => hrat => bool" where 
   "hrat_lt == %(x::hrat) y::hrat. EX d::hrat. y = hrat_add x d"
 
 lemma hrat_lt: "ALL (x::hrat) y::hrat. hrat_lt x y = (EX d::hrat. y = hrat_add x d)"
@@ -2096,8 +2060,7 @@
    hrat_lt x y --> (EX xa::hrat. hrat_lt x xa & hrat_lt xa y)"
   by (import hreal HRAT_MEAN)
 
-constdefs
-  isacut :: "(hrat => bool) => bool" 
+definition isacut :: "(hrat => bool) => bool" where 
   "isacut ==
 %C::hrat => bool.
    Ex C &
@@ -2113,8 +2076,7 @@
     (ALL x::hrat. C x --> (EX y::hrat. C y & hrat_lt x y)))"
   by (import hreal isacut)
 
-constdefs
-  cut_of_hrat :: "hrat => hrat => bool" 
+definition cut_of_hrat :: "hrat => hrat => bool" where 
   "cut_of_hrat == %(x::hrat) y::hrat. hrat_lt y x"
 
 lemma cut_of_hrat: "ALL x::hrat. cut_of_hrat x = (%y::hrat. hrat_lt y x)"
@@ -2173,15 +2135,13 @@
    (EX x::hrat. hreal.cut X x & ~ hreal.cut X (hrat_mul u x))"
   by (import hreal CUT_NEARTOP_MUL)
 
-constdefs
-  hreal_1 :: "hreal" 
+definition hreal_1 :: "hreal" where 
   "hreal_1 == hreal (cut_of_hrat hrat_1)"
 
 lemma hreal_1: "hreal_1 = hreal (cut_of_hrat hrat_1)"
   by (import hreal hreal_1)
 
-constdefs
-  hreal_add :: "hreal => hreal => hreal" 
+definition hreal_add :: "hreal => hreal => hreal" where 
   "hreal_add ==
 %(X::hreal) Y::hreal.
    hreal
@@ -2197,8 +2157,7 @@
            w = hrat_add x y & hreal.cut X x & hreal.cut Y y)"
   by (import hreal hreal_add)
 
-constdefs
-  hreal_mul :: "hreal => hreal => hreal" 
+definition hreal_mul :: "hreal => hreal => hreal" where 
   "hreal_mul ==
 %(X::hreal) Y::hreal.
    hreal
@@ -2214,8 +2173,7 @@
            w = hrat_mul x y & hreal.cut X x & hreal.cut Y y)"
   by (import hreal hreal_mul)
 
-constdefs
-  hreal_inv :: "hreal => hreal" 
+definition hreal_inv :: "hreal => hreal" where 
   "hreal_inv ==
 %X::hreal.
    hreal
@@ -2233,8 +2191,7 @@
            (ALL x::hrat. hreal.cut X x --> hrat_lt (hrat_mul w x) d))"
   by (import hreal hreal_inv)
 
-constdefs
-  hreal_sup :: "(hreal => bool) => hreal" 
+definition hreal_sup :: "(hreal => bool) => hreal" where 
   "hreal_sup ==
 %P::hreal => bool. hreal (%w::hrat. EX X::hreal. P X & hreal.cut X w)"
 
@@ -2242,8 +2199,7 @@
    hreal_sup P = hreal (%w::hrat. EX X::hreal. P X & hreal.cut X w)"
   by (import hreal hreal_sup)
 
-constdefs
-  hreal_lt :: "hreal => hreal => bool" 
+definition hreal_lt :: "hreal => hreal => bool" where 
   "hreal_lt ==
 %(X::hreal) Y::hreal.
    X ~= Y & (ALL x::hrat. hreal.cut X x --> hreal.cut Y x)"
@@ -2301,8 +2257,7 @@
 lemma HREAL_NOZERO: "ALL (X::hreal) Y::hreal. hreal_add X Y ~= X"
   by (import hreal HREAL_NOZERO)
 
-constdefs
-  hreal_sub :: "hreal => hreal => hreal" 
+definition hreal_sub :: "hreal => hreal => hreal" where 
   "hreal_sub ==
 %(Y::hreal) X::hreal.
    hreal
@@ -2358,15 +2313,13 @@
 (ALL x::nat. Suc (NUMERAL_BIT2 x) = NUMERAL_BIT1 (Suc x))"
   by (import numeral numeral_suc)
 
-constdefs
-  iZ :: "nat => nat" 
+definition iZ :: "nat => nat" where 
   "iZ == %x::nat. x"
 
 lemma iZ: "ALL x::nat. iZ x = x"
   by (import numeral iZ)
 
-constdefs
-  iiSUC :: "nat => nat" 
+definition iiSUC :: "nat => nat" where 
   "iiSUC == %n::nat. Suc (Suc n)"
 
 lemma iiSUC: "ALL n::nat. iiSUC n = Suc (Suc n)"
@@ -2699,8 +2652,7 @@
     iBIT_cases (NUMERAL_BIT2 n) zf bf1 bf2 = bf2 n)"
   by (import numeral iBIT_cases)
 
-constdefs
-  iDUB :: "nat => nat" 
+definition iDUB :: "nat => nat" where 
   "iDUB == %x::nat. x + x"
 
 lemma iDUB: "ALL x::nat. iDUB x = x + x"
@@ -2771,8 +2723,7 @@
    NUMERAL_BIT2 x * xa = iDUB (iZ (x * xa + xa))"
   by (import numeral numeral_mult)
 
-constdefs
-  iSQR :: "nat => nat" 
+definition iSQR :: "nat => nat" where 
   "iSQR == %x::nat. x * x"
 
 lemma iSQR: "ALL x::nat. iSQR x = x * x"
@@ -2809,8 +2760,7 @@
        ALL (xa::'A::type) y::'B::type. x (P xa y) = xa & Y (P xa y) = y)"
   by (import ind_type INJ_INVERSE2)
 
-constdefs
-  NUMPAIR :: "nat => nat => nat" 
+definition NUMPAIR :: "nat => nat => nat" where 
   "NUMPAIR == %(x::nat) y::nat. 2 ^ x * (2 * y + 1)"
 
 lemma NUMPAIR: "ALL (x::nat) y::nat. NUMPAIR x y = 2 ^ x * (2 * y + 1)"
@@ -2831,8 +2781,7 @@
 specification (NUMFST NUMSND) NUMPAIR_DEST: "ALL (x::nat) y::nat. NUMFST (NUMPAIR x y) = x & NUMSND (NUMPAIR x y) = y"
   by (import ind_type NUMPAIR_DEST)
 
-constdefs
-  NUMSUM :: "bool => nat => nat" 
+definition NUMSUM :: "bool => nat => nat" where 
   "NUMSUM == %(b::bool) x::nat. if b then Suc (2 * x) else 2 * x"
 
 lemma NUMSUM: "ALL (b::bool) x::nat. NUMSUM b x = (if b then Suc (2 * x) else 2 * x)"
@@ -2849,8 +2798,7 @@
 specification (NUMLEFT NUMRIGHT) NUMSUM_DEST: "ALL (x::bool) y::nat. NUMLEFT (NUMSUM x y) = x & NUMRIGHT (NUMSUM x y) = y"
   by (import ind_type NUMSUM_DEST)
 
-constdefs
-  INJN :: "nat => nat => 'a => bool" 
+definition INJN :: "nat => nat => 'a => bool" where 
   "INJN == %(m::nat) (n::nat) a::'a::type. n = m"
 
 lemma INJN: "ALL m::nat. INJN m = (%(n::nat) a::'a::type. n = m)"
@@ -2859,8 +2807,7 @@
 lemma INJN_INJ: "ALL (n1::nat) n2::nat. (INJN n1 = INJN n2) = (n1 = n2)"
   by (import ind_type INJN_INJ)
 
-constdefs
-  INJA :: "'a => nat => 'a => bool" 
+definition INJA :: "'a => nat => 'a => bool" where 
   "INJA == %(a::'a::type) (n::nat) b::'a::type. b = a"
 
 lemma INJA: "ALL a::'a::type. INJA a = (%(n::nat) b::'a::type. b = a)"
@@ -2869,8 +2816,7 @@
 lemma INJA_INJ: "ALL (a1::'a::type) a2::'a::type. (INJA a1 = INJA a2) = (a1 = a2)"
   by (import ind_type INJA_INJ)
 
-constdefs
-  INJF :: "(nat => nat => 'a => bool) => nat => 'a => bool" 
+definition INJF :: "(nat => nat => 'a => bool) => nat => 'a => bool" where 
   "INJF == %(f::nat => nat => 'a::type => bool) n::nat. f (NUMFST n) (NUMSND n)"
 
 lemma INJF: "ALL f::nat => nat => 'a::type => bool.
@@ -2881,8 +2827,7 @@
    (INJF f1 = INJF f2) = (f1 = f2)"
   by (import ind_type INJF_INJ)
 
-constdefs
-  INJP :: "(nat => 'a => bool) => (nat => 'a => bool) => nat => 'a => bool" 
+definition INJP :: "(nat => 'a => bool) => (nat => 'a => bool) => nat => 'a => bool" where 
   "INJP ==
 %(f1::nat => 'a::type => bool) (f2::nat => 'a::type => bool) (n::nat)
    a::'a::type. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a"
@@ -2898,8 +2843,7 @@
    (INJP f1 f2 = INJP f1' f2') = (f1 = f1' & f2 = f2')"
   by (import ind_type INJP_INJ)
 
-constdefs
-  ZCONSTR :: "nat => 'a => (nat => nat => 'a => bool) => nat => 'a => bool" 
+definition ZCONSTR :: "nat => 'a => (nat => nat => 'a => bool) => nat => 'a => bool" where 
   "ZCONSTR ==
 %(c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
    INJP (INJN (Suc c)) (INJP (INJA i) (INJF r))"
@@ -2908,8 +2852,7 @@
    ZCONSTR c i r = INJP (INJN (Suc c)) (INJP (INJA i) (INJF r))"
   by (import ind_type ZCONSTR)
 
-constdefs
-  ZBOT :: "nat => 'a => bool" 
+definition ZBOT :: "nat => 'a => bool" where 
   "ZBOT == INJP (INJN 0) (SOME z::nat => 'a::type => bool. True)"
 
 lemma ZBOT: "ZBOT = INJP (INJN 0) (SOME z::nat => 'a::type => bool. True)"
@@ -2919,8 +2862,7 @@
    ZCONSTR x xa xb ~= ZBOT"
   by (import ind_type ZCONSTR_ZBOT)
 
-constdefs
-  ZRECSPACE :: "(nat => 'a => bool) => bool" 
+definition ZRECSPACE :: "(nat => 'a => bool) => bool" where 
   "ZRECSPACE ==
 %a0::nat => 'a::type => bool.
    ALL ZRECSPACE'::(nat => 'a::type => bool) => bool.
@@ -2993,15 +2935,13 @@
 (ALL r::nat => 'a::type => bool. ZRECSPACE r = (dest_rec (mk_rec r) = r))"
   by (import ind_type recspace_repfns)
 
-constdefs
-  BOTTOM :: "'a recspace" 
+definition BOTTOM :: "'a recspace" where 
   "BOTTOM == mk_rec ZBOT"
 
 lemma BOTTOM: "BOTTOM = mk_rec ZBOT"
   by (import ind_type BOTTOM)
 
-constdefs
-  CONSTR :: "nat => 'a => (nat => 'a recspace) => 'a recspace" 
+definition CONSTR :: "nat => 'a => (nat => 'a recspace) => 'a recspace" where 
   "CONSTR ==
 %(c::nat) (i::'a::type) r::nat => 'a::type recspace.
    mk_rec (ZCONSTR c i (%n::nat. dest_rec (r n)))"
@@ -3049,15 +2989,13 @@
 (ALL (a::'a::type) (f::nat => 'a::type) n::nat. FCONS a f (Suc n) = f n)"
   by (import ind_type FCONS)
 
-constdefs
-  FNIL :: "nat => 'a" 
+definition FNIL :: "nat => 'a" where 
   "FNIL == %n::nat. SOME x::'a::type. True"
 
 lemma FNIL: "ALL n::nat. FNIL n = (SOME x::'a::type. True)"
   by (import ind_type FNIL)
 
-constdefs
-  ISO :: "('a => 'b) => ('b => 'a) => bool" 
+definition ISO :: "('a => 'b) => ('b => 'a) => bool" where 
   "ISO ==
 %(f::'a::type => 'b::type) g::'b::type => 'a::type.
    (ALL x::'b::type. f (g x) = x) & (ALL y::'a::type. g (f y) = y)"
@@ -3434,8 +3372,7 @@
    (EX x::'a::type. IN x s & (ALL y::'a::type. IN y s --> M x <= M y))"
   by (import pred_set SET_MINIMUM)
 
-constdefs
-  EMPTY :: "'a => bool" 
+definition EMPTY :: "'a => bool" where 
   "EMPTY == %x::'a::type. False"
 
 lemma EMPTY_DEF: "EMPTY = (%x::'a::type. False)"
@@ -3468,8 +3405,7 @@
 lemma EQ_UNIV: "(ALL x::'a::type. IN x (s::'a::type => bool)) = (s = pred_set.UNIV)"
   by (import pred_set EQ_UNIV)
 
-constdefs
-  SUBSET :: "('a => bool) => ('a => bool) => bool" 
+definition SUBSET :: "('a => bool) => ('a => bool) => bool" where 
   "SUBSET ==
 %(s::'a::type => bool) t::'a::type => bool.
    ALL x::'a::type. IN x s --> IN x t"
@@ -3501,8 +3437,7 @@
 lemma UNIV_SUBSET: "ALL x::'a::type => bool. SUBSET pred_set.UNIV x = (x = pred_set.UNIV)"
   by (import pred_set UNIV_SUBSET)
 
-constdefs
-  PSUBSET :: "('a => bool) => ('a => bool) => bool" 
+definition PSUBSET :: "('a => bool) => ('a => bool) => bool" where 
   "PSUBSET == %(s::'a::type => bool) t::'a::type => bool. SUBSET s t & s ~= t"
 
 lemma PSUBSET_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
@@ -3640,8 +3575,7 @@
    pred_set.INTER (pred_set.UNION x xa) (pred_set.UNION x xb)"
   by (import pred_set INTER_OVER_UNION)
 
-constdefs
-  DISJOINT :: "('a => bool) => ('a => bool) => bool" 
+definition DISJOINT :: "('a => bool) => ('a => bool) => bool" where 
   "DISJOINT ==
 %(s::'a::type => bool) t::'a::type => bool. pred_set.INTER s t = EMPTY"
 
@@ -3672,8 +3606,7 @@
    DISJOINT u (pred_set.UNION s t) = (DISJOINT s u & DISJOINT t u)"
   by (import pred_set DISJOINT_UNION_BOTH)
 
-constdefs
-  DIFF :: "('a => bool) => ('a => bool) => 'a => bool" 
+definition DIFF :: "('a => bool) => ('a => bool) => 'a => bool" where 
   "DIFF ==
 %(s::'a::type => bool) t::'a::type => bool.
    GSPEC (%x::'a::type. (x, IN x s & ~ IN x t))"
@@ -3702,8 +3635,7 @@
 lemma DIFF_EQ_EMPTY: "ALL x::'a::type => bool. DIFF x x = EMPTY"
   by (import pred_set DIFF_EQ_EMPTY)
 
-constdefs
-  INSERT :: "'a => ('a => bool) => 'a => bool" 
+definition INSERT :: "'a => ('a => bool) => 'a => bool" where 
   "INSERT ==
 %(x::'a::type) s::'a::type => bool.
    GSPEC (%y::'a::type. (y, y = x | IN y s))"
@@ -3778,8 +3710,7 @@
    DIFF (INSERT x s) t = (if IN x t then DIFF s t else INSERT x (DIFF s t))"
   by (import pred_set INSERT_DIFF)
 
-constdefs
-  DELETE :: "('a => bool) => 'a => 'a => bool" 
+definition DELETE :: "('a => bool) => 'a => 'a => bool" where 
   "DELETE == %(s::'a::type => bool) x::'a::type. DIFF s (INSERT x EMPTY)"
 
 lemma DELETE_DEF: "ALL (s::'a::type => bool) x::'a::type. DELETE s x = DIFF s (INSERT x EMPTY)"
@@ -3852,8 +3783,7 @@
 specification (CHOICE) CHOICE_DEF: "ALL x::'a::type => bool. x ~= EMPTY --> IN (CHOICE x) x"
   by (import pred_set CHOICE_DEF)
 
-constdefs
-  REST :: "('a => bool) => 'a => bool" 
+definition REST :: "('a => bool) => 'a => bool" where 
   "REST == %s::'a::type => bool. DELETE s (CHOICE s)"
 
 lemma REST_DEF: "ALL s::'a::type => bool. REST s = DELETE s (CHOICE s)"
@@ -3871,8 +3801,7 @@
 lemma REST_PSUBSET: "ALL x::'a::type => bool. x ~= EMPTY --> PSUBSET (REST x) x"
   by (import pred_set REST_PSUBSET)
 
-constdefs
-  SING :: "('a => bool) => bool" 
+definition SING :: "('a => bool) => bool" where 
   "SING == %s::'a::type => bool. EX x::'a::type. s = INSERT x EMPTY"
 
 lemma SING_DEF: "ALL s::'a::type => bool. SING s = (EX x::'a::type. s = INSERT x EMPTY)"
@@ -3917,8 +3846,7 @@
 lemma SING_IFF_EMPTY_REST: "ALL x::'a::type => bool. SING x = (x ~= EMPTY & REST x = EMPTY)"
   by (import pred_set SING_IFF_EMPTY_REST)
 
-constdefs
-  IMAGE :: "('a => 'b) => ('a => bool) => 'b => bool" 
+definition IMAGE :: "('a => 'b) => ('a => bool) => 'b => bool" where 
   "IMAGE ==
 %(f::'a::type => 'b::type) s::'a::type => bool.
    GSPEC (%x::'a::type. (f x, IN x s))"
@@ -3971,8 +3899,7 @@
     (pred_set.INTER (IMAGE f s) (IMAGE f t))"
   by (import pred_set IMAGE_INTER)
 
-constdefs
-  INJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" 
+definition INJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" where 
   "INJ ==
 %(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
    (ALL x::'a::type. IN x s --> IN (f x) t) &
@@ -3998,8 +3925,7 @@
    (ALL xa::'a::type => bool. INJ x xa EMPTY = (xa = EMPTY))"
   by (import pred_set INJ_EMPTY)
 
-constdefs
-  SURJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" 
+definition SURJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" where 
   "SURJ ==
 %(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
    (ALL x::'a::type. IN x s --> IN (f x) t) &
@@ -4028,8 +3954,7 @@
    SURJ x xa xb = (IMAGE x xa = xb)"
   by (import pred_set IMAGE_SURJ)
 
-constdefs
-  BIJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" 
+definition BIJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool" where 
   "BIJ ==
 %(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
    INJ f s t & SURJ f s t"
@@ -4065,8 +3990,7 @@
    SURJ f s t --> (ALL x::'b::type. IN x t --> f (RINV f s x) = x)"
   by (import pred_set RINV_DEF)
 
-constdefs
-  FINITE :: "('a => bool) => bool" 
+definition FINITE :: "('a => bool) => bool" where 
   "FINITE ==
 %s::'a::type => bool.
    ALL P::('a::type => bool) => bool.
@@ -4219,8 +4143,7 @@
    (ALL x::'a::type => bool. FINITE x --> P x)"
   by (import pred_set FINITE_COMPLETE_INDUCTION)
 
-constdefs
-  INFINITE :: "('a => bool) => bool" 
+definition INFINITE :: "('a => bool) => bool" where 
   "INFINITE == %s::'a::type => bool. ~ FINITE s"
 
 lemma INFINITE_DEF: "ALL s::'a::type => bool. INFINITE s = (~ FINITE s)"
@@ -4320,8 +4243,7 @@
                                 (f n)))))))))"
   by (import pred_set FINITE_WEAK_ENUMERATE)
 
-constdefs
-  BIGUNION :: "(('a => bool) => bool) => 'a => bool" 
+definition BIGUNION :: "(('a => bool) => bool) => 'a => bool" where 
   "BIGUNION ==
 %P::('a::type => bool) => bool.
    GSPEC (%x::'a::type. (x, EX p::'a::type => bool. IN p P & IN x p))"
@@ -4367,8 +4289,7 @@
    FINITE (BIGUNION x)"
   by (import pred_set FINITE_BIGUNION)
 
-constdefs
-  BIGINTER :: "(('a => bool) => bool) => 'a => bool" 
+definition BIGINTER :: "(('a => bool) => bool) => 'a => bool" where 
   "BIGINTER ==
 %B::('a::type => bool) => bool.
    GSPEC (%x::'a::type. (x, ALL P::'a::type => bool. IN P B --> IN x P))"
@@ -4406,8 +4327,7 @@
    DISJOINT x (BIGINTER xb) & DISJOINT (BIGINTER xb) x"
   by (import pred_set DISJOINT_BIGINTER)
 
-constdefs
-  CROSS :: "('a => bool) => ('b => bool) => 'a * 'b => bool" 
+definition CROSS :: "('a => bool) => ('b => bool) => 'a * 'b => bool" where 
   "CROSS ==
 %(P::'a::type => bool) Q::'b::type => bool.
    GSPEC (%p::'a::type * 'b::type. (p, IN (fst p) P & IN (snd p) Q))"
@@ -4460,8 +4380,7 @@
    FINITE (CROSS P Q) = (P = EMPTY | Q = EMPTY | FINITE P & FINITE Q)"
   by (import pred_set FINITE_CROSS_EQ)
 
-constdefs
-  COMPL :: "('a => bool) => 'a => bool" 
+definition COMPL :: "('a => bool) => 'a => bool" where 
   "COMPL == DIFF pred_set.UNIV"
 
 lemma COMPL_DEF: "ALL P::'a::type => bool. COMPL P = DIFF pred_set.UNIV P"
@@ -4513,8 +4432,7 @@
 lemma CARD_COUNT: "ALL n::nat. CARD (count n) = n"
   by (import pred_set CARD_COUNT)
 
-constdefs
-  ITSET_tupled :: "('a => 'b => 'b) => ('a => bool) * 'b => 'b" 
+definition ITSET_tupled :: "('a => 'b => 'b) => ('a => bool) * 'b => 'b" where 
   "ITSET_tupled ==
 %f::'a::type => 'b::type => 'b::type.
    WFREC
@@ -4546,8 +4464,7 @@
         else ARB)"
   by (import pred_set ITSET_tupled_primitive_def)
 
-constdefs
-  ITSET :: "('a => 'b => 'b) => ('a => bool) => 'b => 'b" 
+definition ITSET :: "('a => 'b => 'b) => ('a => bool) => 'b => 'b" where 
   "ITSET ==
 %(f::'a::type => 'b::type => 'b::type) (x::'a::type => bool) x1::'b::type.
    ITSET_tupled f (x, x1)"
@@ -4578,8 +4495,7 @@
 
 ;setup_theory operator
 
-constdefs
-  ASSOC :: "('a => 'a => 'a) => bool" 
+definition ASSOC :: "('a => 'a => 'a) => bool" where 
   "ASSOC ==
 %f::'a::type => 'a::type => 'a::type.
    ALL (x::'a::type) (y::'a::type) z::'a::type. f x (f y z) = f (f x y) z"
@@ -4589,8 +4505,7 @@
    (ALL (x::'a::type) (y::'a::type) z::'a::type. f x (f y z) = f (f x y) z)"
   by (import operator ASSOC_DEF)
 
-constdefs
-  COMM :: "('a => 'a => 'b) => bool" 
+definition COMM :: "('a => 'a => 'b) => bool" where 
   "COMM ==
 %f::'a::type => 'a::type => 'b::type.
    ALL (x::'a::type) y::'a::type. f x y = f y x"
@@ -4599,8 +4514,7 @@
    COMM f = (ALL (x::'a::type) y::'a::type. f x y = f y x)"
   by (import operator COMM_DEF)
 
-constdefs
-  FCOMM :: "('a => 'b => 'a) => ('c => 'a => 'a) => bool" 
+definition FCOMM :: "('a => 'b => 'a) => ('c => 'a => 'a) => bool" where 
   "FCOMM ==
 %(f::'a::type => 'b::type => 'a::type) g::'c::type => 'a::type => 'a::type.
    ALL (x::'c::type) (y::'a::type) z::'b::type. g x (f y z) = f (g x y) z"
@@ -4611,8 +4525,7 @@
    (ALL (x::'c::type) (y::'a::type) z::'b::type. g x (f y z) = f (g x y) z)"
   by (import operator FCOMM_DEF)
 
-constdefs
-  RIGHT_ID :: "('a => 'b => 'a) => 'b => bool" 
+definition RIGHT_ID :: "('a => 'b => 'a) => 'b => bool" where 
   "RIGHT_ID ==
 %(f::'a::type => 'b::type => 'a::type) e::'b::type.
    ALL x::'a::type. f x e = x"
@@ -4621,8 +4534,7 @@
    RIGHT_ID f e = (ALL x::'a::type. f x e = x)"
   by (import operator RIGHT_ID_DEF)
 
-constdefs
-  LEFT_ID :: "('a => 'b => 'b) => 'a => bool" 
+definition LEFT_ID :: "('a => 'b => 'b) => 'a => bool" where 
   "LEFT_ID ==
 %(f::'a::type => 'b::type => 'b::type) e::'a::type.
    ALL x::'b::type. f e x = x"
@@ -4631,8 +4543,7 @@
    LEFT_ID f e = (ALL x::'b::type. f e x = x)"
   by (import operator LEFT_ID_DEF)
 
-constdefs
-  MONOID :: "('a => 'a => 'a) => 'a => bool" 
+definition MONOID :: "('a => 'a => 'a) => 'a => bool" where 
   "MONOID ==
 %(f::'a::type => 'a::type => 'a::type) e::'a::type.
    ASSOC f & RIGHT_ID f e & LEFT_ID f e"
@@ -4690,15 +4601,13 @@
 lemma IS_EL_DEF: "ALL (x::'a::type) l::'a::type list. x mem l = list_exists (op = x) l"
   by (import rich_list IS_EL_DEF)
 
-constdefs
-  AND_EL :: "bool list => bool" 
+definition AND_EL :: "bool list => bool" where 
   "AND_EL == list_all I"
 
 lemma AND_EL_DEF: "AND_EL = list_all I"
   by (import rich_list AND_EL_DEF)
 
-constdefs
-  OR_EL :: "bool list => bool" 
+definition OR_EL :: "bool list => bool" where 
   "OR_EL == list_exists I"
 
 lemma OR_EL_DEF: "OR_EL = list_exists I"
@@ -4816,16 +4725,14 @@
     (if P x then ([], x # l) else (x # fst (SPLITP P l), snd (SPLITP P l))))"
   by (import rich_list SPLITP)
 
-constdefs
-  PREFIX :: "('a => bool) => 'a list => 'a list" 
+definition PREFIX :: "('a => bool) => 'a list => 'a list" where 
   "PREFIX == %(P::'a::type => bool) l::'a::type list. fst (SPLITP (Not o P) l)"
 
 lemma PREFIX_DEF: "ALL (P::'a::type => bool) l::'a::type list.
    PREFIX P l = fst (SPLITP (Not o P) l)"
   by (import rich_list PREFIX_DEF)
 
-constdefs
-  SUFFIX :: "('a => bool) => 'a list => 'a list" 
+definition SUFFIX :: "('a => bool) => 'a list => 'a list" where 
   "SUFFIX ==
 %P::'a::type => bool.
    foldl (%(l'::'a::type list) x::'a::type. if P x then SNOC x l' else [])
@@ -4837,15 +4744,13 @@
     [] l"
   by (import rich_list SUFFIX_DEF)
 
-constdefs
-  UNZIP_FST :: "('a * 'b) list => 'a list" 
+definition UNZIP_FST :: "('a * 'b) list => 'a list" where 
   "UNZIP_FST == %l::('a::type * 'b::type) list. fst (unzip l)"
 
 lemma UNZIP_FST_DEF: "ALL l::('a::type * 'b::type) list. UNZIP_FST l = fst (unzip l)"
   by (import rich_list UNZIP_FST_DEF)
 
-constdefs
-  UNZIP_SND :: "('a * 'b) list => 'b list" 
+definition UNZIP_SND :: "('a * 'b) list => 'b list" where 
   "UNZIP_SND == %l::('a::type * 'b::type) list. snd (unzip l)"
 
 lemma UNZIP_SND_DEF: "ALL l::('a::type * 'b::type) list. UNZIP_SND l = snd (unzip l)"
@@ -5916,8 +5821,7 @@
 
 ;setup_theory state_transformer
 
-constdefs
-  UNIT :: "'b => 'a => 'b * 'a" 
+definition UNIT :: "'b => 'a => 'b * 'a" where 
   "(op ==::('b::type => 'a::type => 'b::type * 'a::type)
         => ('b::type => 'a::type => 'b::type * 'a::type) => prop)
  (UNIT::'b::type => 'a::type => 'b::type * 'a::type)
@@ -5926,8 +5830,7 @@
 lemma UNIT_DEF: "ALL x::'b::type. UNIT x = Pair x"
   by (import state_transformer UNIT_DEF)
 
-constdefs
-  BIND :: "('a => 'b * 'a) => ('b => 'a => 'c * 'a) => 'a => 'c * 'a" 
+definition BIND :: "('a => 'b * 'a) => ('b => 'a => 'c * 'a) => 'a => 'c * 'a" where 
   "(op ==::(('a::type => 'b::type * 'a::type)
          => ('b::type => 'a::type => 'c::type * 'a::type)
             => 'a::type => 'c::type * 'a::type)
@@ -5967,8 +5870,7 @@
              g)))"
   by (import state_transformer BIND_DEF)
 
-constdefs
-  MMAP :: "('c => 'b) => ('a => 'c * 'a) => 'a => 'b * 'a" 
+definition MMAP :: "('c => 'b) => ('a => 'c * 'a) => 'a => 'b * 'a" where 
   "MMAP ==
 %(f::'c::type => 'b::type) m::'a::type => 'c::type * 'a::type.
    BIND m (UNIT o f)"
@@ -5977,8 +5879,7 @@
    MMAP f m = BIND m (UNIT o f)"
   by (import state_transformer MMAP_DEF)
 
-constdefs
-  JOIN :: "('a => ('a => 'b * 'a) * 'a) => 'a => 'b * 'a" 
+definition JOIN :: "('a => ('a => 'b * 'a) * 'a) => 'a => 'b * 'a" where 
   "JOIN ==
 %z::'a::type => ('a::type => 'b::type * 'a::type) * 'a::type. BIND z I"
 
--- a/src/HOL/Import/HOL/HOL4Prob.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL/HOL4Prob.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -373,8 +373,7 @@
    alg_twin x y = (EX l::bool list. x = SNOC True l & y = SNOC False l)"
   by (import prob_canon alg_twin_def)
 
-constdefs
-  alg_order_tupled :: "bool list * bool list => bool" 
+definition alg_order_tupled :: "bool list * bool list => bool" where 
   "(op ==::(bool list * bool list => bool)
         => (bool list * bool list => bool) => prop)
  (alg_order_tupled::bool list * bool list => bool)
@@ -1917,8 +1916,7 @@
    P 0 & (ALL v::nat. P (Suc v div 2) --> P (Suc v)) --> All P"
   by (import prob_uniform unif_bound_ind)
 
-constdefs
-  unif_tupled :: "nat * (nat => bool) => nat * (nat => bool)" 
+definition unif_tupled :: "nat * (nat => bool) => nat * (nat => bool)" where 
   "unif_tupled ==
 WFREC
  (SOME R::nat * (nat => bool) => nat * (nat => bool) => bool.
@@ -1963,8 +1961,7 @@
    (ALL v::nat. All (P v))"
   by (import prob_uniform unif_ind)
 
-constdefs
-  uniform_tupled :: "nat * nat * (nat => bool) => nat * (nat => bool)" 
+definition uniform_tupled :: "nat * nat * (nat => bool) => nat * (nat => bool)" where 
   "uniform_tupled ==
 WFREC
  (SOME R::nat * nat * (nat => bool) => nat * nat * (nat => bool) => bool.
--- a/src/HOL/Import/HOL/HOL4Real.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL/HOL4Real.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -39,29 +39,25 @@
    hreal_lt (hreal_add x y) (hreal_add x z) = hreal_lt y z"
   by (import realax HREAL_LT_LADD)
 
-constdefs
-  treal_0 :: "hreal * hreal" 
+definition treal_0 :: "hreal * hreal" where 
   "treal_0 == (hreal_1, hreal_1)"
 
 lemma treal_0: "treal_0 = (hreal_1, hreal_1)"
   by (import realax treal_0)
 
-constdefs
-  treal_1 :: "hreal * hreal" 
+definition treal_1 :: "hreal * hreal" where 
   "treal_1 == (hreal_add hreal_1 hreal_1, hreal_1)"
 
 lemma treal_1: "treal_1 = (hreal_add hreal_1 hreal_1, hreal_1)"
   by (import realax treal_1)
 
-constdefs
-  treal_neg :: "hreal * hreal => hreal * hreal" 
+definition treal_neg :: "hreal * hreal => hreal * hreal" where 
   "treal_neg == %(x::hreal, y::hreal). (y, x)"
 
 lemma treal_neg: "ALL (x::hreal) y::hreal. treal_neg (x, y) = (y, x)"
   by (import realax treal_neg)
 
-constdefs
-  treal_add :: "hreal * hreal => hreal * hreal => hreal * hreal" 
+definition treal_add :: "hreal * hreal => hreal * hreal => hreal * hreal" where 
   "treal_add ==
 %(x1::hreal, y1::hreal) (x2::hreal, y2::hreal).
    (hreal_add x1 x2, hreal_add y1 y2)"
@@ -70,8 +66,7 @@
    treal_add (x1, y1) (x2, y2) = (hreal_add x1 x2, hreal_add y1 y2)"
   by (import realax treal_add)
 
-constdefs
-  treal_mul :: "hreal * hreal => hreal * hreal => hreal * hreal" 
+definition treal_mul :: "hreal * hreal => hreal * hreal => hreal * hreal" where 
   "treal_mul ==
 %(x1::hreal, y1::hreal) (x2::hreal, y2::hreal).
    (hreal_add (hreal_mul x1 x2) (hreal_mul y1 y2),
@@ -83,8 +78,7 @@
     hreal_add (hreal_mul x1 y2) (hreal_mul y1 x2))"
   by (import realax treal_mul)
 
-constdefs
-  treal_lt :: "hreal * hreal => hreal * hreal => bool" 
+definition treal_lt :: "hreal * hreal => hreal * hreal => bool" where 
   "treal_lt ==
 %(x1::hreal, y1::hreal) (x2::hreal, y2::hreal).
    hreal_lt (hreal_add x1 y2) (hreal_add x2 y1)"
@@ -93,8 +87,7 @@
    treal_lt (x1, y1) (x2, y2) = hreal_lt (hreal_add x1 y2) (hreal_add x2 y1)"
   by (import realax treal_lt)
 
-constdefs
-  treal_inv :: "hreal * hreal => hreal * hreal" 
+definition treal_inv :: "hreal * hreal => hreal * hreal" where 
   "treal_inv ==
 %(x::hreal, y::hreal).
    if x = y then treal_0
@@ -110,8 +103,7 @@
          else (hreal_1, hreal_add (hreal_inv (hreal_sub y x)) hreal_1))"
   by (import realax treal_inv)
 
-constdefs
-  treal_eq :: "hreal * hreal => hreal * hreal => bool" 
+definition treal_eq :: "hreal * hreal => hreal * hreal => bool" where 
   "treal_eq ==
 %(x1::hreal, y1::hreal) (x2::hreal, y2::hreal).
    hreal_add x1 y2 = hreal_add x2 y1"
@@ -194,15 +186,13 @@
    treal_lt treal_0 (treal_mul x y)"
   by (import realax TREAL_LT_MUL)
 
-constdefs
-  treal_of_hreal :: "hreal => hreal * hreal" 
+definition treal_of_hreal :: "hreal => hreal * hreal" where 
   "treal_of_hreal == %x::hreal. (hreal_add x hreal_1, hreal_1)"
 
 lemma treal_of_hreal: "ALL x::hreal. treal_of_hreal x = (hreal_add x hreal_1, hreal_1)"
   by (import realax treal_of_hreal)
 
-constdefs
-  hreal_of_treal :: "hreal * hreal => hreal" 
+definition hreal_of_treal :: "hreal * hreal => hreal" where 
   "hreal_of_treal == %(x::hreal, y::hreal). SOME d::hreal. x = hreal_add y d"
 
 lemma hreal_of_treal: "ALL (x::hreal) y::hreal.
@@ -579,8 +569,7 @@
    (EX x::real. ALL y::real. (EX x::real. P x & y < x) = (y < x))"
   by (import real REAL_SUP_EXISTS)
 
-constdefs
-  sup :: "(real => bool) => real" 
+definition sup :: "(real => bool) => real" where 
   "sup ==
 %P::real => bool.
    SOME s::real. ALL y::real. (EX x::real. P x & y < x) = (y < s)"
@@ -781,8 +770,7 @@
 
 ;setup_theory topology
 
-constdefs
-  re_Union :: "(('a => bool) => bool) => 'a => bool" 
+definition re_Union :: "(('a => bool) => bool) => 'a => bool" where 
   "re_Union ==
 %(P::('a::type => bool) => bool) x::'a::type.
    EX s::'a::type => bool. P s & s x"
@@ -791,8 +779,7 @@
    re_Union P = (%x::'a::type. EX s::'a::type => bool. P s & s x)"
   by (import topology re_Union)
 
-constdefs
-  re_union :: "('a => bool) => ('a => bool) => 'a => bool" 
+definition re_union :: "('a => bool) => ('a => bool) => 'a => bool" where 
   "re_union ==
 %(P::'a::type => bool) (Q::'a::type => bool) x::'a::type. P x | Q x"
 
@@ -800,8 +787,7 @@
    re_union P Q = (%x::'a::type. P x | Q x)"
   by (import topology re_union)
 
-constdefs
-  re_intersect :: "('a => bool) => ('a => bool) => 'a => bool" 
+definition re_intersect :: "('a => bool) => ('a => bool) => 'a => bool" where 
   "re_intersect ==
 %(P::'a::type => bool) (Q::'a::type => bool) x::'a::type. P x & Q x"
 
@@ -809,22 +795,19 @@
    re_intersect P Q = (%x::'a::type. P x & Q x)"
   by (import topology re_intersect)
 
-constdefs
-  re_null :: "'a => bool" 
+definition re_null :: "'a => bool" where 
   "re_null == %x::'a::type. False"
 
 lemma re_null: "re_null = (%x::'a::type. False)"
   by (import topology re_null)
 
-constdefs
-  re_universe :: "'a => bool" 
+definition re_universe :: "'a => bool" where 
   "re_universe == %x::'a::type. True"
 
 lemma re_universe: "re_universe = (%x::'a::type. True)"
   by (import topology re_universe)
 
-constdefs
-  re_subset :: "('a => bool) => ('a => bool) => bool" 
+definition re_subset :: "('a => bool) => ('a => bool) => bool" where 
   "re_subset ==
 %(P::'a::type => bool) Q::'a::type => bool. ALL x::'a::type. P x --> Q x"
 
@@ -832,8 +815,7 @@
    re_subset P Q = (ALL x::'a::type. P x --> Q x)"
   by (import topology re_subset)
 
-constdefs
-  re_compl :: "('a => bool) => 'a => bool" 
+definition re_compl :: "('a => bool) => 'a => bool" where 
   "re_compl == %(P::'a::type => bool) x::'a::type. ~ P x"
 
 lemma re_compl: "ALL P::'a::type => bool. re_compl P = (%x::'a::type. ~ P x)"
@@ -853,8 +835,7 @@
    re_subset P Q & re_subset Q R --> re_subset P R"
   by (import topology SUBSET_TRANS)
 
-constdefs
-  istopology :: "(('a => bool) => bool) => bool" 
+definition istopology :: "(('a => bool) => bool) => bool" where 
   "istopology ==
 %L::('a::type => bool) => bool.
    L re_null &
@@ -900,8 +881,7 @@
    re_subset xa (open x) --> open x (re_Union xa)"
   by (import topology TOPOLOGY_UNION)
 
-constdefs
-  neigh :: "'a topology => ('a => bool) * 'a => bool" 
+definition neigh :: "'a topology => ('a => bool) * 'a => bool" where 
   "neigh ==
 %(top::'a::type topology) (N::'a::type => bool, x::'a::type).
    EX P::'a::type => bool. open top P & re_subset P N & P x"
@@ -932,16 +912,14 @@
        S' x --> (EX N::'a::type => bool. neigh top (N, x) & re_subset N S'))"
   by (import topology OPEN_NEIGH)
 
-constdefs
-  closed :: "'a topology => ('a => bool) => bool" 
+definition closed :: "'a topology => ('a => bool) => bool" where 
   "closed == %(L::'a::type topology) S'::'a::type => bool. open L (re_compl S')"
 
 lemma closed: "ALL (L::'a::type topology) S'::'a::type => bool.
    closed L S' = open L (re_compl S')"
   by (import topology closed)
 
-constdefs
-  limpt :: "'a topology => 'a => ('a => bool) => bool" 
+definition limpt :: "'a topology => 'a => ('a => bool) => bool" where 
   "limpt ==
 %(top::'a::type topology) (x::'a::type) S'::'a::type => bool.
    ALL N::'a::type => bool.
@@ -957,8 +935,7 @@
    closed top S' = (ALL x::'a::type. limpt top x S' --> S' x)"
   by (import topology CLOSED_LIMPT)
 
-constdefs
-  ismet :: "('a * 'a => real) => bool" 
+definition ismet :: "('a * 'a => real) => bool" where 
   "ismet ==
 %m::'a::type * 'a::type => real.
    (ALL (x::'a::type) y::'a::type. (m (x, y) = 0) = (x = y)) &
@@ -1012,8 +989,7 @@
    x ~= y --> 0 < dist m (x, y)"
   by (import topology METRIC_NZ)
 
-constdefs
-  mtop :: "'a metric => 'a topology" 
+definition mtop :: "'a metric => 'a topology" where 
   "mtop ==
 %m::'a::type metric.
    topology
@@ -1042,8 +1018,7 @@
        S' xa --> (EX e>0. ALL y::'a::type. dist x (xa, y) < e --> S' y))"
   by (import topology MTOP_OPEN)
 
-constdefs
-  B :: "'a metric => 'a * real => 'a => bool" 
+definition B :: "'a metric => 'a * real => 'a => bool" where 
   "B ==
 %(m::'a::type metric) (x::'a::type, e::real) y::'a::type. dist m (x, y) < e"
 
@@ -1067,8 +1042,7 @@
 lemma ISMET_R1: "ismet (%(x::real, y::real). abs (y - x))"
   by (import topology ISMET_R1)
 
-constdefs
-  mr1 :: "real metric" 
+definition mr1 :: "real metric" where 
   "mr1 == metric (%(x::real, y::real). abs (y - x))"
 
 lemma mr1: "mr1 = metric (%(x::real, y::real). abs (y - x))"
@@ -1105,8 +1079,7 @@
 
 ;setup_theory nets
 
-constdefs
-  dorder :: "('a => 'a => bool) => bool" 
+definition dorder :: "('a => 'a => bool) => bool" where 
   "dorder ==
 %g::'a::type => 'a::type => bool.
    ALL (x::'a::type) y::'a::type.
@@ -1120,8 +1093,7 @@
        (EX z::'a::type. g z z & (ALL w::'a::type. g w z --> g w x & g w y)))"
   by (import nets dorder)
 
-constdefs
-  tends :: "('b => 'a) => 'a => 'a topology * ('b => 'b => bool) => bool" 
+definition tends :: "('b => 'a) => 'a => 'a topology * ('b => 'b => bool) => bool" where 
   "tends ==
 %(s::'b::type => 'a::type) (l::'a::type) (top::'a::type topology,
    g::'b::type => 'b::type => bool).
@@ -1137,8 +1109,7 @@
        (EX n::'b::type. g n n & (ALL m::'b::type. g m n --> N (s m))))"
   by (import nets tends)
 
-constdefs
-  bounded :: "'a metric * ('b => 'b => bool) => ('b => 'a) => bool" 
+definition bounded :: "'a metric * ('b => 'b => bool) => ('b => 'a) => bool" where 
   "bounded ==
 %(m::'a::type metric, g::'b::type => 'b::type => bool)
    f::'b::type => 'a::type.
@@ -1152,8 +1123,7 @@
        g N N & (ALL n::'b::type. g n N --> dist m (f n, x) < k))"
   by (import nets bounded)
 
-constdefs
-  tendsto :: "'a metric * 'a => 'a => 'a => bool" 
+definition tendsto :: "'a metric * 'a => 'a => 'a => bool" where 
   "tendsto ==
 %(m::'a::type metric, x::'a::type) (y::'a::type) z::'a::type.
    0 < dist m (x, y) & dist m (x, y) <= dist m (x, z)"
@@ -1366,15 +1336,13 @@
    hol4--> x x1 & hol4--> x x2 --> x1 = x2"
   by (import seq SEQ_UNIQ)
 
-constdefs
-  convergent :: "(nat => real) => bool" 
+definition convergent :: "(nat => real) => bool" where 
   "convergent == %f::nat => real. Ex (hol4--> f)"
 
 lemma convergent: "ALL f::nat => real. convergent f = Ex (hol4--> f)"
   by (import seq convergent)
 
-constdefs
-  cauchy :: "(nat => real) => bool" 
+definition cauchy :: "(nat => real) => bool" where 
   "cauchy ==
 %f::nat => real.
    ALL e>0.
@@ -1388,8 +1356,7 @@
           ALL (m::nat) n::nat. N <= m & N <= n --> abs (f m - f n) < e)"
   by (import seq cauchy)
 
-constdefs
-  lim :: "(nat => real) => real" 
+definition lim :: "(nat => real) => real" where 
   "lim == %f::nat => real. Eps (hol4--> f)"
 
 lemma lim: "ALL f::nat => real. lim f = Eps (hol4--> f)"
@@ -1398,8 +1365,7 @@
 lemma SEQ_LIM: "ALL f::nat => real. convergent f = hol4--> f (lim f)"
   by (import seq SEQ_LIM)
 
-constdefs
-  subseq :: "(nat => nat) => bool" 
+definition subseq :: "(nat => nat) => bool" where 
   "subseq == %f::nat => nat. ALL (m::nat) n::nat. m < n --> f m < f n"
 
 lemma subseq: "ALL f::nat => nat. subseq f = (ALL (m::nat) n::nat. m < n --> f m < f n)"
@@ -1541,23 +1507,20 @@
    (ALL (a::real) b::real. a <= b --> P (a, b))"
   by (import seq BOLZANO_LEMMA)
 
-constdefs
-  sums :: "(nat => real) => real => bool" 
+definition sums :: "(nat => real) => real => bool" where 
   "sums == %f::nat => real. hol4--> (%n::nat. real.sum (0, n) f)"
 
 lemma sums: "ALL (f::nat => real) s::real.
    sums f s = hol4--> (%n::nat. real.sum (0, n) f) s"
   by (import seq sums)
 
-constdefs
-  summable :: "(nat => real) => bool" 
+definition summable :: "(nat => real) => bool" where 
   "summable == %f::nat => real. Ex (sums f)"
 
 lemma summable: "ALL f::nat => real. summable f = Ex (sums f)"
   by (import seq summable)
 
-constdefs
-  suminf :: "(nat => real) => real" 
+definition suminf :: "(nat => real) => real" where 
   "suminf == %f::nat => real. Eps (sums f)"
 
 lemma suminf: "ALL f::nat => real. suminf f = Eps (sums f)"
@@ -1692,8 +1655,7 @@
 
 ;setup_theory lim
 
-constdefs
-  tends_real_real :: "(real => real) => real => real => bool" 
+definition tends_real_real :: "(real => real) => real => real => bool" where 
   "tends_real_real ==
 %(f::real => real) (l::real) x0::real.
    tends f l (mtop mr1, tendsto (mr1, x0))"
@@ -1763,8 +1725,7 @@
    tends_real_real f l x0"
   by (import lim LIM_TRANSFORM)
 
-constdefs
-  diffl :: "(real => real) => real => real => bool" 
+definition diffl :: "(real => real) => real => real => bool" where 
   "diffl ==
 %(f::real => real) (l::real) x::real.
    tends_real_real (%h::real. (f (x + h) - f x) / h) l 0"
@@ -1773,8 +1734,7 @@
    diffl f l x = tends_real_real (%h::real. (f (x + h) - f x) / h) l 0"
   by (import lim diffl)
 
-constdefs
-  contl :: "(real => real) => real => bool" 
+definition contl :: "(real => real) => real => bool" where 
   "contl ==
 %(f::real => real) x::real. tends_real_real (%h::real. f (x + h)) (f x) 0"
 
@@ -1782,8 +1742,7 @@
    contl f x = tends_real_real (%h::real. f (x + h)) (f x) 0"
   by (import lim contl)
 
-constdefs
-  differentiable :: "(real => real) => real => bool" 
+definition differentiable :: "(real => real) => real => bool" where 
   "differentiable == %(f::real => real) x::real. EX l::real. diffl f l x"
 
 lemma differentiable: "ALL (f::real => real) x::real.
@@ -2127,8 +2086,7 @@
    summable (%n::nat. f n * z ^ n)"
   by (import powser POWSER_INSIDE)
 
-constdefs
-  diffs :: "(nat => real) => nat => real" 
+definition diffs :: "(nat => real) => nat => real" where 
   "diffs == %(c::nat => real) n::nat. real (Suc n) * c (Suc n)"
 
 lemma diffs: "ALL c::nat => real. diffs c = (%n::nat. real (Suc n) * c (Suc n))"
@@ -2204,15 +2162,13 @@
 
 ;setup_theory transc
 
-constdefs
-  exp :: "real => real" 
+definition exp :: "real => real" where 
   "exp == %x::real. suminf (%n::nat. inverse (real (FACT n)) * x ^ n)"
 
 lemma exp: "ALL x::real. exp x = suminf (%n::nat. inverse (real (FACT n)) * x ^ n)"
   by (import transc exp)
 
-constdefs
-  cos :: "real => real" 
+definition cos :: "real => real" where 
   "cos ==
 %x::real.
    suminf
@@ -2226,8 +2182,7 @@
         (if EVEN n then (- 1) ^ (n div 2) / real (FACT n) else 0) * x ^ n)"
   by (import transc cos)
 
-constdefs
-  sin :: "real => real" 
+definition sin :: "real => real" where 
   "sin ==
 %x::real.
    suminf
@@ -2364,8 +2319,7 @@
 lemma EXP_TOTAL: "ALL y>0. EX x::real. exp x = y"
   by (import transc EXP_TOTAL)
 
-constdefs
-  ln :: "real => real" 
+definition ln :: "real => real" where 
   "ln == %x::real. SOME u::real. exp u = x"
 
 lemma ln: "ALL x::real. ln x = (SOME u::real. exp u = x)"
@@ -2410,16 +2364,14 @@
 lemma LN_POS: "ALL x>=1. 0 <= ln x"
   by (import transc LN_POS)
 
-constdefs
-  root :: "nat => real => real" 
+definition root :: "nat => real => real" where 
   "root == %(n::nat) x::real. SOME u::real. (0 < x --> 0 < u) & u ^ n = x"
 
 lemma root: "ALL (n::nat) x::real.
    root n x = (SOME u::real. (0 < x --> 0 < u) & u ^ n = x)"
   by (import transc root)
 
-constdefs
-  sqrt :: "real => real" 
+definition sqrt :: "real => real" where 
   "sqrt == root 2"
 
 lemma sqrt: "ALL x::real. sqrt x = root 2 x"
@@ -2584,8 +2536,7 @@
 lemma COS_ISZERO: "EX! x::real. 0 <= x & x <= 2 & cos x = 0"
   by (import transc COS_ISZERO)
 
-constdefs
-  pi :: "real" 
+definition pi :: "real" where 
   "pi == 2 * (SOME x::real. 0 <= x & x <= 2 & cos x = 0)"
 
 lemma pi: "pi = 2 * (SOME x::real. 0 <= x & x <= 2 & cos x = 0)"
@@ -2689,8 +2640,7 @@
     (EX n::nat. EVEN n & x = - (real n * (pi / 2))))"
   by (import transc SIN_ZERO)
 
-constdefs
-  tan :: "real => real" 
+definition tan :: "real => real" where 
   "tan == %x::real. sin x / cos x"
 
 lemma tan: "ALL x::real. tan x = sin x / cos x"
@@ -2736,23 +2686,20 @@
 lemma TAN_TOTAL: "ALL y::real. EX! x::real. - (pi / 2) < x & x < pi / 2 & tan x = y"
   by (import transc TAN_TOTAL)
 
-constdefs
-  asn :: "real => real" 
+definition asn :: "real => real" where 
   "asn == %y::real. SOME x::real. - (pi / 2) <= x & x <= pi / 2 & sin x = y"
 
 lemma asn: "ALL y::real.
    asn y = (SOME x::real. - (pi / 2) <= x & x <= pi / 2 & sin x = y)"
   by (import transc asn)
 
-constdefs
-  acs :: "real => real" 
+definition acs :: "real => real" where 
   "acs == %y::real. SOME x::real. 0 <= x & x <= pi & cos x = y"
 
 lemma acs: "ALL y::real. acs y = (SOME x::real. 0 <= x & x <= pi & cos x = y)"
   by (import transc acs)
 
-constdefs
-  atn :: "real => real" 
+definition atn :: "real => real" where 
   "atn == %y::real. SOME x::real. - (pi / 2) < x & x < pi / 2 & tan x = y"
 
 lemma atn: "ALL y::real. atn y = (SOME x::real. - (pi / 2) < x & x < pi / 2 & tan x = y)"
@@ -2845,8 +2792,7 @@
 lemma DIFF_ATN: "ALL x::real. diffl atn (inverse (1 + x ^ 2)) x"
   by (import transc DIFF_ATN)
 
-constdefs
-  division :: "real * real => (nat => real) => bool" 
+definition division :: "real * real => (nat => real) => bool" where 
   "(op ==::(real * real => (nat => real) => bool)
         => (real * real => (nat => real) => bool) => prop)
  (division::real * real => (nat => real) => bool)
@@ -2898,8 +2844,7 @@
                                   b)))))))))"
   by (import transc division)
 
-constdefs
-  dsize :: "(nat => real) => nat" 
+definition dsize :: "(nat => real) => nat" where 
   "(op ==::((nat => real) => nat) => ((nat => real) => nat) => prop)
  (dsize::(nat => real) => nat)
  (%D::nat => real.
@@ -2937,8 +2882,7 @@
                     ((op =::real => real => bool) (D n) (D N)))))))"
   by (import transc dsize)
 
-constdefs
-  tdiv :: "real * real => (nat => real) * (nat => real) => bool" 
+definition tdiv :: "real * real => (nat => real) * (nat => real) => bool" where 
   "tdiv ==
 %(a::real, b::real) (D::nat => real, p::nat => real).
    division (a, b) D & (ALL n::nat. D n <= p n & p n <= D (Suc n))"
@@ -2948,16 +2892,14 @@
    (division (a, b) D & (ALL n::nat. D n <= p n & p n <= D (Suc n)))"
   by (import transc tdiv)
 
-constdefs
-  gauge :: "(real => bool) => (real => real) => bool" 
+definition gauge :: "(real => bool) => (real => real) => bool" where 
   "gauge == %(E::real => bool) g::real => real. ALL x::real. E x --> 0 < g x"
 
 lemma gauge: "ALL (E::real => bool) g::real => real.
    gauge E g = (ALL x::real. E x --> 0 < g x)"
   by (import transc gauge)
 
-constdefs
-  fine :: "(real => real) => (nat => real) * (nat => real) => bool" 
+definition fine :: "(real => real) => (nat => real) * (nat => real) => bool" where 
   "(op ==::((real => real) => (nat => real) * (nat => real) => bool)
         => ((real => real) => (nat => real) * (nat => real) => bool)
            => prop)
@@ -3000,8 +2942,7 @@
                          (g (p n))))))))"
   by (import transc fine)
 
-constdefs
-  rsum :: "(nat => real) * (nat => real) => (real => real) => real" 
+definition rsum :: "(nat => real) * (nat => real) => (real => real) => real" where 
   "rsum ==
 %(D::nat => real, p::nat => real) f::real => real.
    real.sum (0, dsize D) (%n::nat. f (p n) * (D (Suc n) - D n))"
@@ -3011,8 +2952,7 @@
    real.sum (0, dsize D) (%n::nat. f (p n) * (D (Suc n) - D n))"
   by (import transc rsum)
 
-constdefs
-  Dint :: "real * real => (real => real) => real => bool" 
+definition Dint :: "real * real => (real => real) => real => bool" where 
   "Dint ==
 %(a::real, b::real) (f::real => real) k::real.
    ALL e>0.
@@ -3313,8 +3253,7 @@
     poly_diff_aux n (h # t) = real n * h # poly_diff_aux (Suc n) t)"
   by (import poly poly_diff_aux_def)
 
-constdefs
-  diff :: "real list => real list" 
+definition diff :: "real list => real list" where 
   "diff == %l::real list. if l = [] then [] else poly_diff_aux 1 (tl l)"
 
 lemma poly_diff_def: "ALL l::real list. diff l = (if l = [] then [] else poly_diff_aux 1 (tl l))"
@@ -3622,8 +3561,7 @@
    poly p = poly q --> poly (diff p) = poly (diff q)"
   by (import poly POLY_DIFF_WELLDEF)
 
-constdefs
-  poly_divides :: "real list => real list => bool" 
+definition poly_divides :: "real list => real list => bool" where 
   "poly_divides ==
 %(p1::real list) p2::real list.
    EX q::real list. poly p2 = poly (poly_mul p1 q)"
@@ -3681,8 +3619,7 @@
        ~ poly_divides (poly_exp [- a, 1] (Suc n)) p)"
   by (import poly POLY_ORDER)
 
-constdefs
-  poly_order :: "real => real list => nat" 
+definition poly_order :: "real => real list => nat" where 
   "poly_order ==
 %(a::real) p::real list.
    SOME n::nat.
@@ -3754,8 +3691,7 @@
    (ALL a::real. poly_order a q = (if poly_order a p = 0 then 0 else 1))"
   by (import poly POLY_SQUAREFREE_DECOMP_ORDER)
 
-constdefs
-  rsquarefree :: "real list => bool" 
+definition rsquarefree :: "real list => bool" where 
   "rsquarefree ==
 %p::real list.
    poly p ~= poly [] &
@@ -3798,8 +3734,7 @@
 lemma POLY_NORMALIZE: "ALL t::real list. poly (normalize t) = poly t"
   by (import poly POLY_NORMALIZE)
 
-constdefs
-  degree :: "real list => nat" 
+definition degree :: "real list => nat" where 
   "degree == %p::real list. PRE (length (normalize p))"
 
 lemma degree: "ALL p::real list. degree p = PRE (length (normalize p))"
--- a/src/HOL/Import/HOL/HOL4Vec.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL/HOL4Vec.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -164,8 +164,7 @@
 lemma word_base0_def: "word_base0 = (%a::'a::type list. mk_word (CONSTR 0 a (%n::nat. BOTTOM)))"
   by (import word_base word_base0_def)
 
-constdefs
-  WORD :: "'a list => 'a word" 
+definition WORD :: "'a list => 'a word" where 
   "WORD == word_base0"
 
 lemma WORD: "WORD = word_base0"
@@ -680,8 +679,7 @@
 
 ;setup_theory word_num
 
-constdefs
-  LVAL :: "('a => nat) => nat => 'a list => nat" 
+definition LVAL :: "('a => nat) => nat => 'a list => nat" where 
   "LVAL ==
 %(f::'a::type => nat) b::nat. foldl (%(e::nat) x::'a::type. b * e + f x) 0"
 
@@ -756,8 +754,7 @@
     SNOC (frep (m mod b)) (NLIST n frep b (m div b)))"
   by (import word_num NLIST_DEF)
 
-constdefs
-  NWORD :: "nat => (nat => 'a) => nat => nat => 'a word" 
+definition NWORD :: "nat => (nat => 'a) => nat => nat => 'a word" where 
   "NWORD ==
 %(n::nat) (frep::nat => 'a::type) (b::nat) m::nat. WORD (NLIST n frep b m)"
 
@@ -1076,8 +1073,7 @@
    EXISTSABIT P (WCAT (w1, w2)) = (EXISTSABIT P w1 | EXISTSABIT P w2)"
   by (import word_bitop EXISTSABIT_WCAT)
 
-constdefs
-  SHR :: "bool => 'a => 'a word => 'a word * 'a" 
+definition SHR :: "bool => 'a => 'a word => 'a word * 'a" where 
   "SHR ==
 %(f::bool) (b::'a::type) w::'a::type word.
    (WCAT
@@ -1093,8 +1089,7 @@
     bit 0 w)"
   by (import word_bitop SHR_DEF)
 
-constdefs
-  SHL :: "bool => 'a word => 'a => 'a * 'a word" 
+definition SHL :: "bool => 'a word => 'a => 'a * 'a word" where 
   "SHL ==
 %(f::bool) (w::'a::type word) b::'a::type.
    (bit (PRE (WORDLEN w)) w,
@@ -1196,8 +1191,7 @@
 
 ;setup_theory bword_num
 
-constdefs
-  BV :: "bool => nat" 
+definition BV :: "bool => nat" where 
   "BV == %b::bool. if b then Suc 0 else 0"
 
 lemma BV_DEF: "ALL b::bool. BV b = (if b then Suc 0 else 0)"
@@ -1248,15 +1242,13 @@
              BNVAL (WCAT (w1, w2)) = BNVAL w1 * 2 ^ m + BNVAL w2))"
   by (import bword_num BNVAL_WCAT)
 
-constdefs
-  VB :: "nat => bool" 
+definition VB :: "nat => bool" where 
   "VB == %n::nat. n mod 2 ~= 0"
 
 lemma VB_DEF: "ALL n::nat. VB n = (n mod 2 ~= 0)"
   by (import bword_num VB_DEF)
 
-constdefs
-  NBWORD :: "nat => nat => bool word" 
+definition NBWORD :: "nat => nat => bool word" where 
   "NBWORD == %(n::nat) m::nat. WORD (NLIST n VB 2 m)"
 
 lemma NBWORD_DEF: "ALL (n::nat) m::nat. NBWORD n m = WORD (NLIST n VB 2 m)"
--- a/src/HOL/Import/HOL/HOL4Word32.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL/HOL4Word32.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -68,8 +68,7 @@
    BITS h l n = MOD_2EXP (Suc h - l) (DIV_2EXP l n)"
   by (import bits BITS_def)
 
-constdefs
-  bit :: "nat => nat => bool" 
+definition bit :: "nat => nat => bool" where 
   "bit == %(b::nat) n::nat. BITS b b n = 1"
 
 lemma BIT_def: "ALL (b::nat) n::nat. bit b n = (BITS b b n = 1)"
@@ -840,15 +839,13 @@
 lemma w_T_def: "w_T = mk_word32 (EQUIV COMP0)"
   by (import word32 w_T_def)
 
-constdefs
-  word_suc :: "word32 => word32" 
+definition word_suc :: "word32 => word32" where 
   "word_suc == %T1::word32. mk_word32 (EQUIV (Suc (Eps (dest_word32 T1))))"
 
 lemma word_suc: "ALL T1::word32. word_suc T1 = mk_word32 (EQUIV (Suc (Eps (dest_word32 T1))))"
   by (import word32 word_suc)
 
-constdefs
-  word_add :: "word32 => word32 => word32" 
+definition word_add :: "word32 => word32 => word32" where 
   "word_add ==
 %(T1::word32) T2::word32.
    mk_word32 (EQUIV (Eps (dest_word32 T1) + Eps (dest_word32 T2)))"
@@ -858,8 +855,7 @@
    mk_word32 (EQUIV (Eps (dest_word32 T1) + Eps (dest_word32 T2)))"
   by (import word32 word_add)
 
-constdefs
-  word_mul :: "word32 => word32 => word32" 
+definition word_mul :: "word32 => word32 => word32" where 
   "word_mul ==
 %(T1::word32) T2::word32.
    mk_word32 (EQUIV (Eps (dest_word32 T1) * Eps (dest_word32 T2)))"
@@ -869,8 +865,7 @@
    mk_word32 (EQUIV (Eps (dest_word32 T1) * Eps (dest_word32 T2)))"
   by (import word32 word_mul)
 
-constdefs
-  word_1comp :: "word32 => word32" 
+definition word_1comp :: "word32 => word32" where 
   "word_1comp ==
 %T1::word32. mk_word32 (EQUIV (ONE_COMP (Eps (dest_word32 T1))))"
 
@@ -878,8 +873,7 @@
    word_1comp T1 = mk_word32 (EQUIV (ONE_COMP (Eps (dest_word32 T1))))"
   by (import word32 word_1comp)
 
-constdefs
-  word_2comp :: "word32 => word32" 
+definition word_2comp :: "word32 => word32" where 
   "word_2comp ==
 %T1::word32. mk_word32 (EQUIV (TWO_COMP (Eps (dest_word32 T1))))"
 
@@ -887,24 +881,21 @@
    word_2comp T1 = mk_word32 (EQUIV (TWO_COMP (Eps (dest_word32 T1))))"
   by (import word32 word_2comp)
 
-constdefs
-  word_lsr1 :: "word32 => word32" 
+definition word_lsr1 :: "word32 => word32" where 
   "word_lsr1 == %T1::word32. mk_word32 (EQUIV (LSR_ONE (Eps (dest_word32 T1))))"
 
 lemma word_lsr1: "ALL T1::word32.
    word_lsr1 T1 = mk_word32 (EQUIV (LSR_ONE (Eps (dest_word32 T1))))"
   by (import word32 word_lsr1)
 
-constdefs
-  word_asr1 :: "word32 => word32" 
+definition word_asr1 :: "word32 => word32" where 
   "word_asr1 == %T1::word32. mk_word32 (EQUIV (ASR_ONE (Eps (dest_word32 T1))))"
 
 lemma word_asr1: "ALL T1::word32.
    word_asr1 T1 = mk_word32 (EQUIV (ASR_ONE (Eps (dest_word32 T1))))"
   by (import word32 word_asr1)
 
-constdefs
-  word_ror1 :: "word32 => word32" 
+definition word_ror1 :: "word32 => word32" where 
   "word_ror1 == %T1::word32. mk_word32 (EQUIV (ROR_ONE (Eps (dest_word32 T1))))"
 
 lemma word_ror1: "ALL T1::word32.
@@ -940,8 +931,7 @@
 lemma MSB_def: "ALL T1::word32. MSB T1 = MSBn (Eps (dest_word32 T1))"
   by (import word32 MSB_def)
 
-constdefs
-  bitwise_or :: "word32 => word32 => word32" 
+definition bitwise_or :: "word32 => word32 => word32" where 
   "bitwise_or ==
 %(T1::word32) T2::word32.
    mk_word32 (EQUIV (OR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
@@ -951,8 +941,7 @@
    mk_word32 (EQUIV (OR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
   by (import word32 bitwise_or)
 
-constdefs
-  bitwise_eor :: "word32 => word32 => word32" 
+definition bitwise_eor :: "word32 => word32 => word32" where 
   "bitwise_eor ==
 %(T1::word32) T2::word32.
    mk_word32 (EQUIV (EOR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
@@ -962,8 +951,7 @@
    mk_word32 (EQUIV (EOR (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
   by (import word32 bitwise_eor)
 
-constdefs
-  bitwise_and :: "word32 => word32 => word32" 
+definition bitwise_and :: "word32 => word32 => word32" where 
   "bitwise_and ==
 %(T1::word32) T2::word32.
    mk_word32 (EQUIV (AND (Eps (dest_word32 T1)) (Eps (dest_word32 T2))))"
@@ -1154,36 +1142,31 @@
 lemma ADD_TWO_COMP2: "ALL x::word32. word_add (word_2comp x) x = w_0"
   by (import word32 ADD_TWO_COMP2)
 
-constdefs
-  word_sub :: "word32 => word32 => word32" 
+definition word_sub :: "word32 => word32 => word32" where 
   "word_sub == %(a::word32) b::word32. word_add a (word_2comp b)"
 
 lemma word_sub: "ALL (a::word32) b::word32. word_sub a b = word_add a (word_2comp b)"
   by (import word32 word_sub)
 
-constdefs
-  word_lsl :: "word32 => nat => word32" 
+definition word_lsl :: "word32 => nat => word32" where 
   "word_lsl == %(a::word32) n::nat. word_mul a (n2w (2 ^ n))"
 
 lemma word_lsl: "ALL (a::word32) n::nat. word_lsl a n = word_mul a (n2w (2 ^ n))"
   by (import word32 word_lsl)
 
-constdefs
-  word_lsr :: "word32 => nat => word32" 
+definition word_lsr :: "word32 => nat => word32" where 
   "word_lsr == %(a::word32) n::nat. (word_lsr1 ^^ n) a"
 
 lemma word_lsr: "ALL (a::word32) n::nat. word_lsr a n = (word_lsr1 ^^ n) a"
   by (import word32 word_lsr)
 
-constdefs
-  word_asr :: "word32 => nat => word32" 
+definition word_asr :: "word32 => nat => word32" where 
   "word_asr == %(a::word32) n::nat. (word_asr1 ^^ n) a"
 
 lemma word_asr: "ALL (a::word32) n::nat. word_asr a n = (word_asr1 ^^ n) a"
   by (import word32 word_asr)
 
-constdefs
-  word_ror :: "word32 => nat => word32" 
+definition word_ror :: "word32 => nat => word32" where 
   "word_ror == %(a::word32) n::nat. (word_ror1 ^^ n) a"
 
 lemma word_ror: "ALL (a::word32) n::nat. word_ror a n = (word_ror1 ^^ n) a"
--- a/src/HOL/Import/HOL4Compat.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOL4Compat.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -15,8 +15,7 @@
 lemma COND_DEF:"(If b t f) = (@x. ((b = True) --> (x = t)) & ((b = False) --> (x = f)))"
   by auto
 
-constdefs
-  LET :: "['a \<Rightarrow> 'b,'a] \<Rightarrow> 'b"
+definition LET :: "['a \<Rightarrow> 'b,'a] \<Rightarrow> 'b" where
   "LET f s == f s"
 
 lemma [hol4rew]: "LET f s = Let s f"
@@ -119,10 +118,10 @@
 lemma LESS_OR_EQ: "m <= (n::nat) = (m < n | m = n)"
   by auto
 
-constdefs
-  nat_gt :: "nat => nat => bool"
+definition nat_gt :: "nat => nat => bool" where
   "nat_gt == %m n. n < m"
-  nat_ge :: "nat => nat => bool"
+
+definition nat_ge :: "nat => nat => bool" where
   "nat_ge == %m n. nat_gt m n | m = n"
 
 lemma [hol4rew]: "nat_gt m n = (n < m)"
@@ -200,8 +199,7 @@
   qed
 qed;
 
-constdefs
-  FUNPOW :: "('a => 'a) => nat => 'a => 'a"
+definition FUNPOW :: "('a => 'a) => nat => 'a => 'a" where
   "FUNPOW f n == f ^^ n"
 
 lemma FUNPOW: "(ALL f x. (f ^^ 0) x = x) &
@@ -229,14 +227,16 @@
 lemma DIVISION: "(0::nat) < n --> (!k. (k = k div n * n + k mod n) & k mod n < n)"
   by simp
 
-constdefs
-  ALT_ZERO :: nat
+definition ALT_ZERO :: nat where 
   "ALT_ZERO == 0"
-  NUMERAL_BIT1 :: "nat \<Rightarrow> nat"
+
+definition NUMERAL_BIT1 :: "nat \<Rightarrow> nat" where 
   "NUMERAL_BIT1 n == n + (n + Suc 0)"
-  NUMERAL_BIT2 :: "nat \<Rightarrow> nat"
+
+definition NUMERAL_BIT2 :: "nat \<Rightarrow> nat" where 
   "NUMERAL_BIT2 n == n + (n + Suc (Suc 0))"
-  NUMERAL :: "nat \<Rightarrow> nat"
+
+definition NUMERAL :: "nat \<Rightarrow> nat" where 
   "NUMERAL x == x"
 
 lemma [hol4rew]: "NUMERAL ALT_ZERO = 0"
@@ -329,8 +329,7 @@
 lemma NULL_DEF: "(null [] = True) & (!h t. null (h # t) = False)"
   by simp
 
-constdefs
-  sum :: "nat list \<Rightarrow> nat"
+definition sum :: "nat list \<Rightarrow> nat" where
   "sum l == foldr (op +) l 0"
 
 lemma SUM: "(sum [] = 0) & (!h t. sum (h#t) = h + sum t)"
@@ -359,8 +358,7 @@
   (ALL n x. replicate (Suc n) x = x # replicate n x)"
   by simp
 
-constdefs
-  FOLDR :: "[['a,'b]\<Rightarrow>'b,'b,'a list] \<Rightarrow> 'b"
+definition FOLDR :: "[['a,'b]\<Rightarrow>'b,'b,'a list] \<Rightarrow> 'b" where
   "FOLDR f e l == foldr f l e"
 
 lemma [hol4rew]: "FOLDR f e l = foldr f l e"
@@ -418,8 +416,7 @@
 lemma list_CASES: "(l = []) | (? t h. l = h#t)"
   by (induct l,auto)
 
-constdefs
-  ZIP :: "'a list * 'b list \<Rightarrow> ('a * 'b) list"
+definition ZIP :: "'a list * 'b list \<Rightarrow> ('a * 'b) list" where
   "ZIP == %(a,b). zip a b"
 
 lemma ZIP: "(zip [] [] = []) &
@@ -514,8 +511,7 @@
 lemma pow: "(!x::real. x ^ 0 = 1) & (!x::real. ALL n. x ^ (Suc n) = x * x ^ n)"
   by simp
 
-constdefs
-  real_gt :: "real => real => bool" 
+definition real_gt :: "real => real => bool" where 
   "real_gt == %x y. y < x"
 
 lemma [hol4rew]: "real_gt x y = (y < x)"
@@ -524,8 +520,7 @@
 lemma real_gt: "ALL x (y::real). (y < x) = (y < x)"
   by simp
 
-constdefs
-  real_ge :: "real => real => bool"
+definition real_ge :: "real => real => bool" where
   "real_ge x y == y <= x"
 
 lemma [hol4rew]: "real_ge x y = (y <= x)"
--- a/src/HOL/Import/HOLLight/HOLLight.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOLLight/HOLLight.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -95,8 +95,7 @@
 lemma EXCLUDED_MIDDLE: "ALL t::bool. t | ~ t"
   by (import hollight EXCLUDED_MIDDLE)
 
-constdefs
-  COND :: "bool => 'A => 'A => 'A" 
+definition COND :: "bool => 'A => 'A => 'A" where 
   "COND ==
 %(t::bool) (t1::'A::type) t2::'A::type.
    SOME x::'A::type. (t = True --> x = t1) & (t = False --> x = t2)"
@@ -173,15 +172,13 @@
 (b & P x True | ~ b & P y False)"
   by (import hollight th_cond)
 
-constdefs
-  LET_END :: "'A => 'A" 
+definition LET_END :: "'A => 'A" where 
   "LET_END == %t::'A::type. t"
 
 lemma DEF_LET_END: "LET_END = (%t::'A::type. t)"
   by (import hollight DEF_LET_END)
 
-constdefs
-  GABS :: "('A => bool) => 'A" 
+definition GABS :: "('A => bool) => 'A" where 
   "(op ==::(('A::type => bool) => 'A::type)
         => (('A::type => bool) => 'A::type) => prop)
  (GABS::('A::type => bool) => 'A::type)
@@ -193,8 +190,7 @@
  (Eps::('A::type => bool) => 'A::type)"
   by (import hollight DEF_GABS)
 
-constdefs
-  GEQ :: "'A => 'A => bool" 
+definition GEQ :: "'A => 'A => bool" where 
   "(op ==::('A::type => 'A::type => bool)
         => ('A::type => 'A::type => bool) => prop)
  (GEQ::'A::type => 'A::type => bool) (op =::'A::type => 'A::type => bool)"
@@ -208,8 +204,7 @@
    x = Pair_Rep a b"
   by (import hollight PAIR_EXISTS_THM)
 
-constdefs
-  CURRY :: "('A * 'B => 'C) => 'A => 'B => 'C" 
+definition CURRY :: "('A * 'B => 'C) => 'A => 'B => 'C" where 
   "CURRY ==
 %(u::'A::type * 'B::type => 'C::type) (ua::'A::type) ub::'B::type.
    u (ua, ub)"
@@ -219,8 +214,7 @@
     u (ua, ub))"
   by (import hollight DEF_CURRY)
 
-constdefs
-  UNCURRY :: "('A => 'B => 'C) => 'A * 'B => 'C" 
+definition UNCURRY :: "('A => 'B => 'C) => 'A * 'B => 'C" where 
   "UNCURRY ==
 %(u::'A::type => 'B::type => 'C::type) ua::'A::type * 'B::type.
    u (fst ua) (snd ua)"
@@ -230,8 +224,7 @@
     u (fst ua) (snd ua))"
   by (import hollight DEF_UNCURRY)
 
-constdefs
-  PASSOC :: "(('A * 'B) * 'C => 'D) => 'A * 'B * 'C => 'D" 
+definition PASSOC :: "(('A * 'B) * 'C => 'D) => 'A * 'B * 'C => 'D" where 
   "PASSOC ==
 %(u::('A::type * 'B::type) * 'C::type => 'D::type)
    ua::'A::type * 'B::type * 'C::type.
@@ -291,8 +284,7 @@
    (m * n = NUMERAL_BIT1 0) = (m = NUMERAL_BIT1 0 & n = NUMERAL_BIT1 0)"
   by (import hollight MULT_EQ_1)
 
-constdefs
-  EXP :: "nat => nat => nat" 
+definition EXP :: "nat => nat => nat" where 
   "EXP ==
 SOME EXP::nat => nat => nat.
    (ALL m::nat. EXP m 0 = NUMERAL_BIT1 0) &
@@ -549,8 +541,7 @@
    (EX m::nat. P m & (ALL x::nat. P x --> <= x m))"
   by (import hollight num_MAX)
 
-constdefs
-  EVEN :: "nat => bool" 
+definition EVEN :: "nat => bool" where 
   "EVEN ==
 SOME EVEN::nat => bool.
    EVEN 0 = True & (ALL n::nat. EVEN (Suc n) = (~ EVEN n))"
@@ -560,8 +551,7 @@
     EVEN 0 = True & (ALL n::nat. EVEN (Suc n) = (~ EVEN n)))"
   by (import hollight DEF_EVEN)
 
-constdefs
-  ODD :: "nat => bool" 
+definition ODD :: "nat => bool" where 
   "ODD ==
 SOME ODD::nat => bool. ODD 0 = False & (ALL n::nat. ODD (Suc n) = (~ ODD n))"
 
@@ -641,8 +631,7 @@
 lemma SUC_SUB1: "ALL x::nat. Suc x - NUMERAL_BIT1 0 = x"
   by (import hollight SUC_SUB1)
 
-constdefs
-  FACT :: "nat => nat" 
+definition FACT :: "nat => nat" where 
   "FACT ==
 SOME FACT::nat => nat.
    FACT 0 = NUMERAL_BIT1 0 & (ALL n::nat. FACT (Suc n) = Suc n * FACT n)"
@@ -669,8 +658,7 @@
       COND (n = 0) (x = 0 & xa = 0) (m = x * n + xa & < xa n)"
   by (import hollight DIVMOD_EXIST_0)
 
-constdefs
-  DIV :: "nat => nat => nat" 
+definition DIV :: "nat => nat => nat" where 
   "DIV ==
 SOME q::nat => nat => nat.
    EX r::nat => nat => nat.
@@ -686,8 +674,7 @@
            (m = q m n * n + r m n & < (r m n) n))"
   by (import hollight DEF_DIV)
 
-constdefs
-  MOD :: "nat => nat => nat" 
+definition MOD :: "nat => nat => nat" where 
   "MOD ==
 SOME r::nat => nat => nat.
    ALL (m::nat) n::nat.
@@ -877,8 +864,7 @@
  n ~= 0 & (ALL (q::nat) r::nat. m = q * n + r & < r n --> P q r))"
   by (import hollight DIVMOD_ELIM_THM)
 
-constdefs
-  eqeq :: "'q_9910 => 'q_9909 => ('q_9910 => 'q_9909 => bool) => bool" 
+definition eqeq :: "'q_9910 => 'q_9909 => ('q_9910 => 'q_9909 => bool) => bool" where 
   "eqeq ==
 %(u::'q_9910::type) (ua::'q_9909::type)
    ub::'q_9910::type => 'q_9909::type => bool. ub u ua"
@@ -888,8 +874,7 @@
     ub::'q_9910::type => 'q_9909::type => bool. ub u ua)"
   by (import hollight DEF__equal__equal_)
 
-constdefs
-  mod_nat :: "nat => nat => nat => bool" 
+definition mod_nat :: "nat => nat => nat => bool" where 
   "mod_nat ==
 %(u::nat) (ua::nat) ub::nat. EX (q1::nat) q2::nat. ua + u * q1 = ub + u * q2"
 
@@ -898,8 +883,7 @@
     EX (q1::nat) q2::nat. ua + u * q1 = ub + u * q2)"
   by (import hollight DEF_mod_nat)
 
-constdefs
-  minimal :: "(nat => bool) => nat" 
+definition minimal :: "(nat => bool) => nat" where 
   "minimal == %u::nat => bool. SOME n::nat. u n & (ALL m::nat. < m n --> ~ u m)"
 
 lemma DEF_minimal: "minimal =
@@ -910,8 +894,7 @@
    Ex P = (P (minimal P) & (ALL x::nat. < x (minimal P) --> ~ P x))"
   by (import hollight MINIMAL)
 
-constdefs
-  WF :: "('A => 'A => bool) => bool" 
+definition WF :: "('A => 'A => bool) => bool" where 
   "WF ==
 %u::'A::type => 'A::type => bool.
    ALL P::'A::type => bool.
@@ -1605,8 +1588,7 @@
        ALL (xa::'A::type) y::'B::type. x (P xa y) = xa & Y (P xa y) = y)"
   by (import hollight INJ_INVERSE2)
 
-constdefs
-  NUMPAIR :: "nat => nat => nat" 
+definition NUMPAIR :: "nat => nat => nat" where 
   "NUMPAIR ==
 %(u::nat) ua::nat.
    EXP (NUMERAL_BIT0 (NUMERAL_BIT1 0)) u *
@@ -1626,8 +1608,7 @@
    (NUMPAIR x1 y1 = NUMPAIR x2 y2) = (x1 = x2 & y1 = y2)"
   by (import hollight NUMPAIR_INJ)
 
-constdefs
-  NUMFST :: "nat => nat" 
+definition NUMFST :: "nat => nat" where 
   "NUMFST ==
 SOME X::nat => nat.
    EX Y::nat => nat.
@@ -1639,8 +1620,7 @@
        ALL (x::nat) y::nat. X (NUMPAIR x y) = x & Y (NUMPAIR x y) = y)"
   by (import hollight DEF_NUMFST)
 
-constdefs
-  NUMSND :: "nat => nat" 
+definition NUMSND :: "nat => nat" where 
   "NUMSND ==
 SOME Y::nat => nat.
    ALL (x::nat) y::nat. NUMFST (NUMPAIR x y) = x & Y (NUMPAIR x y) = y"
@@ -1650,8 +1630,7 @@
     ALL (x::nat) y::nat. NUMFST (NUMPAIR x y) = x & Y (NUMPAIR x y) = y)"
   by (import hollight DEF_NUMSND)
 
-constdefs
-  NUMSUM :: "bool => nat => nat" 
+definition NUMSUM :: "bool => nat => nat" where 
   "NUMSUM ==
 %(u::bool) ua::nat.
    COND u (Suc (NUMERAL_BIT0 (NUMERAL_BIT1 0) * ua))
@@ -1667,8 +1646,7 @@
    (NUMSUM b1 x1 = NUMSUM b2 x2) = (b1 = b2 & x1 = x2)"
   by (import hollight NUMSUM_INJ)
 
-constdefs
-  NUMLEFT :: "nat => bool" 
+definition NUMLEFT :: "nat => bool" where 
   "NUMLEFT ==
 SOME X::nat => bool.
    EX Y::nat => nat.
@@ -1680,8 +1658,7 @@
        ALL (x::bool) y::nat. X (NUMSUM x y) = x & Y (NUMSUM x y) = y)"
   by (import hollight DEF_NUMLEFT)
 
-constdefs
-  NUMRIGHT :: "nat => nat" 
+definition NUMRIGHT :: "nat => nat" where 
   "NUMRIGHT ==
 SOME Y::nat => nat.
    ALL (x::bool) y::nat. NUMLEFT (NUMSUM x y) = x & Y (NUMSUM x y) = y"
@@ -1691,8 +1668,7 @@
     ALL (x::bool) y::nat. NUMLEFT (NUMSUM x y) = x & Y (NUMSUM x y) = y)"
   by (import hollight DEF_NUMRIGHT)
 
-constdefs
-  INJN :: "nat => nat => 'A => bool" 
+definition INJN :: "nat => nat => 'A => bool" where 
   "INJN == %(u::nat) (n::nat) a::'A::type. n = u"
 
 lemma DEF_INJN: "INJN = (%(u::nat) (n::nat) a::'A::type. n = u)"
@@ -1710,8 +1686,7 @@
            ((op =::nat => nat => bool) n1 n2)))"
   by (import hollight INJN_INJ)
 
-constdefs
-  INJA :: "'A => nat => 'A => bool" 
+definition INJA :: "'A => nat => 'A => bool" where 
   "INJA == %(u::'A::type) (n::nat) b::'A::type. b = u"
 
 lemma DEF_INJA: "INJA = (%(u::'A::type) (n::nat) b::'A::type. b = u)"
@@ -1720,8 +1695,7 @@
 lemma INJA_INJ: "ALL (a1::'A::type) a2::'A::type. (INJA a1 = INJA a2) = (a1 = a2)"
   by (import hollight INJA_INJ)
 
-constdefs
-  INJF :: "(nat => nat => 'A => bool) => nat => 'A => bool" 
+definition INJF :: "(nat => nat => 'A => bool) => nat => 'A => bool" where 
   "INJF == %(u::nat => nat => 'A::type => bool) n::nat. u (NUMFST n) (NUMSND n)"
 
 lemma DEF_INJF: "INJF =
@@ -1732,8 +1706,7 @@
    (INJF f1 = INJF f2) = (f1 = f2)"
   by (import hollight INJF_INJ)
 
-constdefs
-  INJP :: "(nat => 'A => bool) => (nat => 'A => bool) => nat => 'A => bool" 
+definition INJP :: "(nat => 'A => bool) => (nat => 'A => bool) => nat => 'A => bool" where 
   "INJP ==
 %(u::nat => 'A::type => bool) (ua::nat => 'A::type => bool) (n::nat)
    a::'A::type. COND (NUMLEFT n) (u (NUMRIGHT n) a) (ua (NUMRIGHT n) a)"
@@ -1748,8 +1721,7 @@
    (INJP f1 f2 = INJP f1' f2') = (f1 = f1' & f2 = f2')"
   by (import hollight INJP_INJ)
 
-constdefs
-  ZCONSTR :: "nat => 'A => (nat => nat => 'A => bool) => nat => 'A => bool" 
+definition ZCONSTR :: "nat => 'A => (nat => nat => 'A => bool) => nat => 'A => bool" where 
   "ZCONSTR ==
 %(u::nat) (ua::'A::type) ub::nat => nat => 'A::type => bool.
    INJP (INJN (Suc u)) (INJP (INJA ua) (INJF ub))"
@@ -1759,8 +1731,7 @@
     INJP (INJN (Suc u)) (INJP (INJA ua) (INJF ub)))"
   by (import hollight DEF_ZCONSTR)
 
-constdefs
-  ZBOT :: "nat => 'A => bool" 
+definition ZBOT :: "nat => 'A => bool" where 
   "ZBOT == INJP (INJN 0) (SOME z::nat => 'A::type => bool. True)"
 
 lemma DEF_ZBOT: "ZBOT = INJP (INJN 0) (SOME z::nat => 'A::type => bool. True)"
@@ -1770,8 +1741,7 @@
    ZCONSTR x xa xb ~= ZBOT"
   by (import hollight ZCONSTR_ZBOT)
 
-constdefs
-  ZRECSPACE :: "(nat => 'A => bool) => bool" 
+definition ZRECSPACE :: "(nat => 'A => bool) => bool" where 
   "ZRECSPACE ==
 %a::nat => 'A::type => bool.
    ALL ZRECSPACE'::(nat => 'A::type => bool) => bool.
@@ -1809,8 +1779,7 @@
   [where a="a :: 'A recspace" and r=r ,
    OF type_definition_recspace]
 
-constdefs
-  BOTTOM :: "'A recspace" 
+definition BOTTOM :: "'A recspace" where 
   "(op ==::'A::type recspace => 'A::type recspace => prop)
  (BOTTOM::'A::type recspace)
  ((_mk_rec::(nat => 'A::type => bool) => 'A::type recspace)
@@ -1822,8 +1791,7 @@
    (ZBOT::nat => 'A::type => bool))"
   by (import hollight DEF_BOTTOM)
 
-constdefs
-  CONSTR :: "nat => 'A => (nat => 'A recspace) => 'A recspace" 
+definition CONSTR :: "nat => 'A => (nat => 'A recspace) => 'A recspace" where 
   "(op ==::(nat => 'A::type => (nat => 'A::type recspace) => 'A::type recspace)
         => (nat
             => 'A::type => (nat => 'A::type recspace) => 'A::type recspace)
@@ -1900,8 +1868,7 @@
          f (CONSTR c i r) = Fn c i r (%n::nat. f (r n))"
   by (import hollight CONSTR_REC)
 
-constdefs
-  FCONS :: "'A => (nat => 'A) => nat => 'A" 
+definition FCONS :: "'A => (nat => 'A) => nat => 'A" where 
   "FCONS ==
 SOME FCONS::'A::type => (nat => 'A::type) => nat => 'A::type.
    (ALL (a::'A::type) f::nat => 'A::type. FCONS a f 0 = a) &
@@ -1917,8 +1884,7 @@
 lemma FCONS_UNDO: "ALL f::nat => 'A::type. f = FCONS (f 0) (f o Suc)"
   by (import hollight FCONS_UNDO)
 
-constdefs
-  FNIL :: "nat => 'A" 
+definition FNIL :: "nat => 'A" where 
   "FNIL == %u::nat. SOME x::'A::type. True"
 
 lemma DEF_FNIL: "FNIL = (%u::nat. SOME x::'A::type. True)"
@@ -1995,8 +1961,7 @@
   [where a="a :: 'A hollight.option" and r=r ,
    OF type_definition_option]
 
-constdefs
-  NONE :: "'A hollight.option" 
+definition NONE :: "'A hollight.option" where 
   "(op ==::'A::type hollight.option => 'A::type hollight.option => prop)
  (NONE::'A::type hollight.option)
  ((_mk_option::'A::type recspace => 'A::type hollight.option)
@@ -2093,8 +2058,7 @@
   [where a="a :: 'A hollight.list" and r=r ,
    OF type_definition_list]
 
-constdefs
-  NIL :: "'A hollight.list" 
+definition NIL :: "'A hollight.list" where 
   "(op ==::'A::type hollight.list => 'A::type hollight.list => prop)
  (NIL::'A::type hollight.list)
  ((_mk_list::'A::type recspace => 'A::type hollight.list)
@@ -2114,8 +2078,7 @@
      (%n::nat. BOTTOM::'A::type recspace)))"
   by (import hollight DEF_NIL)
 
-constdefs
-  CONS :: "'A => 'A hollight.list => 'A hollight.list" 
+definition CONS :: "'A => 'A hollight.list => 'A hollight.list" where 
   "(op ==::('A::type => 'A::type hollight.list => 'A::type hollight.list)
         => ('A::type => 'A::type hollight.list => 'A::type hollight.list)
            => prop)
@@ -2160,8 +2123,7 @@
    EX x::bool => 'A::type. x False = a & x True = b"
   by (import hollight bool_RECURSION)
 
-constdefs
-  ISO :: "('A => 'B) => ('B => 'A) => bool" 
+definition ISO :: "('A => 'B) => ('B => 'A) => bool" where 
   "ISO ==
 %(u::'A::type => 'B::type) ua::'B::type => 'A::type.
    (ALL x::'B::type. u (ua x) = x) & (ALL y::'A::type. ua (u y) = y)"
@@ -2244,15 +2206,13 @@
      (%n::nat. BOTTOM::bool recspace)))"
   by (import hollight DEF__10303)
 
-constdefs
-  two_1 :: "N_2" 
+definition two_1 :: "N_2" where 
   "two_1 == _10302"
 
 lemma DEF_two_1: "two_1 = _10302"
   by (import hollight DEF_two_1)
 
-constdefs
-  two_2 :: "N_2" 
+definition two_2 :: "N_2" where 
   "two_2 == _10303"
 
 lemma DEF_two_2: "two_2 = _10303"
@@ -2337,22 +2297,19 @@
      (%n::nat. BOTTOM::bool recspace)))"
   by (import hollight DEF__10328)
 
-constdefs
-  three_1 :: "N_3" 
+definition three_1 :: "N_3" where 
   "three_1 == _10326"
 
 lemma DEF_three_1: "three_1 = _10326"
   by (import hollight DEF_three_1)
 
-constdefs
-  three_2 :: "N_3" 
+definition three_2 :: "N_3" where 
   "three_2 == _10327"
 
 lemma DEF_three_2: "three_2 = _10327"
   by (import hollight DEF_three_2)
 
-constdefs
-  three_3 :: "N_3" 
+definition three_3 :: "N_3" where 
   "three_3 == _10328"
 
 lemma DEF_three_3: "three_3 = _10328"
@@ -2365,8 +2322,7 @@
    All P"
   by (import hollight list_INDUCT)
 
-constdefs
-  HD :: "'A hollight.list => 'A" 
+definition HD :: "'A hollight.list => 'A" where 
   "HD ==
 SOME HD::'A::type hollight.list => 'A::type.
    ALL (t::'A::type hollight.list) h::'A::type. HD (CONS h t) = h"
@@ -2376,8 +2332,7 @@
     ALL (t::'A::type hollight.list) h::'A::type. HD (CONS h t) = h)"
   by (import hollight DEF_HD)
 
-constdefs
-  TL :: "'A hollight.list => 'A hollight.list" 
+definition TL :: "'A hollight.list => 'A hollight.list" where 
   "TL ==
 SOME TL::'A::type hollight.list => 'A::type hollight.list.
    ALL (h::'A::type) t::'A::type hollight.list. TL (CONS h t) = t"
@@ -2387,8 +2342,7 @@
     ALL (h::'A::type) t::'A::type hollight.list. TL (CONS h t) = t)"
   by (import hollight DEF_TL)
 
-constdefs
-  APPEND :: "'A hollight.list => 'A hollight.list => 'A hollight.list" 
+definition APPEND :: "'A hollight.list => 'A hollight.list => 'A hollight.list" where 
   "APPEND ==
 SOME APPEND::'A::type hollight.list
              => 'A::type hollight.list => 'A::type hollight.list.
@@ -2405,8 +2359,7 @@
         APPEND (CONS h t) l = CONS h (APPEND t l)))"
   by (import hollight DEF_APPEND)
 
-constdefs
-  REVERSE :: "'A hollight.list => 'A hollight.list" 
+definition REVERSE :: "'A hollight.list => 'A hollight.list" where 
   "REVERSE ==
 SOME REVERSE::'A::type hollight.list => 'A::type hollight.list.
    REVERSE NIL = NIL &
@@ -2420,8 +2373,7 @@
         REVERSE (CONS x l) = APPEND (REVERSE l) (CONS x NIL)))"
   by (import hollight DEF_REVERSE)
 
-constdefs
-  LENGTH :: "'A hollight.list => nat" 
+definition LENGTH :: "'A hollight.list => nat" where 
   "LENGTH ==
 SOME LENGTH::'A::type hollight.list => nat.
    LENGTH NIL = 0 &
@@ -2435,8 +2387,7 @@
         LENGTH (CONS h t) = Suc (LENGTH t)))"
   by (import hollight DEF_LENGTH)
 
-constdefs
-  MAP :: "('A => 'B) => 'A hollight.list => 'B hollight.list" 
+definition MAP :: "('A => 'B) => 'A hollight.list => 'B hollight.list" where 
   "MAP ==
 SOME MAP::('A::type => 'B::type)
           => 'A::type hollight.list => 'B::type hollight.list.
@@ -2452,8 +2403,7 @@
         MAP f (CONS h t) = CONS (f h) (MAP f t)))"
   by (import hollight DEF_MAP)
 
-constdefs
-  LAST :: "'A hollight.list => 'A" 
+definition LAST :: "'A hollight.list => 'A" where 
   "LAST ==
 SOME LAST::'A::type hollight.list => 'A::type.
    ALL (h::'A::type) t::'A::type hollight.list.
@@ -2465,8 +2415,7 @@
        LAST (CONS h t) = COND (t = NIL) h (LAST t))"
   by (import hollight DEF_LAST)
 
-constdefs
-  REPLICATE :: "nat => 'q_16860 => 'q_16860 hollight.list" 
+definition REPLICATE :: "nat => 'q_16860 => 'q_16860 hollight.list" where 
   "REPLICATE ==
 SOME REPLICATE::nat => 'q_16860::type => 'q_16860::type hollight.list.
    (ALL x::'q_16860::type. REPLICATE 0 x = NIL) &
@@ -2480,8 +2429,7 @@
         REPLICATE (Suc n) x = CONS x (REPLICATE n x)))"
   by (import hollight DEF_REPLICATE)
 
-constdefs
-  NULL :: "'q_16875 hollight.list => bool" 
+definition NULL :: "'q_16875 hollight.list => bool" where 
   "NULL ==
 SOME NULL::'q_16875::type hollight.list => bool.
    NULL NIL = True &
@@ -2495,8 +2443,7 @@
         NULL (CONS h t) = False))"
   by (import hollight DEF_NULL)
 
-constdefs
-  ALL_list :: "('q_16895 => bool) => 'q_16895 hollight.list => bool" 
+definition ALL_list :: "('q_16895 => bool) => 'q_16895 hollight.list => bool" where 
   "ALL_list ==
 SOME u::('q_16895::type => bool) => 'q_16895::type hollight.list => bool.
    (ALL P::'q_16895::type => bool. u P NIL = True) &
@@ -2527,9 +2474,8 @@
         t::'q_16916::type hollight.list. u P (CONS h t) = (P h | u P t)))"
   by (import hollight DEF_EX)
 
-constdefs
-  ITLIST :: "('q_16939 => 'q_16938 => 'q_16938)
-=> 'q_16939 hollight.list => 'q_16938 => 'q_16938" 
+definition ITLIST :: "('q_16939 => 'q_16938 => 'q_16938)
+=> 'q_16939 hollight.list => 'q_16938 => 'q_16938" where 
   "ITLIST ==
 SOME ITLIST::('q_16939::type => 'q_16938::type => 'q_16938::type)
              => 'q_16939::type hollight.list
@@ -2553,8 +2499,7 @@
         ITLIST f (CONS h t) b = f h (ITLIST f t b)))"
   by (import hollight DEF_ITLIST)
 
-constdefs
-  MEM :: "'q_16964 => 'q_16964 hollight.list => bool" 
+definition MEM :: "'q_16964 => 'q_16964 hollight.list => bool" where 
   "MEM ==
 SOME MEM::'q_16964::type => 'q_16964::type hollight.list => bool.
    (ALL x::'q_16964::type. MEM x NIL = False) &
@@ -2570,9 +2515,8 @@
         MEM x (CONS h t) = (x = h | MEM x t)))"
   by (import hollight DEF_MEM)
 
-constdefs
-  ALL2 :: "('q_16997 => 'q_17004 => bool)
-=> 'q_16997 hollight.list => 'q_17004 hollight.list => bool" 
+definition ALL2 :: "('q_16997 => 'q_17004 => bool)
+=> 'q_16997 hollight.list => 'q_17004 hollight.list => bool" where 
   "ALL2 ==
 SOME ALL2::('q_16997::type => 'q_17004::type => bool)
            => 'q_16997::type hollight.list
@@ -2604,10 +2548,9 @@
 ALL2 P (CONS h1 t1) (CONS h2 t2) = (P h1 h2 & ALL2 P t1 t2)"
   by (import hollight ALL2)
 
-constdefs
-  MAP2 :: "('q_17089 => 'q_17096 => 'q_17086)
+definition MAP2 :: "('q_17089 => 'q_17096 => 'q_17086)
 => 'q_17089 hollight.list
-   => 'q_17096 hollight.list => 'q_17086 hollight.list" 
+   => 'q_17096 hollight.list => 'q_17086 hollight.list" where 
   "MAP2 ==
 SOME MAP2::('q_17089::type => 'q_17096::type => 'q_17086::type)
            => 'q_17089::type hollight.list
@@ -2639,8 +2582,7 @@
 CONS (f h1 h2) (MAP2 f t1 t2)"
   by (import hollight MAP2)
 
-constdefs
-  EL :: "nat => 'q_17157 hollight.list => 'q_17157" 
+definition EL :: "nat => 'q_17157 hollight.list => 'q_17157" where 
   "EL ==
 SOME EL::nat => 'q_17157::type hollight.list => 'q_17157::type.
    (ALL l::'q_17157::type hollight.list. EL 0 l = HD l) &
@@ -2654,8 +2596,7 @@
         EL (Suc n) l = EL n (TL l)))"
   by (import hollight DEF_EL)
 
-constdefs
-  FILTER :: "('q_17182 => bool) => 'q_17182 hollight.list => 'q_17182 hollight.list" 
+definition FILTER :: "('q_17182 => bool) => 'q_17182 hollight.list => 'q_17182 hollight.list" where 
   "FILTER ==
 SOME FILTER::('q_17182::type => bool)
              => 'q_17182::type hollight.list
@@ -2676,8 +2617,7 @@
         COND (P h) (CONS h (FILTER P t)) (FILTER P t)))"
   by (import hollight DEF_FILTER)
 
-constdefs
-  ASSOC :: "'q_17211 => ('q_17211 * 'q_17205) hollight.list => 'q_17205" 
+definition ASSOC :: "'q_17211 => ('q_17211 * 'q_17205) hollight.list => 'q_17205" where 
   "ASSOC ==
 SOME ASSOC::'q_17211::type
             => ('q_17211::type * 'q_17205::type) hollight.list
@@ -2695,9 +2635,8 @@
        ASSOC a (CONS h t) = COND (fst h = a) (snd h) (ASSOC a t))"
   by (import hollight DEF_ASSOC)
 
-constdefs
-  ITLIST2 :: "('q_17235 => 'q_17243 => 'q_17233 => 'q_17233)
-=> 'q_17235 hollight.list => 'q_17243 hollight.list => 'q_17233 => 'q_17233" 
+definition ITLIST2 :: "('q_17235 => 'q_17243 => 'q_17233 => 'q_17233)
+=> 'q_17235 hollight.list => 'q_17243 hollight.list => 'q_17233 => 'q_17233" where 
   "ITLIST2 ==
 SOME ITLIST2::('q_17235::type
                => 'q_17243::type => 'q_17233::type => 'q_17233::type)
@@ -3041,8 +2980,7 @@
 ALL2 Q l l'"
   by (import hollight MONO_ALL2)
 
-constdefs
-  dist :: "nat * nat => nat" 
+definition dist :: "nat * nat => nat" where 
   "dist == %u::nat * nat. fst u - snd u + (snd u - fst u)"
 
 lemma DEF_dist: "dist = (%u::nat * nat. fst u - snd u + (snd u - fst u))"
@@ -3133,8 +3071,7 @@
    (EX (x::nat) N::nat. ALL i::nat. <= N i --> <= (P i) (Q i + x))"
   by (import hollight BOUNDS_IGNORE)
 
-constdefs
-  is_nadd :: "(nat => nat) => bool" 
+definition is_nadd :: "(nat => nat) => bool" where 
   "is_nadd ==
 %u::nat => nat.
    EX B::nat.
@@ -3211,8 +3148,7 @@
           (A * n + B)"
   by (import hollight NADD_ALTMUL)
 
-constdefs
-  nadd_eq :: "nadd => nadd => bool" 
+definition nadd_eq :: "nadd => nadd => bool" where 
   "nadd_eq ==
 %(u::nadd) ua::nadd.
    EX B::nat. ALL n::nat. <= (dist (dest_nadd u n, dest_nadd ua n)) B"
@@ -3231,8 +3167,7 @@
 lemma NADD_EQ_TRANS: "ALL (x::nadd) (y::nadd) z::nadd. nadd_eq x y & nadd_eq y z --> nadd_eq x z"
   by (import hollight NADD_EQ_TRANS)
 
-constdefs
-  nadd_of_num :: "nat => nadd" 
+definition nadd_of_num :: "nat => nadd" where 
   "nadd_of_num == %u::nat. mk_nadd (op * u)"
 
 lemma DEF_nadd_of_num: "nadd_of_num = (%u::nat. mk_nadd (op * u))"
@@ -3247,8 +3182,7 @@
 lemma NADD_OF_NUM_EQ: "ALL (m::nat) n::nat. nadd_eq (nadd_of_num m) (nadd_of_num n) = (m = n)"
   by (import hollight NADD_OF_NUM_EQ)
 
-constdefs
-  nadd_le :: "nadd => nadd => bool" 
+definition nadd_le :: "nadd => nadd => bool" where 
   "nadd_le ==
 %(u::nadd) ua::nadd.
    EX B::nat. ALL n::nat. <= (dest_nadd u n) (dest_nadd ua n + B)"
@@ -3289,8 +3223,7 @@
 lemma NADD_OF_NUM_LE: "ALL (m::nat) n::nat. nadd_le (nadd_of_num m) (nadd_of_num n) = <= m n"
   by (import hollight NADD_OF_NUM_LE)
 
-constdefs
-  nadd_add :: "nadd => nadd => nadd" 
+definition nadd_add :: "nadd => nadd => nadd" where 
   "nadd_add ==
 %(u::nadd) ua::nadd. mk_nadd (%n::nat. dest_nadd u n + dest_nadd ua n)"
 
@@ -3332,8 +3265,7 @@
     (nadd_of_num (x + xa))"
   by (import hollight NADD_OF_NUM_ADD)
 
-constdefs
-  nadd_mul :: "nadd => nadd => nadd" 
+definition nadd_mul :: "nadd => nadd => nadd" where 
   "nadd_mul ==
 %(u::nadd) ua::nadd. mk_nadd (%n::nat. dest_nadd u (dest_nadd ua n))"
 
@@ -3438,8 +3370,7 @@
    (EX (A::nat) N::nat. ALL n::nat. <= N n --> <= n (A * dest_nadd x n))"
   by (import hollight NADD_LBOUND)
 
-constdefs
-  nadd_rinv :: "nadd => nat => nat" 
+definition nadd_rinv :: "nadd => nat => nat" where 
   "nadd_rinv == %(u::nadd) n::nat. DIV (n * n) (dest_nadd u n)"
 
 lemma DEF_nadd_rinv: "nadd_rinv = (%(u::nadd) n::nat. DIV (n * n) (dest_nadd u n))"
@@ -3528,8 +3459,7 @@
           <= (dist (m * nadd_rinv x n, n * nadd_rinv x m)) (B * (m + n)))"
   by (import hollight NADD_MUL_LINV_LEMMA8)
 
-constdefs
-  nadd_inv :: "nadd => nadd" 
+definition nadd_inv :: "nadd => nadd" where 
   "nadd_inv ==
 %u::nadd.
    COND (nadd_eq u (nadd_of_num 0)) (nadd_of_num 0) (mk_nadd (nadd_rinv u))"
@@ -3570,15 +3500,13 @@
   [where a="a :: hreal" and r=r ,
    OF type_definition_hreal]
 
-constdefs
-  hreal_of_num :: "nat => hreal" 
+definition hreal_of_num :: "nat => hreal" where 
   "hreal_of_num == %m::nat. mk_hreal (nadd_eq (nadd_of_num m))"
 
 lemma DEF_hreal_of_num: "hreal_of_num = (%m::nat. mk_hreal (nadd_eq (nadd_of_num m)))"
   by (import hollight DEF_hreal_of_num)
 
-constdefs
-  hreal_add :: "hreal => hreal => hreal" 
+definition hreal_add :: "hreal => hreal => hreal" where 
   "hreal_add ==
 %(x::hreal) y::hreal.
    mk_hreal
@@ -3594,8 +3522,7 @@
             nadd_eq (nadd_add xa ya) u & dest_hreal x xa & dest_hreal y ya))"
   by (import hollight DEF_hreal_add)
 
-constdefs
-  hreal_mul :: "hreal => hreal => hreal" 
+definition hreal_mul :: "hreal => hreal => hreal" where 
   "hreal_mul ==
 %(x::hreal) y::hreal.
    mk_hreal
@@ -3611,8 +3538,7 @@
             nadd_eq (nadd_mul xa ya) u & dest_hreal x xa & dest_hreal y ya))"
   by (import hollight DEF_hreal_mul)
 
-constdefs
-  hreal_le :: "hreal => hreal => bool" 
+definition hreal_le :: "hreal => hreal => bool" where 
   "hreal_le ==
 %(x::hreal) y::hreal.
    SOME u::bool.
@@ -3626,8 +3552,7 @@
           nadd_le xa ya = u & dest_hreal x xa & dest_hreal y ya)"
   by (import hollight DEF_hreal_le)
 
-constdefs
-  hreal_inv :: "hreal => hreal" 
+definition hreal_inv :: "hreal => hreal" where 
   "hreal_inv ==
 %x::hreal.
    mk_hreal
@@ -3685,22 +3610,19 @@
    hreal_le a b --> hreal_le (hreal_mul a c) (hreal_mul b c)"
   by (import hollight HREAL_LE_MUL_RCANCEL_IMP)
 
-constdefs
-  treal_of_num :: "nat => hreal * hreal" 
+definition treal_of_num :: "nat => hreal * hreal" where 
   "treal_of_num == %u::nat. (hreal_of_num u, hreal_of_num 0)"
 
 lemma DEF_treal_of_num: "treal_of_num = (%u::nat. (hreal_of_num u, hreal_of_num 0))"
   by (import hollight DEF_treal_of_num)
 
-constdefs
-  treal_neg :: "hreal * hreal => hreal * hreal" 
+definition treal_neg :: "hreal * hreal => hreal * hreal" where 
   "treal_neg == %u::hreal * hreal. (snd u, fst u)"
 
 lemma DEF_treal_neg: "treal_neg = (%u::hreal * hreal. (snd u, fst u))"
   by (import hollight DEF_treal_neg)
 
-constdefs
-  treal_add :: "hreal * hreal => hreal * hreal => hreal * hreal" 
+definition treal_add :: "hreal * hreal => hreal * hreal => hreal * hreal" where 
   "treal_add ==
 %(u::hreal * hreal) ua::hreal * hreal.
    (hreal_add (fst u) (fst ua), hreal_add (snd u) (snd ua))"
@@ -3710,8 +3632,7 @@
     (hreal_add (fst u) (fst ua), hreal_add (snd u) (snd ua)))"
   by (import hollight DEF_treal_add)
 
-constdefs
-  treal_mul :: "hreal * hreal => hreal * hreal => hreal * hreal" 
+definition treal_mul :: "hreal * hreal => hreal * hreal => hreal * hreal" where 
   "treal_mul ==
 %(u::hreal * hreal) ua::hreal * hreal.
    (hreal_add (hreal_mul (fst u) (fst ua)) (hreal_mul (snd u) (snd ua)),
@@ -3723,8 +3644,7 @@
      hreal_add (hreal_mul (fst u) (snd ua)) (hreal_mul (snd u) (fst ua))))"
   by (import hollight DEF_treal_mul)
 
-constdefs
-  treal_le :: "hreal * hreal => hreal * hreal => bool" 
+definition treal_le :: "hreal * hreal => hreal * hreal => bool" where 
   "treal_le ==
 %(u::hreal * hreal) ua::hreal * hreal.
    hreal_le (hreal_add (fst u) (snd ua)) (hreal_add (fst ua) (snd u))"
@@ -3734,8 +3654,7 @@
     hreal_le (hreal_add (fst u) (snd ua)) (hreal_add (fst ua) (snd u)))"
   by (import hollight DEF_treal_le)
 
-constdefs
-  treal_inv :: "hreal * hreal => hreal * hreal" 
+definition treal_inv :: "hreal * hreal => hreal * hreal" where 
   "treal_inv ==
 %u::hreal * hreal.
    COND (fst u = snd u) (hreal_of_num 0, hreal_of_num 0)
@@ -3755,8 +3674,7 @@
         hreal_inv (SOME d::hreal. snd u = hreal_add (fst u) d))))"
   by (import hollight DEF_treal_inv)
 
-constdefs
-  treal_eq :: "hreal * hreal => hreal * hreal => bool" 
+definition treal_eq :: "hreal * hreal => hreal * hreal => bool" where 
   "treal_eq ==
 %(u::hreal * hreal) ua::hreal * hreal.
    hreal_add (fst u) (snd ua) = hreal_add (fst ua) (snd u)"
@@ -3916,15 +3834,13 @@
   [where a="a :: hollight.real" and r=r ,
    OF type_definition_real]
 
-constdefs
-  real_of_num :: "nat => hollight.real" 
+definition real_of_num :: "nat => hollight.real" where 
   "real_of_num == %m::nat. mk_real (treal_eq (treal_of_num m))"
 
 lemma DEF_real_of_num: "real_of_num = (%m::nat. mk_real (treal_eq (treal_of_num m)))"
   by (import hollight DEF_real_of_num)
 
-constdefs
-  real_neg :: "hollight.real => hollight.real" 
+definition real_neg :: "hollight.real => hollight.real" where 
   "real_neg ==
 %x1::hollight.real.
    mk_real
@@ -3940,8 +3856,7 @@
             treal_eq (treal_neg x1a) u & dest_real x1 x1a))"
   by (import hollight DEF_real_neg)
 
-constdefs
-  real_add :: "hollight.real => hollight.real => hollight.real" 
+definition real_add :: "hollight.real => hollight.real => hollight.real" where 
   "real_add ==
 %(x1::hollight.real) y1::hollight.real.
    mk_real
@@ -3959,8 +3874,7 @@
             dest_real x1 x1a & dest_real y1 y1a))"
   by (import hollight DEF_real_add)
 
-constdefs
-  real_mul :: "hollight.real => hollight.real => hollight.real" 
+definition real_mul :: "hollight.real => hollight.real => hollight.real" where 
   "real_mul ==
 %(x1::hollight.real) y1::hollight.real.
    mk_real
@@ -3978,8 +3892,7 @@
             dest_real x1 x1a & dest_real y1 y1a))"
   by (import hollight DEF_real_mul)
 
-constdefs
-  real_le :: "hollight.real => hollight.real => bool" 
+definition real_le :: "hollight.real => hollight.real => bool" where 
   "real_le ==
 %(x1::hollight.real) y1::hollight.real.
    SOME u::bool.
@@ -3993,8 +3906,7 @@
           treal_le x1a y1a = u & dest_real x1 x1a & dest_real y1 y1a)"
   by (import hollight DEF_real_le)
 
-constdefs
-  real_inv :: "hollight.real => hollight.real" 
+definition real_inv :: "hollight.real => hollight.real" where 
   "real_inv ==
 %x::hollight.real.
    mk_real
@@ -4008,15 +3920,13 @@
          EX xa::hreal * hreal. treal_eq (treal_inv xa) u & dest_real x xa))"
   by (import hollight DEF_real_inv)
 
-constdefs
-  real_sub :: "hollight.real => hollight.real => hollight.real" 
+definition real_sub :: "hollight.real => hollight.real => hollight.real" where 
   "real_sub == %(u::hollight.real) ua::hollight.real. real_add u (real_neg ua)"
 
 lemma DEF_real_sub: "real_sub = (%(u::hollight.real) ua::hollight.real. real_add u (real_neg ua))"
   by (import hollight DEF_real_sub)
 
-constdefs
-  real_lt :: "hollight.real => hollight.real => bool" 
+definition real_lt :: "hollight.real => hollight.real => bool" where 
   "real_lt == %(u::hollight.real) ua::hollight.real. ~ real_le ua u"
 
 lemma DEF_real_lt: "real_lt = (%(u::hollight.real) ua::hollight.real. ~ real_le ua u)"
@@ -4040,8 +3950,7 @@
 lemma DEF_real_gt: "hollight.real_gt = (%(u::hollight.real) ua::hollight.real. real_lt ua u)"
   by (import hollight DEF_real_gt)
 
-constdefs
-  real_abs :: "hollight.real => hollight.real" 
+definition real_abs :: "hollight.real => hollight.real" where 
   "real_abs ==
 %u::hollight.real. COND (real_le (real_of_num 0) u) u (real_neg u)"
 
@@ -4049,8 +3958,7 @@
 (%u::hollight.real. COND (real_le (real_of_num 0) u) u (real_neg u))"
   by (import hollight DEF_real_abs)
 
-constdefs
-  real_pow :: "hollight.real => nat => hollight.real" 
+definition real_pow :: "hollight.real => nat => hollight.real" where 
   "real_pow ==
 SOME real_pow::hollight.real => nat => hollight.real.
    (ALL x::hollight.real. real_pow x 0 = real_of_num (NUMERAL_BIT1 0)) &
@@ -4064,22 +3972,19 @@
         real_pow x (Suc n) = real_mul x (real_pow x n)))"
   by (import hollight DEF_real_pow)
 
-constdefs
-  real_div :: "hollight.real => hollight.real => hollight.real" 
+definition real_div :: "hollight.real => hollight.real => hollight.real" where 
   "real_div == %(u::hollight.real) ua::hollight.real. real_mul u (real_inv ua)"
 
 lemma DEF_real_div: "real_div = (%(u::hollight.real) ua::hollight.real. real_mul u (real_inv ua))"
   by (import hollight DEF_real_div)
 
-constdefs
-  real_max :: "hollight.real => hollight.real => hollight.real" 
+definition real_max :: "hollight.real => hollight.real => hollight.real" where 
   "real_max == %(u::hollight.real) ua::hollight.real. COND (real_le u ua) ua u"
 
 lemma DEF_real_max: "real_max = (%(u::hollight.real) ua::hollight.real. COND (real_le u ua) ua u)"
   by (import hollight DEF_real_max)
 
-constdefs
-  real_min :: "hollight.real => hollight.real => hollight.real" 
+definition real_min :: "hollight.real => hollight.real => hollight.real" where 
   "real_min == %(u::hollight.real) ua::hollight.real. COND (real_le u ua) u ua"
 
 lemma DEF_real_min: "real_min = (%(u::hollight.real) ua::hollight.real. COND (real_le u ua) u ua)"
@@ -5212,8 +5117,7 @@
 (ALL x::hollight.real. All (P x))"
   by (import hollight REAL_WLOG_LT)
 
-constdefs
-  mod_real :: "hollight.real => hollight.real => hollight.real => bool" 
+definition mod_real :: "hollight.real => hollight.real => hollight.real => bool" where 
   "mod_real ==
 %(u::hollight.real) (ua::hollight.real) ub::hollight.real.
    EX q::hollight.real. real_sub ua ub = real_mul q u"
@@ -5223,8 +5127,7 @@
     EX q::hollight.real. real_sub ua ub = real_mul q u)"
   by (import hollight DEF_mod_real)
 
-constdefs
-  DECIMAL :: "nat => nat => hollight.real" 
+definition DECIMAL :: "nat => nat => hollight.real" where 
   "DECIMAL == %(u::nat) ua::nat. real_div (real_of_num u) (real_of_num ua)"
 
 lemma DEF_DECIMAL: "DECIMAL = (%(u::nat) ua::nat. real_div (real_of_num u) (real_of_num ua))"
@@ -5267,8 +5170,7 @@
 (real_mul x1 y2 = real_mul x2 y1)"
   by (import hollight RAT_LEMMA5)
 
-constdefs
-  is_int :: "hollight.real => bool" 
+definition is_int :: "hollight.real => bool" where 
   "is_int ==
 %u::hollight.real.
    EX n::nat. u = real_of_num n | u = real_neg (real_of_num n)"
@@ -5297,8 +5199,7 @@
       dest_int x = real_of_num n | dest_int x = real_neg (real_of_num n)"
   by (import hollight dest_int_rep)
 
-constdefs
-  int_le :: "hollight.int => hollight.int => bool" 
+definition int_le :: "hollight.int => hollight.int => bool" where 
   "int_le ==
 %(u::hollight.int) ua::hollight.int. real_le (dest_int u) (dest_int ua)"
 
@@ -5306,8 +5207,7 @@
 (%(u::hollight.int) ua::hollight.int. real_le (dest_int u) (dest_int ua))"
   by (import hollight DEF_int_le)
 
-constdefs
-  int_lt :: "hollight.int => hollight.int => bool" 
+definition int_lt :: "hollight.int => hollight.int => bool" where 
   "int_lt ==
 %(u::hollight.int) ua::hollight.int. real_lt (dest_int u) (dest_int ua)"
 
@@ -5315,8 +5215,7 @@
 (%(u::hollight.int) ua::hollight.int. real_lt (dest_int u) (dest_int ua))"
   by (import hollight DEF_int_lt)
 
-constdefs
-  int_ge :: "hollight.int => hollight.int => bool" 
+definition int_ge :: "hollight.int => hollight.int => bool" where 
   "int_ge ==
 %(u::hollight.int) ua::hollight.int.
    hollight.real_ge (dest_int u) (dest_int ua)"
@@ -5326,8 +5225,7 @@
     hollight.real_ge (dest_int u) (dest_int ua))"
   by (import hollight DEF_int_ge)
 
-constdefs
-  int_gt :: "hollight.int => hollight.int => bool" 
+definition int_gt :: "hollight.int => hollight.int => bool" where 
   "int_gt ==
 %(u::hollight.int) ua::hollight.int.
    hollight.real_gt (dest_int u) (dest_int ua)"
@@ -5337,8 +5235,7 @@
     hollight.real_gt (dest_int u) (dest_int ua))"
   by (import hollight DEF_int_gt)
 
-constdefs
-  int_of_num :: "nat => hollight.int" 
+definition int_of_num :: "nat => hollight.int" where 
   "int_of_num == %u::nat. mk_int (real_of_num u)"
 
 lemma DEF_int_of_num: "int_of_num = (%u::nat. mk_int (real_of_num u))"
@@ -5347,8 +5244,7 @@
 lemma int_of_num_th: "ALL x::nat. dest_int (int_of_num x) = real_of_num x"
   by (import hollight int_of_num_th)
 
-constdefs
-  int_neg :: "hollight.int => hollight.int" 
+definition int_neg :: "hollight.int => hollight.int" where 
   "int_neg == %u::hollight.int. mk_int (real_neg (dest_int u))"
 
 lemma DEF_int_neg: "int_neg = (%u::hollight.int. mk_int (real_neg (dest_int u)))"
@@ -5357,8 +5253,7 @@
 lemma int_neg_th: "ALL x::hollight.int. dest_int (int_neg x) = real_neg (dest_int x)"
   by (import hollight int_neg_th)
 
-constdefs
-  int_add :: "hollight.int => hollight.int => hollight.int" 
+definition int_add :: "hollight.int => hollight.int => hollight.int" where 
   "int_add ==
 %(u::hollight.int) ua::hollight.int.
    mk_int (real_add (dest_int u) (dest_int ua))"
@@ -5372,8 +5267,7 @@
    dest_int (int_add x xa) = real_add (dest_int x) (dest_int xa)"
   by (import hollight int_add_th)
 
-constdefs
-  int_sub :: "hollight.int => hollight.int => hollight.int" 
+definition int_sub :: "hollight.int => hollight.int => hollight.int" where 
   "int_sub ==
 %(u::hollight.int) ua::hollight.int.
    mk_int (real_sub (dest_int u) (dest_int ua))"
@@ -5387,8 +5281,7 @@
    dest_int (int_sub x xa) = real_sub (dest_int x) (dest_int xa)"
   by (import hollight int_sub_th)
 
-constdefs
-  int_mul :: "hollight.int => hollight.int => hollight.int" 
+definition int_mul :: "hollight.int => hollight.int => hollight.int" where 
   "int_mul ==
 %(u::hollight.int) ua::hollight.int.
    mk_int (real_mul (dest_int u) (dest_int ua))"
@@ -5402,8 +5295,7 @@
    dest_int (int_mul x y) = real_mul (dest_int x) (dest_int y)"
   by (import hollight int_mul_th)
 
-constdefs
-  int_abs :: "hollight.int => hollight.int" 
+definition int_abs :: "hollight.int => hollight.int" where 
   "int_abs == %u::hollight.int. mk_int (real_abs (dest_int u))"
 
 lemma DEF_int_abs: "int_abs = (%u::hollight.int. mk_int (real_abs (dest_int u)))"
@@ -5412,8 +5304,7 @@
 lemma int_abs_th: "ALL x::hollight.int. dest_int (int_abs x) = real_abs (dest_int x)"
   by (import hollight int_abs_th)
 
-constdefs
-  int_max :: "hollight.int => hollight.int => hollight.int" 
+definition int_max :: "hollight.int => hollight.int => hollight.int" where 
   "int_max ==
 %(u::hollight.int) ua::hollight.int.
    mk_int (real_max (dest_int u) (dest_int ua))"
@@ -5427,8 +5318,7 @@
    dest_int (int_max x y) = real_max (dest_int x) (dest_int y)"
   by (import hollight int_max_th)
 
-constdefs
-  int_min :: "hollight.int => hollight.int => hollight.int" 
+definition int_min :: "hollight.int => hollight.int => hollight.int" where 
   "int_min ==
 %(u::hollight.int) ua::hollight.int.
    mk_int (real_min (dest_int u) (dest_int ua))"
@@ -5442,8 +5332,7 @@
    dest_int (int_min x y) = real_min (dest_int x) (dest_int y)"
   by (import hollight int_min_th)
 
-constdefs
-  int_pow :: "hollight.int => nat => hollight.int" 
+definition int_pow :: "hollight.int => nat => hollight.int" where 
   "int_pow == %(u::hollight.int) ua::nat. mk_int (real_pow (dest_int u) ua)"
 
 lemma DEF_int_pow: "int_pow = (%(u::hollight.int) ua::nat. mk_int (real_pow (dest_int u) ua))"
@@ -5496,8 +5385,7 @@
    d ~= int_of_num 0 --> (EX c::hollight.int. int_lt x (int_mul c d))"
   by (import hollight INT_ARCH)
 
-constdefs
-  mod_int :: "hollight.int => hollight.int => hollight.int => bool" 
+definition mod_int :: "hollight.int => hollight.int => hollight.int => bool" where 
   "mod_int ==
 %(u::hollight.int) (ua::hollight.int) ub::hollight.int.
    EX q::hollight.int. int_sub ua ub = int_mul q u"
@@ -5507,8 +5395,7 @@
     EX q::hollight.int. int_sub ua ub = int_mul q u)"
   by (import hollight DEF_mod_int)
 
-constdefs
-  IN :: "'A => ('A => bool) => bool" 
+definition IN :: "'A => ('A => bool) => bool" where 
   "IN == %(u::'A::type) ua::'A::type => bool. ua u"
 
 lemma DEF_IN: "IN = (%(u::'A::type) ua::'A::type => bool. ua u)"
@@ -5518,15 +5405,13 @@
    (x = xa) = (ALL xb::'A::type. IN xb x = IN xb xa)"
   by (import hollight EXTENSION)
 
-constdefs
-  GSPEC :: "('A => bool) => 'A => bool" 
+definition GSPEC :: "('A => bool) => 'A => bool" where 
   "GSPEC == %u::'A::type => bool. u"
 
 lemma DEF_GSPEC: "GSPEC = (%u::'A::type => bool. u)"
   by (import hollight DEF_GSPEC)
 
-constdefs
-  SETSPEC :: "'q_37056 => bool => 'q_37056 => bool" 
+definition SETSPEC :: "'q_37056 => bool => 'q_37056 => bool" where 
   "SETSPEC == %(u::'q_37056::type) (ua::bool) ub::'q_37056::type. ua & u = ub"
 
 lemma DEF_SETSPEC: "SETSPEC = (%(u::'q_37056::type) (ua::bool) ub::'q_37056::type. ua & u = ub)"
@@ -5548,15 +5433,13 @@
 (ALL (p::'q_37194::type => bool) x::'q_37194::type. IN x p = p x)"
   by (import hollight IN_ELIM_THM)
 
-constdefs
-  EMPTY :: "'A => bool" 
+definition EMPTY :: "'A => bool" where 
   "EMPTY == %x::'A::type. False"
 
 lemma DEF_EMPTY: "EMPTY = (%x::'A::type. False)"
   by (import hollight DEF_EMPTY)
 
-constdefs
-  INSERT :: "'A => ('A => bool) => 'A => bool" 
+definition INSERT :: "'A => ('A => bool) => 'A => bool" where 
   "INSERT == %(u::'A::type) (ua::'A::type => bool) y::'A::type. IN y ua | y = u"
 
 lemma DEF_INSERT: "INSERT =
@@ -5585,8 +5468,7 @@
     GSPEC (%ub::'A::type. EX x::'A::type. SETSPEC ub (IN x u | IN x ua) x))"
   by (import hollight DEF_UNION)
 
-constdefs
-  UNIONS :: "(('A => bool) => bool) => 'A => bool" 
+definition UNIONS :: "(('A => bool) => bool) => 'A => bool" where 
   "UNIONS ==
 %u::('A::type => bool) => bool.
    GSPEC
@@ -5615,8 +5497,7 @@
     GSPEC (%ub::'A::type. EX x::'A::type. SETSPEC ub (IN x u & IN x ua) x))"
   by (import hollight DEF_INTER)
 
-constdefs
-  INTERS :: "(('A => bool) => bool) => 'A => bool" 
+definition INTERS :: "(('A => bool) => bool) => 'A => bool" where 
   "INTERS ==
 %u::('A::type => bool) => bool.
    GSPEC
@@ -5632,8 +5513,7 @@
             SETSPEC ua (ALL ua::'A::type => bool. IN ua u --> IN x ua) x))"
   by (import hollight DEF_INTERS)
 
-constdefs
-  DIFF :: "('A => bool) => ('A => bool) => 'A => bool" 
+definition DIFF :: "('A => bool) => ('A => bool) => 'A => bool" where 
   "DIFF ==
 %(u::'A::type => bool) ua::'A::type => bool.
    GSPEC (%ub::'A::type. EX x::'A::type. SETSPEC ub (IN x u & ~ IN x ua) x)"
@@ -5648,8 +5528,7 @@
 GSPEC (%u::'A::type. EX y::'A::type. SETSPEC u (IN y s | y = x) y)"
   by (import hollight INSERT)
 
-constdefs
-  DELETE :: "('A => bool) => 'A => 'A => bool" 
+definition DELETE :: "('A => bool) => 'A => 'A => bool" where 
   "DELETE ==
 %(u::'A::type => bool) ua::'A::type.
    GSPEC (%ub::'A::type. EX y::'A::type. SETSPEC ub (IN y u & y ~= ua) y)"
@@ -5659,8 +5538,7 @@
     GSPEC (%ub::'A::type. EX y::'A::type. SETSPEC ub (IN y u & y ~= ua) y))"
   by (import hollight DEF_DELETE)
 
-constdefs
-  SUBSET :: "('A => bool) => ('A => bool) => bool" 
+definition SUBSET :: "('A => bool) => ('A => bool) => bool" where 
   "SUBSET ==
 %(u::'A::type => bool) ua::'A::type => bool.
    ALL x::'A::type. IN x u --> IN x ua"
@@ -5670,8 +5548,7 @@
     ALL x::'A::type. IN x u --> IN x ua)"
   by (import hollight DEF_SUBSET)
 
-constdefs
-  PSUBSET :: "('A => bool) => ('A => bool) => bool" 
+definition PSUBSET :: "('A => bool) => ('A => bool) => bool" where 
   "PSUBSET ==
 %(u::'A::type => bool) ua::'A::type => bool. SUBSET u ua & u ~= ua"
 
@@ -5679,8 +5556,7 @@
 (%(u::'A::type => bool) ua::'A::type => bool. SUBSET u ua & u ~= ua)"
   by (import hollight DEF_PSUBSET)
 
-constdefs
-  DISJOINT :: "('A => bool) => ('A => bool) => bool" 
+definition DISJOINT :: "('A => bool) => ('A => bool) => bool" where 
   "DISJOINT ==
 %(u::'A::type => bool) ua::'A::type => bool. hollight.INTER u ua = EMPTY"
 
@@ -5688,15 +5564,13 @@
 (%(u::'A::type => bool) ua::'A::type => bool. hollight.INTER u ua = EMPTY)"
   by (import hollight DEF_DISJOINT)
 
-constdefs
-  SING :: "('A => bool) => bool" 
+definition SING :: "('A => bool) => bool" where 
   "SING == %u::'A::type => bool. EX x::'A::type. u = INSERT x EMPTY"
 
 lemma DEF_SING: "SING = (%u::'A::type => bool. EX x::'A::type. u = INSERT x EMPTY)"
   by (import hollight DEF_SING)
 
-constdefs
-  FINITE :: "('A => bool) => bool" 
+definition FINITE :: "('A => bool) => bool" where 
   "FINITE ==
 %a::'A::type => bool.
    ALL FINITE'::('A::type => bool) => bool.
@@ -5718,15 +5592,13 @@
        FINITE' a)"
   by (import hollight DEF_FINITE)
 
-constdefs
-  INFINITE :: "('A => bool) => bool" 
+definition INFINITE :: "('A => bool) => bool" where 
   "INFINITE == %u::'A::type => bool. ~ FINITE u"
 
 lemma DEF_INFINITE: "INFINITE = (%u::'A::type => bool. ~ FINITE u)"
   by (import hollight DEF_INFINITE)
 
-constdefs
-  IMAGE :: "('A => 'B) => ('A => bool) => 'B => bool" 
+definition IMAGE :: "('A => 'B) => ('A => bool) => 'B => bool" where 
   "IMAGE ==
 %(u::'A::type => 'B::type) ua::'A::type => bool.
    GSPEC
@@ -5740,8 +5612,7 @@
          EX y::'B::type. SETSPEC ub (EX x::'A::type. IN x ua & y = u x) y))"
   by (import hollight DEF_IMAGE)
 
-constdefs
-  INJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" 
+definition INJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" where 
   "INJ ==
 %(u::'A::type => 'B::type) (ua::'A::type => bool) ub::'B::type => bool.
    (ALL x::'A::type. IN x ua --> IN (u x) ub) &
@@ -5754,8 +5625,7 @@
         IN x ua & IN y ua & u x = u y --> x = y))"
   by (import hollight DEF_INJ)
 
-constdefs
-  SURJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" 
+definition SURJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" where 
   "SURJ ==
 %(u::'A::type => 'B::type) (ua::'A::type => bool) ub::'B::type => bool.
    (ALL x::'A::type. IN x ua --> IN (u x) ub) &
@@ -5767,8 +5637,7 @@
     (ALL x::'B::type. IN x ub --> (EX y::'A::type. IN y ua & u y = x)))"
   by (import hollight DEF_SURJ)
 
-constdefs
-  BIJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" 
+definition BIJ :: "('A => 'B) => ('A => bool) => ('B => bool) => bool" where 
   "BIJ ==
 %(u::'A::type => 'B::type) (ua::'A::type => bool) ub::'B::type => bool.
    INJ u ua ub & SURJ u ua ub"
@@ -5778,22 +5647,19 @@
     INJ u ua ub & SURJ u ua ub)"
   by (import hollight DEF_BIJ)
 
-constdefs
-  CHOICE :: "('A => bool) => 'A" 
+definition CHOICE :: "('A => bool) => 'A" where 
   "CHOICE == %u::'A::type => bool. SOME x::'A::type. IN x u"
 
 lemma DEF_CHOICE: "CHOICE = (%u::'A::type => bool. SOME x::'A::type. IN x u)"
   by (import hollight DEF_CHOICE)
 
-constdefs
-  REST :: "('A => bool) => 'A => bool" 
+definition REST :: "('A => bool) => 'A => bool" where 
   "REST == %u::'A::type => bool. DELETE u (CHOICE u)"
 
 lemma DEF_REST: "REST = (%u::'A::type => bool. DELETE u (CHOICE u))"
   by (import hollight DEF_REST)
 
-constdefs
-  CARD_GE :: "('q_37693 => bool) => ('q_37690 => bool) => bool" 
+definition CARD_GE :: "('q_37693 => bool) => ('q_37690 => bool) => bool" where 
   "CARD_GE ==
 %(u::'q_37693::type => bool) ua::'q_37690::type => bool.
    EX f::'q_37693::type => 'q_37690::type.
@@ -5807,8 +5673,7 @@
           IN y ua --> (EX x::'q_37693::type. IN x u & y = f x))"
   by (import hollight DEF_CARD_GE)
 
-constdefs
-  CARD_LE :: "('q_37702 => bool) => ('q_37701 => bool) => bool" 
+definition CARD_LE :: "('q_37702 => bool) => ('q_37701 => bool) => bool" where 
   "CARD_LE ==
 %(u::'q_37702::type => bool) ua::'q_37701::type => bool. CARD_GE ua u"
 
@@ -5816,8 +5681,7 @@
 (%(u::'q_37702::type => bool) ua::'q_37701::type => bool. CARD_GE ua u)"
   by (import hollight DEF_CARD_LE)
 
-constdefs
-  CARD_EQ :: "('q_37712 => bool) => ('q_37713 => bool) => bool" 
+definition CARD_EQ :: "('q_37712 => bool) => ('q_37713 => bool) => bool" where 
   "CARD_EQ ==
 %(u::'q_37712::type => bool) ua::'q_37713::type => bool.
    CARD_LE u ua & CARD_LE ua u"
@@ -5827,8 +5691,7 @@
     CARD_LE u ua & CARD_LE ua u)"
   by (import hollight DEF_CARD_EQ)
 
-constdefs
-  CARD_GT :: "('q_37727 => bool) => ('q_37728 => bool) => bool" 
+definition CARD_GT :: "('q_37727 => bool) => ('q_37728 => bool) => bool" where 
   "CARD_GT ==
 %(u::'q_37727::type => bool) ua::'q_37728::type => bool.
    CARD_GE u ua & ~ CARD_GE ua u"
@@ -5838,8 +5701,7 @@
     CARD_GE u ua & ~ CARD_GE ua u)"
   by (import hollight DEF_CARD_GT)
 
-constdefs
-  CARD_LT :: "('q_37743 => bool) => ('q_37744 => bool) => bool" 
+definition CARD_LT :: "('q_37743 => bool) => ('q_37744 => bool) => bool" where 
   "CARD_LT ==
 %(u::'q_37743::type => bool) ua::'q_37744::type => bool.
    CARD_LE u ua & ~ CARD_LE ua u"
@@ -5849,8 +5711,7 @@
     CARD_LE u ua & ~ CARD_LE ua u)"
   by (import hollight DEF_CARD_LT)
 
-constdefs
-  COUNTABLE :: "('q_37757 => bool) => bool" 
+definition COUNTABLE :: "('q_37757 => bool) => bool" where 
   "(op ==::(('q_37757::type => bool) => bool)
         => (('q_37757::type => bool) => bool) => prop)
  (COUNTABLE::('q_37757::type => bool) => bool)
@@ -6470,9 +6331,8 @@
    FINITE s --> FINITE (DIFF s t)"
   by (import hollight FINITE_DIFF)
 
-constdefs
-  FINREC :: "('q_41824 => 'q_41823 => 'q_41823)
-=> 'q_41823 => ('q_41824 => bool) => 'q_41823 => nat => bool" 
+definition FINREC :: "('q_41824 => 'q_41823 => 'q_41823)
+=> 'q_41823 => ('q_41824 => bool) => 'q_41823 => nat => bool" where 
   "FINREC ==
 SOME FINREC::('q_41824::type => 'q_41823::type => 'q_41823::type)
              => 'q_41823::type
@@ -6558,9 +6418,8 @@
            FINITE s --> g (INSERT x s) = COND (IN x s) (g s) (f x (g s))))"
   by (import hollight SET_RECURSION_LEMMA)
 
-constdefs
-  ITSET :: "('q_42525 => 'q_42524 => 'q_42524)
-=> ('q_42525 => bool) => 'q_42524 => 'q_42524" 
+definition ITSET :: "('q_42525 => 'q_42524 => 'q_42524)
+=> ('q_42525 => bool) => 'q_42524 => 'q_42524" where 
   "ITSET ==
 %(u::'q_42525::type => 'q_42524::type => 'q_42524::type)
    (ua::'q_42525::type => bool) ub::'q_42524::type.
@@ -6630,8 +6489,7 @@
           EX x::'A::type. SETSPEC u (IN x s & (P::'A::type => bool) x) x))"
   by (import hollight FINITE_RESTRICT)
 
-constdefs
-  CARD :: "('q_42918 => bool) => nat" 
+definition CARD :: "('q_42918 => bool) => nat" where 
   "CARD == %u::'q_42918::type => bool. ITSET (%x::'q_42918::type. Suc) u 0"
 
 lemma DEF_CARD: "CARD = (%u::'q_42918::type => bool. ITSET (%x::'q_42918::type. Suc) u 0)"
@@ -6674,8 +6532,7 @@
    CARD s + CARD t = CARD u"
   by (import hollight CARD_UNION_EQ)
 
-constdefs
-  HAS_SIZE :: "('q_43199 => bool) => nat => bool" 
+definition HAS_SIZE :: "('q_43199 => bool) => nat => bool" where 
   "HAS_SIZE == %(u::'q_43199::type => bool) ua::nat. FINITE u & CARD u = ua"
 
 lemma DEF_HAS_SIZE: "HAS_SIZE = (%(u::'q_43199::type => bool) ua::nat. FINITE u & CARD u = ua)"
@@ -6944,8 +6801,7 @@
        (ALL xa::'A::type. IN xa x --> (EX! m::nat. < m n & f m = xa)))"
   by (import hollight HAS_SIZE_INDEX)
 
-constdefs
-  set_of_list :: "'q_45968 hollight.list => 'q_45968 => bool" 
+definition set_of_list :: "'q_45968 hollight.list => 'q_45968 => bool" where 
   "set_of_list ==
 SOME set_of_list::'q_45968::type hollight.list => 'q_45968::type => bool.
    set_of_list NIL = EMPTY &
@@ -6959,8 +6815,7 @@
         set_of_list (CONS h t) = INSERT h (set_of_list t)))"
   by (import hollight DEF_set_of_list)
 
-constdefs
-  list_of_set :: "('q_45986 => bool) => 'q_45986 hollight.list" 
+definition list_of_set :: "('q_45986 => bool) => 'q_45986 hollight.list" where 
   "list_of_set ==
 %u::'q_45986::type => bool.
    SOME l::'q_45986::type hollight.list.
@@ -6999,8 +6854,7 @@
    hollight.UNION (set_of_list x) (set_of_list xa)"
   by (import hollight SET_OF_LIST_APPEND)
 
-constdefs
-  pairwise :: "('q_46198 => 'q_46198 => bool) => ('q_46198 => bool) => bool" 
+definition pairwise :: "('q_46198 => 'q_46198 => bool) => ('q_46198 => bool) => bool" where 
   "pairwise ==
 %(u::'q_46198::type => 'q_46198::type => bool) ua::'q_46198::type => bool.
    ALL (x::'q_46198::type) y::'q_46198::type.
@@ -7012,8 +6866,7 @@
        IN x ua & IN y ua & x ~= y --> u x y)"
   by (import hollight DEF_pairwise)
 
-constdefs
-  PAIRWISE :: "('q_46220 => 'q_46220 => bool) => 'q_46220 hollight.list => bool" 
+definition PAIRWISE :: "('q_46220 => 'q_46220 => bool) => 'q_46220 hollight.list => bool" where 
   "PAIRWISE ==
 SOME PAIRWISE::('q_46220::type => 'q_46220::type => bool)
                => 'q_46220::type hollight.list => bool.
@@ -7075,8 +6928,7 @@
        (EMPTY::'A::type => bool))))"
   by (import hollight FINITE_IMAGE_IMAGE)
 
-constdefs
-  dimindex :: "('A => bool) => nat" 
+definition dimindex :: "('A => bool) => nat" where 
   "(op ==::(('A::type => bool) => nat) => (('A::type => bool) => nat) => prop)
  (dimindex::('A::type => bool) => nat)
  (%u::'A::type => bool.
@@ -7125,8 +6977,7 @@
    dimindex s = dimindex t"
   by (import hollight DIMINDEX_FINITE_IMAGE)
 
-constdefs
-  finite_index :: "nat => 'A" 
+definition finite_index :: "nat => 'A" where 
   "(op ==::(nat => 'A::type) => (nat => 'A::type) => prop)
  (finite_index::nat => 'A::type)
  ((Eps::((nat => 'A::type) => bool) => nat => 'A::type)
@@ -7287,8 +7138,7 @@
                       xa))))))"
   by (import hollight CART_EQ)
 
-constdefs
-  lambda :: "(nat => 'A) => ('A, 'B) cart" 
+definition lambda :: "(nat => 'A) => ('A, 'B) cart" where 
   "(op ==::((nat => 'A::type) => ('A::type, 'B::type) cart)
         => ((nat => 'A::type) => ('A::type, 'B::type) cart) => prop)
  (lambda::(nat => 'A::type) => ('A::type, 'B::type) cart)
@@ -7388,8 +7238,7 @@
   [where a="a :: ('A, 'B) finite_sum" and r=r ,
    OF type_definition_finite_sum]
 
-constdefs
-  pastecart :: "('A, 'M) cart => ('A, 'N) cart => ('A, ('M, 'N) finite_sum) cart" 
+definition pastecart :: "('A, 'M) cart => ('A, 'N) cart => ('A, ('M, 'N) finite_sum) cart" where 
   "(op ==::(('A::type, 'M::type) cart
          => ('A::type, 'N::type) cart
             => ('A::type, ('M::type, 'N::type) finite_sum) cart)
@@ -7439,8 +7288,7 @@
                  (hollight.UNIV::'M::type => bool))))))"
   by (import hollight DEF_pastecart)
 
-constdefs
-  fstcart :: "('A, ('M, 'N) finite_sum) cart => ('A, 'M) cart" 
+definition fstcart :: "('A, ('M, 'N) finite_sum) cart => ('A, 'M) cart" where 
   "fstcart ==
 %u::('A::type, ('M::type, 'N::type) finite_sum) cart. lambda ($ u)"
 
@@ -7448,8 +7296,7 @@
 (%u::('A::type, ('M::type, 'N::type) finite_sum) cart. lambda ($ u))"
   by (import hollight DEF_fstcart)
 
-constdefs
-  sndcart :: "('A, ('M, 'N) finite_sum) cart => ('A, 'N) cart" 
+definition sndcart :: "('A, ('M, 'N) finite_sum) cart => ('A, 'N) cart" where 
   "(op ==::(('A::type, ('M::type, 'N::type) finite_sum) cart
          => ('A::type, 'N::type) cart)
         => (('A::type, ('M::type, 'N::type) finite_sum) cart
@@ -7616,8 +7463,7 @@
    (EX xb::'q_48070::type => 'q_48091::type. x = xb o xa)"
   by (import hollight FUNCTION_FACTORS_LEFT)
 
-constdefs
-  dotdot :: "nat => nat => nat => bool" 
+definition dotdot :: "nat => nat => nat => bool" where 
   "dotdot ==
 %(u::nat) ua::nat.
    GSPEC (%ub::nat. EX x::nat. SETSPEC ub (<= u x & <= x ua) x)"
@@ -7718,8 +7564,7 @@
    SUBSET (dotdot m n) (dotdot p q) = (< n m | <= p m & <= n q)"
   by (import hollight SUBSET_NUMSEG)
 
-constdefs
-  neutral :: "('q_48985 => 'q_48985 => 'q_48985) => 'q_48985" 
+definition neutral :: "('q_48985 => 'q_48985 => 'q_48985) => 'q_48985" where 
   "neutral ==
 %u::'q_48985::type => 'q_48985::type => 'q_48985::type.
    SOME x::'q_48985::type. ALL y::'q_48985::type. u x y = y & u y x = y"
@@ -7729,8 +7574,7 @@
     SOME x::'q_48985::type. ALL y::'q_48985::type. u x y = y & u y x = y)"
   by (import hollight DEF_neutral)
 
-constdefs
-  monoidal :: "('A => 'A => 'A) => bool" 
+definition monoidal :: "('A => 'A => 'A) => bool" where 
   "monoidal ==
 %u::'A::type => 'A::type => 'A::type.
    (ALL (x::'A::type) y::'A::type. u x y = u y x) &
@@ -7746,8 +7590,7 @@
     (ALL x::'A::type. u (neutral u) x = x))"
   by (import hollight DEF_monoidal)
 
-constdefs
-  support :: "('B => 'B => 'B) => ('A => 'B) => ('A => bool) => 'A => bool" 
+definition support :: "('B => 'B => 'B) => ('A => 'B) => ('A => bool) => 'A => bool" where 
   "support ==
 %(u::'B::type => 'B::type => 'B::type) (ua::'A::type => 'B::type)
    ub::'A::type => bool.
@@ -7763,9 +7606,8 @@
          EX x::'A::type. SETSPEC uc (IN x ub & ua x ~= neutral u) x))"
   by (import hollight DEF_support)
 
-constdefs
-  iterate :: "('q_49090 => 'q_49090 => 'q_49090)
-=> ('A => bool) => ('A => 'q_49090) => 'q_49090" 
+definition iterate :: "('q_49090 => 'q_49090 => 'q_49090)
+=> ('A => bool) => ('A => 'q_49090) => 'q_49090" where 
   "iterate ==
 %(u::'q_49090::type => 'q_49090::type => 'q_49090::type)
    (ua::'A::type => bool) ub::'A::type => 'q_49090::type.
@@ -8017,8 +7859,7 @@
        iterate u_4247 s f = iterate u_4247 t g)"
   by (import hollight ITERATE_EQ_GENERAL)
 
-constdefs
-  nsum :: "('q_51017 => bool) => ('q_51017 => nat) => nat" 
+definition nsum :: "('q_51017 => bool) => ('q_51017 => nat) => nat" where 
   "(op ==::(('q_51017::type => bool) => ('q_51017::type => nat) => nat)
         => (('q_51017::type => bool) => ('q_51017::type => nat) => nat)
            => prop)
@@ -8965,9 +8806,8 @@
    hollight.sum x xb = hollight.sum xa xc"
   by (import hollight SUM_EQ_GENERAL)
 
-constdefs
-  CASEWISE :: "(('q_57926 => 'q_57930) * ('q_57931 => 'q_57926 => 'q_57890)) hollight.list
-=> 'q_57931 => 'q_57930 => 'q_57890" 
+definition CASEWISE :: "(('q_57926 => 'q_57930) * ('q_57931 => 'q_57926 => 'q_57890)) hollight.list
+=> 'q_57931 => 'q_57930 => 'q_57890" where 
   "CASEWISE ==
 SOME CASEWISE::(('q_57926::type => 'q_57930::type) *
                 ('q_57931::type
@@ -9084,11 +8924,10 @@
     x"
   by (import hollight CASEWISE_WORKS)
 
-constdefs
-  admissible :: "('q_58228 => 'q_58221 => bool)
+definition admissible :: "('q_58228 => 'q_58221 => bool)
 => (('q_58228 => 'q_58224) => 'q_58234 => bool)
    => ('q_58234 => 'q_58221)
-      => (('q_58228 => 'q_58224) => 'q_58234 => 'q_58229) => bool" 
+      => (('q_58228 => 'q_58224) => 'q_58234 => 'q_58229) => bool" where 
   "admissible ==
 %(u::'q_58228::type => 'q_58221::type => bool)
    (ua::('q_58228::type => 'q_58224::type) => 'q_58234::type => bool)
@@ -9114,10 +8953,9 @@
        uc f a = uc g a)"
   by (import hollight DEF_admissible)
 
-constdefs
-  tailadmissible :: "('A => 'A => bool)
+definition tailadmissible :: "('A => 'A => bool)
 => (('A => 'B) => 'P => bool)
-   => ('P => 'A) => (('A => 'B) => 'P => 'B) => bool" 
+   => ('P => 'A) => (('A => 'B) => 'P => 'B) => bool" where 
   "tailadmissible ==
 %(u::'A::type => 'A::type => bool)
    (ua::('A::type => 'B::type) => 'P::type => bool)
@@ -9151,11 +8989,10 @@
            ua f a --> uc f a = COND (P f a) (f (G f a)) (H f a)))"
   by (import hollight DEF_tailadmissible)
 
-constdefs
-  superadmissible :: "('q_58378 => 'q_58378 => bool)
+definition superadmissible :: "('q_58378 => 'q_58378 => bool)
 => (('q_58378 => 'q_58380) => 'q_58386 => bool)
    => ('q_58386 => 'q_58378)
-      => (('q_58378 => 'q_58380) => 'q_58386 => 'q_58380) => bool" 
+      => (('q_58378 => 'q_58380) => 'q_58386 => 'q_58380) => bool" where 
   "superadmissible ==
 %(u::'q_58378::type => 'q_58378::type => bool)
    (ua::('q_58378::type => 'q_58380::type) => 'q_58386::type => bool)
--- a/src/HOL/Import/HOLLightCompat.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Import/HOLLightCompat.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -30,8 +30,7 @@
     by simp
 qed
 
-constdefs
-   Pred :: "nat \<Rightarrow> nat"
+definition Pred :: "nat \<Rightarrow> nat" where
    "Pred n \<equiv> n - (Suc 0)"
 
 lemma Pred_altdef: "Pred = (SOME PRE. PRE 0 = 0 & (ALL n. PRE (Suc n) = n))"
@@ -84,8 +83,7 @@
   apply auto
   done
 
-constdefs
-  NUMERAL_BIT0 :: "nat \<Rightarrow> nat"
+definition NUMERAL_BIT0 :: "nat \<Rightarrow> nat" where
   "NUMERAL_BIT0 n \<equiv> n + n"
 
 lemma NUMERAL_BIT1_altdef: "NUMERAL_BIT1 n = Suc (n + n)"
--- a/src/HOL/Isar_Examples/Expr_Compiler.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Isar_Examples/Expr_Compiler.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -85,8 +85,7 @@
     | Apply f => exec instrs (f (hd stack) (hd (tl stack))
                    # (tl (tl stack))) env)"
 
-constdefs
-  execute :: "(('adr, 'val) instr) list => ('adr => 'val) => 'val"
+definition execute :: "(('adr, 'val) instr) list => ('adr => 'val) => 'val" where
   "execute instrs env == hd (exec instrs [] env)"
 
 
--- a/src/HOL/Isar_Examples/Hoare.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Isar_Examples/Hoare.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -55,13 +55,10 @@
     (if s : b then Sem c1 s s' else Sem c2 s s')"
   "Sem (While b x c) s s' = (EX n. iter n b (Sem c) s s')"
 
-constdefs
-  Valid :: "'a bexp => 'a com => 'a bexp => bool"
-    ("(3|- _/ (2_)/ _)" [100, 55, 100] 50)
+definition Valid :: "'a bexp => 'a com => 'a bexp => bool" ("(3|- _/ (2_)/ _)" [100, 55, 100] 50) where
   "|- P c Q == ALL s s'. Sem c s s' --> s : P --> s' : Q"
 
-notation (xsymbols)
-  Valid  ("(3\<turnstile> _/ (2_)/ _)" [100, 55, 100] 50)
+notation (xsymbols) Valid ("(3\<turnstile> _/ (2_)/ _)" [100, 55, 100] 50)
 
 lemma ValidI [intro?]:
     "(!!s s'. Sem c s s' ==> s : P ==> s' : Q) ==> |- P c Q"
--- a/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -60,8 +60,7 @@
 
 subsection {* Basic properties of ``below'' *}
 
-constdefs
-  below :: "nat => nat set"
+definition below :: "nat => nat set" where
   "below n == {i. i < n}"
 
 lemma below_less_iff [iff]: "(i: below k) = (i < k)"
@@ -84,8 +83,7 @@
 
 subsection {* Basic properties of ``evnodd'' *}
 
-constdefs
-  evnodd :: "(nat * nat) set => nat => (nat * nat) set"
+definition evnodd :: "(nat * nat) set => nat => (nat * nat) set" where
   "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"
 
 lemma evnodd_iff:
@@ -247,8 +245,7 @@
 
 subsection {* Main theorem *}
 
-constdefs
-  mutilated_board :: "nat => nat => (nat * nat) set"
+definition mutilated_board :: "nat => nat => (nat * nat) set" where
   "mutilated_board m n ==
     below (2 * (m + 1)) <*> below (2 * (n + 1))
       - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"
--- a/src/HOL/Matrix/ComputeNumeral.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Matrix/ComputeNumeral.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -20,7 +20,7 @@
 lemmas bitiszero = iszero1 iszero2 iszero3 iszero4
 
 (* lezero for bit strings *)
-constdefs
+definition
   "lezero x == (x \<le> 0)"
 lemma lezero1: "lezero Int.Pls = True" unfolding Int.Pls_def lezero_def by auto
 lemma lezero2: "lezero Int.Min = True" unfolding Int.Min_def lezero_def by auto
@@ -60,7 +60,7 @@
 
 lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul 
 
-constdefs 
+definition
   "nat_norm_number_of (x::nat) == x"
 
 lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)"
--- a/src/HOL/Matrix/Matrix.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Matrix/Matrix.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -24,10 +24,10 @@
 apply (rule Abs_matrix_induct)
 by (simp add: Abs_matrix_inverse matrix_def)
 
-constdefs
-  nrows :: "('a::zero) matrix \<Rightarrow> nat"
+definition nrows :: "('a::zero) matrix \<Rightarrow> nat" where
   "nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))"
-  ncols :: "('a::zero) matrix \<Rightarrow> nat"
+
+definition ncols :: "('a::zero) matrix \<Rightarrow> nat" where
   "ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))"
 
 lemma nrows:
@@ -50,10 +50,10 @@
   thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect)
 qed
 
-constdefs
-  transpose_infmatrix :: "'a infmatrix \<Rightarrow> 'a infmatrix"
+definition transpose_infmatrix :: "'a infmatrix \<Rightarrow> 'a infmatrix" where
   "transpose_infmatrix A j i == A i j"
-  transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix"
+
+definition transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix" where
   "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix"
 
 declare transpose_infmatrix_def[simp]
@@ -256,14 +256,16 @@
   ultimately show "finite ?u" by (rule finite_subset)
 qed
 
-constdefs
-  apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix"
+definition apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix" where
   "apply_infmatrix f == % A. (% j i. f (A j i))"
-  apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix"
+
+definition apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix" where
   "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))"
-  combine_infmatrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix \<Rightarrow> 'c infmatrix"
+
+definition combine_infmatrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix \<Rightarrow> 'c infmatrix" where
   "combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))"
-  combine_matrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix \<Rightarrow> ('c::zero) matrix"
+
+definition combine_matrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix \<Rightarrow> ('c::zero) matrix" where
   "combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))"
 
 lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)"
@@ -272,10 +274,10 @@
 lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)"
 by (simp add: combine_infmatrix_def)
 
-constdefs
-commutative :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool"
+definition commutative :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool" where
 "commutative f == ! x y. f x y = f y x"
-associative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+
+definition associative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" where
 "associative f == ! x y z. f (f x y) z = f x (f y z)"
 
 text{*
@@ -356,12 +358,13 @@
 lemma combine_ncols: "f 0 0 = 0 \<Longrightarrow> ncols A <= q \<Longrightarrow> ncols B <= q \<Longrightarrow> ncols(combine_matrix f A B) <= q"
   by (simp add: ncols_le)
 
-constdefs
-  zero_r_neutral :: "('a \<Rightarrow> 'b::zero \<Rightarrow> 'a) \<Rightarrow> bool"
+definition zero_r_neutral :: "('a \<Rightarrow> 'b::zero \<Rightarrow> 'a) \<Rightarrow> bool" where
   "zero_r_neutral f == ! a. f a 0 = a"
-  zero_l_neutral :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
+
+definition zero_l_neutral :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool" where
   "zero_l_neutral f == ! a. f 0 a = a"
-  zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool"
+
+definition zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool" where
   "zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)"
 
 consts foldseq :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
@@ -648,10 +651,10 @@
   then show ?concl by simp
 qed
 
-constdefs
-  mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
+definition mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix" where
   "mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)"
-  mult_matrix :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
+
+definition mult_matrix :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix" where
   "mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B"
 
 lemma mult_matrix_n:
@@ -673,12 +676,13 @@
   finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp
 qed
 
-constdefs
-  r_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
+definition r_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool" where
   "r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)"
-  l_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+
+definition l_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" where
   "l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)"
-  distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+
+definition distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" where
   "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd"
 
 lemma max1: "!! a x y. (a::nat) <= x \<Longrightarrow> a <= max x y" by (arith)
@@ -835,20 +839,22 @@
   apply (simp add: apply_matrix_def apply_infmatrix_def)
   by (simp add: zero_matrix_def)
 
-constdefs
-  singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix"
+definition singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix" where
   "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)"
-  move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix"
+
+definition move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix" where
   "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))"
-  take_rows :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+
+definition take_rows :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" where
   "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)"
-  take_columns :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+
+definition take_columns :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" where
   "take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)"
 
-constdefs
-  column_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+definition column_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" where
   "column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1"
-  row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+
+definition row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" where
   "row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1"
 
 lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)"
@@ -1042,10 +1048,10 @@
   with contraprems show "False" by simp
 qed
 
-constdefs
-  foldmatrix :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
+definition foldmatrix :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a" where
   "foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m"
-  foldmatrix_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
+
+definition foldmatrix_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a" where
   "foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m"
 
 lemma foldmatrix_transpose:
@@ -1691,12 +1697,13 @@
 lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::group_add) matrix)) = - transpose_matrix (A::'a matrix)"
 by (simp add: minus_matrix_def transpose_apply_matrix)
 
-constdefs 
-  right_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+definition right_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
   "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \<and> nrows X \<le> ncols A" 
-  left_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+
+definition left_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
   "left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \<and> ncols X \<le> nrows A" 
-  inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+
+definition inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
   "inverse_matrix A X == (right_inverse_matrix A X) \<and> (left_inverse_matrix A X)"
 
 lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
@@ -1781,8 +1788,7 @@
 lemma move_matrix_mult: "move_matrix ((A::('a::semiring_0) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)"
 by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult)
 
-constdefs
-  scalar_mult :: "('a::ring) \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix"
+definition scalar_mult :: "('a::ring) \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix" where
   "scalar_mult a m == apply_matrix (op * a) m"
 
 lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" 
--- a/src/HOL/Matrix/SparseMatrix.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Matrix/SparseMatrix.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -552,8 +552,7 @@
   else if j < i then (le_spvec [] b & le_spmat ((i,a)#as) bs)
   else (le_spvec a b & le_spmat as bs))"
 
-constdefs
-  disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
+definition disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" where
   "disj_matrices A B == (! j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))"  
 
 declare [[simp_depth_limit = 6]]
@@ -802,8 +801,7 @@
   apply (simp_all add: sorted_spvec_abs_spvec)
   done
 
-constdefs
-  diff_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
+definition diff_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" where
   "diff_spmat A B == add_spmat A (minus_spmat B)"
 
 lemma sorted_spmat_diff_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (diff_spmat A B)"
@@ -815,8 +813,7 @@
 lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)"
   by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus)
 
-constdefs
-  sorted_sparse_matrix :: "'a spmat \<Rightarrow> bool"
+definition sorted_sparse_matrix :: "'a spmat \<Rightarrow> bool" where
   "sorted_sparse_matrix A == (sorted_spvec A) & (sorted_spmat A)"
 
 lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A \<Longrightarrow> sorted_spvec A"
@@ -1014,8 +1011,7 @@
   apply (simp_all add: sorted_nprt_spvec)
   done
 
-constdefs
-  mult_est_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
+definition mult_est_spmat :: "('a::lattice_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat" where
   "mult_est_spmat r1 r2 s1 s2 == 
   add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2)) (add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2)) 
   (add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1)) (mult_spmat (nprt_spmat s1) (nprt_spmat r1))))"  
--- a/src/HOL/Metis_Examples/BigO.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Metis_Examples/BigO.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1099,9 +1099,7 @@
 
 subsection {* Less than or equal to *}
 
-constdefs 
-  lesso :: "('a => 'b::linordered_idom) => ('a => 'b) => ('a => 'b)"
-      (infixl "<o" 70)
+definition lesso :: "('a => 'b::linordered_idom) => ('a => 'b) => ('a => 'b)" (infixl "<o" 70) where
   "f <o g == (%x. max (f x - g x) 0)"
 
 lemma bigo_lesseq1: "f =o O(h) ==> ALL x. abs (g x) <= abs (f x) ==>
--- a/src/HOL/Metis_Examples/Message.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Metis_Examples/Message.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -26,8 +26,7 @@
 text{*The inverse of a symmetric key is itself; that of a public key
       is the private key and vice versa*}
 
-constdefs
-  symKeys :: "key set"
+definition symKeys :: "key set" where
   "symKeys == {K. invKey K = K}"
 
 datatype  --{*We allow any number of friendly agents*}
@@ -55,12 +54,11 @@
   "{|x, y|}"      == "CONST MPair x y"
 
 
-constdefs
-  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
+definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
     --{*Message Y paired with a MAC computed with the help of X*}
     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 
-  keysFor :: "msg set => key set"
+definition keysFor :: "msg set => key set" where
     --{*Keys useful to decrypt elements of a message set*}
   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 
--- a/src/HOL/Metis_Examples/Tarski.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Metis_Examples/Tarski.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -20,59 +20,56 @@
   pset  :: "'a set"
   order :: "('a * 'a) set"
 
-constdefs
-  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
+definition monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
   "monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r"
 
-  least :: "['a => bool, 'a potype] => 'a"
+definition least :: "['a => bool, 'a potype] => 'a" where
   "least P po == @ x. x: pset po & P x &
                        (\<forall>y \<in> pset po. P y --> (x,y): order po)"
 
-  greatest :: "['a => bool, 'a potype] => 'a"
+definition greatest :: "['a => bool, 'a potype] => 'a" where
   "greatest P po == @ x. x: pset po & P x &
                           (\<forall>y \<in> pset po. P y --> (y,x): order po)"
 
-  lub  :: "['a set, 'a potype] => 'a"
+definition lub  :: "['a set, 'a potype] => 'a" where
   "lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po"
 
-  glb  :: "['a set, 'a potype] => 'a"
+definition glb  :: "['a set, 'a potype] => 'a" where
   "glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
 
-  isLub :: "['a set, 'a potype, 'a] => bool"
+definition isLub :: "['a set, 'a potype, 'a] => bool" where
   "isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
                    (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))"
 
-  isGlb :: "['a set, 'a potype, 'a] => bool"
+definition isGlb :: "['a set, 'a potype, 'a] => bool" where
   "isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
                  (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))"
 
-  "fix"    :: "[('a => 'a), 'a set] => 'a set"
+definition "fix"    :: "[('a => 'a), 'a set] => 'a set" where
   "fix f A  == {x. x: A & f x = x}"
 
-  interval :: "[('a*'a) set,'a, 'a ] => 'a set"
+definition interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
   "interval r a b == {x. (a,x): r & (x,b): r}"
 
-constdefs
-  Bot :: "'a potype => 'a"
+definition Bot :: "'a potype => 'a" where
   "Bot po == least (%x. True) po"
 
-  Top :: "'a potype => 'a"
+definition Top :: "'a potype => 'a" where
   "Top po == greatest (%x. True) po"
 
-  PartialOrder :: "('a potype) set"
+definition PartialOrder :: "('a potype) set" where
   "PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &
                        trans (order P)}"
 
-  CompleteLattice :: "('a potype) set"
+definition CompleteLattice :: "('a potype) set" where
   "CompleteLattice == {cl. cl: PartialOrder &
                         (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
                         (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
 
-  induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
+definition induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
   "induced A r == {(a,b). a : A & b: A & (a,b): r}"
 
-constdefs
-  sublattice :: "('a potype * 'a set)set"
+definition sublattice :: "('a potype * 'a set)set" where
   "sublattice ==
       SIGMA cl: CompleteLattice.
           {S. S \<subseteq> pset cl &
@@ -82,8 +79,7 @@
   sublattice_syntax :: "['a set, 'a potype] => bool" ("_ <<= _" [51, 50] 50)
   where "S <<= cl \<equiv> S : sublattice `` {cl}"
 
-constdefs
-  dual :: "'a potype => 'a potype"
+definition dual :: "'a potype => 'a potype" where
   "dual po == (| pset = pset po, order = converse (order po) |)"
 
 locale PO =
--- a/src/HOL/MicroJava/BV/Altern.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/Altern.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,19 +8,18 @@
 imports BVSpec
 begin
 
-constdefs
-  check_type :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> JVMType.state \<Rightarrow> bool"
+definition check_type :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> JVMType.state \<Rightarrow> bool" where
   "check_type G mxs mxr s \<equiv> s \<in> states G mxs mxr"
 
-  wt_instr_altern :: "[instr,jvm_prog,ty,method_type,nat,nat,p_count,
-                exception_table,p_count] \<Rightarrow> bool"
+definition wt_instr_altern :: "[instr,jvm_prog,ty,method_type,nat,nat,p_count,
+                exception_table,p_count] \<Rightarrow> bool" where
   "wt_instr_altern i G rT phi mxs mxr max_pc et pc \<equiv>
   app i G mxs rT pc et (phi!pc) \<and>
   check_type G mxs mxr (OK (phi!pc)) \<and>
   (\<forall>(pc',s') \<in> set (eff i G pc et (phi!pc)). pc' < max_pc \<and> G \<turnstile> s' <=' phi!pc')"
 
-  wt_method_altern :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list,
-                 exception_table,method_type] \<Rightarrow> bool"
+definition wt_method_altern :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list,
+                 exception_table,method_type] \<Rightarrow> bool" where
   "wt_method_altern G C pTs rT mxs mxl ins et phi \<equiv>
   let max_pc = length ins in
   0 < max_pc \<and> 
--- a/src/HOL/MicroJava/BV/BVExample.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/BVExample.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -167,8 +167,7 @@
 
   @{prop [display] "P n"} 
 *}
-constdefs 
-  intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')")
+definition intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')") where
   "x \<in> [a, b) \<equiv> a \<le> x \<and> x < b"
 
 lemma pc_0: "x < n \<Longrightarrow> (x \<in> [0, n) \<Longrightarrow> P x) \<Longrightarrow> P x"
@@ -238,8 +237,7 @@
 lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def
 declare appInvoke [simp del]
 
-constdefs
-  phi_append :: method_type ("\<phi>\<^sub>a")
+definition phi_append :: method_type ("\<phi>\<^sub>a") where
   "\<phi>\<^sub>a \<equiv> map (\<lambda>(x,y). Some (x, map OK y)) [ 
    (                                    [], [Class list_name, Class list_name]),
    (                     [Class list_name], [Class list_name, Class list_name]),
@@ -301,8 +299,7 @@
 abbreviation Ctest :: ty
   where "Ctest == Class test_name"
 
-constdefs
-  phi_makelist :: method_type ("\<phi>\<^sub>m")
+definition phi_makelist :: method_type ("\<phi>\<^sub>m") where
   "\<phi>\<^sub>m \<equiv> map (\<lambda>(x,y). Some (x, y)) [ 
     (                                   [], [OK Ctest, Err     , Err     ]),
     (                              [Clist], [OK Ctest, Err     , Err     ]),
@@ -376,8 +373,7 @@
   done
 
 text {* The whole program is welltyped: *}
-constdefs 
-  Phi :: prog_type ("\<Phi>")
+definition Phi :: prog_type ("\<Phi>") where
   "\<Phi> C sg \<equiv> if C = test_name \<and> sg = (makelist_name, []) then \<phi>\<^sub>m else          
              if C = list_name \<and> sg = (append_name, [Class list_name]) then \<phi>\<^sub>a else []"
 
--- a/src/HOL/MicroJava/BV/Correct.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/Correct.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,47 +9,40 @@
 imports BVSpec "../JVM/JVMExec"
 begin
 
-constdefs
-  approx_val :: "[jvm_prog,aheap,val,ty err] \<Rightarrow> bool"
+definition approx_val :: "[jvm_prog,aheap,val,ty err] \<Rightarrow> bool" where
   "approx_val G h v any == case any of Err \<Rightarrow> True | OK T \<Rightarrow> G,h\<turnstile>v::\<preceq>T"
 
-  approx_loc :: "[jvm_prog,aheap,val list,locvars_type] \<Rightarrow> bool"
+definition approx_loc :: "[jvm_prog,aheap,val list,locvars_type] \<Rightarrow> bool" where
   "approx_loc G hp loc LT == list_all2 (approx_val G hp) loc LT"
 
-  approx_stk :: "[jvm_prog,aheap,opstack,opstack_type] \<Rightarrow> bool"
+definition approx_stk :: "[jvm_prog,aheap,opstack,opstack_type] \<Rightarrow> bool" where
   "approx_stk G hp stk ST == approx_loc G hp stk (map OK ST)"
 
-  correct_frame  :: "[jvm_prog,aheap,state_type,nat,bytecode] \<Rightarrow> frame \<Rightarrow> bool"
+definition correct_frame  :: "[jvm_prog,aheap,state_type,nat,bytecode] \<Rightarrow> frame \<Rightarrow> bool" where
   "correct_frame G hp == \<lambda>(ST,LT) maxl ins (stk,loc,C,sig,pc).
                          approx_stk G hp stk ST  \<and> approx_loc G hp loc LT \<and> 
                          pc < length ins \<and> length loc=length(snd sig)+maxl+1"
 
-
-consts
- correct_frames  :: "[jvm_prog,aheap,prog_type,ty,sig,frame list] \<Rightarrow> bool"
-primrec
-"correct_frames G hp phi rT0 sig0 [] = True"
+primrec correct_frames  :: "[jvm_prog,aheap,prog_type,ty,sig,frame list] \<Rightarrow> bool" where
+  "correct_frames G hp phi rT0 sig0 [] = True"
+| "correct_frames G hp phi rT0 sig0 (f#frs) =
+    (let (stk,loc,C,sig,pc) = f in
+    (\<exists>ST LT rT maxs maxl ins et.
+      phi C sig ! pc = Some (ST,LT) \<and> is_class G C \<and> 
+      method (G,C) sig = Some(C,rT,(maxs,maxl,ins,et)) \<and>
+    (\<exists>C' mn pTs. ins!pc = (Invoke C' mn pTs) \<and> 
+           (mn,pTs) = sig0 \<and> 
+           (\<exists>apTs D ST' LT'.
+           (phi C sig)!pc = Some ((rev apTs) @ (Class D) # ST', LT') \<and>
+           length apTs = length pTs \<and>
+           (\<exists>D' rT' maxs' maxl' ins' et'.
+             method (G,D) sig0 = Some(D',rT',(maxs',maxl',ins',et')) \<and>
+             G \<turnstile> rT0 \<preceq> rT') \<and>
+     correct_frame G hp (ST, LT) maxl ins f \<and> 
+     correct_frames G hp phi rT sig frs))))"
 
-"correct_frames G hp phi rT0 sig0 (f#frs) =
-  (let (stk,loc,C,sig,pc) = f in
-  (\<exists>ST LT rT maxs maxl ins et.
-    phi C sig ! pc = Some (ST,LT) \<and> is_class G C \<and> 
-    method (G,C) sig = Some(C,rT,(maxs,maxl,ins,et)) \<and>
-  (\<exists>C' mn pTs. ins!pc = (Invoke C' mn pTs) \<and> 
-         (mn,pTs) = sig0 \<and> 
-         (\<exists>apTs D ST' LT'.
-         (phi C sig)!pc = Some ((rev apTs) @ (Class D) # ST', LT') \<and>
-         length apTs = length pTs \<and>
-         (\<exists>D' rT' maxs' maxl' ins' et'.
-           method (G,D) sig0 = Some(D',rT',(maxs',maxl',ins',et')) \<and>
-           G \<turnstile> rT0 \<preceq> rT') \<and>
-   correct_frame G hp (ST, LT) maxl ins f \<and> 
-   correct_frames G hp phi rT sig frs))))"
-
-
-constdefs
- correct_state :: "[jvm_prog,prog_type,jvm_state] \<Rightarrow> bool"
-                  ("_,_ |-JVM _ [ok]"  [51,51] 50)
+definition correct_state :: "[jvm_prog,prog_type,jvm_state] \<Rightarrow> bool"
+                  ("_,_ |-JVM _ [ok]"  [51,51] 50) where
 "correct_state G phi == \<lambda>(xp,hp,frs).
    case xp of
      None \<Rightarrow> (case frs of
--- a/src/HOL/MicroJava/BV/Effect.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/Effect.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -13,27 +13,25 @@
   succ_type = "(p_count \<times> state_type option) list"
 
 text {* Program counter of successor instructions: *}
-consts
-  succs :: "instr \<Rightarrow> p_count \<Rightarrow> p_count list"
-primrec 
+primrec succs :: "instr \<Rightarrow> p_count \<Rightarrow> p_count list" where
   "succs (Load idx) pc         = [pc+1]"
-  "succs (Store idx) pc        = [pc+1]"
-  "succs (LitPush v) pc        = [pc+1]"
-  "succs (Getfield F C) pc     = [pc+1]"
-  "succs (Putfield F C) pc     = [pc+1]"
-  "succs (New C) pc            = [pc+1]"
-  "succs (Checkcast C) pc      = [pc+1]"
-  "succs Pop pc                = [pc+1]"
-  "succs Dup pc                = [pc+1]"
-  "succs Dup_x1 pc             = [pc+1]"
-  "succs Dup_x2 pc             = [pc+1]"
-  "succs Swap pc               = [pc+1]"
-  "succs IAdd pc               = [pc+1]"
-  "succs (Ifcmpeq b) pc        = [pc+1, nat (int pc + b)]"
-  "succs (Goto b) pc           = [nat (int pc + b)]"
-  "succs Return pc             = [pc]"  
-  "succs (Invoke C mn fpTs) pc = [pc+1]"
-  "succs Throw pc              = [pc]"
+| "succs (Store idx) pc        = [pc+1]"
+| "succs (LitPush v) pc        = [pc+1]"
+| "succs (Getfield F C) pc     = [pc+1]"
+| "succs (Putfield F C) pc     = [pc+1]"
+| "succs (New C) pc            = [pc+1]"
+| "succs (Checkcast C) pc      = [pc+1]"
+| "succs Pop pc                = [pc+1]"
+| "succs Dup pc                = [pc+1]"
+| "succs Dup_x1 pc             = [pc+1]"
+| "succs Dup_x2 pc             = [pc+1]"
+| "succs Swap pc               = [pc+1]"
+| "succs IAdd pc               = [pc+1]"
+| "succs (Ifcmpeq b) pc        = [pc+1, nat (int pc + b)]"
+| "succs (Goto b) pc           = [nat (int pc + b)]"
+| "succs Return pc             = [pc]"  
+| "succs (Invoke C mn fpTs) pc = [pc+1]"
+| "succs Throw pc              = [pc]"
 
 text "Effect of instruction on the state type:"
 consts 
@@ -63,21 +61,16 @@
 "eff' (Invoke C mn fpTs, G, (ST,LT))    = (let ST' = drop (length fpTs) ST 
   in  (fst (snd (the (method (G,C) (mn,fpTs))))#(tl ST'),LT))" 
 
-
-consts
-  match_any :: "jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list"
-primrec
+primrec match_any :: "jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list" where
   "match_any G pc [] = []"
-  "match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e;
+| "match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e;
                                 es' = match_any G pc es 
                             in 
                             if start_pc <= pc \<and> pc < end_pc then catch_type#es' else es')"
 
-consts
-  match :: "jvm_prog \<Rightarrow> xcpt \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list"
-primrec
+primrec match :: "jvm_prog \<Rightarrow> xcpt \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> cname list" where
   "match G X pc [] = []"
-  "match G X pc (e#es) = 
+| "match G X pc (e#es) = 
   (if match_exception_entry G (Xcpt X) pc e then [Xcpt X] else match G X pc es)"
 
 lemma match_some_entry:
@@ -96,23 +89,21 @@
   "xcpt_names (i, G, pc, et)            = []" 
 
 
-constdefs
-  xcpt_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> state_type option \<Rightarrow> exception_table \<Rightarrow> succ_type"
+definition xcpt_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> state_type option \<Rightarrow> exception_table \<Rightarrow> succ_type" where
   "xcpt_eff i G pc s et == 
    map (\<lambda>C. (the (match_exception_table G C pc et), case s of None \<Rightarrow> None | Some s' \<Rightarrow> Some ([Class C], snd s'))) 
        (xcpt_names (i,G,pc,et))"
 
-  norm_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> state_type option \<Rightarrow> state_type option"
+definition norm_eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> state_type option \<Rightarrow> state_type option" where
   "norm_eff i G == Option.map (\<lambda>s. eff' (i,G,s))"
 
-  eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> succ_type"
+definition eff :: "instr \<Rightarrow> jvm_prog \<Rightarrow> p_count \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> succ_type" where
   "eff i G pc et s == (map (\<lambda>pc'. (pc',norm_eff i G s)) (succs i pc)) @ (xcpt_eff i G pc s et)"
 
-constdefs
-  isPrimT :: "ty \<Rightarrow> bool"
+definition isPrimT :: "ty \<Rightarrow> bool" where
   "isPrimT T == case T of PrimT T' \<Rightarrow> True | RefT T' \<Rightarrow> False"
 
-  isRefT :: "ty \<Rightarrow> bool"
+definition isRefT :: "ty \<Rightarrow> bool" where
   "isRefT T == case T of PrimT T' \<Rightarrow> False | RefT T' \<Rightarrow> True"
 
 lemma isPrimT [simp]:
@@ -177,11 +168,10 @@
   
 "app' (i,G, pc,maxs,rT,s) = False"
 
-constdefs
-  xcpt_app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> bool"
+definition xcpt_app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> bool" where
   "xcpt_app i G pc et \<equiv> \<forall>C\<in>set(xcpt_names (i,G,pc,et)). is_class G C"
 
-  app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> bool"
+definition app :: "instr \<Rightarrow> jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> exception_table \<Rightarrow> state_type option \<Rightarrow> bool" where
   "app i G maxs rT pc et s == case s of None \<Rightarrow> True | Some t \<Rightarrow> app' (i,G,pc,maxs,rT,t) \<and> xcpt_app i G pc et"
 
 
--- a/src/HOL/MicroJava/BV/JType.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/JType.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,19 +9,17 @@
 imports "../DFA/Semilattices" "../J/WellForm"
 begin
 
-constdefs
-  super :: "'a prog \<Rightarrow> cname \<Rightarrow> cname"
+definition super :: "'a prog \<Rightarrow> cname \<Rightarrow> cname" where
   "super G C == fst (the (class G C))"
 
 lemma superI:
   "G \<turnstile> C \<prec>C1 D \<Longrightarrow> super G C = D"
   by (unfold super_def) (auto dest: subcls1D)
 
-constdefs
-  is_ref :: "ty \<Rightarrow> bool"
+definition is_ref :: "ty \<Rightarrow> bool" where
   "is_ref T == case T of PrimT t \<Rightarrow> False | RefT r \<Rightarrow> True"
 
-  sup :: "'c prog \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> ty err"
+definition sup :: "'c prog \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> ty err" where
   "sup G T1 T2 ==
   case T1 of PrimT P1 \<Rightarrow> (case T2 of PrimT P2 \<Rightarrow> 
                          (if P1 = P2 then OK (PrimT P1) else Err) | RefT R \<Rightarrow> Err)
@@ -30,17 +28,16 @@
             | ClassT C \<Rightarrow> (case R2 of NullT \<Rightarrow> OK (Class C) 
                            | ClassT D \<Rightarrow> OK (Class (exec_lub (subcls1 G) (super G) C D)))))"
 
-  subtype :: "'c prog \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> bool"
+definition subtype :: "'c prog \<Rightarrow> ty \<Rightarrow> ty \<Rightarrow> bool" where
   "subtype G T1 T2 == G \<turnstile> T1 \<preceq> T2"
 
-  is_ty :: "'c prog \<Rightarrow> ty \<Rightarrow> bool"
+definition is_ty :: "'c prog \<Rightarrow> ty \<Rightarrow> bool" where
   "is_ty G T == case T of PrimT P \<Rightarrow> True | RefT R \<Rightarrow>
                (case R of NullT \<Rightarrow> True | ClassT C \<Rightarrow> (C, Object) \<in> (subcls1 G)^*)"
 
 abbreviation "types G == Collect (is_type G)"
 
-constdefs
-  esl :: "'c prog \<Rightarrow> ty esl"
+definition esl :: "'c prog \<Rightarrow> ty esl" where
   "esl G == (types G, subtype G, sup G)"
 
 lemma PrimT_PrimT: "(G \<turnstile> xb \<preceq> PrimT p) = (xb = PrimT p)"
--- a/src/HOL/MicroJava/BV/JVM.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/JVM.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,14 +9,13 @@
 imports Typing_Framework_JVM
 begin
 
-constdefs
-  kiljvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> 
-             instr list \<Rightarrow> JVMType.state list \<Rightarrow> JVMType.state list"
+definition kiljvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> 
+             instr list \<Rightarrow> JVMType.state list \<Rightarrow> JVMType.state list" where
   "kiljvm G maxs maxr rT et bs ==
   kildall (JVMType.le G maxs maxr) (JVMType.sup G maxs maxr) (exec G maxs rT et bs)"
 
-  wt_kil :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
-             exception_table \<Rightarrow> instr list \<Rightarrow> bool"
+definition wt_kil :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
+             exception_table \<Rightarrow> instr list \<Rightarrow> bool" where
   "wt_kil G C pTs rT mxs mxl et ins ==
    check_bounded ins et \<and> 0 < size ins \<and> 
    (let first  = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err));
@@ -24,11 +23,10 @@
         result = kiljvm G mxs (1+size pTs+mxl) rT et ins start
     in \<forall>n < size ins. result!n \<noteq> Err)"
 
-  wt_jvm_prog_kildall :: "jvm_prog \<Rightarrow> bool"
+definition wt_jvm_prog_kildall :: "jvm_prog \<Rightarrow> bool" where
   "wt_jvm_prog_kildall G ==
   wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_kil G C (snd sig) rT maxs maxl et b) G"
 
-
 theorem is_bcv_kiljvm:
   "\<lbrakk> wf_prog wf_mb G; bounded (exec G maxs rT et bs) (size bs) \<rbrakk> \<Longrightarrow>
       is_bcv (JVMType.le G maxs maxr) Err (exec G maxs rT et bs)
--- a/src/HOL/MicroJava/BV/JVMType.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/JVMType.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -19,43 +19,39 @@
   prog_type    = "cname \<Rightarrow> class_type"
 
 
-constdefs
-  stk_esl :: "'c prog \<Rightarrow> nat \<Rightarrow> ty list esl"
+definition stk_esl :: "'c prog \<Rightarrow> nat \<Rightarrow> ty list esl" where
   "stk_esl S maxs == upto_esl maxs (JType.esl S)"
 
-  reg_sl :: "'c prog \<Rightarrow> nat \<Rightarrow> ty err list sl"
+definition reg_sl :: "'c prog \<Rightarrow> nat \<Rightarrow> ty err list sl" where
   "reg_sl S maxr == Listn.sl maxr (Err.sl (JType.esl S))"
 
-  sl :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state sl"
+definition sl :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state sl" where
   "sl S maxs maxr ==
   Err.sl(Opt.esl(Product.esl (stk_esl S maxs) (Err.esl(reg_sl S maxr))))"
 
-constdefs
-  states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state set"
+definition states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state set" where
   "states S maxs maxr == fst(sl S maxs maxr)"
 
-  le :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state ord"
+definition le :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state ord" where
   "le S maxs maxr == fst(snd(sl S maxs maxr))"
 
-  sup :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state binop"
+definition  sup :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> state binop" where
   "sup S maxs maxr == snd(snd(sl S maxs maxr))"
 
-
-constdefs
-  sup_ty_opt :: "['code prog,ty err,ty err] \<Rightarrow> bool" 
-                 ("_ |- _ <=o _" [71,71] 70)
+definition sup_ty_opt :: "['code prog,ty err,ty err] \<Rightarrow> bool"
+                 ("_ |- _ <=o _" [71,71] 70) where 
   "sup_ty_opt G == Err.le (subtype G)"
 
-  sup_loc :: "['code prog,locvars_type,locvars_type] \<Rightarrow> bool" 
-              ("_ |- _ <=l _"  [71,71] 70)
+definition sup_loc :: "['code prog,locvars_type,locvars_type] \<Rightarrow> bool" 
+              ("_ |- _ <=l _"  [71,71] 70) where
   "sup_loc G == Listn.le (sup_ty_opt G)"
 
-  sup_state :: "['code prog,state_type,state_type] \<Rightarrow> bool"   
-               ("_ |- _ <=s _"  [71,71] 70)
+definition sup_state :: "['code prog,state_type,state_type] \<Rightarrow> bool"   
+               ("_ |- _ <=s _"  [71,71] 70) where
   "sup_state G == Product.le (Listn.le (subtype G)) (sup_loc G)"
 
-  sup_state_opt :: "['code prog,state_type option,state_type option] \<Rightarrow> bool" 
-                   ("_ |- _ <=' _"  [71,71] 70)
+definition sup_state_opt :: "['code prog,state_type option,state_type option] \<Rightarrow> bool" 
+                   ("_ |- _ <=' _"  [71,71] 70) where
   "sup_state_opt G == Opt.le (sup_state G)"
 
 
--- a/src/HOL/MicroJava/BV/LBVJVM.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/LBVJVM.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -11,18 +11,17 @@
 
 types prog_cert = "cname \<Rightarrow> sig \<Rightarrow> JVMType.state list"
 
-constdefs
-  check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> JVMType.state list \<Rightarrow> bool"
+definition check_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> JVMType.state list \<Rightarrow> bool" where
   "check_cert G mxs mxr n cert \<equiv> check_types G mxs mxr cert \<and> length cert = n+1 \<and>
                                  (\<forall>i<n. cert!i \<noteq> Err) \<and> cert!n = OK None"
 
-  lbvjvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> 
-             JVMType.state list \<Rightarrow> instr list \<Rightarrow> JVMType.state \<Rightarrow> JVMType.state"
+definition lbvjvm :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> 
+             JVMType.state list \<Rightarrow> instr list \<Rightarrow> JVMType.state \<Rightarrow> JVMType.state" where
   "lbvjvm G maxs maxr rT et cert bs \<equiv>
   wtl_inst_list bs cert  (JVMType.sup G maxs maxr) (JVMType.le G maxs maxr) Err (OK None) (exec G maxs rT et bs) 0"
 
-  wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
-             exception_table \<Rightarrow> JVMType.state list \<Rightarrow> instr list \<Rightarrow> bool"
+definition wt_lbv :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
+             exception_table \<Rightarrow> JVMType.state list \<Rightarrow> instr list \<Rightarrow> bool" where
   "wt_lbv G C pTs rT mxs mxl et cert ins \<equiv>
    check_bounded ins et \<and> 
    check_cert G mxs (1+size pTs+mxl) (length ins) cert \<and>
@@ -31,15 +30,15 @@
         result = lbvjvm G mxs (1+size pTs+mxl) rT et cert ins (OK start)
     in result \<noteq> Err)"
 
-  wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool"
+definition wt_jvm_prog_lbv :: "jvm_prog \<Rightarrow> prog_cert \<Rightarrow> bool" where
   "wt_jvm_prog_lbv G cert \<equiv>
   wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b,et)). wt_lbv G C (snd sig) rT maxs maxl et (cert C sig) b) G"
 
-  mk_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list 
-              \<Rightarrow> method_type \<Rightarrow> JVMType.state list"
+definition mk_cert :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list 
+              \<Rightarrow> method_type \<Rightarrow> JVMType.state list" where
   "mk_cert G maxs rT et bs phi \<equiv> make_cert (exec G maxs rT et bs) (map OK phi) (OK None)"
 
-  prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert"
+definition prg_cert :: "jvm_prog \<Rightarrow> prog_type \<Rightarrow> prog_cert" where
   "prg_cert G phi C sig \<equiv> let (C,rT,(maxs,maxl,ins,et)) = the (method (G,C) sig) in 
                            mk_cert G maxs rT et ins (phi C sig)"
  
--- a/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,13 +9,11 @@
 imports "../DFA/Abstract_BV" JVMType EffectMono BVSpec
 begin
 
-constdefs
-  exec :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> JVMType.state step_type"
+definition exec :: "jvm_prog \<Rightarrow> nat \<Rightarrow> ty \<Rightarrow> exception_table \<Rightarrow> instr list \<Rightarrow> JVMType.state step_type" where
   "exec G maxs rT et bs == 
   err_step (size bs) (\<lambda>pc. app (bs!pc) G maxs rT pc et) (\<lambda>pc. eff (bs!pc) G pc et)"
 
-constdefs
-  opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (ty list \<times> ty err list) option set"
+definition opt_states :: "'c prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (ty list \<times> ty err list) option set" where
   "opt_states G maxs maxr \<equiv> opt (\<Union>{list n (types G) |n. n \<le> maxs} \<times> list maxr (err (types G)))"
 
 
@@ -26,8 +24,7 @@
   "list_all'_rec P n []     = True"
   "list_all'_rec P n (x#xs) = (P x n \<and> list_all'_rec P (Suc n) xs)"
 
-constdefs
-  list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
+definition list_all' :: "('a \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
   "list_all' P xs \<equiv> list_all'_rec P 0 xs"
 
 lemma list_all'_rec:
--- a/src/HOL/MicroJava/Comp/CorrComp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/CorrComp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -81,13 +81,12 @@
 
 (***********************************************************************)
 
-constdefs
-  progression :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
+definition progression :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
                  aheap \<Rightarrow> opstack \<Rightarrow> locvars \<Rightarrow>
                  bytecode \<Rightarrow>
                  aheap \<Rightarrow> opstack \<Rightarrow> locvars \<Rightarrow> 
                  bool"
-  ("{_,_,_} \<turnstile> {_, _, _} >- _ \<rightarrow> {_, _, _}" [61,61,61,61,61,61,90,61,61,61]60)
+  ("{_,_,_} \<turnstile> {_, _, _} >- _ \<rightarrow> {_, _, _}" [61,61,61,61,61,61,90,61,61,61]60) where
   "{G,C,S} \<turnstile> {hp0, os0, lvars0} >- instrs \<rightarrow> {hp1, os1, lvars1} ==
   \<forall> pre post frs.
   (gis (gmb G C S) = pre @ instrs @ post) \<longrightarrow>
@@ -161,10 +160,9 @@
 done
 
 (*****)
-constdefs
-  jump_fwd :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
+definition jump_fwd :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
                  aheap \<Rightarrow> locvars \<Rightarrow> opstack \<Rightarrow> opstack \<Rightarrow> 
-                 instr \<Rightarrow> bytecode \<Rightarrow> bool"
+                 instr \<Rightarrow> bytecode \<Rightarrow> bool" where
   "jump_fwd G C S hp lvars os0 os1 instr instrs ==
   \<forall> pre post frs.
   (gis (gmb G C S) = pre @ instr # instrs @ post) \<longrightarrow>
@@ -216,10 +214,9 @@
 
 
 (* note: instrs and instr reversed wrt. jump_fwd *)
-constdefs
-  jump_bwd :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
+definition jump_bwd :: "jvm_prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 
                  aheap \<Rightarrow> locvars \<Rightarrow> opstack \<Rightarrow> opstack \<Rightarrow> 
-                 bytecode \<Rightarrow> instr \<Rightarrow> bool"
+                 bytecode \<Rightarrow> instr \<Rightarrow> bool" where
   "jump_bwd G C S hp lvars os0 os1 instrs instr ==
   \<forall> pre post frs.
   (gis (gmb G C S) = pre @ instrs @ instr # post) \<longrightarrow>
@@ -258,14 +255,14 @@
 (**********************************************************************)
 
 (* class C with signature S is defined in program G *)
-constdefs class_sig_defined :: "'c prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> bool"
+definition class_sig_defined :: "'c prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> bool" where
   "class_sig_defined G C S == 
   is_class G C \<and> (\<exists> D rT mb. (method (G, C) S = Some (D, rT, mb)))"
 
 
 (* The environment of a java method body 
   (characterized by class and signature) *)
-constdefs env_of_jmb :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> java_mb env"
+definition env_of_jmb :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> java_mb env" where
   "env_of_jmb G C S == 
   (let (mn,pTs) = S;
        (D,rT,(pns,lvars,blk,res)) = the(method (G, C) S) in
@@ -331,11 +328,13 @@
 
 (**********************************************************************)
 
-constdefs wtpd_expr :: "java_mb env \<Rightarrow> expr \<Rightarrow> bool"
+definition wtpd_expr :: "java_mb env \<Rightarrow> expr \<Rightarrow> bool" where
   "wtpd_expr E e == (\<exists> T. E\<turnstile>e :: T)"
-  wtpd_exprs :: "java_mb env \<Rightarrow> (expr list) \<Rightarrow> bool"
+
+definition wtpd_exprs :: "java_mb env \<Rightarrow> (expr list) \<Rightarrow> bool" where
   "wtpd_exprs E e == (\<exists> T. E\<turnstile>e [::] T)"
-  wtpd_stmt :: "java_mb env \<Rightarrow> stmt \<Rightarrow> bool" 
+
+definition wtpd_stmt :: "java_mb env \<Rightarrow> stmt \<Rightarrow> bool" where
   "wtpd_stmt E c == (E\<turnstile>c \<surd>)"
 
 lemma wtpd_expr_newc: "wtpd_expr E (NewC C) \<Longrightarrow> is_class (prg E) C"
--- a/src/HOL/MicroJava/Comp/CorrCompTp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/CorrCompTp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -12,13 +12,13 @@
 
 (**********************************************************************)
 
-constdefs     
-   inited_LT :: "[cname, ty list, (vname \<times> ty) list] \<Rightarrow> locvars_type"
+definition inited_LT :: "[cname, ty list, (vname \<times> ty) list] \<Rightarrow> locvars_type" where
   "inited_LT C pTs lvars == (OK (Class C))#((map OK pTs))@(map (Fun.comp OK snd) lvars)"
-   is_inited_LT :: "[cname, ty list, (vname \<times> ty) list, locvars_type] \<Rightarrow> bool"
+
+definition is_inited_LT :: "[cname, ty list, (vname \<times> ty) list, locvars_type] \<Rightarrow> bool" where
   "is_inited_LT C pTs lvars LT == (LT = (inited_LT C pTs lvars))"
 
-  local_env :: "[java_mb prog, cname, sig, vname list,(vname \<times> ty) list] \<Rightarrow> java_mb env"
+definition local_env :: "[java_mb prog, cname, sig, vname list,(vname \<times> ty) list] \<Rightarrow> java_mb env" where
   "local_env G C S pns lvars == 
      let (mn, pTs) = S in (G,map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C))"
 
@@ -536,13 +536,12 @@
 
 (**********************************************************************)
 
-constdefs
-  offset_xcentry :: "[nat, exception_entry] \<Rightarrow> exception_entry"
+definition offset_xcentry :: "[nat, exception_entry] \<Rightarrow> exception_entry" where
   "offset_xcentry == 
       \<lambda> n (start_pc, end_pc, handler_pc, catch_type).
           (start_pc + n, end_pc + n, handler_pc + n, catch_type)"
 
-  offset_xctable :: "[nat, exception_table] \<Rightarrow> exception_table"
+definition offset_xctable :: "[nat, exception_table] \<Rightarrow> exception_table" where
   "offset_xctable n == (map (offset_xcentry n))"
 
 lemma match_xcentry_offset [simp]: "
@@ -682,12 +681,11 @@
 (**********************************************************************)
 
 
-constdefs
-  start_sttp_resp_cons :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool"
+definition start_sttp_resp_cons :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" where
   "start_sttp_resp_cons f == 
      (\<forall> sttp. let (mt', sttp') = (f sttp) in (\<exists>mt'_rest. mt' = Some sttp # mt'_rest))"
 
-  start_sttp_resp :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool"
+definition start_sttp_resp :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" where
   "start_sttp_resp f == (f = comb_nil) \<or> (start_sttp_resp_cons f)"
 
 lemma start_sttp_resp_comb_nil [simp]: "start_sttp_resp comb_nil"
@@ -887,10 +885,9 @@
 
   (* ******************************************************************* *)
 
-constdefs
-   bc_mt_corresp :: "
+definition bc_mt_corresp :: "
   [bytecode, state_type \<Rightarrow> method_type \<times> state_type, state_type, jvm_prog, ty, nat, p_count]
-  \<Rightarrow> bool"
+  \<Rightarrow> bool" where
 
   "bc_mt_corresp bc f sttp0 cG rT mxr idx ==
   let (mt, sttp) = f sttp0 in
@@ -993,8 +990,7 @@
   (* ********************************************************************** *)
 
 
-constdefs
-  mt_sttp_flatten :: "method_type \<times> state_type \<Rightarrow> method_type"
+definition mt_sttp_flatten :: "method_type \<times> state_type \<Rightarrow> method_type" where
   "mt_sttp_flatten mt_sttp == (mt_of mt_sttp) @ [Some (sttp_of mt_sttp)]"
 
 
@@ -1473,8 +1469,7 @@
 
 
   (* ******************** *)
-constdefs 
-  contracting :: "(state_type \<Rightarrow> method_type \<times> state_type) \<Rightarrow> bool"
+definition contracting :: "(state_type \<Rightarrow> method_type \<times> state_type) \<Rightarrow> bool" where
   "contracting f == (\<forall> ST LT. 
                     let (ST', LT') = sttp_of (f (ST, LT)) 
                     in (length ST' \<le> length ST \<and> set ST' \<subseteq> set ST  \<and>
--- a/src/HOL/MicroJava/Comp/DefsComp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/DefsComp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/Comp/DefsComp.thy
-    ID:         $Id$
     Author:     Martin Strecker
 *)
 
@@ -10,50 +9,65 @@
 begin
 
 
-constdefs
-  method_rT :: "cname \<times> ty \<times> 'c \<Rightarrow> ty"
+definition method_rT :: "cname \<times> ty \<times> 'c \<Rightarrow> ty" where
   "method_rT mtd == (fst (snd mtd))"
 
 
-constdefs
 (* g = get *)
-  gx :: "xstate \<Rightarrow> val option"  "gx \<equiv> fst"
-  gs :: "xstate \<Rightarrow> state"  "gs \<equiv> snd"
-  gh :: "xstate \<Rightarrow> aheap"        "gh \<equiv> fst\<circ>snd"
-  gl :: "xstate \<Rightarrow> State.locals" "gl \<equiv> snd\<circ>snd"
+definition
+  gx :: "xstate \<Rightarrow> val option" where "gx \<equiv> fst"
+
+definition
+  gs :: "xstate \<Rightarrow> state" where "gs \<equiv> snd"
+
+definition
+  gh :: "xstate \<Rightarrow> aheap" where "gh \<equiv> fst\<circ>snd"
 
+definition
+  gl :: "xstate \<Rightarrow> State.locals" where "gl \<equiv> snd\<circ>snd"
+
+definition
   gmb :: "'a prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> 'a"
-    "gmb G cn si \<equiv> snd(snd(the(method (G,cn) si)))"
+    where "gmb G cn si \<equiv> snd(snd(the(method (G,cn) si)))"
+
+definition
   gis :: "jvm_method \<Rightarrow> bytecode"
-    "gis \<equiv> fst \<circ> snd \<circ> snd"
+    where "gis \<equiv> fst \<circ> snd \<circ> snd"
 
 (* jmb = aus einem JavaMaethodBody *)
-  gjmb_pns  :: "java_mb \<Rightarrow> vname list"     "gjmb_pns \<equiv> fst"
-  gjmb_lvs  :: "java_mb \<Rightarrow> (vname\<times>ty)list" "gjmb_lvs \<equiv> fst\<circ>snd"
-  gjmb_blk  :: "java_mb \<Rightarrow> stmt"           "gjmb_blk \<equiv> fst\<circ>snd\<circ>snd"
-  gjmb_res  :: "java_mb \<Rightarrow> expr"           "gjmb_res \<equiv> snd\<circ>snd\<circ>snd"
+definition
+  gjmb_pns  :: "java_mb \<Rightarrow> vname list" where "gjmb_pns \<equiv> fst"
+
+definition
+  gjmb_lvs  :: "java_mb \<Rightarrow> (vname\<times>ty)list" where  "gjmb_lvs \<equiv> fst\<circ>snd"
+
+definition
+  gjmb_blk  :: "java_mb \<Rightarrow> stmt" where  "gjmb_blk \<equiv> fst\<circ>snd\<circ>snd"
+
+definition
+  gjmb_res  :: "java_mb \<Rightarrow> expr" where  "gjmb_res \<equiv> snd\<circ>snd\<circ>snd"
+
+definition
   gjmb_plns :: "java_mb \<Rightarrow> vname list"
-    "gjmb_plns \<equiv> \<lambda>jmb. gjmb_pns jmb @ map fst (gjmb_lvs jmb)"
+    where  "gjmb_plns \<equiv> \<lambda>jmb. gjmb_pns jmb @ map fst (gjmb_lvs jmb)"
 
+definition
   glvs :: "java_mb \<Rightarrow> State.locals \<Rightarrow> locvars"
-    "glvs jmb loc \<equiv> map (the\<circ>loc) (gjmb_plns jmb)"
+    where "glvs jmb loc \<equiv> map (the\<circ>loc) (gjmb_plns jmb)"
   
 lemmas gdefs = gx_def gh_def gl_def gmb_def gis_def glvs_def
 lemmas gjmbdefs = gjmb_pns_def gjmb_lvs_def gjmb_blk_def gjmb_res_def gjmb_plns_def
 
 lemmas galldefs = gdefs gjmbdefs
 
-
-
-constdefs 
-  locvars_locals :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> State.locals \<Rightarrow> locvars"
+definition locvars_locals :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> State.locals \<Rightarrow> locvars" where
   "locvars_locals G C S lvs == the (lvs This) # glvs (gmb G C S) lvs"
 
-  locals_locvars :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> locvars \<Rightarrow> State.locals"
+definition locals_locvars :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> locvars \<Rightarrow> State.locals" where
   "locals_locvars G C S lvs == 
   empty ((gjmb_plns (gmb G C S))[\<mapsto>](tl lvs)) (This\<mapsto>(hd lvs))"
 
-  locvars_xstate :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> xstate \<Rightarrow> locvars"
+definition locvars_xstate :: "java_mb prog \<Rightarrow> cname \<Rightarrow> sig \<Rightarrow> xstate \<Rightarrow> locvars" where
   "locvars_xstate G C S xs == locvars_locals G C S (gl xs)"
 
 
--- a/src/HOL/MicroJava/Comp/Index.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/Index.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,8 +9,7 @@
 begin
 
 (*indexing a variable name among all variable declarations in a method body*)
-constdefs
- index :: "java_mb => vname => nat"
+definition index :: "java_mb => vname => nat" where
  "index ==  \<lambda> (pn,lv,blk,res) v.
   if v = This
   then 0 
@@ -99,8 +98,7 @@
 
 (* The following def should replace the conditions in WellType.thy / wf_java_mdecl
 *)
-constdefs 
-  disjoint_varnames :: "[vname list, (vname \<times> ty) list] \<Rightarrow> bool"
+definition disjoint_varnames :: "[vname list, (vname \<times> ty) list] \<Rightarrow> bool" where
 (* This corresponds to the original def in wf_java_mdecl:
   "disjoint_varnames pns lvars \<equiv> 
   nodups pns \<and> unique lvars \<and> This \<notin> set pns \<and> This \<notin> set (map fst lvars) \<and> 
--- a/src/HOL/MicroJava/Comp/TranslComp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/TranslComp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -98,17 +98,16 @@
 (*compiling methods, classes and programs*) 
 
 (*initialising a single variable*)
-constdefs
- load_default_val :: "ty => instr"
+definition load_default_val :: "ty => instr" where
 "load_default_val ty == LitPush (default_val ty)"
 
- compInit :: "java_mb => (vname * ty) => instr list"
+definition compInit :: "java_mb => (vname * ty) => instr list" where
 "compInit jmb == \<lambda> (vn,ty). [load_default_val ty, Store (index jmb vn)]"
 
- compInitLvars :: "[java_mb, (vname \<times> ty) list] \<Rightarrow> bytecode"
+definition compInitLvars :: "[java_mb, (vname \<times> ty) list] \<Rightarrow> bytecode" where
  "compInitLvars jmb lvars == concat (map (compInit jmb) lvars)"
 
-  compMethod :: "java_mb prog \<Rightarrow> cname \<Rightarrow> java_mb mdecl \<Rightarrow> jvm_method mdecl"
+definition compMethod :: "java_mb prog \<Rightarrow> cname \<Rightarrow> java_mb mdecl \<Rightarrow> jvm_method mdecl" where
   "compMethod G C jmdl == let (sig, rT, jmb) = jmdl;
                         (pns,lvars,blk,res) = jmb;
                         mt = (compTpMethod G C jmdl);
@@ -117,10 +116,10 @@
                              [Return]
                   in (sig, rT, max_ssize mt, length lvars, bc, [])"
 
-  compClass :: "java_mb prog => java_mb cdecl=> jvm_method cdecl"
+definition compClass :: "java_mb prog => java_mb cdecl=> jvm_method cdecl" where
   "compClass G == \<lambda> (C,cno,fdls,jmdls). (C,cno,fdls, map (compMethod G C) jmdls)"
 
-  comp :: "java_mb prog => jvm_prog"
+definition comp :: "java_mb prog => jvm_prog" where
   "comp G == map (compClass G) G"
 
 end
--- a/src/HOL/MicroJava/Comp/TranslCompTp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/TranslCompTp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -6,17 +6,14 @@
 imports Index "../BV/JVMType"
 begin
 
-
-
 (**********************************************************************)
 
-
-constdefs
-  comb :: "['a \<Rightarrow> 'b list \<times> 'c, 'c \<Rightarrow> 'b list \<times> 'd, 'a] \<Rightarrow> 'b list \<times> 'd" 
+definition comb :: "['a \<Rightarrow> 'b list \<times> 'c, 'c \<Rightarrow> 'b list \<times> 'd, 'a] \<Rightarrow> 'b list \<times> 'd" where 
   "comb == (\<lambda> f1 f2 x0. let (xs1, x1) = f1 x0; 
                             (xs2, x2) = f2 x1 
                         in  (xs1 @ xs2, x2))"
-  comb_nil :: "'a \<Rightarrow> 'b list \<times> 'a"
+
+definition comb_nil :: "'a \<Rightarrow> 'b list \<times> 'a" where
   "comb_nil a == ([], a)"
 
 notation (xsymbols)
@@ -58,23 +55,26 @@
   compTpStmt  :: "java_mb \<Rightarrow> java_mb prog \<Rightarrow> stmt
                    \<Rightarrow> state_type \<Rightarrow> method_type \<times> state_type"
 
-
-constdefs
-  nochangeST :: "state_type \<Rightarrow> method_type \<times> state_type"
+definition nochangeST :: "state_type \<Rightarrow> method_type \<times> state_type" where
   "nochangeST sttp == ([Some sttp], sttp)"
-  pushST :: "[ty list, state_type] \<Rightarrow> method_type \<times> state_type"
+
+definition pushST :: "[ty list, state_type] \<Rightarrow> method_type \<times> state_type" where
   "pushST tps == (\<lambda> (ST, LT). ([Some (ST, LT)], (tps @ ST, LT)))"
-  dupST :: "state_type \<Rightarrow> method_type \<times> state_type"
+
+definition dupST :: "state_type \<Rightarrow> method_type \<times> state_type" where
   "dupST == (\<lambda> (ST, LT). ([Some (ST, LT)], (hd ST # ST, LT)))"
-  dup_x1ST :: "state_type \<Rightarrow> method_type \<times> state_type"
+
+definition dup_x1ST :: "state_type \<Rightarrow> method_type \<times> state_type" where
   "dup_x1ST == (\<lambda> (ST, LT). ([Some (ST, LT)], 
                              (hd ST # hd (tl ST) # hd ST # (tl (tl ST)), LT)))"
-  popST :: "[nat, state_type] \<Rightarrow> method_type \<times> state_type"
+
+definition popST :: "[nat, state_type] \<Rightarrow> method_type \<times> state_type" where
   "popST n == (\<lambda> (ST, LT). ([Some (ST, LT)], (drop n ST, LT)))"
-  replST :: "[nat, ty, state_type] \<Rightarrow> method_type \<times> state_type"
+
+definition replST :: "[nat, ty, state_type] \<Rightarrow> method_type \<times> state_type" where
   "replST n tp == (\<lambda> (ST, LT). ([Some (ST, LT)], (tp # (drop n ST), LT)))"
 
-  storeST :: "[nat, ty, state_type] \<Rightarrow> method_type \<times> state_type"
+definition storeST :: "[nat, ty, state_type] \<Rightarrow> method_type \<times> state_type" where
   "storeST i tp == (\<lambda> (ST, LT). ([Some (ST, LT)], (tl ST, LT [i:= OK tp])))"
 
 
@@ -137,9 +137,8 @@
       (pushST [PrimT Boolean]) \<box> (compTpExpr jmb G e) \<box> popST 2 \<box>
       (compTpStmt jmb G c) \<box> nochangeST"
 
-constdefs
-  compTpInit  :: "java_mb \<Rightarrow> (vname * ty)
-                   \<Rightarrow> state_type \<Rightarrow> method_type \<times> state_type"
+definition compTpInit :: "java_mb \<Rightarrow> (vname * ty)
+                   \<Rightarrow> state_type \<Rightarrow> method_type \<times> state_type" where
   "compTpInit jmb == (\<lambda> (vn,ty). (pushST [ty]) \<box>  (storeST (index jmb vn) ty))"
 
 consts
@@ -150,14 +149,13 @@
   "compTpInitLvars jmb [] = comb_nil"
   "compTpInitLvars jmb (lv#lvars) = (compTpInit jmb lv) \<box> (compTpInitLvars jmb lvars)"
 
-constdefs
-   start_ST :: "opstack_type"
+definition start_ST :: "opstack_type" where
   "start_ST == []"
 
-   start_LT :: "cname \<Rightarrow> ty list \<Rightarrow> nat \<Rightarrow> locvars_type"
+definition start_LT :: "cname \<Rightarrow> ty list \<Rightarrow> nat \<Rightarrow> locvars_type" where
   "start_LT C pTs n ==  (OK (Class C))#((map OK pTs))@(replicate n Err)"
 
-  compTpMethod  :: "[java_mb prog, cname, java_mb mdecl] \<Rightarrow> method_type"
+definition compTpMethod  :: "[java_mb prog, cname, java_mb mdecl] \<Rightarrow> method_type" where
   "compTpMethod G C == \<lambda> ((mn,pTs),rT, jmb). 
                          let (pns,lvars,blk,res) = jmb
                          in (mt_of
@@ -167,7 +165,7 @@
                               nochangeST)
                                 (start_ST, start_LT C pTs (length lvars))))"
 
-  compTp :: "java_mb prog => prog_type"
+definition compTp :: "java_mb prog => prog_type" where
   "compTp G C sig == let (D, rT, jmb) = (the (method (G, C) sig))
                       in compTpMethod G C (sig, rT, jmb)"
 
@@ -176,15 +174,13 @@
 (**********************************************************************)
   (* Computing the maximum stack size from the method_type *)
 
-constdefs
-  ssize_sto :: "(state_type option) \<Rightarrow> nat"
+definition ssize_sto :: "(state_type option) \<Rightarrow> nat" where
   "ssize_sto sto ==  case sto of None \<Rightarrow> 0 | (Some (ST, LT)) \<Rightarrow> length ST"
 
-  max_of_list :: "nat list \<Rightarrow> nat"
+definition max_of_list :: "nat list \<Rightarrow> nat" where
   "max_of_list xs == foldr max xs 0"
 
-  max_ssize :: "method_type \<Rightarrow> nat"
+definition max_ssize :: "method_type \<Rightarrow> nat" where
   "max_ssize mt == max_of_list (map ssize_sto mt)"
 
-
 end
--- a/src/HOL/MicroJava/Comp/TypeInf.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/Comp/TypeInf.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/Comp/TypeInf.thy
-    ID:         $Id$
     Author:     Martin Strecker
 *)
 
@@ -169,10 +168,10 @@
 
   
 
-constdefs 
-  inferred_tp  :: "[java_mb env, expr] \<Rightarrow> ty"
+definition inferred_tp :: "[java_mb env, expr] \<Rightarrow> ty" where
   "inferred_tp E e == (SOME T. E\<turnstile>e :: T)"
-  inferred_tps :: "[java_mb env, expr list] \<Rightarrow> ty list"
+
+definition inferred_tps :: "[java_mb env, expr list] \<Rightarrow> ty list" where
   "inferred_tps E es == (SOME Ts. E\<turnstile>es [::] Ts)"
 
 (* get inferred type(s) for well-typed term *)
--- a/src/HOL/MicroJava/DFA/Err.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Err.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -14,35 +14,32 @@
 types 'a ebinop = "'a \<Rightarrow> 'a \<Rightarrow> 'a err"
       'a esl =    "'a set * 'a ord * 'a ebinop"
 
-consts
-  ok_val :: "'a err \<Rightarrow> 'a"
-primrec
+primrec ok_val :: "'a err \<Rightarrow> 'a" where
   "ok_val (OK x) = x"
 
-constdefs
- lift :: "('a \<Rightarrow> 'b err) \<Rightarrow> ('a err \<Rightarrow> 'b err)"
+definition lift :: "('a \<Rightarrow> 'b err) \<Rightarrow> ('a err \<Rightarrow> 'b err)" where
 "lift f e == case e of Err \<Rightarrow> Err | OK x \<Rightarrow> f x"
 
- lift2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a err \<Rightarrow> 'b err \<Rightarrow> 'c err"
+definition lift2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a err \<Rightarrow> 'b err \<Rightarrow> 'c err" where
 "lift2 f e1 e2 ==
  case e1 of Err  \<Rightarrow> Err
           | OK x \<Rightarrow> (case e2 of Err \<Rightarrow> Err | OK y \<Rightarrow> f x y)"
 
- le :: "'a ord \<Rightarrow> 'a err ord"
+definition le :: "'a ord \<Rightarrow> 'a err ord" where
 "le r e1 e2 ==
         case e2 of Err \<Rightarrow> True |
                    OK y \<Rightarrow> (case e1 of Err \<Rightarrow> False | OK x \<Rightarrow> x <=_r y)"
 
- sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a err \<Rightarrow> 'b err \<Rightarrow> 'c err)"
+definition sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a err \<Rightarrow> 'b err \<Rightarrow> 'c err)" where
 "sup f == lift2(%x y. OK(x +_f y))"
 
- err :: "'a set \<Rightarrow> 'a err set"
+definition err :: "'a set \<Rightarrow> 'a err set" where
 "err A == insert Err {x . ? y:A. x = OK y}"
 
- esl :: "'a sl \<Rightarrow> 'a esl"
+definition esl :: "'a sl \<Rightarrow> 'a esl" where
 "esl == %(A,r,f). (A,r, %x y. OK(f x y))"
 
- sl :: "'a esl \<Rightarrow> 'a err sl"
+definition sl :: "'a esl \<Rightarrow> 'a err sl" where
 "sl == %(A,r,f). (err A, le r, lift2 f)"
 
 abbreviation
--- a/src/HOL/MicroJava/DFA/Kildall.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Kildall.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,37 +9,28 @@
 imports SemilatAlg While_Combinator
 begin
 
-
-consts
- iter :: "'s binop \<Rightarrow> 's step_type \<Rightarrow>
-          's list \<Rightarrow> nat set \<Rightarrow> 's list \<times> nat set"
- propa :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> nat set \<Rightarrow> 's list * nat set"
+primrec propa :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> nat set \<Rightarrow> 's list * nat set" where
+  "propa f []      ss w = (ss,w)"
+| "propa f (q'#qs) ss w = (let (q,t) = q';
+                               u = t +_f ss!q;
+                               w' = (if u = ss!q then w else insert q w)
+                           in propa f qs (ss[q := u]) w')"
 
-primrec
-"propa f []      ss w = (ss,w)"
-"propa f (q'#qs) ss w = (let (q,t) = q';
-                             u = t +_f ss!q;
-                             w' = (if u = ss!q then w else insert q w)
-                         in propa f qs (ss[q := u]) w')"
-
-defs iter_def:
-"iter f step ss w ==
- while (%(ss,w). w \<noteq> {})
+definition iter :: "'s binop \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat set \<Rightarrow> 's list \<times> nat set" where
+  "iter f step ss w == while (%(ss,w). w \<noteq> {})
        (%(ss,w). let p = SOME p. p \<in> w
                  in propa f (step p (ss!p)) ss (w-{p}))
        (ss,w)"
 
-constdefs
- unstables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat set"
+definition unstables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat set" where
 "unstables r step ss == {p. p < size ss \<and> \<not>stable r step ss p}"
 
- kildall :: "'s ord \<Rightarrow> 's binop \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> 's list"
+definition kildall :: "'s ord \<Rightarrow> 's binop \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> 's list" where
 "kildall r f step ss == fst(iter f step ss (unstables r step ss))"
 
-consts merges :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> 's list"
-primrec
-"merges f []      ss = ss"
-"merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))"
+primrec merges :: "'s binop \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's list \<Rightarrow> 's list" where
+  "merges f []      ss = ss"
+| "merges f (p'#ps) ss = (let (p,s) = p' in merges f ps (ss[p := s +_f ss!p]))"
 
 
 lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric]
--- a/src/HOL/MicroJava/DFA/LBVComplete.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/LBVComplete.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,12 +9,11 @@
 imports LBVSpec Typing_Framework
 begin
 
-constdefs
-  is_target :: "['s step_type, 's list, nat] \<Rightarrow> bool" 
+definition is_target :: "['s step_type, 's list, nat] \<Rightarrow> bool" where 
   "is_target step phi pc' \<equiv>
      \<exists>pc s'. pc' \<noteq> pc+1 \<and> pc < length phi \<and> (pc',s') \<in> set (step pc (phi!pc))"
 
-  make_cert :: "['s step_type, 's list, 's] \<Rightarrow> 's certificate"
+definition make_cert :: "['s step_type, 's list, 's] \<Rightarrow> 's certificate" where
   "make_cert step phi B \<equiv> 
      map (\<lambda>pc. if is_target step phi pc then phi!pc else B) [0..<length phi] @ [B]"
 
--- a/src/HOL/MicroJava/DFA/LBVSpec.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/LBVSpec.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -12,46 +12,38 @@
 types
   's certificate = "'s list"   
 
-consts
-merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's \<Rightarrow> 's"
-primrec
-"merge cert f r T pc []     x = x"
-"merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in 
+primrec merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's \<Rightarrow> 's" where
+  "merge cert f r T pc []     x = x"
+| "merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in 
                                   if pc'=pc+1 then s' +_f x
                                   else if s' <=_r (cert!pc') then x
                                   else T)"
 
-constdefs
-wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow>
-             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
+definition wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow>
+             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" where
 "wtl_inst cert f r T step pc s \<equiv> merge cert f r T pc (step pc s) (cert!(pc+1))"
 
-wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
-             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
+definition wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
+             's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" where
 "wtl_cert cert f r T B step pc s \<equiv>
   if cert!pc = B then 
     wtl_inst cert f r T step pc s
   else
     if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T"
 
-consts 
-wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
-                  's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
-primrec
-"wtl_inst_list []     cert f r T B step pc s = s"
-"wtl_inst_list (i#is) cert f r T B step pc s = 
+primrec wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
+                  's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's" where
+  "wtl_inst_list []     cert f r T B step pc s = s"
+| "wtl_inst_list (i#is) cert f r T B step pc s = 
     (let s' = wtl_cert cert f r T B step pc s in
       if s' = T \<or> s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')"
 
-constdefs
-  cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool"
+definition cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool" where
   "cert_ok cert n T B A \<equiv> (\<forall>i < n. cert!i \<in> A \<and> cert!i \<noteq> T) \<and> (cert!n = B)"
 
-constdefs
-  bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool"
+definition bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool" where
   "bottom r B \<equiv> \<forall>x. B <=_r x"
 
-
 locale lbv = Semilat +
   fixes T :: "'a" ("\<top>") 
   fixes B :: "'a" ("\<bottom>") 
--- a/src/HOL/MicroJava/DFA/Listn.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Listn.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,12 +9,10 @@
 imports Err
 begin
 
-constdefs
-
- list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set"
+definition list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set" where
 "list n A == {xs. length xs = n & set xs <= A}"
 
- le :: "'a ord \<Rightarrow> ('a list)ord"
+definition le :: "'a ord \<Rightarrow> ('a list)ord" where
 "le r == list_all2 (%x y. x <=_r y)"
 
 abbreviation
@@ -27,8 +25,7 @@
        ("(_ /<[_] _)" [50, 0, 51] 50)
   where "x <[r] y == x <_(le r) y"
 
-constdefs
- map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
+definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" where
 "map2 f == (%xs ys. map (split f) (zip xs ys))"
 
 abbreviation
@@ -36,19 +33,17 @@
        ("(_ /+[_] _)" [65, 0, 66] 65)
   where "x +[f] y == x +_(map2 f) y"
 
-consts coalesce :: "'a err list \<Rightarrow> 'a list err"
-primrec
-"coalesce [] = OK[]"
-"coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)"
+primrec coalesce :: "'a err list \<Rightarrow> 'a list err" where
+  "coalesce [] = OK[]"
+| "coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)"
 
-constdefs
- sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl"
+definition sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl" where
 "sl n == %(A,r,f). (list n A, le r, map2 f)"
 
- sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err"
+definition sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err" where
 "sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err"
 
- upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl"
+definition upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl" where
 "upto_esl m == %(A,r,f). (Union{list n A |n. n <= m}, le r, sup f)"
 
 lemmas [simp] = set_update_subsetI
--- a/src/HOL/MicroJava/DFA/Opt.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Opt.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,21 +9,20 @@
 imports Err
 begin
 
-constdefs
- le :: "'a ord \<Rightarrow> 'a option ord"
+definition le :: "'a ord \<Rightarrow> 'a option ord" where
 "le r o1 o2 == case o2 of None \<Rightarrow> o1=None |
                               Some y \<Rightarrow> (case o1 of None \<Rightarrow> True
                                                   | Some x \<Rightarrow> x <=_r y)"
 
- opt :: "'a set \<Rightarrow> 'a option set"
+definition opt :: "'a set \<Rightarrow> 'a option set" where
 "opt A == insert None {x . ? y:A. x = Some y}"
 
- sup :: "'a ebinop \<Rightarrow> 'a option ebinop"
+definition sup :: "'a ebinop \<Rightarrow> 'a option ebinop" where
 "sup f o1 o2 ==  
  case o1 of None \<Rightarrow> OK o2 | Some x \<Rightarrow> (case o2 of None \<Rightarrow> OK o1
      | Some y \<Rightarrow> (case f x y of Err \<Rightarrow> Err | OK z \<Rightarrow> OK (Some z)))"
 
- esl :: "'a esl \<Rightarrow> 'a option esl"
+definition esl :: "'a esl \<Rightarrow> 'a option esl" where
 "esl == %(A,r,f). (opt A, le r, sup f)"
 
 lemma unfold_le_opt:
--- a/src/HOL/MicroJava/DFA/Product.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Product.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,14 +9,13 @@
 imports Err
 begin
 
-constdefs
- le :: "'a ord \<Rightarrow> 'b ord \<Rightarrow> ('a * 'b) ord"
+definition le :: "'a ord \<Rightarrow> 'b ord \<Rightarrow> ('a * 'b) ord" where
 "le rA rB == %(a,b) (a',b'). a <=_rA a' & b <=_rB b'"
 
- sup :: "'a ebinop \<Rightarrow> 'b ebinop \<Rightarrow> ('a * 'b)ebinop"
+definition sup :: "'a ebinop \<Rightarrow> 'b ebinop \<Rightarrow> ('a * 'b)ebinop" where
 "sup f g == %(a1,b1)(a2,b2). Err.sup Pair (a1 +_f a2) (b1 +_g b2)"
 
- esl :: "'a esl \<Rightarrow> 'b esl \<Rightarrow> ('a * 'b ) esl"
+definition esl :: "'a esl \<Rightarrow> 'b esl \<Rightarrow> ('a * 'b ) esl" where
 "esl == %(A,rA,fA) (B,rB,fB). (A <*> B, le rA rB, sup fA fB)"
 
 abbreviation
--- a/src/HOL/MicroJava/DFA/Semilat.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Semilat.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -52,36 +52,34 @@
   lesssub_def: "x \<sqsubset>\<^sub>r y \<equiv> x \<sqsubseteq>\<^sub>r y \<and> x \<noteq> y"
   plussub_def: "x \<squnion>\<^sub>f y \<equiv> f x y"
 
-constdefs
-  ord :: "('a \<times> 'a) set \<Rightarrow> 'a ord"
+definition ord :: "('a \<times> 'a) set \<Rightarrow> 'a ord" where
   "ord r \<equiv> \<lambda>x y. (x,y) \<in> r"
 
-  order :: "'a ord \<Rightarrow> bool"
+definition order :: "'a ord \<Rightarrow> bool" where
   "order r \<equiv> (\<forall>x. x \<sqsubseteq>\<^sub>r x) \<and> (\<forall>x y. x \<sqsubseteq>\<^sub>r y \<and> y \<sqsubseteq>\<^sub>r x \<longrightarrow> x=y) \<and> (\<forall>x y z. x \<sqsubseteq>\<^sub>r y \<and> y \<sqsubseteq>\<^sub>r z \<longrightarrow> x \<sqsubseteq>\<^sub>r z)"
 
-  top :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool"
+definition top :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool" where
   "top r T \<equiv> \<forall>x. x \<sqsubseteq>\<^sub>r T"
   
-  acc :: "'a ord \<Rightarrow> bool"
+definition acc :: "'a ord \<Rightarrow> bool" where
   "acc r \<equiv> wf {(y,x). x \<sqsubset>\<^sub>r y}"
 
-  closed :: "'a set \<Rightarrow> 'a binop \<Rightarrow> bool"
+definition closed :: "'a set \<Rightarrow> 'a binop \<Rightarrow> bool" where
   "closed A f \<equiv> \<forall>x\<in>A. \<forall>y\<in>A. x \<squnion>\<^sub>f y \<in> A"
 
-  semilat :: "'a sl \<Rightarrow> bool"
+definition semilat :: "'a sl \<Rightarrow> bool" where
   "semilat \<equiv> \<lambda>(A,r,f). order r \<and> closed A f \<and> 
                        (\<forall>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq>\<^sub>r x \<squnion>\<^sub>f y) \<and>
                        (\<forall>x\<in>A. \<forall>y\<in>A. y \<sqsubseteq>\<^sub>r x \<squnion>\<^sub>f y) \<and>
                        (\<forall>x\<in>A. \<forall>y\<in>A. \<forall>z\<in>A. x \<sqsubseteq>\<^sub>r z \<and> y \<sqsubseteq>\<^sub>r z \<longrightarrow> x \<squnion>\<^sub>f y \<sqsubseteq>\<^sub>r z)"
 
-
-  is_ub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+definition is_ub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_ub r x y u \<equiv> (x,u)\<in>r \<and> (y,u)\<in>r"
 
-  is_lub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+definition is_lub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
   "is_lub r x y u \<equiv> is_ub r x y u \<and> (\<forall>z. is_ub r x y z \<longrightarrow> (u,z)\<in>r)"
 
-  some_lub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+definition some_lub :: "('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   "some_lub r x y \<equiv> SOME z. is_lub r x y z"
 
 locale Semilat =
@@ -307,8 +305,7 @@
 
 subsection{*An executable lub-finder*}
 
-constdefs
- exec_lub :: "('a * 'a) set \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a binop"
+definition exec_lub :: "('a * 'a) set \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a binop" where
 "exec_lub r f x y \<equiv> while (\<lambda>z. (x,z) \<notin> r\<^sup>*) f y"
 
 lemma exec_lub_refl: "exec_lub r f T T = T"
--- a/src/HOL/MicroJava/DFA/SemilatAlg.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/SemilatAlg.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,29 +9,24 @@
 imports Typing_Framework Product
 begin
 
-constdefs 
-  lesubstep_type :: "(nat \<times> 's) list \<Rightarrow> 's ord \<Rightarrow> (nat \<times> 's) list \<Rightarrow> bool"
-                    ("(_ /<=|_| _)" [50, 0, 51] 50)
+definition lesubstep_type :: "(nat \<times> 's) list \<Rightarrow> 's ord \<Rightarrow> (nat \<times> 's) list \<Rightarrow> bool"
+                    ("(_ /<=|_| _)" [50, 0, 51] 50) where
   "x <=|r| y \<equiv> \<forall>(p,s) \<in> set x. \<exists>s'. (p,s') \<in> set y \<and> s <=_r s'"
 
-consts
-  plusplussub :: "'a list \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" ("(_ /++'__ _)" [65, 1000, 66] 65)
-primrec
+primrec plusplussub :: "'a list \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" ("(_ /++'__ _)" [65, 1000, 66] 65) where
   "[] ++_f y = y"
-  "(x#xs) ++_f y = xs ++_f (x +_f y)"
+| "(x#xs) ++_f y = xs ++_f (x +_f y)"
 
-constdefs
- bounded :: "'s step_type \<Rightarrow> nat \<Rightarrow> bool"
+definition bounded :: "'s step_type \<Rightarrow> nat \<Rightarrow> bool" where
 "bounded step n == !p<n. !s. !(q,t):set(step p s). q<n"  
 
- pres_type :: "'s step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
+definition pres_type :: "'s step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool" where
 "pres_type step n A == \<forall>s\<in>A. \<forall>p<n. \<forall>(q,s')\<in>set (step p s). s' \<in> A"
 
- mono :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
+definition mono :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool" where
 "mono r step n A ==
  \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> step p s <=|r| step p t"
 
-
 lemma pres_typeD:
   "\<lbrakk> pres_type step n A; s\<in>A; p<n; (q,s')\<in>set (step p s) \<rbrakk> \<Longrightarrow> s' \<in> A"
   by (unfold pres_type_def, blast)
--- a/src/HOL/MicroJava/DFA/Typing_Framework.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Typing_Framework.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -15,20 +15,19 @@
 types
   's step_type = "nat \<Rightarrow> 's \<Rightarrow> (nat \<times> 's) list"
 
-constdefs
- stable :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat \<Rightarrow> bool"
+definition stable :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> nat \<Rightarrow> bool" where
 "stable r step ss p == !(q,s'):set(step p (ss!p)). s' <=_r ss!q"
 
- stables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
+definition stables :: "'s ord \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool" where
 "stables r step ss == !p<size ss. stable r step ss p"
 
- wt_step ::
-"'s ord \<Rightarrow> 's \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
+definition wt_step ::
+"'s ord \<Rightarrow> 's \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool" where
 "wt_step r T step ts ==
  !p<size(ts). ts!p ~= T & stable r step ts p"
 
- is_bcv :: "'s ord \<Rightarrow> 's \<Rightarrow> 's step_type 
-           \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> ('s list \<Rightarrow> 's list) \<Rightarrow> bool"  
+definition is_bcv :: "'s ord \<Rightarrow> 's \<Rightarrow> 's step_type 
+           \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> ('s list \<Rightarrow> 's list) \<Rightarrow> bool" where
 "is_bcv r T step n A bcv == !ss : list n A.
    (!p<n. (bcv ss)!p ~= T) =
    (? ts: list n A. ss <=[r] ts & wt_step r T step ts)"
--- a/src/HOL/MicroJava/DFA/Typing_Framework_err.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/DFA/Typing_Framework_err.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,28 +9,26 @@
 imports Typing_Framework SemilatAlg
 begin
 
-constdefs
-
-wt_err_step :: "'s ord \<Rightarrow> 's err step_type \<Rightarrow> 's err list \<Rightarrow> bool"
+definition wt_err_step :: "'s ord \<Rightarrow> 's err step_type \<Rightarrow> 's err list \<Rightarrow> bool" where
 "wt_err_step r step ts \<equiv> wt_step (Err.le r) Err step ts"
 
-wt_app_eff :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
+definition wt_app_eff :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool" where
 "wt_app_eff r app step ts \<equiv>
   \<forall>p < size ts. app p (ts!p) \<and> (\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q)"
 
-map_snd :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'c) list"
+definition map_snd :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'c) list" where
 "map_snd f \<equiv> map (\<lambda>(x,y). (x, f y))"
 
-error :: "nat \<Rightarrow> (nat \<times> 'a err) list"
+definition error :: "nat \<Rightarrow> (nat \<times> 'a err) list" where
 "error n \<equiv> map (\<lambda>x. (x,Err)) [0..<n]"
 
-err_step :: "nat \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's err step_type"
+definition err_step :: "nat \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's err step_type" where
 "err_step n app step p t \<equiv> 
   case t of 
     Err   \<Rightarrow> error n
   | OK t' \<Rightarrow> if app p t' then map_snd OK (step p t') else error n"
 
-app_mono :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool"
+definition app_mono :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 's set \<Rightarrow> bool" where
 "app_mono r app n A \<equiv>
  \<forall>s p t. s \<in> A \<and> p < n \<and> s <=_r t \<longrightarrow> app p t \<longrightarrow> app p s"
 
--- a/src/HOL/MicroJava/J/Conform.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/Conform.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/J/Conform.thy
-    ID:         $Id$
     Author:     David von Oheimb
     Copyright   1999 Technische Universitaet Muenchen
 *)
@@ -10,29 +9,27 @@
 
 types 'c env' = "'c prog \<times> (vname \<rightharpoonup> ty)"  -- "same as @{text env} of @{text WellType.thy}"
 
-constdefs
-
-  hext :: "aheap => aheap => bool" ("_ <=| _" [51,51] 50)
+definition hext :: "aheap => aheap => bool" ("_ <=| _" [51,51] 50) where
  "h<=|h' == \<forall>a C fs. h a = Some(C,fs) --> (\<exists>fs'. h' a = Some(C,fs'))"
 
-  conf :: "'c prog => aheap => val => ty => bool" 
-                                   ("_,_ |- _ ::<= _"  [51,51,51,51] 50)
+definition conf :: "'c prog => aheap => val => ty => bool" 
+                                   ("_,_ |- _ ::<= _"  [51,51,51,51] 50) where
  "G,h|-v::<=T == \<exists>T'. typeof (Option.map obj_ty o h) v = Some T' \<and> G\<turnstile>T'\<preceq>T"
 
-  lconf :: "'c prog => aheap => ('a \<rightharpoonup> val) => ('a \<rightharpoonup> ty) => bool"
-                                   ("_,_ |- _ [::<=] _" [51,51,51,51] 50)
+definition lconf :: "'c prog => aheap => ('a \<rightharpoonup> val) => ('a \<rightharpoonup> ty) => bool"
+                                   ("_,_ |- _ [::<=] _" [51,51,51,51] 50) where
  "G,h|-vs[::<=]Ts == \<forall>n T. Ts n = Some T --> (\<exists>v. vs n = Some v \<and> G,h|-v::<=T)"
 
-  oconf :: "'c prog => aheap => obj => bool" ("_,_ |- _ [ok]" [51,51,51] 50)
+definition oconf :: "'c prog => aheap => obj => bool" ("_,_ |- _ [ok]" [51,51,51] 50) where
  "G,h|-obj [ok] == G,h|-snd obj[::<=]map_of (fields (G,fst obj))"
 
-  hconf :: "'c prog => aheap => bool" ("_ |-h _ [ok]" [51,51] 50)
+definition hconf :: "'c prog => aheap => bool" ("_ |-h _ [ok]" [51,51] 50) where
  "G|-h h [ok]    == \<forall>a obj. h a = Some obj --> G,h|-obj [ok]"
  
-  xconf :: "aheap \<Rightarrow> val option \<Rightarrow> bool"
+definition xconf :: "aheap \<Rightarrow> val option \<Rightarrow> bool" where
   "xconf hp vo  == preallocated hp \<and> (\<forall> v. (vo = Some v) \<longrightarrow> (\<exists> xc. v = (Addr (XcptRef xc))))"
 
-  conforms :: "xstate => java_mb env' => bool" ("_ ::<= _" [51,51] 50)
+definition conforms :: "xstate => java_mb env' => bool" ("_ ::<= _" [51,51] 50) where
  "s::<=E == prg E|-h heap (store s) [ok] \<and> 
             prg E,heap (store s)|-locals (store s)[::<=]localT E \<and> 
             xconf (heap (store s)) (abrupt s)"
--- a/src/HOL/MicroJava/J/Decl.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/Decl.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/J/Decl.thy
-    ID:         $Id$
     Author:     David von Oheimb
     Copyright   1999 Technische Universitaet Muenchen
 *)
@@ -32,11 +31,10 @@
   "prog  c" <= (type) "(c cdecl) list"
 
 
-constdefs
-  "class" :: "'c prog => (cname \<rightharpoonup> 'c class)"
+definition "class" :: "'c prog => (cname \<rightharpoonup> 'c class)" where
   "class \<equiv> map_of"
 
-  is_class :: "'c prog => cname => bool"
+definition is_class :: "'c prog => cname => bool" where
   "is_class G C \<equiv> class G C \<noteq> None"
 
 
@@ -46,10 +44,8 @@
 apply (rule finite_dom_map_of)
 done
 
-consts
-  is_type :: "'c prog => ty    => bool"
-primrec
+primrec is_type :: "'c prog => ty => bool" where
   "is_type G (PrimT pt) = True"
-  "is_type G (RefT t) = (case t of NullT => True | ClassT C => is_class G C)"
+| "is_type G (RefT t) = (case t of NullT => True | ClassT C => is_class G C)"
 
 end
--- a/src/HOL/MicroJava/J/Eval.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/Eval.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/J/Eval.thy
-    ID:         $Id$
     Author:     David von Oheimb
     Copyright   1999 Technische Universitaet Muenchen
 *)
@@ -11,22 +10,16 @@
 
   -- "Auxiliary notions"
 
-constdefs
-  fits    :: "java_mb prog \<Rightarrow> state \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool" ("_,_\<turnstile>_ fits _"[61,61,61,61]60)
+definition fits :: "java_mb prog \<Rightarrow> state \<Rightarrow> val \<Rightarrow> ty \<Rightarrow> bool" ("_,_\<turnstile>_ fits _"[61,61,61,61]60) where
  "G,s\<turnstile>a' fits T  \<equiv> case T of PrimT T' \<Rightarrow> False | RefT T' \<Rightarrow> a'=Null \<or> G\<turnstile>obj_ty(lookup_obj s a')\<preceq>T"
 
-constdefs
-  catch ::"java_mb prog \<Rightarrow> xstate \<Rightarrow> cname \<Rightarrow> bool" ("_,_\<turnstile>catch _"[61,61,61]60)
+definition catch :: "java_mb prog \<Rightarrow> xstate \<Rightarrow> cname \<Rightarrow> bool" ("_,_\<turnstile>catch _"[61,61,61]60) where
  "G,s\<turnstile>catch C\<equiv>  case abrupt s of None \<Rightarrow> False | Some a \<Rightarrow> G,store s\<turnstile> a fits Class C"
 
-
-
-constdefs
-  lupd       :: "vname \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state"        ("lupd'(_\<mapsto>_')"[10,10]1000)
+definition lupd :: "vname \<Rightarrow> val \<Rightarrow> state \<Rightarrow> state" ("lupd'(_\<mapsto>_')"[10,10]1000) where
  "lupd vn v   \<equiv> \<lambda> (hp,loc). (hp, (loc(vn\<mapsto>v)))"
 
-constdefs
-  new_xcpt_var :: "vname \<Rightarrow> xstate \<Rightarrow> xstate"
+definition new_xcpt_var :: "vname \<Rightarrow> xstate \<Rightarrow> xstate" where
  "new_xcpt_var vn \<equiv>  \<lambda>(x,s). Norm (lupd(vn\<mapsto>the x) s)"
 
 
--- a/src/HOL/MicroJava/J/Exceptions.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/Exceptions.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -6,11 +6,10 @@
 theory Exceptions imports State begin
 
 text {* a new, blank object with default values in all fields: *}
-constdefs
-  blank :: "'c prog \<Rightarrow> cname \<Rightarrow> obj"
+definition blank :: "'c prog \<Rightarrow> cname \<Rightarrow> obj" where
   "blank G C \<equiv> (C,init_vars (fields(G,C)))" 
 
-  start_heap :: "'c prog \<Rightarrow> aheap"
+definition start_heap :: "'c prog \<Rightarrow> aheap" where
   "start_heap G \<equiv> empty (XcptRef NullPointer \<mapsto> blank G (Xcpt NullPointer))
                         (XcptRef ClassCast \<mapsto> blank G (Xcpt ClassCast))
                         (XcptRef OutOfMemory \<mapsto> blank G (Xcpt OutOfMemory))"
@@ -21,8 +20,7 @@
   where "cname_of hp v == fst (the (hp (the_Addr v)))"
 
 
-constdefs
-  preallocated :: "aheap \<Rightarrow> bool"
+definition preallocated :: "aheap \<Rightarrow> bool" where
   "preallocated hp \<equiv> \<forall>x. \<exists>fs. hp (XcptRef x) = Some (Xcpt x, fs)"
 
 lemma preallocatedD:
--- a/src/HOL/MicroJava/J/JBasis.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/JBasis.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -15,8 +15,7 @@
 
 section "unique"
  
-constdefs
-  unique  :: "('a \<times> 'b) list => bool"
+definition unique :: "('a \<times> 'b) list => bool" where
   "unique  == distinct \<circ> map fst"
 
 
--- a/src/HOL/MicroJava/J/JListExample.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/JListExample.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -21,29 +21,28 @@
   l3_nam :: vnam
   l4_nam :: vnam
 
-constdefs
-  val_name :: vname
+definition val_name :: vname where
   "val_name == VName val_nam"
 
-  next_name :: vname
+definition next_name :: vname where
   "next_name == VName next_nam"
 
-  l_name :: vname
+definition l_name :: vname where
   "l_name == VName l_nam"
 
-  l1_name :: vname
+definition l1_name :: vname where
   "l1_name == VName l1_nam"
 
-  l2_name :: vname
+definition l2_name :: vname where
   "l2_name == VName l2_nam"
 
-  l3_name :: vname
+definition l3_name :: vname where
   "l3_name == VName l3_nam"
 
-  l4_name :: vname
+definition l4_name :: vname where
   "l4_name == VName l4_nam"
 
-  list_class :: "java_mb class"
+definition list_class :: "java_mb class" where
   "list_class ==
     (Object,
      [(val_name, PrimT Integer), (next_name, RefT (ClassT list_name))],
@@ -56,7 +55,7 @@
            append_name({[RefT (ClassT list_name)]}[LAcc l_name])), 
        Lit Unit))])"
 
-  example_prg :: "java_mb prog"
+definition example_prg :: "java_mb prog" where
   "example_prg == [ObjectC, (list_name, list_class)]"
 
 types_code
--- a/src/HOL/MicroJava/J/State.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/State.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -14,11 +14,10 @@
 
   obj = "cname \<times> fields'"    -- "class instance with class name and fields"
 
-constdefs
-  obj_ty  :: "obj => ty"
+definition obj_ty :: "obj => ty" where
  "obj_ty obj  == Class (fst obj)"
 
-  init_vars :: "('a \<times> ty) list => ('a \<rightharpoonup> val)"
+definition init_vars :: "('a \<times> ty) list => ('a \<rightharpoonup> val)" where
  "init_vars == map_of o map (\<lambda>(n,T). (n,default_val T))"
 
 types aheap  = "loc \<rightharpoonup> obj"    -- {* "@{text heap}" used in a translation below *}
@@ -49,21 +48,19 @@
   lookup_obj :: "state \<Rightarrow> val \<Rightarrow> obj"
   where "lookup_obj s a' == the (heap s (the_Addr a'))"
 
-
-constdefs
-  raise_if :: "bool \<Rightarrow> xcpt \<Rightarrow> val option \<Rightarrow> val option"
+definition raise_if :: "bool \<Rightarrow> xcpt \<Rightarrow> val option \<Rightarrow> val option" where
   "raise_if b x xo \<equiv> if b \<and>  (xo = None) then Some (Addr (XcptRef x)) else xo"
 
-  new_Addr  :: "aheap => loc \<times> val option"
+definition new_Addr  :: "aheap => loc \<times> val option" where
   "new_Addr h \<equiv> SOME (a,x). (h a = None \<and>  x = None) |  x = Some (Addr (XcptRef OutOfMemory))"
 
-  np    :: "val => val option => val option"
+definition np    :: "val => val option => val option" where
  "np v == raise_if (v = Null) NullPointer"
 
-  c_hupd  :: "aheap => xstate => xstate"
+definition c_hupd  :: "aheap => xstate => xstate" where
  "c_hupd h'== \<lambda>(xo,(h,l)). if xo = None then (None,(h',l)) else (xo,(h,l))"
 
-  cast_ok :: "'c prog => cname => aheap => val => bool"
+definition cast_ok :: "'c prog => cname => aheap => val => bool" where
  "cast_ok G C h v == v = Null \<or> G\<turnstile>obj_ty (the (h (the_Addr v)))\<preceq> Class C"
 
 lemma obj_ty_def2 [simp]: "obj_ty (C,fs) = Class C"
--- a/src/HOL/MicroJava/J/SystemClasses.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/SystemClasses.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/J/SystemClasses.thy
-    ID:         $Id$
     Author:     Gerwin Klein
     Copyright   2002 Technische Universitaet Muenchen
 *)
@@ -13,20 +12,19 @@
   and the system exceptions.
 *}
 
-constdefs
-  ObjectC :: "'c cdecl"
+definition ObjectC :: "'c cdecl" where
   "ObjectC \<equiv> (Object, (undefined,[],[]))"
 
-  NullPointerC :: "'c cdecl"
+definition NullPointerC :: "'c cdecl" where
   "NullPointerC \<equiv> (Xcpt NullPointer, (Object,[],[]))"
 
-  ClassCastC :: "'c cdecl"
+definition ClassCastC :: "'c cdecl" where
   "ClassCastC \<equiv> (Xcpt ClassCast, (Object,[],[]))"
 
-  OutOfMemoryC :: "'c cdecl"
+definition OutOfMemoryC :: "'c cdecl" where
   "OutOfMemoryC \<equiv> (Xcpt OutOfMemory, (Object,[],[]))"
 
-  SystemClasses :: "'c cdecl list"
+definition SystemClasses :: "'c cdecl list" where
   "SystemClasses \<equiv> [ObjectC, NullPointerC, ClassCastC, OutOfMemoryC]"
 
 end
--- a/src/HOL/MicroJava/J/TypeRel.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/TypeRel.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -54,9 +54,8 @@
 apply  auto
 done
 
-constdefs
-  class_rec :: "'c prog \<Rightarrow> cname \<Rightarrow> 'a \<Rightarrow>
-    (cname \<Rightarrow> fdecl list \<Rightarrow> 'c mdecl list \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a"
+definition class_rec :: "'c prog \<Rightarrow> cname \<Rightarrow> 'a \<Rightarrow>
+    (cname \<Rightarrow> fdecl list \<Rightarrow> 'c mdecl list \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a" where
   "class_rec G == wfrec ((subcls1 G)^-1)
     (\<lambda>r C t f. case class G C of
          None \<Rightarrow> undefined
--- a/src/HOL/MicroJava/J/WellForm.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/WellForm.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -27,45 +27,44 @@
 *}
 types 'c wf_mb = "'c prog => cname => 'c mdecl => bool"
 
-constdefs
- wf_syscls :: "'c prog => bool"
+definition wf_syscls :: "'c prog => bool" where
 "wf_syscls G == let cs = set G in Object \<in> fst ` cs \<and> (\<forall>x. Xcpt x \<in> fst ` cs)"
 
- wf_fdecl :: "'c prog => fdecl => bool"
+definition wf_fdecl :: "'c prog => fdecl => bool" where
 "wf_fdecl G == \<lambda>(fn,ft). is_type G ft"
 
- wf_mhead :: "'c prog => sig => ty => bool"
+definition wf_mhead :: "'c prog => sig => ty => bool" where
 "wf_mhead G == \<lambda>(mn,pTs) rT. (\<forall>T\<in>set pTs. is_type G T) \<and> is_type G rT"
 
- ws_cdecl :: "'c prog => 'c cdecl => bool"
+definition ws_cdecl :: "'c prog => 'c cdecl => bool" where
 "ws_cdecl G ==
    \<lambda>(C,(D,fs,ms)).
   (\<forall>f\<in>set fs. wf_fdecl G         f) \<and>  unique fs \<and>
   (\<forall>(sig,rT,mb)\<in>set ms. wf_mhead G sig rT) \<and> unique ms \<and>
   (C \<noteq> Object \<longrightarrow> is_class G D \<and>  \<not>G\<turnstile>D\<preceq>C C)"
 
- ws_prog :: "'c prog => bool"
+definition ws_prog :: "'c prog => bool" where
 "ws_prog G == 
   wf_syscls G \<and> (\<forall>c\<in>set G. ws_cdecl G c) \<and> unique G"
 
- wf_mrT   :: "'c prog => 'c cdecl => bool"
+definition wf_mrT   :: "'c prog => 'c cdecl => bool" where
 "wf_mrT G ==
    \<lambda>(C,(D,fs,ms)).
   (C \<noteq> Object \<longrightarrow> (\<forall>(sig,rT,b)\<in>set ms. \<forall>D' rT' b'.
                       method(G,D) sig = Some(D',rT',b') --> G\<turnstile>rT\<preceq>rT'))"
 
- wf_cdecl_mdecl :: "'c wf_mb => 'c prog => 'c cdecl => bool"
+definition wf_cdecl_mdecl :: "'c wf_mb => 'c prog => 'c cdecl => bool" where
 "wf_cdecl_mdecl wf_mb G ==
    \<lambda>(C,(D,fs,ms)). (\<forall>m\<in>set ms. wf_mb G C m)"
 
- wf_prog :: "'c wf_mb => 'c prog => bool"
+definition wf_prog :: "'c wf_mb => 'c prog => bool" where
 "wf_prog wf_mb G == 
      ws_prog G \<and> (\<forall>c\<in> set G. wf_mrT G c \<and> wf_cdecl_mdecl wf_mb G c)"
 
- wf_mdecl :: "'c wf_mb => 'c wf_mb"
+definition wf_mdecl :: "'c wf_mb => 'c wf_mb" where
 "wf_mdecl wf_mb G C == \<lambda>(sig,rT,mb). wf_mhead G sig rT \<and> wf_mb G C (sig,rT,mb)"
 
- wf_cdecl :: "'c wf_mb => 'c prog => 'c cdecl => bool"
+definition wf_cdecl :: "'c wf_mb => 'c prog => 'c cdecl => bool" where
 "wf_cdecl wf_mb G ==
    \<lambda>(C,(D,fs,ms)).
   (\<forall>f\<in>set fs. wf_fdecl G         f) \<and>  unique fs \<and>
--- a/src/HOL/MicroJava/J/WellType.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/J/WellType.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -193,9 +193,7 @@
         E\<turnstile>While(e) s\<surd>"
 
 
-constdefs
-
- wf_java_mdecl :: "'c prog => cname => java_mb mdecl => bool"
+definition wf_java_mdecl :: "'c prog => cname => java_mb mdecl => bool" where
 "wf_java_mdecl G C == \<lambda>((mn,pTs),rT,(pns,lvars,blk,res)).
   length pTs = length pns \<and>
   distinct pns \<and>
--- a/src/HOL/MicroJava/JVM/JVMDefensive.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMDefensive.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -4,7 +4,9 @@
 
 header {* \isaheader{A Defensive JVM} *}
 
-theory JVMDefensive imports JVMExec begin
+theory JVMDefensive
+imports JVMExec
+begin
 
 text {*
   Extend the state space by one element indicating a type error (or
@@ -16,39 +18,32 @@
   fifth :: "'a \<times> 'b \<times> 'c \<times> 'd \<times> 'e \<times> 'f \<Rightarrow> 'e"
   where "fifth x == fst(snd(snd(snd(snd x))))"
 
-
-consts isAddr :: "val \<Rightarrow> bool"
-recdef isAddr "{}"
+fun isAddr :: "val \<Rightarrow> bool" where
   "isAddr (Addr loc) = True"
-  "isAddr v          = False"
+| "isAddr v          = False"
 
-consts isIntg :: "val \<Rightarrow> bool"
-recdef isIntg "{}"
+fun isIntg :: "val \<Rightarrow> bool" where
   "isIntg (Intg i) = True"
-  "isIntg v        = False"
+| "isIntg v        = False"
 
-constdefs
-  isRef :: "val \<Rightarrow> bool"
+definition isRef :: "val \<Rightarrow> bool" where
   "isRef v \<equiv> v = Null \<or> isAddr v"
 
-
-consts
-  check_instr :: "[instr, jvm_prog, aheap, opstack, locvars, 
-                  cname, sig, p_count, nat, frame list] \<Rightarrow> bool"
-primrec 
+primrec check_instr :: "[instr, jvm_prog, aheap, opstack, locvars, 
+                  cname, sig, p_count, nat, frame list] \<Rightarrow> bool" where
   "check_instr (Load idx) G hp stk vars C sig pc mxs frs = 
   (idx < length vars \<and> size stk < mxs)"
 
-  "check_instr (Store idx) G hp stk vars Cl sig pc mxs frs = 
+| "check_instr (Store idx) G hp stk vars Cl sig pc mxs frs = 
   (0 < length stk \<and> idx < length vars)"
 
-  "check_instr (LitPush v) G hp stk vars Cl sig pc mxs frs = 
+| "check_instr (LitPush v) G hp stk vars Cl sig pc mxs frs = 
   (\<not>isAddr v \<and> size stk < mxs)"
 
-  "check_instr (New C) G hp stk vars Cl sig pc mxs frs = 
+| "check_instr (New C) G hp stk vars Cl sig pc mxs frs = 
   (is_class G C \<and> size stk < mxs)"
 
-  "check_instr (Getfield F C) G hp stk vars Cl sig pc mxs frs = 
+| "check_instr (Getfield F C) G hp stk vars Cl sig pc mxs frs = 
   (0 < length stk \<and> is_class G C \<and> field (G,C) F \<noteq> None \<and> 
   (let (C', T) = the (field (G,C) F); ref = hd stk in 
     C' = C \<and> isRef ref \<and> (ref \<noteq> Null \<longrightarrow> 
@@ -56,7 +51,7 @@
       (let (D,vs) = the (hp (the_Addr ref)) in 
         G \<turnstile> D \<preceq>C C \<and> vs (F,C) \<noteq> None \<and> G,hp \<turnstile> the (vs (F,C)) ::\<preceq> T))))" 
 
-  "check_instr (Putfield F C) G hp stk vars Cl sig pc mxs frs = 
+| "check_instr (Putfield F C) G hp stk vars Cl sig pc mxs frs = 
   (1 < length stk \<and> is_class G C \<and> field (G,C) F \<noteq> None \<and> 
   (let (C', T) = the (field (G,C) F); v = hd stk; ref = hd (tl stk) in 
     C' = C \<and> isRef ref \<and> (ref \<noteq> Null \<longrightarrow> 
@@ -64,10 +59,10 @@
       (let (D,vs) = the (hp (the_Addr ref)) in 
         G \<turnstile> D \<preceq>C C \<and> G,hp \<turnstile> v ::\<preceq> T))))" 
 
-  "check_instr (Checkcast C) G hp stk vars Cl sig pc mxs frs =
+| "check_instr (Checkcast C) G hp stk vars Cl sig pc mxs frs =
   (0 < length stk \<and> is_class G C \<and> isRef (hd stk))"
 
-  "check_instr (Invoke C mn ps) G hp stk vars Cl sig pc mxs frs =
+| "check_instr (Invoke C mn ps) G hp stk vars Cl sig pc mxs frs =
   (length ps < length stk \<and> 
   (let n = length ps; v = stk!n in
   isRef v \<and> (v \<noteq> Null \<longrightarrow> 
@@ -75,41 +70,40 @@
     method (G,cname_of hp v) (mn,ps) \<noteq> None \<and>
     list_all2 (\<lambda>v T. G,hp \<turnstile> v ::\<preceq> T) (rev (take n stk)) ps)))"
   
-  "check_instr Return G hp stk0 vars Cl sig0 pc mxs frs =
+| "check_instr Return G hp stk0 vars Cl sig0 pc mxs frs =
   (0 < length stk0 \<and> (0 < length frs \<longrightarrow> 
     method (G,Cl) sig0 \<noteq> None \<and>    
     (let v = hd stk0;  (C, rT, body) = the (method (G,Cl) sig0) in
     Cl = C \<and> G,hp \<turnstile> v ::\<preceq> rT)))"
  
-  "check_instr Pop G hp stk vars Cl sig pc mxs frs = 
+| "check_instr Pop G hp stk vars Cl sig pc mxs frs = 
   (0 < length stk)"
 
-  "check_instr Dup G hp stk vars Cl sig pc mxs frs = 
+| "check_instr Dup G hp stk vars Cl sig pc mxs frs = 
   (0 < length stk \<and> size stk < mxs)"
 
-  "check_instr Dup_x1 G hp stk vars Cl sig pc mxs frs = 
+| "check_instr Dup_x1 G hp stk vars Cl sig pc mxs frs = 
   (1 < length stk \<and> size stk < mxs)"
 
-  "check_instr Dup_x2 G hp stk vars Cl sig pc mxs frs = 
+| "check_instr Dup_x2 G hp stk vars Cl sig pc mxs frs = 
   (2 < length stk \<and> size stk < mxs)"
 
-  "check_instr Swap G hp stk vars Cl sig pc mxs frs =
+| "check_instr Swap G hp stk vars Cl sig pc mxs frs =
   (1 < length stk)"
 
-  "check_instr IAdd G hp stk vars Cl sig pc mxs frs =
+| "check_instr IAdd G hp stk vars Cl sig pc mxs frs =
   (1 < length stk \<and> isIntg (hd stk) \<and> isIntg (hd (tl stk)))"
 
-  "check_instr (Ifcmpeq b) G hp stk vars Cl sig pc mxs frs =
+| "check_instr (Ifcmpeq b) G hp stk vars Cl sig pc mxs frs =
   (1 < length stk \<and> 0 \<le> int pc+b)"
 
-  "check_instr (Goto b) G hp stk vars Cl sig pc mxs frs =
+| "check_instr (Goto b) G hp stk vars Cl sig pc mxs frs =
   (0 \<le> int pc+b)"
 
-  "check_instr Throw G hp stk vars Cl sig pc mxs frs =
+| "check_instr Throw G hp stk vars Cl sig pc mxs frs =
   (0 < length stk \<and> isRef (hd stk))"
 
-constdefs
-  check :: "jvm_prog \<Rightarrow> jvm_state \<Rightarrow> bool"
+definition check :: "jvm_prog \<Rightarrow> jvm_state \<Rightarrow> bool" where
   "check G s \<equiv> let (xcpt, hp, frs) = s in
                (case frs of [] \<Rightarrow> True | (stk,loc,C,sig,pc)#frs' \<Rightarrow> 
                 (let  (C',rt,mxs,mxl,ins,et) = the (method (G,C) sig); i = ins!pc in
@@ -117,7 +111,7 @@
                  check_instr i G hp stk loc C sig pc mxs frs'))"
 
 
-  exec_d :: "jvm_prog \<Rightarrow> jvm_state type_error \<Rightarrow> jvm_state option type_error"
+definition exec_d :: "jvm_prog \<Rightarrow> jvm_state type_error \<Rightarrow> jvm_state option type_error" where
   "exec_d G s \<equiv> case s of 
       TypeError \<Rightarrow> TypeError 
     | Normal s' \<Rightarrow> if check G s' then Normal (exec (G, s')) else TypeError"
--- a/src/HOL/MicroJava/JVM/JVMExceptions.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMExceptions.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,8 +7,7 @@
 
 theory JVMExceptions imports JVMInstructions begin
 
-constdefs
-  match_exception_entry :: "jvm_prog \<Rightarrow> cname \<Rightarrow> p_count \<Rightarrow> exception_entry \<Rightarrow> bool"
+definition match_exception_entry :: "jvm_prog \<Rightarrow> cname \<Rightarrow> p_count \<Rightarrow> exception_entry \<Rightarrow> bool" where
   "match_exception_entry G cn pc ee == 
                  let (start_pc, end_pc, handler_pc, catch_type) = ee in
                  start_pc <= pc \<and> pc < end_pc \<and> G\<turnstile> cn \<preceq>C catch_type"
--- a/src/HOL/MicroJava/JVM/JVMExec.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMExec.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/MicroJava/JVM/JVMExec.thy
-    ID:         $Id$
     Author:     Cornelia Pusch, Gerwin Klein
     Copyright   1999 Technische Universitaet Muenchen
 *)
@@ -26,9 +25,8 @@
   "exec (G, Some xp, hp, frs) = None" 
 
 
-constdefs
-  exec_all :: "[jvm_prog,jvm_state,jvm_state] => bool"
-              ("_ |- _ -jvm-> _" [61,61,61]60)
+definition exec_all :: "[jvm_prog,jvm_state,jvm_state] => bool"
+              ("_ |- _ -jvm-> _" [61,61,61]60) where
   "G |- s -jvm-> t == (s,t) \<in> {(s,t). exec(G,s) = Some t}^*"
 
 
@@ -41,8 +39,7 @@
   @{text this} pointer of the frame is set to @{text Null} to simulate
   a static method invokation.
 *}
-constdefs  
-  start_state :: "jvm_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> jvm_state"
+definition start_state :: "jvm_prog \<Rightarrow> cname \<Rightarrow> mname \<Rightarrow> jvm_state" where
   "start_state G C m \<equiv>
   let (C',rT,mxs,mxl,i,et) = the (method (G,C) (m,[])) in
     (None, start_heap G, [([], Null # replicate mxl undefined, C, (m,[]), 0)])"
--- a/src/HOL/MicroJava/JVM/JVMListExample.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMListExample.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -16,20 +16,19 @@
   val_nam :: vnam
   next_nam :: vnam
 
-constdefs
-  list_name :: cname
+definition list_name :: cname where
   "list_name == Cname list_nam"
   
-  test_name :: cname
+definition test_name :: cname where
   "test_name == Cname test_nam"
 
-  val_name :: vname
+definition val_name :: vname where
   "val_name == VName val_nam"
 
-  next_name :: vname
+definition next_name :: vname where
   "next_name == VName next_nam"
 
-  append_ins :: bytecode
+definition append_ins :: bytecode where
   "append_ins == 
        [Load 0,
         Getfield next_name list_name,
@@ -46,14 +45,14 @@
         LitPush Unit,
         Return]"
 
-  list_class :: "jvm_method class"
+definition list_class :: "jvm_method class" where
   "list_class ==
     (Object,
      [(val_name, PrimT Integer), (next_name, Class list_name)],
      [((append_name, [Class list_name]), PrimT Void,
         (3, 0, append_ins,[(1,2,8,Xcpt NullPointer)]))])"
 
-  make_list_ins :: bytecode
+definition make_list_ins :: bytecode where
   "make_list_ins ==
        [New list_name,
         Dup,
@@ -79,12 +78,12 @@
         Invoke list_name append_name [Class list_name],
         Return]"
 
-  test_class :: "jvm_method class"
+definition test_class :: "jvm_method class" where
   "test_class ==
     (Object, [],
      [((makelist_name, []), PrimT Void, (3, 2, make_list_ins,[]))])"
 
-  E :: jvm_prog
+definition E :: jvm_prog where
   "E == SystemClasses @ [(list_name, list_class), (test_name, test_class)]"
 
 
--- a/src/HOL/MicroJava/JVM/JVMState.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/MicroJava/JVM/JVMState.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -33,8 +33,7 @@
 
 
 section {* Exceptions *}
-constdefs
-  raise_system_xcpt :: "bool \<Rightarrow> xcpt \<Rightarrow> val option"
+definition raise_system_xcpt :: "bool \<Rightarrow> xcpt \<Rightarrow> val option" where
   "raise_system_xcpt b x \<equiv> raise_if b x None"
 
 section {* Runtime State *}
--- a/src/HOL/Modelcheck/CTL.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Modelcheck/CTL.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Modelcheck/CTL.thy
-    ID:         $Id$
     Author:     Olaf Mueller, Jan Philipps, Robert Sandner
     Copyright   1997  TU Muenchen
 *)
@@ -11,10 +10,10 @@
 types
   'a trans  = "('a * 'a) set"
 
-constdefs
-  CEX ::"['a trans,'a pred, 'a]=>bool"
+definition CEX :: "['a trans,'a pred, 'a]=>bool" where
   "CEX N f u == (? v. (f v & (u,v):N))"
-  EG ::"['a trans,'a pred]=> 'a pred"
+
+definition EG ::"['a trans,'a pred]=> 'a pred" where
   "EG N f == nu (% Q. % u.(f u & CEX N Q u))"
 
 end
--- a/src/HOL/Modelcheck/EindhovenExample.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Modelcheck/EindhovenExample.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Modelcheck/EindhovenExample.thy
-    ID:         $Id$
     Author:     Olaf Mueller, Jan Philipps, Robert Sandner
     Copyright   1997  TU Muenchen
 *)
@@ -11,17 +10,16 @@
 types
   state = "bool * bool * bool"
 
-constdefs
-  INIT :: "state pred"
+definition INIT :: "state pred" where
   "INIT x == ~(fst x)&~(fst (snd x))&~(snd (snd x))"
 
-  N :: "[state,state] => bool"
+definition N :: "[state,state] => bool" where
   "N == % (x1,x2,x3) (y1,y2,y3).
       (~x1 & ~x2 & ~x3 &   y1 & ~y2 & ~y3) |
       ( x1 & ~x2 & ~x3 &  ~y1 & ~y2 & ~y3) |
       ( x1 & ~x2 & ~x3 &   y1 &  y2 &  y3)"
 
-  reach:: "state pred"
+definition reach:: "state pred" where
   "reach  == mu (%Q x. INIT x | (? y. Q y & N y x))"
 
 lemma init_state: "INIT (a, b, c) = (~a & ~b &~c)"
--- a/src/HOL/Modelcheck/MuCalculus.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Modelcheck/MuCalculus.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Modelcheck/MuCalculus.thy
-    ID:         $Id$
     Author:     Olaf Mueller, Jan Philipps, Robert Sandner
     Copyright   1997  TU Muenchen
 *)
@@ -11,17 +10,16 @@
 types
  'a pred = "'a=>bool"
 
-constdefs
-  Charfun :: "'a set => 'a pred"
+definition Charfun :: "'a set => 'a pred" where
   "Charfun == (% A.% x. x:A)"
 
-  monoP  :: "('a pred => 'a pred) => bool"
+definition monoP  :: "('a pred => 'a pred) => bool" where
   "monoP f == mono(Collect o f o Charfun)"
 
-  mu :: "('a pred => 'a pred) => 'a pred"    (binder "Mu " 10)
+definition mu :: "('a pred => 'a pred) => 'a pred" (binder "Mu " 10) where
   "mu f == Charfun(lfp(Collect o f o Charfun))"
 
-  nu :: "('a pred => 'a pred) => 'a pred"    (binder "Nu " 10)
+definition nu :: "('a pred => 'a pred) => 'a pred" (binder "Nu " 10) where
   "nu f == Charfun(gfp(Collect o f o Charfun))"
 
 end
--- a/src/HOL/Modelcheck/MuckeExample1.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Modelcheck/MuckeExample1.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -11,8 +11,7 @@
 types
   state = "bool * bool * bool"
 
-constdefs
-  INIT :: "state pred"
+definition INIT :: "state pred" where
   "INIT x ==  ~(fst x)&~(fst (snd x))&~(snd (snd x))"
   N    :: "[state,state] => bool"
   "N x y == let x1 = fst(x); x2 = fst(snd(x)); x3 = snd(snd(x));
--- a/src/HOL/Modelcheck/MuckeExample2.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Modelcheck/MuckeExample2.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,8 +8,7 @@
 imports MuckeSyn
 begin
 
-constdefs
-  Init  :: "bool pred"
+definition Init :: "bool pred" where
   "Init x == x"
   R     :: "[bool,bool] => bool"
   "R x y == (x & ~y) | (~x & y)"
--- a/src/HOL/NanoJava/Decl.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/NanoJava/Decl.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -50,11 +50,10 @@
   Object  :: cname      --{* name of root class *}
 
 
-constdefs
- "class"     :: "cname \<rightharpoonup> class"
+definition "class" :: "cname \<rightharpoonup> class" where
  "class      \<equiv> map_of Prog"
 
-  is_class   :: "cname => bool"
+definition is_class   :: "cname => bool" where
  "is_class C \<equiv> class C \<noteq> None"
 
 lemma finite_is_class: "finite {C. is_class C}"
--- a/src/HOL/NanoJava/Equivalence.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/NanoJava/Equivalence.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/NanoJava/Equivalence.thy
-    ID:         $Id$
     Author:     David von Oheimb
     Copyright   2001 Technische Universitaet Muenchen
 *)
@@ -10,27 +9,25 @@
 
 subsection "Validity"
 
-constdefs
-  valid   :: "[assn,stmt, assn] => bool"  ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
+definition valid :: "[assn,stmt, assn] => bool" ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) where
  "|=  {P} c {Q} \<equiv> \<forall>s   t. P s --> (\<exists>n. s -c  -n\<rightarrow> t) --> Q   t"
 
- evalid   :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
+definition evalid   :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60) where
  "|=e {P} e {Q} \<equiv> \<forall>s v t. P s --> (\<exists>n. s -e\<succ>v-n\<rightarrow> t) --> Q v t"
 
-
- nvalid   :: "[nat, triple    ] => bool" ("|=_: _"  [61,61] 60)
+definition nvalid   :: "[nat, triple    ] => bool" ("|=_: _"  [61,61] 60) where
  "|=n:  t \<equiv> let (P,c,Q) = t in \<forall>s   t. s -c  -n\<rightarrow> t --> P s --> Q   t"
 
-envalid   :: "[nat,etriple    ] => bool" ("|=_:e _" [61,61] 60)
+definition envalid   :: "[nat,etriple    ] => bool" ("|=_:e _" [61,61] 60) where
  "|=n:e t \<equiv> let (P,e,Q) = t in \<forall>s v t. s -e\<succ>v-n\<rightarrow> t --> P s --> Q v t"
 
-  nvalids :: "[nat,       triple set] => bool" ("||=_: _" [61,61] 60)
+definition nvalids :: "[nat,       triple set] => bool" ("||=_: _" [61,61] 60) where
  "||=n: T \<equiv> \<forall>t\<in>T. |=n: t"
 
- cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _"  [61,61] 60)
+definition cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _"  [61,61] 60) where
  "A ||=  C \<equiv> \<forall>n. ||=n: A --> ||=n: C"
 
-cenvalid  :: "[triple set,etriple   ] => bool" ("_ ||=e/ _" [61,61] 60)
+definition cenvalid  :: "[triple set,etriple   ] => bool" ("_ ||=e/ _" [61,61] 60) where
  "A ||=e t \<equiv> \<forall>n. ||=n: A --> |=n:e t"
 
 notation (xsymbols)
@@ -160,10 +157,12 @@
 
 subsection "(Relative) Completeness"
 
-constdefs MGT    :: "stmt => state =>  triple"
+definition MGT :: "stmt => state => triple" where
          "MGT  c Z \<equiv> (\<lambda>s. Z = s, c, \<lambda>  t. \<exists>n. Z -c-  n\<rightarrow> t)"
-          MGTe   :: "expr => state => etriple"
+
+definition MGTe   :: "expr => state => etriple" where
          "MGTe e Z \<equiv> (\<lambda>s. Z = s, e, \<lambda>v t. \<exists>n. Z -e\<succ>v-n\<rightarrow> t)"
+
 notation (xsymbols)
   MGTe  ("MGT\<^sub>e")
 notation (HTML output)
--- a/src/HOL/NanoJava/State.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/NanoJava/State.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,9 +7,7 @@
 
 theory State imports TypeRel begin
 
-constdefs
-
-  body :: "cname \<times> mname => stmt"
+definition body :: "cname \<times> mname => stmt" where
  "body \<equiv> \<lambda>(C,m). bdy (the (method C m))"
 
 text {* Locations, i.e.\ abstract references to objects *}
@@ -29,9 +27,7 @@
   "fields" \<leftharpoondown> (type)"fname => val option"
   "obj"    \<leftharpoondown> (type)"cname \<times> fields"
 
-constdefs
-
-  init_vars:: "('a \<rightharpoonup> 'b) => ('a \<rightharpoonup> val)"
+definition init_vars :: "('a \<rightharpoonup> 'b) => ('a \<rightharpoonup> val)" where
  "init_vars m == Option.map (\<lambda>T. Null) o m"
   
 text {* private: *}
@@ -49,54 +45,49 @@
   "locals" \<leftharpoondown> (type)"vname => val option"
   "state" \<leftharpoondown> (type)"(|heap :: heap, locals :: locals|)"
 
-constdefs
-
-  del_locs     :: "state => state"
+definition del_locs :: "state => state" where
  "del_locs s \<equiv> s (| locals := empty |)"
 
-  init_locs     :: "cname => mname => state => state"
+definition init_locs     :: "cname => mname => state => state" where
  "init_locs C m s \<equiv> s (| locals := locals s ++ 
                          init_vars (map_of (lcl (the (method C m)))) |)"
 
 text {* The first parameter of @{term set_locs} is of type @{typ state} 
         rather than @{typ locals} in order to keep @{typ locals} private.*}
-constdefs
-  set_locs  :: "state => state => state"
+definition set_locs :: "state => state => state" where
  "set_locs s s' \<equiv> s' (| locals := locals s |)"
 
-  get_local     :: "state => vname => val" ("_<_>" [99,0] 99)
+definition get_local     :: "state => vname => val" ("_<_>" [99,0] 99) where
  "get_local s x  \<equiv> the (locals s x)"
 
 --{* local function: *}
-  get_obj       :: "state => loc => obj"
+definition get_obj       :: "state => loc => obj" where
  "get_obj s a \<equiv> the (heap s a)"
 
-  obj_class     :: "state => loc => cname"
+definition obj_class     :: "state => loc => cname" where
  "obj_class s a \<equiv> fst (get_obj s a)"
 
-  get_field     :: "state => loc => fname => val"
+definition get_field     :: "state => loc => fname => val" where
  "get_field s a f \<equiv> the (snd (get_obj s a) f)"
 
 --{* local function: *}
-  hupd       :: "loc => obj => state => state"   ("hupd'(_|->_')" [10,10] 1000)
+definition hupd       :: "loc => obj => state => state"   ("hupd'(_|->_')" [10,10] 1000) where
  "hupd a obj s \<equiv> s (| heap   := ((heap   s)(a\<mapsto>obj))|)"
 
-  lupd       :: "vname => val => state => state" ("lupd'(_|->_')" [10,10] 1000)
+definition lupd       :: "vname => val => state => state" ("lupd'(_|->_')" [10,10] 1000) where
  "lupd x v s   \<equiv> s (| locals := ((locals s)(x\<mapsto>v  ))|)"
 
 notation (xsymbols)
   hupd  ("hupd'(_\<mapsto>_')" [10,10] 1000) and
   lupd  ("lupd'(_\<mapsto>_')" [10,10] 1000)
 
-constdefs
-
-  new_obj    :: "loc => cname => state => state"
+definition new_obj :: "loc => cname => state => state" where
  "new_obj a C   \<equiv> hupd(a\<mapsto>(C,init_vars (field C)))"
 
-  upd_obj    :: "loc => fname => val => state => state"
+definition upd_obj    :: "loc => fname => val => state => state" where
  "upd_obj a f v s \<equiv> let (C,fs) = the (heap s a) in hupd(a\<mapsto>(C,fs(f\<mapsto>v))) s"
 
-  new_Addr      :: "state => val"
+definition new_Addr      :: "state => val" where
  "new_Addr s == SOME v. (\<exists>a. v = Addr a \<and> (heap s) a = None) | v = Null"
 
 
--- a/src/HOL/NanoJava/TypeRel.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/NanoJava/TypeRel.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -66,9 +66,7 @@
 apply  auto
 done
 
-constdefs
-
-  ws_prog  :: "bool"
+definition ws_prog :: "bool" where
  "ws_prog \<equiv> \<forall>(C,c)\<in>set Prog. C\<noteq>Object \<longrightarrow> 
                               is_class (super c) \<and> (super c,C)\<notin>subcls1^+"
 
--- a/src/HOL/Nat.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nat.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -45,8 +45,7 @@
   nat = Nat
   by (rule exI, unfold mem_def, rule Nat.Zero_RepI)
 
-constdefs
-  Suc ::   "nat => nat"
+definition Suc :: "nat => nat" where
   Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))"
 
 local
--- a/src/HOL/Nitpick_Examples/Refute_Nits.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nitpick_Examples/Refute_Nits.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -244,8 +244,7 @@
 
 text {* ``The transitive closure of an arbitrary relation is non-empty.'' *}
 
-constdefs
-"trans" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
+definition "trans" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
 "trans P \<equiv> (ALL x y z. P x y \<longrightarrow> P y z \<longrightarrow> P x z)"
 "subset" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
 "subset P Q \<equiv> (ALL x y. P x y \<longrightarrow> Q x y)"
--- a/src/HOL/Nominal/Examples/Class.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nominal/Examples/Class.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -10289,17 +10289,16 @@
 
 text {* set operators *}
 
-constdefs
-  AXIOMSn::"ty \<Rightarrow> ntrm set"
+definition AXIOMSn :: "ty \<Rightarrow> ntrm set" where
   "AXIOMSn B \<equiv> { (x):(Ax y b) | x y b. True }"
 
-  AXIOMSc::"ty \<Rightarrow> ctrm set"
+definition AXIOMSc::"ty \<Rightarrow> ctrm set" where
   "AXIOMSc B \<equiv> { <a>:(Ax y b) | a y b. True }"
 
-  BINDINGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set"
+definition BINDINGn::"ty \<Rightarrow> ctrm set \<Rightarrow> ntrm set" where
   "BINDINGn B X \<equiv> { (x):M | x M. \<forall>a P. <a>:P\<in>X \<longrightarrow> SNa (M{x:=<a>.P})}"
 
-  BINDINGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set"
+definition BINDINGc::"ty \<Rightarrow> ntrm set \<Rightarrow> ctrm set" where
   "BINDINGc B X \<equiv> { <a>:M | a M. \<forall>x P. (x):P\<in>X \<longrightarrow> SNa (M{a:=(x).P})}"
 
 lemma BINDINGn_decreasing:
@@ -16540,8 +16539,7 @@
 apply(fast)
 done
 
-constdefs
-  SNa_Redu :: "(trm \<times> trm) set"
+definition SNa_Redu :: "(trm \<times> trm) set" where
   "SNa_Redu \<equiv> A_Redu_set \<inter> (UNIV <*> SNa_set)"
 
 lemma wf_SNa_Redu:
--- a/src/HOL/Nominal/Examples/Fsub.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nominal/Examples/Fsub.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -223,8 +223,7 @@
   in @{term "\<Gamma>"}. The set of free variables of @{term "S"} is the 
   @{text "support"} of @{term "S"}. *}
 
-constdefs
-  "closed_in" :: "ty \<Rightarrow> env \<Rightarrow> bool" ("_ closed'_in _" [100,100] 100)
+definition "closed_in" :: "ty \<Rightarrow> env \<Rightarrow> bool" ("_ closed'_in _" [100,100] 100) where
   "S closed_in \<Gamma> \<equiv> (supp S)\<subseteq>(ty_dom \<Gamma>)"
 
 lemma closed_in_eqvt[eqvt]:
@@ -687,13 +686,13 @@
   have fresh_cond: "X\<sharp>\<Gamma>" by fact
   hence fresh_ty_dom: "X\<sharp>(ty_dom \<Gamma>)" by (simp add: fresh_dom)
   have "(\<forall>X<:T\<^isub>2. T\<^isub>1) closed_in \<Gamma>" by fact
-  hence closed\<^isub>T\<^isub>2: "T\<^isub>2 closed_in \<Gamma>" and closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in ((TVarB  X T\<^isub>2)#\<Gamma>)" 
+  hence closed\<^isub>T2: "T\<^isub>2 closed_in \<Gamma>" and closed\<^isub>T1: "T\<^isub>1 closed_in ((TVarB  X T\<^isub>2)#\<Gamma>)" 
     by (auto simp add: closed_in_def ty.supp abs_supp)
   have ok: "\<turnstile> \<Gamma> ok" by fact  
-  hence ok': "\<turnstile> ((TVarB X T\<^isub>2)#\<Gamma>) ok" using closed\<^isub>T\<^isub>2 fresh_ty_dom by simp
-  have "\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" using ih_T\<^isub>2 closed\<^isub>T\<^isub>2 ok by simp
+  hence ok': "\<turnstile> ((TVarB X T\<^isub>2)#\<Gamma>) ok" using closed\<^isub>T2 fresh_ty_dom by simp
+  have "\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>2" using ih_T\<^isub>2 closed\<^isub>T2 ok by simp
   moreover
-  have "((TVarB X T\<^isub>2)#\<Gamma>) \<turnstile> T\<^isub>1 <: T\<^isub>1" using ih_T\<^isub>1 closed\<^isub>T\<^isub>1 ok' by simp
+  have "((TVarB X T\<^isub>2)#\<Gamma>) \<turnstile> T\<^isub>1 <: T\<^isub>1" using ih_T\<^isub>1 closed\<^isub>T1 ok' by simp
   ultimately show "\<Gamma> \<turnstile> (\<forall>X<:T\<^isub>2. T\<^isub>1) <: (\<forall>X<:T\<^isub>2. T\<^isub>1)" using fresh_cond 
     by (simp add: subtype_of.SA_all)
 qed (auto simp add: closed_in_def ty.supp supp_atm)
@@ -718,8 +717,7 @@
   another. This generalization seems to make the proof for weakening to be
   smoother than if we had strictly adhered to the version in the POPLmark-paper. *}
 
-constdefs 
-  extends :: "env \<Rightarrow> env \<Rightarrow> bool" ("_ extends _" [100,100] 100)
+definition extends :: "env \<Rightarrow> env \<Rightarrow> bool" ("_ extends _" [100,100] 100) where
   "\<Delta> extends \<Gamma> \<equiv> \<forall>X Q. (TVarB X Q)\<in>set \<Gamma> \<longrightarrow> (TVarB X Q)\<in>set \<Delta>"
 
 lemma extends_ty_dom:
@@ -785,10 +783,10 @@
   have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
   have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((TVarB X T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact
   have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
-  hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
+  hence closed\<^isub>T1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
   have ok: "\<turnstile> \<Delta> ok" by fact
   have ext: "\<Delta> extends \<Gamma>" by fact
-  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed)
+  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T1 by (simp only: extends_closed)
   hence "\<turnstile> ((TVarB X T\<^isub>1)#\<Delta>) ok" using fresh_dom ok by force   
   moreover 
   have "((TVarB X T\<^isub>1)#\<Delta>) extends ((TVarB X T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def)
@@ -813,10 +811,10 @@
   have ih\<^isub>1: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends \<Gamma> \<Longrightarrow> \<Delta> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
   have ih\<^isub>2: "\<And>\<Delta>. \<turnstile> \<Delta> ok \<Longrightarrow> \<Delta> extends ((TVarB X T\<^isub>1)#\<Gamma>) \<Longrightarrow> \<Delta> \<turnstile> S\<^isub>2 <: T\<^isub>2" by fact
   have lh_drv_prem: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" by fact
-  hence closed\<^isub>T\<^isub>1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
+  hence closed\<^isub>T1: "T\<^isub>1 closed_in \<Gamma>" by (simp add: subtype_implies_closed) 
   have ok: "\<turnstile> \<Delta> ok" by fact
   have ext: "\<Delta> extends \<Gamma>" by fact
-  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T\<^isub>1 by (simp only: extends_closed)
+  have "T\<^isub>1 closed_in \<Delta>" using ext closed\<^isub>T1 by (simp only: extends_closed)
   hence "\<turnstile> ((TVarB X T\<^isub>1)#\<Delta>) ok" using fresh_dom ok by force   
   moreover
   have "((TVarB X T\<^isub>1)#\<Delta>) extends ((TVarB X T\<^isub>1)#\<Gamma>)" using ext by (force simp add: extends_def)
@@ -905,7 +903,7 @@
       case (SA_arrow \<Gamma> Q\<^isub>1 S\<^isub>1 S\<^isub>2 Q\<^isub>2) 
       then have rh_drv: "\<Gamma> \<turnstile> Q\<^isub>1 \<rightarrow> Q\<^isub>2 <: T" by simp
       from `Q\<^isub>1 \<rightarrow> Q\<^isub>2 = Q` 
-      have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" by auto
+      have Q\<^isub>12_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" by auto
       have lh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> Q\<^isub>1 <: S\<^isub>1" by fact
       have lh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> S\<^isub>2 <: Q\<^isub>2" by fact      
       from rh_drv have "T=Top \<or> (\<exists>T\<^isub>1 T\<^isub>2. T=T\<^isub>1\<rightarrow>T\<^isub>2 \<and> \<Gamma>\<turnstile>T\<^isub>1<:Q\<^isub>1 \<and> \<Gamma>\<turnstile>Q\<^isub>2<:T\<^isub>2)" 
@@ -923,10 +921,10 @@
           and   rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1"
           and   rh_drv_prm\<^isub>2: "\<Gamma> \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force
         from IH_trans[of "Q\<^isub>1"] 
-        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>1 lh_drv_prm\<^isub>1 by simp 
+        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using Q\<^isub>12_less rh_drv_prm\<^isub>1 lh_drv_prm\<^isub>1 by simp 
         moreover
         from IH_trans[of "Q\<^isub>2"] 
-        have "\<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 lh_drv_prm\<^isub>2 by simp
+        have "\<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>12_less rh_drv_prm\<^isub>2 lh_drv_prm\<^isub>2 by simp
         ultimately have "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2" by auto
         then have "\<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T" using T_inst by simp
       }
@@ -956,15 +954,15 @@
           and   rh_drv_prm\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1 <: Q\<^isub>1" 
           and   rh_drv_prm\<^isub>2:"((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> Q\<^isub>2 <: T\<^isub>2" by force
         have "(\<forall>X<:Q\<^isub>1. Q\<^isub>2) = Q" by fact 
-        then have Q\<^isub>1\<^isub>2_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" 
+        then have Q\<^isub>12_less: "size_ty Q\<^isub>1 < size_ty Q" "size_ty Q\<^isub>2 < size_ty Q" 
           using fresh_cond by auto
         from IH_trans[of "Q\<^isub>1"] 
-        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using lh_drv_prm\<^isub>1 rh_drv_prm\<^isub>1 Q\<^isub>1\<^isub>2_less by blast
+        have "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1" using lh_drv_prm\<^isub>1 rh_drv_prm\<^isub>1 Q\<^isub>12_less by blast
         moreover
         from IH_narrow[of "Q\<^isub>1" "[]"] 
-        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" using Q\<^isub>1\<^isub>2_less lh_drv_prm\<^isub>2 rh_drv_prm\<^isub>1 by simp
+        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: Q\<^isub>2" using Q\<^isub>12_less lh_drv_prm\<^isub>2 rh_drv_prm\<^isub>1 by simp
         with IH_trans[of "Q\<^isub>2"] 
-        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>1\<^isub>2_less rh_drv_prm\<^isub>2 by simp
+        have "((TVarB X T\<^isub>1)#\<Gamma>) \<turnstile> S\<^isub>2 <: T\<^isub>2" using Q\<^isub>12_less rh_drv_prm\<^isub>2 by simp
         ultimately have "\<Gamma> \<turnstile> (\<forall>X<:S\<^isub>1. S\<^isub>2) <: (\<forall>X<:T\<^isub>1. T\<^isub>2)"
           using fresh_cond by (simp add: subtype_of.SA_all)
         hence "\<Gamma> \<turnstile> (\<forall>X<:S\<^isub>1. S\<^isub>2) <: T" using T_inst by simp
@@ -1007,16 +1005,16 @@
         with IH_inner show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" by (simp add: subtype_of.SA_trans_TVar)
       next
         case True
-        have memb\<^isub>X\<^isub>Q: "(TVarB X Q)\<in>set (\<Delta>@[(TVarB X Q)]@\<Gamma>)" by simp
-        have memb\<^isub>X\<^isub>P: "(TVarB X P)\<in>set (\<Delta>@[(TVarB X P)]@\<Gamma>)" by simp
+        have memb\<^isub>XQ: "(TVarB X Q)\<in>set (\<Delta>@[(TVarB X Q)]@\<Gamma>)" by simp
+        have memb\<^isub>XP: "(TVarB X P)\<in>set (\<Delta>@[(TVarB X P)]@\<Gamma>)" by simp
         have eq: "X=Y" by fact 
-        hence "S=Q" using ok\<^isub>Q lh_drv_prm memb\<^isub>X\<^isub>Q by (simp only: uniqueness_of_ctxt)
+        hence "S=Q" using ok\<^isub>Q lh_drv_prm memb\<^isub>XQ by (simp only: uniqueness_of_ctxt)
         hence "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Q <: N" using IH_inner by simp
         moreover
         have "(\<Delta>@[(TVarB X P)]@\<Gamma>) extends \<Gamma>" by (simp add: extends_def)
         hence "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> P <: Q" using rh_drv ok\<^isub>P by (simp only: weakening)
         ultimately have "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> P <: N" by (simp add: transitivity_lemma) 
-        then show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" using memb\<^isub>X\<^isub>P eq by auto
+        then show "(\<Delta>@[(TVarB X P)]@\<Gamma>) \<turnstile> Tvar Y <: N" using memb\<^isub>XP eq by auto
       qed
     next
       case (SA_refl_TVar Y \<Gamma> X \<Delta>)
@@ -1051,7 +1049,7 @@
 | T_Abs[intro]: "\<lbrakk> VarB x T\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T\<^isub>1. t\<^isub>2) : T\<^isub>1 \<rightarrow> T\<^isub>2"
 | T_Sub[intro]: "\<lbrakk> \<Gamma> \<turnstile> t : S; \<Gamma> \<turnstile> S <: T \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t : T"
 | T_TAbs[intro]:"\<lbrakk> TVarB X T\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>1. t\<^isub>2) : (\<forall>X<:T\<^isub>1. T\<^isub>2)"
-| T_TApp[intro]:"\<lbrakk>X\<sharp>(\<Gamma>,t\<^isub>1,T\<^isub>2); \<Gamma> \<turnstile> t\<^isub>1 : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2); \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 : (T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>)" 
+| T_TApp[intro]:"\<lbrakk>X\<sharp>(\<Gamma>,t\<^isub>1,T\<^isub>2); \<Gamma> \<turnstile> t\<^isub>1 : (\<forall>X<:T\<^isub>11. T\<^isub>12); \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 : (T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>)" 
 
 equivariance typing
 
@@ -1166,10 +1164,10 @@
 inductive 
   eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
 where
-  E_Abs         : "\<lbrakk> x \<sharp> v\<^isub>2; val v\<^isub>2 \<rbrakk> \<Longrightarrow> (\<lambda>x:T\<^isub>1\<^isub>1. t\<^isub>1\<^isub>2) \<cdot> v\<^isub>2 \<longmapsto> t\<^isub>1\<^isub>2[x \<mapsto> v\<^isub>2]"
+  E_Abs         : "\<lbrakk> x \<sharp> v\<^isub>2; val v\<^isub>2 \<rbrakk> \<Longrightarrow> (\<lambda>x:T\<^isub>11. t\<^isub>12) \<cdot> v\<^isub>2 \<longmapsto> t\<^isub>12[x \<mapsto> v\<^isub>2]"
 | E_App1 [intro]: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u"
 | E_App2 [intro]: "\<lbrakk> val v; t \<longmapsto> t' \<rbrakk> \<Longrightarrow> v \<cdot> t \<longmapsto> v \<cdot> t'"
-| E_TAbs        : "X \<sharp> (T\<^isub>1\<^isub>1, T\<^isub>2) \<Longrightarrow> (\<lambda>X<:T\<^isub>1\<^isub>1. t\<^isub>1\<^isub>2) \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t\<^isub>1\<^isub>2[X \<mapsto>\<^sub>\<tau> T\<^isub>2]"
+| E_TAbs        : "X \<sharp> (T\<^isub>11, T\<^isub>2) \<Longrightarrow> (\<lambda>X<:T\<^isub>11. t\<^isub>12) \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t\<^isub>12[X \<mapsto>\<^sub>\<tau> T\<^isub>2]"
 | E_TApp [intro]: "t \<longmapsto> t' \<Longrightarrow> t \<cdot>\<^sub>\<tau> T \<longmapsto> t' \<cdot>\<^sub>\<tau> T"
 
 lemma better_E_Abs[intro]:
@@ -1317,7 +1315,7 @@
   case (T_Var x T)
   then show ?case by auto
 next
-  case (T_App X t\<^isub>1 T\<^isub>2 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2)
+  case (T_App X t\<^isub>1 T\<^isub>2 T\<^isub>11 T\<^isub>12)
   then show ?case by force
 next
   case (T_Abs y T\<^isub>1 t\<^isub>2 T\<^isub>2 \<Delta> \<Gamma>)
@@ -1746,68 +1744,68 @@
   assumes H: "\<Gamma> \<turnstile> t : T"
   shows "t \<longmapsto> t' \<Longrightarrow> \<Gamma> \<turnstile> t' : T" using H
 proof (nominal_induct avoiding: t' rule: typing.strong_induct)
-  case (T_App \<Gamma> t\<^isub>1 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2 t\<^isub>2 t')
+  case (T_App \<Gamma> t\<^isub>1 T\<^isub>11 T\<^isub>12 t\<^isub>2 t')
   obtain x::vrs where x_fresh: "x \<sharp> (\<Gamma>, t\<^isub>1 \<cdot> t\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   obtain X::tyvrs where "X \<sharp> (t\<^isub>1 \<cdot> t\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   with `t\<^isub>1 \<cdot> t\<^isub>2 \<longmapsto> t'` show ?case
   proof (cases rule: eval.strong_cases [where x=x and X=X])
-    case (E_Abs v\<^isub>2 T\<^isub>1\<^isub>1' t\<^isub>1\<^isub>2)
-    with T_App and x_fresh have h: "\<Gamma> \<turnstile> (\<lambda>x:T\<^isub>1\<^isub>1'. t\<^isub>1\<^isub>2) : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2"
+    case (E_Abs v\<^isub>2 T\<^isub>11' t\<^isub>12)
+    with T_App and x_fresh have h: "\<Gamma> \<turnstile> (\<lambda>x:T\<^isub>11'. t\<^isub>12) : T\<^isub>11 \<rightarrow> T\<^isub>12"
       by (simp add: trm.inject fresh_prod)
     moreover from x_fresh have "x \<sharp> \<Gamma>" by simp
     ultimately obtain S'
-      where T\<^isub>1\<^isub>1: "\<Gamma> \<turnstile> T\<^isub>1\<^isub>1 <: T\<^isub>1\<^isub>1'"
-      and t\<^isub>1\<^isub>2: "(VarB x T\<^isub>1\<^isub>1') # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : S'"
-      and S': "\<Gamma> \<turnstile> S' <: T\<^isub>1\<^isub>2"
+      where T\<^isub>11: "\<Gamma> \<turnstile> T\<^isub>11 <: T\<^isub>11'"
+      and t\<^isub>12: "(VarB x T\<^isub>11') # \<Gamma> \<turnstile> t\<^isub>12 : S'"
+      and S': "\<Gamma> \<turnstile> S' <: T\<^isub>12"
       by (rule Abs_type') blast
-    from `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1`
-    have "\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1'" using T\<^isub>1\<^isub>1 by (rule T_Sub)
-    with t\<^isub>1\<^isub>2 have "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[x \<mapsto> t\<^isub>2] : S'" 
+    from `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11`
+    have "\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11'" using T\<^isub>11 by (rule T_Sub)
+    with t\<^isub>12 have "\<Gamma> \<turnstile> t\<^isub>12[x \<mapsto> t\<^isub>2] : S'" 
       by (rule subst_type [where \<Delta>="[]", simplified])
-    hence "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[x \<mapsto> t\<^isub>2] : T\<^isub>1\<^isub>2" using S' by (rule T_Sub)
+    hence "\<Gamma> \<turnstile> t\<^isub>12[x \<mapsto> t\<^isub>2] : T\<^isub>12" using S' by (rule T_Sub)
     with E_Abs and x_fresh show ?thesis by (simp add: trm.inject fresh_prod)
   next
     case (E_App1 t''' t'' u)
     hence "t\<^isub>1 \<longmapsto> t''" by (simp add:trm.inject) 
-    hence "\<Gamma> \<turnstile> t'' : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2" by (rule T_App)
-    hence "\<Gamma> \<turnstile> t'' \<cdot> t\<^isub>2 : T\<^isub>1\<^isub>2" using `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1`
+    hence "\<Gamma> \<turnstile> t'' : T\<^isub>11 \<rightarrow> T\<^isub>12" by (rule T_App)
+    hence "\<Gamma> \<turnstile> t'' \<cdot> t\<^isub>2 : T\<^isub>12" using `\<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>11`
       by (rule typing.T_App)
     with E_App1 show ?thesis by (simp add:trm.inject)
   next
     case (E_App2 v t''' t'')
     hence "t\<^isub>2 \<longmapsto> t''" by (simp add:trm.inject) 
-    hence "\<Gamma> \<turnstile> t'' : T\<^isub>1\<^isub>1" by (rule T_App)
-    with T_App(1) have "\<Gamma> \<turnstile> t\<^isub>1 \<cdot> t'' : T\<^isub>1\<^isub>2"
+    hence "\<Gamma> \<turnstile> t'' : T\<^isub>11" by (rule T_App)
+    with T_App(1) have "\<Gamma> \<turnstile> t\<^isub>1 \<cdot> t'' : T\<^isub>12"
       by (rule typing.T_App)
     with E_App2 show ?thesis by (simp add:trm.inject) 
   qed (simp_all add: fresh_prod)
 next
-  case (T_TApp X \<Gamma> t\<^isub>1 T\<^isub>2  T\<^isub>1\<^isub>1  T\<^isub>1\<^isub>2 t')
+  case (T_TApp X \<Gamma> t\<^isub>1 T\<^isub>2  T\<^isub>11  T\<^isub>12 t')
   obtain x::vrs where "x \<sharp> (t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2, t')"
     by (rule exists_fresh) (rule fin_supp)
   with `t\<^isub>1 \<cdot>\<^sub>\<tau> T\<^isub>2 \<longmapsto> t'`
   show ?case
   proof (cases rule: eval.strong_cases [where X=X and x=x])
-    case (E_TAbs T\<^isub>1\<^isub>1' T\<^isub>2' t\<^isub>1\<^isub>2)
-    with T_TApp have "\<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>1\<^isub>1'. t\<^isub>1\<^isub>2) : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2)" and "X \<sharp> \<Gamma>" and "X \<sharp> T\<^isub>1\<^isub>1'"
+    case (E_TAbs T\<^isub>11' T\<^isub>2' t\<^isub>12)
+    with T_TApp have "\<Gamma> \<turnstile> (\<lambda>X<:T\<^isub>11'. t\<^isub>12) : (\<forall>X<:T\<^isub>11. T\<^isub>12)" and "X \<sharp> \<Gamma>" and "X \<sharp> T\<^isub>11'"
       by (simp_all add: trm.inject)
-    moreover from `\<Gamma>\<turnstile>T\<^isub>2<:T\<^isub>1\<^isub>1` and `X \<sharp> \<Gamma>` have "X \<sharp> T\<^isub>1\<^isub>1"
+    moreover from `\<Gamma>\<turnstile>T\<^isub>2<:T\<^isub>11` and `X \<sharp> \<Gamma>` have "X \<sharp> T\<^isub>11"
       by (blast intro: closed_in_fresh fresh_dom dest: subtype_implies_closed)
     ultimately obtain S'
-      where "TVarB X T\<^isub>1\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : S'"
-      and "(TVarB X T\<^isub>1\<^isub>1 # \<Gamma>) \<turnstile> S' <: T\<^isub>1\<^isub>2"
+      where "TVarB X T\<^isub>11 # \<Gamma> \<turnstile> t\<^isub>12 : S'"
+      and "(TVarB X T\<^isub>11 # \<Gamma>) \<turnstile> S' <: T\<^isub>12"
       by (rule TAbs_type') blast
-    hence "TVarB X T\<^isub>1\<^isub>1 # \<Gamma> \<turnstile> t\<^isub>1\<^isub>2 : T\<^isub>1\<^isub>2" by (rule T_Sub)
-    hence "\<Gamma> \<turnstile> t\<^isub>1\<^isub>2[X \<mapsto>\<^sub>\<tau> T\<^isub>2] : T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1`
+    hence "TVarB X T\<^isub>11 # \<Gamma> \<turnstile> t\<^isub>12 : T\<^isub>12" by (rule T_Sub)
+    hence "\<Gamma> \<turnstile> t\<^isub>12[X \<mapsto>\<^sub>\<tau> T\<^isub>2] : T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11`
       by (rule substT_type [where D="[]", simplified])
     with T_TApp and E_TAbs show ?thesis by (simp add: trm.inject)
   next
     case (E_TApp t''' t'' T)
     from E_TApp have "t\<^isub>1 \<longmapsto> t''" by (simp add: trm.inject)
-    then have "\<Gamma> \<turnstile> t'' : (\<forall>X<:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2)" by (rule T_TApp)
-    then have "\<Gamma> \<turnstile> t'' \<cdot>\<^sub>\<tau> T\<^isub>2 : T\<^isub>1\<^isub>2[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1`
+    then have "\<Gamma> \<turnstile> t'' : (\<forall>X<:T\<^isub>11. T\<^isub>12)" by (rule T_TApp)
+    then have "\<Gamma> \<turnstile> t'' \<cdot>\<^sub>\<tau> T\<^isub>2 : T\<^isub>12[X \<mapsto> T\<^isub>2]\<^sub>\<tau>" using `\<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>11`
       by (rule better_T_TApp)
     with E_TApp show ?thesis by (simp add: trm.inject)
   qed (simp_all add: fresh_prod)
@@ -1847,7 +1845,7 @@
   shows "val t \<or> (\<exists>t'. t \<longmapsto> t')" 
 using assms
 proof (induct "[]::env" t T)
-  case (T_App t\<^isub>1 T\<^isub>1\<^isub>1  T\<^isub>1\<^isub>2 t\<^isub>2)
+  case (T_App t\<^isub>1 T\<^isub>11  T\<^isub>12 t\<^isub>2)
   hence "val t\<^isub>1 \<or> (\<exists>t'. t\<^isub>1 \<longmapsto> t')" by simp
   thus ?case
   proof
@@ -1873,7 +1871,7 @@
     thus ?case by auto
   qed
 next
-  case (T_TApp X t\<^isub>1 T\<^isub>2 T\<^isub>1\<^isub>1 T\<^isub>1\<^isub>2)
+  case (T_TApp X t\<^isub>1 T\<^isub>2 T\<^isub>11 T\<^isub>12)
   hence "val t\<^isub>1 \<or> (\<exists>t'. t\<^isub>1 \<longmapsto> t')" by simp
   thus ?case
   proof
--- a/src/HOL/Nominal/Examples/LocalWeakening.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nominal/Examples/LocalWeakening.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -58,8 +58,7 @@
 by (induct t arbitrary: n rule: llam.induct)
    (simp_all add: perm_nat_def)
 
-constdefs
-  freshen :: "llam \<Rightarrow> name \<Rightarrow> llam"
+definition freshen :: "llam \<Rightarrow> name \<Rightarrow> llam" where
   "freshen t p \<equiv> vsub t 0 (lPar p)"
 
 lemma freshen_eqvt[eqvt]:
--- a/src/HOL/Nominal/Examples/SN.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nominal/Examples/SN.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,5 @@
 theory SN
-  imports Lam_Funs
+imports Lam_Funs
 begin
 
 text {* Strong Normalisation proof from the Proofs and Types book *}
@@ -158,8 +158,7 @@
 
 subsection {* a fact about beta *}
 
-constdefs
-  "NORMAL" :: "lam \<Rightarrow> bool"
+definition "NORMAL" :: "lam \<Rightarrow> bool" where
   "NORMAL t \<equiv> \<not>(\<exists>t'. t\<longrightarrow>\<^isub>\<beta> t')"
 
 lemma NORMAL_Var:
@@ -234,8 +233,7 @@
 by (rule TrueI)+
 
 text {* neutral terms *}
-constdefs
-  NEUT :: "lam \<Rightarrow> bool"
+definition NEUT :: "lam \<Rightarrow> bool" where
   "NEUT t \<equiv> (\<exists>a. t = Var a) \<or> (\<exists>t1 t2. t = App t1 t2)" 
 
 (* a slight hack to get the first element of applications *)
@@ -274,20 +272,19 @@
 
 section {* Candidates *}
 
-constdefs
-  "CR1" :: "ty \<Rightarrow> bool"
+definition "CR1" :: "ty \<Rightarrow> bool" where
   "CR1 \<tau> \<equiv> \<forall>t. (t\<in>RED \<tau> \<longrightarrow> SN t)"
 
-  "CR2" :: "ty \<Rightarrow> bool"
+definition "CR2" :: "ty \<Rightarrow> bool" where
   "CR2 \<tau> \<equiv> \<forall>t t'. (t\<in>RED \<tau> \<and> t \<longrightarrow>\<^isub>\<beta> t') \<longrightarrow> t'\<in>RED \<tau>"
 
-  "CR3_RED" :: "lam \<Rightarrow> ty \<Rightarrow> bool"
+definition "CR3_RED" :: "lam \<Rightarrow> ty \<Rightarrow> bool" where
   "CR3_RED t \<tau> \<equiv> \<forall>t'. t\<longrightarrow>\<^isub>\<beta> t' \<longrightarrow>  t'\<in>RED \<tau>" 
 
-  "CR3" :: "ty \<Rightarrow> bool"
+definition "CR3" :: "ty \<Rightarrow> bool" where
   "CR3 \<tau> \<equiv> \<forall>t. (NEUT t \<and> CR3_RED t \<tau>) \<longrightarrow> t\<in>RED \<tau>"
    
-  "CR4" :: "ty \<Rightarrow> bool"
+definition "CR4" :: "ty \<Rightarrow> bool" where
   "CR4 \<tau> \<equiv> \<forall>t. (NEUT t \<and> NORMAL t) \<longrightarrow>t\<in>RED \<tau>"
 
 lemma CR3_implies_CR4: 
--- a/src/HOL/Nominal/Nominal.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Nominal/Nominal.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -31,7 +31,7 @@
 
 (* an auxiliary constant for the decision procedure involving *) 
 (* permutations (to avoid loops when using perm-compositions)  *)
-constdefs
+definition
   "perm_aux pi x \<equiv> pi\<bullet>x"
 
 (* overloaded permutation operations *)
@@ -187,20 +187,18 @@
 section {* permutation equality *}
 (*==============================*)
 
-constdefs
-  prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool"  (" _ \<triangleq> _ " [80,80] 80)
+definition prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (" _ \<triangleq> _ " [80,80] 80) where
   "pi1 \<triangleq> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a"
 
 section {* Support, Freshness and Supports*}
 (*========================================*)
-constdefs
-   supp :: "'a \<Rightarrow> ('x set)"  
+definition supp :: "'a \<Rightarrow> ('x set)" where  
    "supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
 
-   fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80)
+definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80) where
    "a \<sharp> x \<equiv> a \<notin> supp x"
 
-   supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "supports" 80)
+definition supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "supports" 80) where
    "S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)"
 
 (* lemmas about supp *)
@@ -400,14 +398,14 @@
 (*=========================================================*)
 
 (* properties for being a permutation type *)
-constdefs 
+definition
   "pt TYPE('a) TYPE('x) \<equiv> 
      (\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> 
      (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> 
      (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)"
 
 (* properties for being an atom type *)
-constdefs 
+definition
   "at TYPE('x) \<equiv> 
      (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and>
      (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> 
@@ -415,18 +413,18 @@
      (infinite (UNIV::'x set))"
 
 (* property of two atom-types being disjoint *)
-constdefs
+definition
   "disjoint TYPE('x) TYPE('y) \<equiv> 
        (\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> 
        (\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)"
 
 (* composition property of two permutation on a type 'a *)
-constdefs
+definition
   "cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> 
       (\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" 
 
 (* property of having finite support *)
-constdefs 
+definition
   "fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
 
 section {* Lemmas about the atom-type properties*}
@@ -2216,8 +2214,7 @@
 section {* Facts about the support of finite sets of finitely supported things *}
 (*=============================================================================*)
 
-constdefs
-  X_to_Un_supp :: "('a set) \<Rightarrow> 'x set"
+definition X_to_Un_supp :: "('a set) \<Rightarrow> 'x set" where
   "X_to_Un_supp X \<equiv> \<Union>x\<in>X. ((supp x)::'x set)"
 
 lemma UNION_f_eqvt:
@@ -2838,8 +2835,7 @@
 qed
 
 -- "packaging the freshness lemma into a function"
-constdefs
-  fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a"
+definition fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a" where
   "fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)"
 
 lemma fresh_fun_app:
@@ -2970,8 +2966,7 @@
   shows "pt TYPE('x\<Rightarrow>('a noption)) TYPE('x)"
   by (rule pt_fun_inst[OF at_pt_inst[OF at],OF pt_noption_inst[OF pt],OF at])
 
-constdefs
-  abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" ("[_]._" [100,100] 100)
+definition abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" ("[_]._" [100,100] 100) where 
   "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))"
 
 (* FIXME: should be called perm_if and placed close to the definition of permutations on bools *)
--- a/src/HOL/Number_Theory/MiscAlgebra.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Number_Theory/MiscAlgebra.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -31,8 +31,7 @@
 *)
 
 
-constdefs 
-  units_of :: "('a, 'b) monoid_scheme => 'a monoid"
+definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where
   "units_of G == (| carrier = Units G,
      Group.monoid.mult = Group.monoid.mult G,
      one  = one G |)";
--- a/src/HOL/Number_Theory/Residues.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Number_Theory/Residues.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -22,8 +22,7 @@
 
 *)
 
-constdefs 
-  residue_ring :: "int => int ring"
+definition residue_ring :: "int => int ring" where
   "residue_ring m == (| 
     carrier =       {0..m - 1}, 
     mult =          (%x y. (x * y) mod m),
@@ -287,8 +286,7 @@
 
 (* the definition of the phi function *)
 
-constdefs
-  phi :: "int => nat"
+definition phi :: "int => nat" where
   "phi m == card({ x. 0 < x & x < m & gcd x m = 1})" 
 
 lemma phi_zero [simp]: "phi 0 = 0"
--- a/src/HOL/Number_Theory/UniqueFactorization.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Number_Theory/UniqueFactorization.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -67,8 +67,7 @@
    "ALL i :# M. P i"? 
 *)
 
-constdefs
-  msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b"
+definition msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b" where
   "msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)"
 
 syntax
@@ -214,8 +213,7 @@
   thus ?thesis by (simp add:multiset_eq_conv_count_eq)
 qed
 
-constdefs
-  multiset_prime_factorization :: "nat => nat multiset"
+definition multiset_prime_factorization :: "nat => nat multiset" where
   "multiset_prime_factorization n ==
      if n > 0 then (THE M. ((ALL p : set_of M. prime p) & 
        n = (PROD i :# M. i)))
--- a/src/HOL/Recdef.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Recdef.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -27,15 +27,17 @@
   wfrecI: "ALL z. (z, x) : R --> wfrec_rel R F z (g z) ==>
             wfrec_rel R F x (F g x)"
 
-constdefs
-  cut        :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b"
+definition
+  cut        :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b" where
   "cut f r x == (%y. if (y,x):r then f y else undefined)"
 
-  adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool"
+definition
+  adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool" where
   "adm_wf R F == ALL f g x.
      (ALL z. (z, x) : R --> f z = g z) --> F f x = F g x"
 
-  wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b"
+definition
+  wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b" where
   [code del]: "wfrec R F == %x. THE y. wfrec_rel R (%f x. F (cut f R x) x) x y"
 
 subsection{*Well-Founded Recursion*}
--- a/src/HOL/SET_Protocol/Message_SET.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/SET_Protocol/Message_SET.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -48,8 +48,7 @@
 text{*The inverse of a symmetric key is itself; that of a public key
       is the private key and vice versa*}
 
-constdefs
-  symKeys :: "key set"
+definition symKeys :: "key set" where
   "symKeys == {K. invKey K = K}"
 
 text{*Agents. We allow any number of certification authorities, cardholders
@@ -81,8 +80,7 @@
   "{|x, y|}"      == "CONST MPair x y"
 
 
-constdefs
-  nat_of_agent :: "agent => nat"
+definition nat_of_agent :: "agent => nat" where
    "nat_of_agent == agent_case (curry nat2_to_nat 0)
                                (curry nat2_to_nat 1)
                                (curry nat2_to_nat 2)
--- a/src/HOL/SET_Protocol/Public_SET.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/SET_Protocol/Public_SET.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -161,21 +161,19 @@
 
 subsection{*Encryption Primitives*}
 
-constdefs
-
-  EXcrypt :: "[key,key,msg,msg] => msg"
+definition EXcrypt :: "[key,key,msg,msg] => msg" where
   --{*Extra Encryption*}
     (*K: the symmetric key   EK: the public encryption key*)
     "EXcrypt K EK M m ==
        {|Crypt K {|M, Hash m|}, Crypt EK {|Key K, m|}|}"
 
-  EXHcrypt :: "[key,key,msg,msg] => msg"
+definition EXHcrypt :: "[key,key,msg,msg] => msg" where
   --{*Extra Encryption with Hashing*}
     (*K: the symmetric key   EK: the public encryption key*)
     "EXHcrypt K EK M m ==
        {|Crypt K {|M, Hash m|}, Crypt EK {|Key K, m, Hash M|}|}"
 
-  Enc :: "[key,key,key,msg] => msg"
+definition Enc :: "[key,key,key,msg] => msg" where
   --{*Simple Encapsulation with SIGNATURE*}
     (*SK: the sender's signing key
       K: the symmetric key
@@ -183,7 +181,7 @@
     "Enc SK K EK M ==
        {|Crypt K (sign SK M), Crypt EK (Key K)|}"
 
-  EncB :: "[key,key,key,msg,msg] => msg"
+definition EncB :: "[key,key,key,msg,msg] => msg" where
   --{*Encapsulation with Baggage.  Keys as above, and baggage b.*}
     "EncB SK K EK M b == 
        {|Enc SK K EK {|M, Hash b|}, b|}"
--- a/src/HOL/Set.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Set.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1586,8 +1586,7 @@
 
 subsubsection {* Inverse image of a function *}
 
-constdefs
-  vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
+definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where
   [code del]: "f -` B == {x. f x : B}"
 
 lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
--- a/src/HOL/Statespace/StateFun.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Statespace/StateFun.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -22,7 +22,7 @@
 better compositionality, especially if you think of nested state
 spaces.  *} 
 
-constdefs K_statefun:: "'a \<Rightarrow> 'b \<Rightarrow> 'a" "K_statefun c x \<equiv> c"
+definition K_statefun :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" where "K_statefun c x \<equiv> c"
 
 lemma K_statefun_apply [simp]: "K_statefun c x = c"
   by (simp add: K_statefun_def)
--- a/src/HOL/UNITY/Comp.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -27,23 +27,20 @@
 
 end
 
-constdefs
-  component_of :: "'a program =>'a program=> bool"
-                                    (infixl "component'_of" 50)
+definition component_of :: "'a program =>'a program=> bool" (infixl "component'_of" 50) where
   "F component_of H == \<exists>G. F ok G & F\<squnion>G = H"
 
-  strict_component_of :: "'a program\<Rightarrow>'a program=> bool"
-                                    (infixl "strict'_component'_of" 50)
+definition strict_component_of :: "'a program\<Rightarrow>'a program=> bool" (infixl "strict'_component'_of" 50)  where
   "F strict_component_of H == F component_of H & F\<noteq>H"
 
-  preserves :: "('a=>'b) => 'a program set"
+definition preserves :: "('a=>'b) => 'a program set" where
     "preserves v == \<Inter>z. stable {s. v s = z}"
 
-  localize  :: "('a=>'b) => 'a program => 'a program"
+definition localize :: "('a=>'b) => 'a program => 'a program" where
   "localize v F == mk_program(Init F, Acts F,
                               AllowedActs F \<inter> (\<Union>G \<in> preserves v. Acts G))"
 
-  funPair      :: "['a => 'b, 'a => 'c, 'a] => 'b * 'c"
+definition funPair :: "['a => 'b, 'a => 'c, 'a] => 'b * 'c" where
   "funPair f g == %x. (f x, g x)"
 
 
--- a/src/HOL/UNITY/Comp/AllocImpl.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/AllocImpl.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -20,8 +20,7 @@
   "'b merge" +
   dummy :: 'a       (*dummy field for new variables*)
 
-constdefs
-  non_dummy :: "('a,'b) merge_d => 'b merge"
+definition non_dummy :: "('a,'b) merge_d => 'b merge" where
     "non_dummy s == (|In = In s, Out = Out s, iOut = iOut s|)"
 
 record 'b distr =
--- a/src/HOL/UNITY/Comp/Counter.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/Counter.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -16,25 +16,21 @@
 datatype name = C | c nat
 types state = "name=>int"
 
-consts  
-  sum  :: "[nat,state]=>int"
-  sumj :: "[nat, nat, state]=>int"
-
-primrec (* sum I s = sigma_{i<I}. s (c i) *)
+primrec sum  :: "[nat,state]=>int" where
+  (* sum I s = sigma_{i<I}. s (c i) *)
   "sum 0 s = 0"
-  "sum (Suc i) s = s (c i) + sum i s"
+| "sum (Suc i) s = s (c i) + sum i s"
 
-primrec
+primrec sumj :: "[nat, nat, state]=>int" where
   "sumj 0 i s = 0"
-  "sumj (Suc n) i s = (if n=i then sum n s else s (c n) + sumj n i s)"
+| "sumj (Suc n) i s = (if n=i then sum n s else s (c n) + sumj n i s)"
   
 types command = "(state*state)set"
 
-constdefs
-  a :: "nat=>command"
+definition a :: "nat=>command" where
  "a i == {(s, s'). s'=s(c i:= s (c i) + 1, C:= s C + 1)}"
 
-  Component :: "nat => state program"
+definition Component :: "nat => state program" where
   "Component i ==
     mk_total_program({s. s C = 0 & s (c i) = 0}, {a i},
                      \<Union>G \<in> preserves (%s. s (c i)). Acts G)"
--- a/src/HOL/UNITY/Comp/Counterc.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/Counterc.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -21,25 +21,21 @@
   C :: "state=>int"
   c :: "state=>nat=>int"
 
-consts  
-  sum  :: "[nat,state]=>int"
-  sumj :: "[nat, nat, state]=>int"
-
-primrec (* sum I s = sigma_{i<I}. c s i *)
+primrec sum  :: "[nat,state]=>int" where
+  (* sum I s = sigma_{i<I}. c s i *)
   "sum 0 s = 0"
-  "sum (Suc i) s = (c s) i + sum i s"
+| "sum (Suc i) s = (c s) i + sum i s"
 
-primrec
+primrec sumj :: "[nat, nat, state]=>int" where
   "sumj 0 i s = 0"
-  "sumj (Suc n) i s = (if n=i then sum n s else (c s) n + sumj n i s)"
+| "sumj (Suc n) i s = (if n=i then sum n s else (c s) n + sumj n i s)"
   
 types command = "(state*state)set"
 
-constdefs
-  a :: "nat=>command"
+definition a :: "nat=>command" where
  "a i == {(s, s'). (c s') i = (c s) i + 1 & (C s') = (C s) + 1}"
  
-  Component :: "nat => state program"
+definition Component :: "nat => state program" where
   "Component i == mk_total_program({s. C s = 0 & (c s) i = 0},
                                    {a i},
                                    \<Union>G \<in> preserves (%s. (c s) i). Acts G)"
@@ -127,4 +123,4 @@
 apply (auto intro!: sum0 p2_p3)
 done
 
-end  
+end
--- a/src/HOL/UNITY/Comp/Priority.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/Priority.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Priority
-    ID:         $Id$
     Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
     Copyright   2001  University of Cambridge
 *)
@@ -22,52 +21,50 @@
 
 text{*Following the definitions given in section 4.4 *}
 
-constdefs
-  highest :: "[vertex, (vertex*vertex)set]=>bool"
+definition highest :: "[vertex, (vertex*vertex)set]=>bool" where
   "highest i r == A i r = {}"
     --{* i has highest priority in r *}
   
-  lowest :: "[vertex, (vertex*vertex)set]=>bool"
+definition lowest :: "[vertex, (vertex*vertex)set]=>bool" where
   "lowest i r == R i r = {}"
     --{* i has lowest priority in r *}
 
-  act :: command
+definition act :: command where
   "act i == {(s, s'). s'=reverse i s & highest i s}"
 
-  Component :: "vertex=>state program"
+definition Component :: "vertex=>state program" where
   "Component i == mk_total_program({init}, {act i}, UNIV)"
     --{* All components start with the same initial state *}
 
 
 text{*Some Abbreviations *}
-constdefs
-  Highest :: "vertex=>state set"
+definition Highest :: "vertex=>state set" where
   "Highest i == {s. highest i s}"
 
-  Lowest :: "vertex=>state set"
+definition Lowest :: "vertex=>state set" where
   "Lowest i == {s. lowest i s}"
 
-  Acyclic :: "state set"
+definition Acyclic :: "state set" where
   "Acyclic == {s. acyclic s}"
 
 
-  Maximal :: "state set"
+definition Maximal :: "state set" where
     --{* Every ``above'' set has a maximal vertex*}
   "Maximal == \<Inter>i. {s. ~highest i s-->(\<exists>j \<in> above i  s. highest j s)}"
 
-  Maximal' :: "state set"
+definition Maximal' :: "state set" where
     --{* Maximal vertex: equivalent definition*}
   "Maximal' == \<Inter>i. Highest i Un (\<Union>j. {s. j \<in> above i s} Int Highest j)"
 
   
-  Safety :: "state set"
+definition Safety :: "state set" where
   "Safety == \<Inter>i. {s. highest i s --> (\<forall>j \<in> neighbors i s. ~highest j s)}"
 
 
   (* Composition of a finite set of component;
      the vertex 'UNIV' is finite by assumption *)
   
-  system :: "state program"
+definition system :: "state program" where
   "system == JN i. Component i"
 
 
--- a/src/HOL/UNITY/Comp/PriorityAux.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/PriorityAux.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -12,38 +12,37 @@
 
 typedecl vertex
   
-constdefs
-  symcl :: "(vertex*vertex)set=>(vertex*vertex)set"
+definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
   "symcl r == r \<union> (r^-1)"
     --{* symmetric closure: removes the orientation of a relation*}
 
-  neighbors :: "[vertex, (vertex*vertex)set]=>vertex set"
+definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
   "neighbors i r == ((r \<union> r^-1)``{i}) - {i}"
     --{* Neighbors of a vertex i *}
 
-  R :: "[vertex, (vertex*vertex)set]=>vertex set"
+definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
   "R i r == r``{i}"
 
-  A :: "[vertex, (vertex*vertex)set]=>vertex set"
+definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where
   "A i r == (r^-1)``{i}"
 
-  reach :: "[vertex, (vertex*vertex)set]=> vertex set"
+definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
   "reach i r == (r^+)``{i}"
     --{* reachable and above vertices: the original notation was R* and A* *}
 
-  above :: "[vertex, (vertex*vertex)set]=> vertex set"
+definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
   "above i r == ((r^-1)^+)``{i}"  
 
-  reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set"
+definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
   "reverse i r == (r - {(x,y). x=i | y=i} \<inter> r) \<union> ({(x,y). x=i|y=i} \<inter> r)^-1"
 
-  derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
+definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
     --{* The original definition *}
   "derive1 i r q == symcl r = symcl q &
                     (\<forall>k k'. k\<noteq>i & k'\<noteq>i -->((k,k'):r) = ((k,k'):q)) &
                     A i r = {} & R i q = {}"
 
-  derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool"
+definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
     --{* Our alternative definition *}
   "derive i r q == A i r = {} & (q = reverse i r)"
 
--- a/src/HOL/UNITY/Comp/Progress.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/Progress.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Progress
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   2003  University of Cambridge
 
@@ -13,11 +12,10 @@
 subsection {*The Composition of Two Single-Assignment Programs*}
 text{*Thesis Section 4.4.2*}
 
-constdefs
-  FF :: "int program"
+definition FF :: "int program" where
     "FF == mk_total_program (UNIV, {range (\<lambda>x. (x, x+1))}, UNIV)"
 
-  GG :: "int program"
+definition GG :: "int program" where
     "GG == mk_total_program (UNIV, {range (\<lambda>x. (x, 2*x))}, UNIV)"
 
 subsubsection {*Calculating @{term "wens_set FF (atLeast k)"}*}
--- a/src/HOL/UNITY/Comp/TimerArray.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Comp/TimerArray.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/TimerArray.thy
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 
@@ -10,14 +9,13 @@
 
 types 'a state = "nat * 'a"   (*second component allows new variables*)
 
-constdefs
-  count  :: "'a state => nat"
+definition count :: "'a state => nat" where
     "count s == fst s"
   
-  decr  :: "('a state * 'a state) set"
+definition decr  :: "('a state * 'a state) set" where
     "decr == UN n uu. {((Suc n, uu), (n,uu))}"
   
-  Timer :: "'a state program"
+definition Timer :: "'a state program" where
     "Timer == mk_total_program (UNIV, {decr}, UNIV)"
 
 
--- a/src/HOL/UNITY/Constrains.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Constrains.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -32,22 +32,21 @@
   | Acts:  "[| act: Acts F;  s \<in> reachable F;  (s,s'): act |]
             ==> s' \<in> reachable F"
 
-constdefs
-  Constrains :: "['a set, 'a set] => 'a program set"  (infixl "Co" 60)
+definition Constrains :: "['a set, 'a set] => 'a program set" (infixl "Co" 60) where
     "A Co B == {F. F \<in> (reachable F \<inter> A)  co  B}"
 
-  Unless  :: "['a set, 'a set] => 'a program set"     (infixl "Unless" 60)
+definition Unless  :: "['a set, 'a set] => 'a program set" (infixl "Unless" 60) where
     "A Unless B == (A-B) Co (A \<union> B)"
 
-  Stable     :: "'a set => 'a program set"
+definition Stable     :: "'a set => 'a program set" where
     "Stable A == A Co A"
 
   (*Always is the weak form of "invariant"*)
-  Always :: "'a set => 'a program set"
+definition Always :: "'a set => 'a program set" where
     "Always A == {F. Init F \<subseteq> A} \<inter> Stable A"
 
   (*Polymorphic in both states and the meaning of \<le> *)
-  Increasing :: "['a => 'b::{order}] => 'a program set"
+definition Increasing :: "['a => 'b::{order}] => 'a program set" where
     "Increasing f == \<Inter>z. Stable {s. z \<le> f s}"
 
 
--- a/src/HOL/UNITY/FP.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/FP.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/FP
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 
@@ -10,12 +9,10 @@
 
 theory FP imports UNITY begin
 
-constdefs
-
-  FP_Orig :: "'a program => 'a set"
+definition FP_Orig :: "'a program => 'a set" where
     "FP_Orig F == Union{A. ALL B. F : stable (A Int B)}"
 
-  FP :: "'a program => 'a set"
+definition FP :: "'a program => 'a set" where
     "FP F == {s. F : stable {s}}"
 
 lemma stable_FP_Orig_Int: "F : stable (FP_Orig F Int B)"
--- a/src/HOL/UNITY/Follows.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Follows.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -7,10 +7,7 @@
 
 theory Follows imports SubstAx ListOrder Multiset begin
 
-constdefs
-
-  Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set"
-                 (infixl "Fols" 65)
+definition Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set" (infixl "Fols" 65) where
    "f Fols g == Increasing g \<inter> Increasing f Int
                 Always {s. f s \<le> g s} Int
                 (\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})"
--- a/src/HOL/UNITY/Guar.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Guar.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -22,51 +22,47 @@
 text{*Existential and Universal properties.  I formalize the two-program
       case, proving equivalence with Chandy and Sanders's n-ary definitions*}
 
-constdefs
-
-  ex_prop  :: "'a program set => bool"
+definition ex_prop :: "'a program set => bool" where
    "ex_prop X == \<forall>F G. F ok G -->F \<in> X | G \<in> X --> (F\<squnion>G) \<in> X"
 
-  strict_ex_prop  :: "'a program set => bool"
+definition strict_ex_prop  :: "'a program set => bool" where
    "strict_ex_prop X == \<forall>F G.  F ok G --> (F \<in> X | G \<in> X) = (F\<squnion>G \<in> X)"
 
-  uv_prop  :: "'a program set => bool"
+definition uv_prop  :: "'a program set => bool" where
    "uv_prop X == SKIP \<in> X & (\<forall>F G. F ok G --> F \<in> X & G \<in> X --> (F\<squnion>G) \<in> X)"
 
-  strict_uv_prop  :: "'a program set => bool"
+definition strict_uv_prop  :: "'a program set => bool" where
    "strict_uv_prop X == 
       SKIP \<in> X & (\<forall>F G. F ok G --> (F \<in> X & G \<in> X) = (F\<squnion>G \<in> X))"
 
 
 text{*Guarantees properties*}
 
-constdefs
-
-  guar :: "['a program set, 'a program set] => 'a program set"
-          (infixl "guarantees" 55)  (*higher than membership, lower than Co*)
+definition guar :: "['a program set, 'a program set] => 'a program set" (infixl "guarantees" 55) where
+          (*higher than membership, lower than Co*)
    "X guarantees Y == {F. \<forall>G. F ok G --> F\<squnion>G \<in> X --> F\<squnion>G \<in> Y}"
   
 
   (* Weakest guarantees *)
-   wg :: "['a program, 'a program set] =>  'a program set"
+definition wg :: "['a program, 'a program set] => 'a program set" where
   "wg F Y == Union({X. F \<in> X guarantees Y})"
 
    (* Weakest existential property stronger than X *)
-   wx :: "('a program) set => ('a program)set"
+definition wx :: "('a program) set => ('a program)set" where
    "wx X == Union({Y. Y \<subseteq> X & ex_prop Y})"
   
   (*Ill-defined programs can arise through "Join"*)
-  welldef :: "'a program set"
+definition welldef :: "'a program set" where
   "welldef == {F. Init F \<noteq> {}}"
   
-  refines :: "['a program, 'a program, 'a program set] => bool"
-                        ("(3_ refines _ wrt _)" [10,10,10] 10)
+definition refines :: "['a program, 'a program, 'a program set] => bool"
+                        ("(3_ refines _ wrt _)" [10,10,10] 10) where
   "G refines F wrt X ==
      \<forall>H. (F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X) --> 
          (G\<squnion>H \<in> welldef \<inter> X)"
 
-  iso_refines :: "['a program, 'a program, 'a program set] => bool"
-                              ("(3_ iso'_refines _ wrt _)" [10,10,10] 10)
+definition iso_refines :: "['a program, 'a program, 'a program set] => bool"
+                              ("(3_ iso'_refines _ wrt _)" [10,10,10] 10) where
   "G iso_refines F wrt X ==
    F \<in> welldef \<inter> X --> G \<in> welldef \<inter> X"
 
--- a/src/HOL/UNITY/Lift_prog.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Lift_prog.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Lift_prog.thy
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1999  University of Cambridge
 
@@ -10,30 +9,28 @@
 
 theory Lift_prog imports Rename begin
 
-constdefs
-
-  insert_map :: "[nat, 'b, nat=>'b] => (nat=>'b)"
+definition insert_map :: "[nat, 'b, nat=>'b] => (nat=>'b)" where
     "insert_map i z f k == if k<i then f k
                            else if k=i then z
                            else f(k - 1)"
 
-  delete_map :: "[nat, nat=>'b] => (nat=>'b)"
+definition delete_map :: "[nat, nat=>'b] => (nat=>'b)" where
     "delete_map i g k == if k<i then g k else g (Suc k)"
 
-  lift_map :: "[nat, 'b * ((nat=>'b) * 'c)] => (nat=>'b) * 'c"
+definition lift_map :: "[nat, 'b * ((nat=>'b) * 'c)] => (nat=>'b) * 'c" where
     "lift_map i == %(s,(f,uu)). (insert_map i s f, uu)"
 
-  drop_map :: "[nat, (nat=>'b) * 'c] => 'b * ((nat=>'b) * 'c)"
+definition drop_map :: "[nat, (nat=>'b) * 'c] => 'b * ((nat=>'b) * 'c)" where
     "drop_map i == %(g, uu). (g i, (delete_map i g, uu))"
 
-  lift_set :: "[nat, ('b * ((nat=>'b) * 'c)) set] => ((nat=>'b) * 'c) set"
+definition lift_set :: "[nat, ('b * ((nat=>'b) * 'c)) set] => ((nat=>'b) * 'c) set" where
     "lift_set i A == lift_map i ` A"
 
-  lift :: "[nat, ('b * ((nat=>'b) * 'c)) program] => ((nat=>'b) * 'c) program"
+definition lift :: "[nat, ('b * ((nat=>'b) * 'c)) program] => ((nat=>'b) * 'c) program" where
     "lift i == rename (lift_map i)"
 
   (*simplifies the expression of specifications*)
-  sub :: "['a, 'a=>'b] => 'b"
+definition sub :: "['a, 'a=>'b] => 'b" where
     "sub == %i f. f i"
 
 
--- a/src/HOL/UNITY/ListOrder.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/ListOrder.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -42,11 +42,10 @@
 
 end
 
-constdefs
-  Le :: "(nat*nat) set"
+definition Le :: "(nat*nat) set" where
     "Le == {(x,y). x <= y}"
 
-  Ge :: "(nat*nat) set"
+definition  Ge :: "(nat*nat) set" where
     "Ge == {(x,y). y <= x}"
 
 abbreviation
--- a/src/HOL/UNITY/PPROD.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/PPROD.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -10,9 +10,8 @@
 
 theory PPROD imports Lift_prog begin
 
-constdefs
-  PLam  :: "[nat set, nat => ('b * ((nat=>'b) * 'c)) program]
-            => ((nat=>'b) * 'c) program"
+definition PLam :: "[nat set, nat => ('b * ((nat=>'b) * 'c)) program]
+            => ((nat=>'b) * 'c) program" where
     "PLam I F == \<Squnion>i \<in> I. lift i (F i)"
 
 syntax
--- a/src/HOL/UNITY/ProgressSets.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/ProgressSets.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -19,13 +19,12 @@
 
 subsection {*Complete Lattices and the Operator @{term cl}*}
 
-constdefs
-  lattice :: "'a set set => bool"
+definition lattice :: "'a set set => bool" where
    --{*Meier calls them closure sets, but they are just complete lattices*}
    "lattice L ==
          (\<forall>M. M \<subseteq> L --> \<Inter>M \<in> L) & (\<forall>M. M \<subseteq> L --> \<Union>M \<in> L)"
 
-  cl :: "['a set set, 'a set] => 'a set"
+definition cl :: "['a set set, 'a set] => 'a set" where
    --{*short for ``closure''*}
    "cl L r == \<Inter>{x. x\<in>L & r \<subseteq> x}"
 
@@ -143,12 +142,11 @@
 text{*A progress set satisfies certain closure conditions and is a 
 simple way of including the set @{term "wens_set F B"}.*}
 
-constdefs 
-  closed :: "['a program, 'a set, 'a set,  'a set set] => bool"
+definition closed :: "['a program, 'a set, 'a set,  'a set set] => bool" where
    "closed F T B L == \<forall>M. \<forall>act \<in> Acts F. B\<subseteq>M & T\<inter>M \<in> L -->
                               T \<inter> (B \<union> wp act M) \<in> L"
 
-  progress_set :: "['a program, 'a set, 'a set] => 'a set set set"
+definition progress_set :: "['a program, 'a set, 'a set] => 'a set set set" where
    "progress_set F T B ==
       {L. lattice L & B \<in> L & T \<in> L & closed F T B L}"
 
@@ -324,12 +322,11 @@
 subsubsection {*Lattices and Relations*}
 text{*From Meier's thesis, section 4.5.3*}
 
-constdefs
-  relcl :: "'a set set => ('a * 'a) set"
+definition relcl :: "'a set set => ('a * 'a) set" where
     -- {*Derived relation from a lattice*}
     "relcl L == {(x,y). y \<in> cl L {x}}"
   
-  latticeof :: "('a * 'a) set => 'a set set"
+definition latticeof :: "('a * 'a) set => 'a set set" where
     -- {*Derived lattice from a relation: the set of upwards-closed sets*}
     "latticeof r == {X. \<forall>s t. s \<in> X & (s,t) \<in> r --> t \<in> X}"
 
@@ -405,8 +402,7 @@
 
 subsubsection {*Decoupling Theorems*}
 
-constdefs
-  decoupled :: "['a program, 'a program] => bool"
+definition decoupled :: "['a program, 'a program] => bool" where
    "decoupled F G ==
         \<forall>act \<in> Acts F. \<forall>B. G \<in> stable B --> G \<in> stable (wp act B)"
 
@@ -469,8 +465,7 @@
 subsection{*Composition Theorems Based on Monotonicity and Commutativity*}
 
 subsubsection{*Commutativity of @{term "cl L"} and assignment.*}
-constdefs 
-  commutes :: "['a program, 'a set, 'a set,  'a set set] => bool"
+definition commutes :: "['a program, 'a set, 'a set,  'a set set] => bool" where
    "commutes F T B L ==
        \<forall>M. \<forall>act \<in> Acts F. B \<subseteq> M --> 
            cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T\<inter>M)))"
@@ -511,8 +506,7 @@
 
 
 text{*Possibly move to Relation.thy, after @{term single_valued}*}
-constdefs
-  funof :: "[('a*'b)set, 'a] => 'b"
+definition funof :: "[('a*'b)set, 'a] => 'b" where
    "funof r == (\<lambda>x. THE y. (x,y) \<in> r)"
 
 lemma funof_eq: "[|single_valued r; (x,y) \<in> r|] ==> funof r x = y"
--- a/src/HOL/UNITY/Project.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Project.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -11,19 +11,18 @@
 
 theory Project imports Extend begin
 
-constdefs
-  projecting :: "['c program => 'c set, 'a*'b => 'c, 
-                  'a program, 'c program set, 'a program set] => bool"
+definition projecting :: "['c program => 'c set, 'a*'b => 'c, 
+                  'a program, 'c program set, 'a program set] => bool" where
     "projecting C h F X' X ==
        \<forall>G. extend h F\<squnion>G \<in> X' --> F\<squnion>project h (C G) G \<in> X"
 
-  extending :: "['c program => 'c set, 'a*'b => 'c, 'a program, 
-                 'c program set, 'a program set] => bool"
+definition extending :: "['c program => 'c set, 'a*'b => 'c, 'a program, 
+                 'c program set, 'a program set] => bool" where
     "extending C h F Y' Y ==
        \<forall>G. extend h F  ok G --> F\<squnion>project h (C G) G \<in> Y
               --> extend h F\<squnion>G \<in> Y'"
 
-  subset_closed :: "'a set set => bool"
+definition subset_closed :: "'a set set => bool" where
     "subset_closed U == \<forall>A \<in> U. Pow A \<subseteq> U"  
 
 
--- a/src/HOL/UNITY/Rename.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Rename.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -8,9 +8,7 @@
 
 theory Rename imports Extend begin
 
-constdefs
-  
-  rename :: "['a => 'b, 'a program] => 'b program"
+definition rename :: "['a => 'b, 'a program] => 'b program" where
     "rename h == extend (%(x,u::unit). h x)"
 
 declare image_inv_f_f [simp] image_surj_f_inv_f [simp]
--- a/src/HOL/UNITY/Simple/Channel.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/Channel.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -15,8 +15,7 @@
 consts
   F :: "state program"
 
-constdefs
-  minSet :: "nat set => nat option"
+definition minSet :: "nat set => nat option" where
     "minSet A == if A={} then None else Some (LEAST x. x \<in> A)"
 
 axioms
--- a/src/HOL/UNITY/Simple/Common.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/Common.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -24,11 +24,10 @@
   fasc:  "m \<le> ftime n"
   gasc:  "m \<le> gtime n"
 
-constdefs
-  common :: "nat set"
+definition common :: "nat set" where
     "common == {n. ftime n = n & gtime n = n}"
 
-  maxfg :: "nat => nat set"
+definition maxfg :: "nat => nat set" where
     "maxfg m == {t. t \<le> max (ftime m) (gtime m)}"
 
 
--- a/src/HOL/UNITY/Simple/NSP_Bad.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/NSP_Bad.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -53,8 +53,7 @@
                & Says B' A3 (Crypt (pubK A3) {|Nonce NA, Nonce NB|}) \<in> set s3}"
 
 
-constdefs
-  Nprg :: "state program"
+definition Nprg :: "state program" where
     (*Initial trace is empty*)
     "Nprg == mk_total_program({[]}, {Fake, NS1, NS2, NS3}, UNIV)"
 
--- a/src/HOL/UNITY/Simple/Reach.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/Reach.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -17,21 +17,19 @@
 
   edges :: "(vertex*vertex) set"
 
-constdefs
-
-  asgt  :: "[vertex,vertex] => (state*state) set"
+definition asgt :: "[vertex,vertex] => (state*state) set" where
     "asgt u v == {(s,s'). s' = s(v:= s u | s v)}"
 
-  Rprg :: "state program"
+definition Rprg :: "state program" where
     "Rprg == mk_total_program ({%v. v=init}, \<Union>(u,v)\<in>edges. {asgt u v}, UNIV)"
 
-  reach_invariant :: "state set"
+definition reach_invariant :: "state set" where
     "reach_invariant == {s. (\<forall>v. s v --> (init, v) \<in> edges^*) & s init}"
 
-  fixedpoint :: "state set"
+definition fixedpoint :: "state set" where
     "fixedpoint == {s. \<forall>(u,v)\<in>edges. s u --> s v}"
 
-  metric :: "state => nat"
+definition metric :: "state => nat" where
     "metric s == card {v. ~ s v}"
 
 
--- a/src/HOL/UNITY/Simple/Reachability.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/Reachability.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -25,23 +25,22 @@
     base: "v \<in> V ==> ((v,v) \<in> REACHABLE)"
   | step: "((u,v) \<in> REACHABLE) & (v,w) \<in> E ==> ((u,w) \<in> REACHABLE)"
 
-constdefs
-  reachable :: "vertex => state set"
+definition reachable :: "vertex => state set" where
   "reachable p == {s. reach s p}"
 
-  nmsg_eq :: "nat => edge  => state set"
+definition nmsg_eq :: "nat => edge  => state set" where
   "nmsg_eq k == %e. {s. nmsg s e = k}"
 
-  nmsg_gt :: "nat => edge  => state set"
+definition nmsg_gt :: "nat => edge  => state set" where
   "nmsg_gt k  == %e. {s. k < nmsg s e}"
 
-  nmsg_gte :: "nat => edge => state set"
+definition nmsg_gte :: "nat => edge => state set" where
   "nmsg_gte k == %e. {s. k \<le> nmsg s e}"
 
-  nmsg_lte  :: "nat => edge => state set"
+definition nmsg_lte  :: "nat => edge => state set" where
   "nmsg_lte k  == %e. {s. nmsg s e \<le> k}"
 
-  final :: "state set"
+definition final :: "state set" where
   "final == (\<Inter>v\<in>V. reachable v <==> {s. (root, v) \<in> REACHABLE}) \<inter> 
             (INTER E (nmsg_eq 0))"
 
--- a/src/HOL/UNITY/Simple/Token.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Simple/Token.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/Token
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 *)
@@ -24,17 +23,16 @@
   proc  :: "nat => pstate"
 
 
-constdefs
-  HasTok :: "nat => state set"
+definition HasTok :: "nat => state set" where
     "HasTok i == {s. token s = i}"
 
-  H :: "nat => state set"
+definition H :: "nat => state set" where
     "H i == {s. proc s i = Hungry}"
 
-  E :: "nat => state set"
+definition E :: "nat => state set" where
     "E i == {s. proc s i = Eating}"
 
-  T :: "nat => state set"
+definition T :: "nat => state set" where
     "T i == {s. proc s i = Thinking}"
 
 
--- a/src/HOL/UNITY/SubstAx.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/SubstAx.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/SubstAx
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 
@@ -10,11 +9,10 @@
 
 theory SubstAx imports WFair Constrains begin
 
-constdefs
-   Ensures :: "['a set, 'a set] => 'a program set"    (infixl "Ensures" 60)
+definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where
     "A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}"
 
-   LeadsTo :: "['a set, 'a set] => 'a program set"    (infixl "LeadsTo" 60)
+definition LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60) where
     "A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}"
 
 notation (xsymbols)
--- a/src/HOL/UNITY/Transformers.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/Transformers.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -20,16 +20,15 @@
 subsection{*Defining the Predicate Transformers @{term wp},
    @{term awp} and  @{term wens}*}
 
-constdefs
-  wp :: "[('a*'a) set, 'a set] => 'a set"  
+definition wp :: "[('a*'a) set, 'a set] => 'a set" where  
     --{*Dijkstra's weakest-precondition operator (for an individual command)*}
     "wp act B == - (act^-1 `` (-B))"
 
-  awp :: "['a program, 'a set] => 'a set"  
+definition awp :: "['a program, 'a set] => 'a set" where
     --{*Dijkstra's weakest-precondition operator (for a program)*}
     "awp F B == (\<Inter>act \<in> Acts F. wp act B)"
 
-  wens :: "['a program, ('a*'a) set, 'a set] => 'a set"  
+definition wens :: "['a program, ('a*'a) set, 'a set] => 'a set" where
     --{*The weakest-ensures transformer*}
     "wens F act B == gfp(\<lambda>X. (wp act B \<inter> awp F (B \<union> X)) \<union> B)"
 
@@ -335,11 +334,10 @@
 
 text{*Next, we express the @{term "wens_set"} for single-assignment programs*}
 
-constdefs
-  wens_single_finite :: "[('a*'a) set, 'a set, nat] => 'a set"  
+definition wens_single_finite :: "[('a*'a) set, 'a set, nat] => 'a set" where  
     "wens_single_finite act B k == \<Union>i \<in> atMost k. (wp act ^^ i) B"
 
-  wens_single :: "[('a*'a) set, 'a set] => 'a set"  
+definition wens_single :: "[('a*'a) set, 'a set] => 'a set" where
     "wens_single act B == \<Union>i. (wp act ^^ i) B"
 
 lemma wens_single_Un_eq:
--- a/src/HOL/UNITY/UNITY.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/UNITY.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -17,40 +17,39 @@
                    allowed :: ('a * 'a)set set). Id \<in> acts & Id: allowed}" 
   by blast
 
-constdefs
-  Acts :: "'a program => ('a * 'a)set set"
+definition Acts :: "'a program => ('a * 'a)set set" where
     "Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"
 
-  "constrains" :: "['a set, 'a set] => 'a program set"  (infixl "co"     60)
+definition "constrains" :: "['a set, 'a set] => 'a program set"  (infixl "co"     60) where
     "A co B == {F. \<forall>act \<in> Acts F. act``A \<subseteq> B}"
 
-  unless  :: "['a set, 'a set] => 'a program set"  (infixl "unless" 60)
+definition unless  :: "['a set, 'a set] => 'a program set"  (infixl "unless" 60)  where
     "A unless B == (A-B) co (A \<union> B)"
 
-  mk_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
-                   => 'a program"
+definition mk_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
+                   => 'a program" where
     "mk_program == %(init, acts, allowed).
                       Abs_Program (init, insert Id acts, insert Id allowed)"
 
-  Init :: "'a program => 'a set"
+definition Init :: "'a program => 'a set" where
     "Init F == (%(init, acts, allowed). init) (Rep_Program F)"
 
-  AllowedActs :: "'a program => ('a * 'a)set set"
+definition AllowedActs :: "'a program => ('a * 'a)set set" where
     "AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"
 
-  Allowed :: "'a program => 'a program set"
+definition Allowed :: "'a program => 'a program set" where
     "Allowed F == {G. Acts G \<subseteq> AllowedActs F}"
 
-  stable     :: "'a set => 'a program set"
+definition stable     :: "'a set => 'a program set" where
     "stable A == A co A"
 
-  strongest_rhs :: "['a program, 'a set] => 'a set"
+definition strongest_rhs :: "['a program, 'a set] => 'a set" where
     "strongest_rhs F A == Inter {B. F \<in> A co B}"
 
-  invariant :: "'a set => 'a program set"
+definition invariant :: "'a set => 'a program set" where
     "invariant A == {F. Init F \<subseteq> A} \<inter> stable A"
 
-  increasing :: "['a => 'b::{order}] => 'a program set"
+definition increasing :: "['a => 'b::{order}] => 'a program set" where
     --{*Polymorphic in both states and the meaning of @{text "\<le>"}*}
     "increasing f == \<Inter>z. stable {s. z \<le> f s}"
 
@@ -357,20 +356,19 @@
 
 subsection{*Partial versus Total Transitions*}
 
-constdefs
-  totalize_act :: "('a * 'a)set => ('a * 'a)set"
+definition totalize_act :: "('a * 'a)set => ('a * 'a)set" where
     "totalize_act act == act \<union> Id_on (-(Domain act))"
 
-  totalize :: "'a program => 'a program"
+definition totalize :: "'a program => 'a program" where
     "totalize F == mk_program (Init F,
                                totalize_act ` Acts F,
                                AllowedActs F)"
 
-  mk_total_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
-                   => 'a program"
+definition mk_total_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
+                   => 'a program" where
     "mk_total_program args == totalize (mk_program args)"
 
-  all_total :: "'a program => bool"
+definition all_total :: "'a program => bool" where
     "all_total F == \<forall>act \<in> Acts F. Domain act = UNIV"
   
 lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f`Acts F) = f ` Acts F"
--- a/src/HOL/UNITY/WFair.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/UNITY/WFair.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/UNITY/WFair
-    ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1998  University of Cambridge
 
@@ -33,16 +32,17 @@
 is the impossibility law for leads-to.
 *}
 
-constdefs
+definition
 
   --{*This definition specifies conditional fairness.  The rest of the theory
       is generic to all forms of fairness.  To get weak fairness, conjoin
       the inclusion below with @{term "A \<subseteq> Domain act"}, which specifies 
       that the action is enabled over all of @{term A}.*}
-  transient :: "'a set => 'a program set"
+  transient :: "'a set => 'a program set" where
     "transient A == {F. \<exists>act\<in>Acts F. act``A \<subseteq> -A}"
 
-  ensures :: "['a set, 'a set] => 'a program set"       (infixl "ensures" 60)
+definition
+  ensures :: "['a set, 'a set] => 'a program set"       (infixl "ensures" 60) where
     "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)"
 
 
@@ -59,13 +59,11 @@
   | Union:  "\<forall>A \<in> S. (A,B) \<in> leads F ==> (Union S, B) \<in> leads F"
 
 
-constdefs
-
-  leadsTo :: "['a set, 'a set] => 'a program set"    (infixl "leadsTo" 60)
+definition leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) where
      --{*visible version of the LEADS-TO relation*}
     "A leadsTo B == {F. (A,B) \<in> leads F}"
   
-  wlt :: "['a program, 'a set] => 'a set"
+definition wlt :: "['a program, 'a set] => 'a set" where
      --{*predicate transformer: the largest set that leads to @{term B}*}
     "wlt F B == Union {A. F \<in> A leadsTo B}"
 
@@ -641,4 +639,4 @@
 apply blast+
 done
 
-end
+end
\ No newline at end of file
--- a/src/HOL/Word/WordDefinition.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Word/WordDefinition.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -165,14 +165,13 @@
 where
   "word_pred a = word_of_int (Int.pred (uint a))"
 
-constdefs
-  udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50)
+definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) where
   "a udvd b == EX n>=0. uint b = n * uint a"
 
-  word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50)
+definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) where
   "a <=s b == sint a <= sint b"
 
-  word_sless :: "'a :: len word => 'a word => bool" ("(_/ <s _)" [50, 51] 50)
+definition word_sless :: "'a :: len word => 'a word => bool" ("(_/ <s _)" [50, 51] 50) where
   "(x <s y) == (x <=s y & x ~= y)"
 
 
@@ -223,89 +222,81 @@
 
 end
 
-constdefs
-  setBit :: "'a :: len0 word => nat => 'a word" 
+definition setBit :: "'a :: len0 word => nat => 'a word" where 
   "setBit w n == set_bit w n True"
 
-  clearBit :: "'a :: len0 word => nat => 'a word" 
+definition clearBit :: "'a :: len0 word => nat => 'a word" where
   "clearBit w n == set_bit w n False"
 
 
 subsection "Shift operations"
 
-constdefs
-  sshiftr1 :: "'a :: len word => 'a word" 
+definition sshiftr1 :: "'a :: len word => 'a word" where 
   "sshiftr1 w == word_of_int (bin_rest (sint w))"
 
-  bshiftr1 :: "bool => 'a :: len word => 'a word"
+definition bshiftr1 :: "bool => 'a :: len word => 'a word" where
   "bshiftr1 b w == of_bl (b # butlast (to_bl w))"
 
-  sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55)
+definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) where
   "w >>> n == (sshiftr1 ^^ n) w"
 
-  mask :: "nat => 'a::len word"
+definition mask :: "nat => 'a::len word" where
   "mask n == (1 << n) - 1"
 
-  revcast :: "'a :: len0 word => 'b :: len0 word"
+definition revcast :: "'a :: len0 word => 'b :: len0 word" where
   "revcast w ==  of_bl (takefill False (len_of TYPE('b)) (to_bl w))"
 
-  slice1 :: "nat => 'a :: len0 word => 'b :: len0 word"
+definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" where
   "slice1 n w == of_bl (takefill False n (to_bl w))"
 
-  slice :: "nat => 'a :: len0 word => 'b :: len0 word"
+definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" where
   "slice n w == slice1 (size w - n) w"
 
 
 subsection "Rotation"
 
-constdefs
-  rotater1 :: "'a list => 'a list"
+definition rotater1 :: "'a list => 'a list" where
   "rotater1 ys == 
     case ys of [] => [] | x # xs => last ys # butlast ys"
 
-  rotater :: "nat => 'a list => 'a list"
+definition rotater :: "nat => 'a list => 'a list" where
   "rotater n == rotater1 ^^ n"
 
-  word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word"
+definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" where
   "word_rotr n w == of_bl (rotater n (to_bl w))"
 
-  word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word"
+definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" where
   "word_rotl n w == of_bl (rotate n (to_bl w))"
 
-  word_roti :: "int => 'a :: len0 word => 'a :: len0 word"
+definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" where
   "word_roti i w == if i >= 0 then word_rotr (nat i) w
                     else word_rotl (nat (- i)) w"
 
 
 subsection "Split and cat operations"
 
-constdefs
-  word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word"
+definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" where
   "word_cat a b == word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))"
 
-  word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)"
+definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" where
   "word_split a == 
    case bin_split (len_of TYPE ('c)) (uint a) of 
      (u, v) => (word_of_int u, word_of_int v)"
 
-  word_rcat :: "'a :: len0 word list => 'b :: len0 word"
+definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" where
   "word_rcat ws == 
   word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))"
 
-  word_rsplit :: "'a :: len0 word => 'b :: len word list"
+definition word_rsplit :: "'a :: len0 word => 'b :: len word list" where
   "word_rsplit w == 
   map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))"
 
-constdefs
-  -- "Largest representable machine integer."
-  max_word :: "'a::len word"
+definition max_word :: "'a::len word" -- "Largest representable machine integer." where
   "max_word \<equiv> word_of_int (2 ^ len_of TYPE('a) - 1)"
 
-consts 
-  of_bool :: "bool \<Rightarrow> 'a::len word"
-primrec
+primrec of_bool :: "bool \<Rightarrow> 'a::len word" where
   "of_bool False = 0"
-  "of_bool True = 1"
+| "of_bool True = 1"
 
 
 lemmas of_nth_def = word_set_bits_def
--- a/src/HOL/Word/WordGenLib.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/Word/WordGenLib.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -344,8 +344,7 @@
   apply (case_tac "1+n = 0", auto)
   done
 
-constdefs
-  word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a"
+definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a" where
   "word_rec forZero forSuc n \<equiv> nat_rec forZero (forSuc \<circ> of_nat) (unat n)"
 
 lemma word_rec_0: "word_rec z s 0 = z"
--- a/src/HOL/ZF/Games.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ZF/Games.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -9,12 +9,13 @@
 imports MainZF
 begin
 
-constdefs
-  fixgames :: "ZF set \<Rightarrow> ZF set"
+definition fixgames :: "ZF set \<Rightarrow> ZF set" where
   "fixgames A \<equiv> { Opair l r | l r. explode l \<subseteq> A & explode r \<subseteq> A}"
-  games_lfp :: "ZF set"
+
+definition games_lfp :: "ZF set" where
   "games_lfp \<equiv> lfp fixgames"
-  games_gfp :: "ZF set"
+
+definition games_gfp :: "ZF set" where
   "games_gfp \<equiv> gfp fixgames"
 
 lemma mono_fixgames: "mono (fixgames)"
@@ -42,12 +43,13 @@
     by auto
 qed
 
-constdefs
-  left_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool"
+definition left_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool" where
   "left_option g opt \<equiv> (Elem opt (Fst g))"
-  right_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool"
+
+definition right_option :: "ZF \<Rightarrow> ZF \<Rightarrow> bool" where
   "right_option g opt \<equiv> (Elem opt (Snd g))"
-  is_option_of :: "(ZF * ZF) set"
+
+definition is_option_of :: "(ZF * ZF) set" where
   "is_option_of \<equiv> { (opt, g) | opt g. g \<in> games_gfp \<and> (left_option g opt \<or> right_option g opt) }"
 
 lemma games_lfp_subset_gfp: "games_lfp \<subseteq> games_gfp"
@@ -190,14 +192,16 @@
 typedef game = games_lfp
   by (blast intro: games_lfp_nonempty)
 
-constdefs
-  left_options :: "game \<Rightarrow> game zet"
+definition left_options :: "game \<Rightarrow> game zet" where
   "left_options g \<equiv> zimage Abs_game (zexplode (Fst (Rep_game g)))"
-  right_options :: "game \<Rightarrow> game zet"
+
+definition right_options :: "game \<Rightarrow> game zet" where
   "right_options g \<equiv> zimage Abs_game (zexplode (Snd (Rep_game g)))"
-  options :: "game \<Rightarrow> game zet"
+
+definition options :: "game \<Rightarrow> game zet" where
   "options g \<equiv> zunion (left_options g) (right_options g)"
-  Game :: "game zet \<Rightarrow> game zet \<Rightarrow> game"
+
+definition Game :: "game zet \<Rightarrow> game zet \<Rightarrow> game" where
   "Game L R \<equiv> Abs_game (Opair (zimplode (zimage Rep_game L)) (zimplode (zimage Rep_game R)))"
   
 lemma Repl_Rep_game_Abs_game: "\<forall> e. Elem e z \<longrightarrow> e \<in> games_lfp \<Longrightarrow> Repl z (Rep_game o Abs_game) = z"
@@ -295,8 +299,7 @@
   apply simp
   done
 
-constdefs
-  option_of :: "(game * game) set"
+definition option_of :: "(game * game) set" where
   "option_of \<equiv> image (\<lambda> (option, g). (Abs_game option, Abs_game g)) is_option_of"
 
 lemma option_to_is_option_of: "((option, g) \<in> option_of) = ((Rep_game option, Rep_game g) \<in> is_option_of)"
@@ -437,8 +440,7 @@
   qed
 qed
         
-constdefs
-  eq_game :: "game \<Rightarrow> game \<Rightarrow> bool"
+definition eq_game :: "game \<Rightarrow> game \<Rightarrow> bool" where
   "eq_game G H \<equiv> ge_game (G, H) \<and> ge_game (H, G)" 
 
 lemma eq_game_sym: "(eq_game G H) = (eq_game H G)"
@@ -501,9 +503,8 @@
 lemma eq_game_trans: "eq_game a b \<Longrightarrow> eq_game b c \<Longrightarrow> eq_game a c"
   by (auto simp add: eq_game_def intro: ge_game_trans)
 
-constdefs
-  zero_game :: game
-  "zero_game \<equiv> Game zempty zempty"
+definition zero_game :: game
+ where  "zero_game \<equiv> Game zempty zempty"
 
 consts 
   plus_game :: "game * game \<Rightarrow> game"
@@ -838,8 +839,7 @@
   then show ?thesis by blast
 qed
 
-constdefs 
-  eq_game_rel :: "(game * game) set"
+definition eq_game_rel :: "(game * game) set" where
   "eq_game_rel \<equiv> { (p, q) . eq_game p q }"
 
 typedef Pg = "UNIV//eq_game_rel"
--- a/src/HOL/ZF/HOLZF.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ZF/HOLZF.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -19,16 +19,19 @@
   Repl :: "ZF \<Rightarrow> (ZF \<Rightarrow> ZF) \<Rightarrow> ZF" and
   Inf :: ZF
 
-constdefs
-  Upair:: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+definition Upair :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "Upair a b == Repl (Power (Power Empty)) (% x. if x = Empty then a else b)"
-  Singleton:: "ZF \<Rightarrow> ZF"
+
+definition Singleton:: "ZF \<Rightarrow> ZF" where
   "Singleton x == Upair x x"
-  union :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+
+definition union :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "union A B == Sum (Upair A B)"
-  SucNat:: "ZF \<Rightarrow> ZF"
+
+definition SucNat:: "ZF \<Rightarrow> ZF" where
   "SucNat x == union x (Singleton x)"
-  subset :: "ZF \<Rightarrow> ZF \<Rightarrow> bool"
+
+definition subset :: "ZF \<Rightarrow> ZF \<Rightarrow> bool" where
   "subset A B == ! x. Elem x A \<longrightarrow> Elem x B"
 
 axioms
@@ -40,8 +43,7 @@
   Regularity: "A \<noteq> Empty \<longrightarrow> (? x. Elem x A & (! y. Elem y x \<longrightarrow> Not (Elem y A)))"
   Infinity: "Elem Empty Inf & (! x. Elem x Inf \<longrightarrow> Elem (SucNat x) Inf)"
 
-constdefs
-  Sep:: "ZF \<Rightarrow> (ZF \<Rightarrow> bool) \<Rightarrow> ZF"
+definition Sep :: "ZF \<Rightarrow> (ZF \<Rightarrow> bool) \<Rightarrow> ZF" where
   "Sep A p == (if (!x. Elem x A \<longrightarrow> Not (p x)) then Empty else 
   (let z = (\<some> x. Elem x A & p x) in
    let f = % x. (if p x then x else z) in Repl A f))" 
@@ -70,8 +72,7 @@
 lemma Singleton: "Elem x (Singleton y) = (x = y)"
   by (simp add: Singleton_def Upair)
 
-constdefs 
-  Opair:: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+definition Opair :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "Opair a b == Upair (Upair a a) (Upair a b)"
 
 lemma Upair_singleton: "(Upair a a = Upair c d) = (a = c & a = d)"
@@ -99,17 +100,16 @@
       done
   qed
 
-constdefs 
-  Replacement :: "ZF \<Rightarrow> (ZF \<Rightarrow> ZF option) \<Rightarrow> ZF"
+definition Replacement :: "ZF \<Rightarrow> (ZF \<Rightarrow> ZF option) \<Rightarrow> ZF" where
   "Replacement A f == Repl (Sep A (% a. f a \<noteq> None)) (the o f)"
 
 theorem Replacement: "Elem y (Replacement A f) = (? x. Elem x A & f x = Some y)"
   by (auto simp add: Replacement_def Repl Sep) 
 
-constdefs
-  Fst :: "ZF \<Rightarrow> ZF"
+definition Fst :: "ZF \<Rightarrow> ZF" where
   "Fst q == SOME x. ? y. q = Opair x y"
-  Snd :: "ZF \<Rightarrow> ZF"
+
+definition Snd :: "ZF \<Rightarrow> ZF" where
   "Snd q == SOME y. ? x. q = Opair x y"
 
 theorem Fst: "Fst (Opair x y) = x"
@@ -124,8 +124,7 @@
   apply (simp_all add: Opair)
   done
 
-constdefs 
-  isOpair :: "ZF \<Rightarrow> bool"
+definition isOpair :: "ZF \<Rightarrow> bool" where
   "isOpair q == ? x y. q = Opair x y"
 
 lemma isOpair: "isOpair (Opair x y) = True"
@@ -134,8 +133,7 @@
 lemma FstSnd: "isOpair x \<Longrightarrow> Opair (Fst x) (Snd x) = x"
   by (auto simp add: isOpair_def Fst Snd)
   
-constdefs
-  CartProd :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+definition CartProd :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "CartProd A B == Sum(Repl A (% a. Repl B (% b. Opair a b)))"
 
 lemma CartProd: "Elem x (CartProd A B) = (? a b. Elem a A & Elem b B & x = (Opair a b))"
@@ -144,8 +142,7 @@
   apply (auto simp add: Repl)
   done
 
-constdefs
-  explode :: "ZF \<Rightarrow> ZF set"
+definition explode :: "ZF \<Rightarrow> ZF set" where
   "explode z == { x. Elem x z }"
 
 lemma explode_Empty: "(explode x = {}) = (x = Empty)"
@@ -163,10 +160,10 @@
 lemma explode_Repl_eq: "explode (Repl A f) = image f (explode A)"
   by (simp add: explode_def Repl image_def)
 
-constdefs
-  Domain :: "ZF \<Rightarrow> ZF"
+definition Domain :: "ZF \<Rightarrow> ZF" where
   "Domain f == Replacement f (% p. if isOpair p then Some (Fst p) else None)"
-  Range :: "ZF \<Rightarrow> ZF"
+
+definition Range :: "ZF \<Rightarrow> ZF" where
   "Range f == Replacement f (% p. if isOpair p then Some (Snd p) else None)"
 
 theorem Domain: "Elem x (Domain f) = (? y. Elem (Opair x y) f)"
@@ -188,20 +185,16 @@
 theorem union: "Elem x (union A B) = (Elem x A | Elem x B)"
   by (auto simp add: union_def Sum Upair)
 
-constdefs
-  Field :: "ZF \<Rightarrow> ZF"
+definition Field :: "ZF \<Rightarrow> ZF" where
   "Field A == union (Domain A) (Range A)"
 
-constdefs
-  app :: "ZF \<Rightarrow> ZF => ZF"    (infixl "\<acute>" 90) --{*function application*} 
+definition app :: "ZF \<Rightarrow> ZF => ZF" (infixl "\<acute>" 90) --{*function application*} where
   "f \<acute> x == (THE y. Elem (Opair x y) f)"
 
-constdefs
-  isFun :: "ZF \<Rightarrow> bool"
+definition isFun :: "ZF \<Rightarrow> bool" where
   "isFun f == (! x y1 y2. Elem (Opair x y1) f & Elem (Opair x y2) f \<longrightarrow> y1 = y2)"
 
-constdefs
-  Lambda :: "ZF \<Rightarrow> (ZF \<Rightarrow> ZF) \<Rightarrow> ZF"
+definition Lambda :: "ZF \<Rightarrow> (ZF \<Rightarrow> ZF) \<Rightarrow> ZF" where
   "Lambda A f == Repl A (% x. Opair x (f x))"
 
 lemma Lambda_app: "Elem x A \<Longrightarrow> (Lambda A f)\<acute>x = f x"
@@ -238,10 +231,10 @@
     done
 qed
 
-constdefs 
-  PFun :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+definition PFun :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "PFun A B == Sep (Power (CartProd A B)) isFun"
-  Fun :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF"
+
+definition Fun :: "ZF \<Rightarrow> ZF \<Rightarrow> ZF" where
   "Fun A B == Sep (PFun A B) (\<lambda> f. Domain f = A)"
 
 lemma Fun_Range: "Elem f (Fun U V) \<Longrightarrow> subset (Range f) V"
@@ -343,8 +336,7 @@
 qed    
 
 
-constdefs
-  is_Elem_of :: "(ZF * ZF) set"
+definition is_Elem_of :: "(ZF * ZF) set" where
   "is_Elem_of == { (a,b) | a b. Elem a b }"
 
 lemma cond_wf_Elem:
@@ -417,8 +409,7 @@
 nat2Nat_0[intro]:  "nat2Nat 0 = Empty"
 nat2Nat_Suc[intro]:  "nat2Nat (Suc n) = SucNat (nat2Nat n)"
 
-constdefs
-  Nat2nat :: "ZF \<Rightarrow> nat"
+definition Nat2nat :: "ZF \<Rightarrow> nat" where
   "Nat2nat == inv nat2Nat"
 
 lemma Elem_nat2Nat_inf[intro]: "Elem (nat2Nat n) Inf"
@@ -426,9 +417,8 @@
   apply (simp_all add: Infinity)
   done
 
-constdefs
-  Nat :: ZF
-  "Nat == Sep Inf (\<lambda> N. ? n. nat2Nat n = N)"
+definition Nat :: ZF
+ where  "Nat == Sep Inf (\<lambda> N. ? n. nat2Nat n = N)"
 
 lemma Elem_nat2Nat_Nat[intro]: "Elem (nat2Nat n) Nat"
   by (auto simp add: Nat_def Sep)
@@ -664,8 +654,7 @@
   qed
 qed
 
-constdefs 
-  SpecialR :: "(ZF * ZF) set"
+definition SpecialR :: "(ZF * ZF) set" where
   "SpecialR \<equiv> { (x, y) . x \<noteq> Empty \<and> y = Empty}"
 
 lemma "wf SpecialR"
@@ -673,8 +662,7 @@
   apply (auto simp add: SpecialR_def)
   done
 
-constdefs
-  Ext :: "('a * 'b) set \<Rightarrow> 'b \<Rightarrow> 'a set"
+definition Ext :: "('a * 'b) set \<Rightarrow> 'b \<Rightarrow> 'a set" where
   "Ext R y \<equiv> { x . (x, y) \<in> R }" 
 
 lemma Ext_Elem: "Ext is_Elem_of = explode"
@@ -690,8 +678,7 @@
   then show "False" by (simp add: UNIV_is_not_in_ZF)
 qed
 
-constdefs 
-  implode :: "ZF set \<Rightarrow> ZF"
+definition implode :: "ZF set \<Rightarrow> ZF" where
   "implode == inv explode"
 
 lemma inj_explode: "inj explode"
@@ -700,12 +687,13 @@
 lemma implode_explode[simp]: "implode (explode x) = x"
   by (simp add: implode_def inj_explode)
 
-constdefs
-  regular :: "(ZF * ZF) set \<Rightarrow> bool"
+definition regular :: "(ZF * ZF) set \<Rightarrow> bool" where
   "regular R == ! A. A \<noteq> Empty \<longrightarrow> (? x. Elem x A & (! y. (y, x) \<in> R \<longrightarrow> Not (Elem y A)))"
-  set_like :: "(ZF * ZF) set \<Rightarrow> bool"
+
+definition set_like :: "(ZF * ZF) set \<Rightarrow> bool" where
   "set_like R == ! y. Ext R y \<in> range explode"
-  wfzf :: "(ZF * ZF) set \<Rightarrow> bool"
+
+definition wfzf :: "(ZF * ZF) set \<Rightarrow> bool" where
   "wfzf R == regular R & set_like R"
 
 lemma regular_Elem: "regular is_Elem_of"
@@ -717,8 +705,7 @@
 lemma wfzf_is_Elem_of: "wfzf is_Elem_of"
   by (auto simp add: wfzf_def regular_Elem set_like_Elem)
 
-constdefs
-  SeqSum :: "(nat \<Rightarrow> ZF) \<Rightarrow> ZF"
+definition SeqSum :: "(nat \<Rightarrow> ZF) \<Rightarrow> ZF" where
   "SeqSum f == Sum (Repl Nat (f o Nat2nat))"
 
 lemma SeqSum: "Elem x (SeqSum f) = (? n. Elem x (f n))"
@@ -727,8 +714,7 @@
   apply auto
   done
 
-constdefs
-  Ext_ZF :: "(ZF * ZF) set \<Rightarrow> ZF \<Rightarrow> ZF"
+definition Ext_ZF :: "(ZF * ZF) set \<Rightarrow> ZF \<Rightarrow> ZF" where
   "Ext_ZF R s == implode (Ext R s)"
 
 lemma Elem_implode: "A \<in> range explode \<Longrightarrow> Elem x (implode A) = (x \<in> A)"
@@ -750,8 +736,7 @@
   "Ext_ZF_n R s 0 = Ext_ZF R s"
   "Ext_ZF_n R s (Suc n) = Sum (Repl (Ext_ZF_n R s n) (Ext_ZF R))"
 
-constdefs
-  Ext_ZF_hull :: "(ZF * ZF) set \<Rightarrow> ZF \<Rightarrow> ZF"
+definition Ext_ZF_hull :: "(ZF * ZF) set \<Rightarrow> ZF \<Rightarrow> ZF" where
   "Ext_ZF_hull R s == SeqSum (Ext_ZF_n R s)"
 
 lemma Elem_Ext_ZF_hull:
--- a/src/HOL/ZF/LProd.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ZF/LProd.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/ZF/LProd.thy
-    ID:         $Id$
     Author:     Steven Obua
 
     Introduces the lprod relation.
@@ -95,10 +94,10 @@
   show ?thesis by (auto intro: lprod)
 qed
 
-constdefs
-  gprod_2_2 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
+definition gprod_2_2 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set" where
   "gprod_2_2 R \<equiv> { ((a,b), (c,d)) . (a = c \<and> (b,d) \<in> R) \<or> (b = d \<and> (a,c) \<in> R) }"
-  gprod_2_1 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
+
+definition gprod_2_1 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set" where
   "gprod_2_1 R \<equiv>  { ((a,b), (c,d)) . (a = d \<and> (b,c) \<in> R) \<or> (b = c \<and> (a,d) \<in> R) }"
 
 lemma lprod_2_3: "(a, b) \<in> R \<Longrightarrow> ([a, c], [b, c]) \<in> lprod R"
@@ -170,8 +169,7 @@
   apply (simp add: z' lprod_2_4)
   done
 
-constdefs
-   perm :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool"
+definition perm :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool" where
    "perm f A \<equiv> inj_on f A \<and> f ` A = A"
 
 lemma "((as,bs) \<in> lprod R) = 
@@ -183,6 +181,4 @@
 lemma "trans R \<Longrightarrow> (ah@a#at, bh@b#bt) \<in> lprod R \<Longrightarrow> (b, a) \<in> R \<or> a = b \<Longrightarrow> (ah@at, bh@bt) \<in> lprod R" 
 oops
 
-
-
 end
\ No newline at end of file
--- a/src/HOL/ZF/MainZF.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ZF/MainZF.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/ZF/MainZF.thy
-    ID:         $Id$
     Author:     Steven Obua
 
     Starting point for using HOLZF.
@@ -9,4 +8,5 @@
 theory MainZF
 imports Zet LProd
 begin
+
 end
\ No newline at end of file
--- a/src/HOL/ZF/Zet.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ZF/Zet.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -1,5 +1,4 @@
 (*  Title:      HOL/ZF/Zet.thy
-    ID:         $Id$
     Author:     Steven Obua
 
     Introduces a type 'a zet of ZF representable sets.
@@ -13,15 +12,13 @@
 typedef 'a zet = "{A :: 'a set | A f z. inj_on f A \<and> f ` A \<subseteq> explode z}"
   by blast
 
-constdefs
-  zin :: "'a \<Rightarrow> 'a zet \<Rightarrow> bool"
+definition zin :: "'a \<Rightarrow> 'a zet \<Rightarrow> bool" where
   "zin x A == x \<in> (Rep_zet A)"
 
 lemma zet_ext_eq: "(A = B) = (! x. zin x A = zin x B)"
   by (auto simp add: Rep_zet_inject[symmetric] zin_def)
 
-constdefs
-  zimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a zet \<Rightarrow> 'b zet"
+definition zimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a zet \<Rightarrow> 'b zet" where
   "zimage f A == Abs_zet (image f (Rep_zet A))"
 
 lemma zet_def': "zet = {A :: 'a set | A f z. inj_on f A \<and> f ` A = explode z}"
@@ -74,10 +71,10 @@
 lemma zimage_iff: "zin y (zimage f A) = (? x. zin x A & y = f x)"
   by (auto simp add: zin_def Rep_zimage_eq)
 
-constdefs
-  zimplode :: "ZF zet \<Rightarrow> ZF"
+definition zimplode :: "ZF zet \<Rightarrow> ZF" where
   "zimplode A == implode (Rep_zet A)"
-  zexplode :: "ZF \<Rightarrow> ZF zet"
+
+definition zexplode :: "ZF \<Rightarrow> ZF zet" where
   "zexplode z == Abs_zet (explode z)"
 
 lemma Rep_zet_eq_explode: "? z. Rep_zet A = explode z"
@@ -114,10 +111,10 @@
   apply (simp_all add: comp_image_eq zet_image_mem Rep_zet)
   done
     
-constdefs
-  zunion :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> 'a zet"
+definition zunion :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> 'a zet" where
   "zunion a b \<equiv> Abs_zet ((Rep_zet a) \<union> (Rep_zet b))"
-  zsubset :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> bool"
+
+definition zsubset :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> bool" where
   "zsubset a b \<equiv> ! x. zin x a \<longrightarrow> zin x b"
 
 lemma explode_union: "explode (union a b) = (explode a) \<union> (explode b)"
@@ -181,8 +178,7 @@
   apply (simp_all add: zin_def Rep_zet range_explode_eq_zet)
   done
 
-constdefs
-  zempty :: "'a zet"
+definition zempty :: "'a zet" where
   "zempty \<equiv> Abs_zet {}"
 
 lemma zempty[simp]: "\<not> (zin x zempty)"
--- a/src/HOL/ex/Refute_Examples.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ex/Refute_Examples.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -249,12 +249,13 @@
 
 text {* "The transitive closure 'T' of an arbitrary relation 'P' is non-empty." *}
 
-constdefs
-  "trans" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
+definition "trans" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
   "trans P == (ALL x y z. P x y \<longrightarrow> P y z \<longrightarrow> P x z)"
-  "subset" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
+
+definition "subset" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
   "subset P Q == (ALL x y. P x y \<longrightarrow> Q x y)"
-  "trans_closure" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
+
+definition "trans_closure" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
   "trans_closure P Q == (subset Q P) & (trans P) & (ALL R. subset Q R \<longrightarrow> trans R \<longrightarrow> subset P R)"
 
 lemma "trans_closure T P \<longrightarrow> (\<exists>x y. T x y)"
--- a/src/HOL/ex/Sudoku.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/HOL/ex/Sudoku.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -23,8 +23,7 @@
 
 datatype digit = A ("1") | B ("2") | C ("3") | D ("4") | E ("5") | F ("6") | G ("7") | H ("8") | I ("9")
 
-constdefs
-  valid :: "digit => digit => digit => digit => digit => digit => digit => digit => digit => bool"
+definition valid :: "digit => digit => digit => digit => digit => digit => digit => digit => digit => bool" where
 
   "valid x1 x2 x3 x4 x5 x6 x7 x8 x9 ==
     (x1 \<noteq> x2) \<and> (x1 \<noteq> x3) \<and> (x1 \<noteq> x4) \<and> (x1 \<noteq> x5) \<and> (x1 \<noteq> x6) \<and> (x1 \<noteq> x7) \<and> (x1 \<noteq> x8) \<and> (x1 \<noteq> x9)
@@ -36,8 +35,7 @@
     \<and> (x7 \<noteq> x8) \<and> (x7 \<noteq> x9)
     \<and> (x8 \<noteq> x9)"
 
-constdefs
-  sudoku :: "digit => digit => digit => digit => digit => digit => digit => digit => digit =>
+definition sudoku :: "digit => digit => digit => digit => digit => digit => digit => digit => digit =>
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
@@ -45,7 +43,7 @@
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
     digit => digit => digit => digit => digit => digit => digit => digit => digit =>
-    digit => digit => digit => digit => digit => digit => digit => digit => digit => bool"
+    digit => digit => digit => digit => digit => digit => digit => digit => digit => bool" where
 
   "sudoku x11 x12 x13 x14 x15 x16 x17 x18 x19
           x21 x22 x23 x24 x25 x26 x27 x28 x29
--- a/src/Sequents/LK0.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/Sequents/LK0.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -122,8 +122,7 @@
   The: "[| $H |- $E, P(a), $F;  !!x.$H, P(x) |- $E, x=a, $F |] ==>
           $H |- $E, P(THE x. P(x)), $F"
 
-constdefs
-  If :: "[o, 'a, 'a] => 'a"   ("(if (_)/ then (_)/ else (_))" 10)
+definition If :: "[o, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10) where 
    "If(P,x,y) == THE z::'a. (P --> z=x) & (~P --> z=y)"
 
 
--- a/src/ZF/Sum.thy	Mon Mar 01 12:30:55 2010 +0100
+++ b/src/ZF/Sum.thy	Mon Mar 01 13:42:31 2010 +0100
@@ -11,21 +11,20 @@
 
 global
 
-constdefs
-  sum     :: "[i,i]=>i"                     (infixr "+" 65)
+definition sum :: "[i,i]=>i" (infixr "+" 65) where
      "A+B == {0}*A Un {1}*B"
 
-  Inl     :: "i=>i"
+definition Inl :: "i=>i" where
      "Inl(a) == <0,a>"
 
-  Inr     :: "i=>i"
+definition Inr :: "i=>i" where
      "Inr(b) == <1,b>"
 
-  "case"  :: "[i=>i, i=>i, i]=>i"
+definition "case" :: "[i=>i, i=>i, i]=>i" where
      "case(c,d) == (%<y,z>. cond(y, d(z), c(z)))"
 
   (*operator for selecting out the various summands*)
-  Part    :: "[i,i=>i] => i"
+definition Part :: "[i,i=>i] => i" where
      "Part(A,h) == {x: A. EX z. x = h(z)}"
 
 local