Merged again.
authorballarin
Thu, 01 Oct 2009 23:03:59 +0200
changeset 32848 484863ae9b98
parent 32847 88b58880d52c (current diff)
parent 32839 a007a7cd8c2f (diff)
child 32849 c58fdaef7a05
child 32980 d556a0e04e33
Merged again.
--- a/src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML	Thu Oct 01 20:52:18 2009 +0200
+++ b/src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML	Thu Oct 01 23:03:59 2009 +0200
@@ -1,8 +1,8 @@
-(* Title:      sum_of_squares.ML
-   Authors:    Amine Chaieb, University of Cambridge
-               Philipp Meyer, TU Muenchen
+(* Title:      HOL/Library/Sum_Of_Squares/sum_of_squares.ML
+   Author:     Amine Chaieb, University of Cambridge
+   Author:     Philipp Meyer, TU Muenchen
 
-A tactic for proving nonlinear inequalities
+A tactic for proving nonlinear inequalities.
 *)
 
 signature SOS =
@@ -16,11 +16,11 @@
     proof_method -> Proof.context -> int -> tactic
 
   val debugging : bool Unsynchronized.ref;
-  
+
   exception Failure of string;
 end
 
-structure Sos : SOS = 
+structure Sos : SOS =
 struct
 
 val rat_0 = Rat.zero;
@@ -33,19 +33,19 @@
 
 val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int;
 val numerator_rat = Rat.quotient_of_rat #> fst #> Rat.rat_of_int;
-fun int_of_rat a = 
+fun int_of_rat a =
     case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int";
 fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y));
 
-fun rat_pow r i = 
- let fun pow r i = 
-   if i = 0 then rat_1 else 
+fun rat_pow r i =
+ let fun pow r i =
+   if i = 0 then rat_1 else
    let val d = pow r (i div 2)
    in d */ d */ (if i mod 2 = 0 then rat_1 else r)
    end
  in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end;
 
-fun round_rat r = 
+fun round_rat r =
  let val (a,b) = Rat.quotient_of_rat (Rat.abs r)
      val d = a div b
      val s = if r </ rat_0 then (Rat.neg o Rat.rat_of_int) else Rat.rat_of_int
@@ -74,11 +74,11 @@
 fun normalize y =
   if abs_rat y </ (rat_1 // rat_10) then normalize (rat_10 */ y) - 1
   else if abs_rat y >=/ rat_1 then normalize (y // rat_10) + 1
-  else 0 
+  else 0
  in
 fun decimalize d x =
   if x =/ rat_0 then "0.0" else
-  let 
+  let
    val y = Rat.abs x
    val e = normalize y
    val z = pow10(~ e) */ y +/ rat_1
@@ -113,7 +113,7 @@
     ([],[]) => b
   | (h1::t1,h2::t2) => f h1 h2 (fold_rev2 f t1 t2 b)
   | _ => error "fold_rev2";
- 
+
 (* Vectors. Conventionally indexed 1..n.                                     *)
 
 fun vector_0 n = (n,FuncUtil.Intfunc.empty):vector;
@@ -127,7 +127,7 @@
 val vector_1 = vector_const rat_1;
 
 fun vector_cmul c (v:vector) =
- let val n = dim v 
+ let val n = dim v
  in if c =/ rat_0 then vector_0 n
     else (n,FuncUtil.Intfunc.map (fn x => c */ x) (snd v))
  end;
@@ -135,24 +135,24 @@
 fun vector_neg (v:vector) = (fst v,FuncUtil.Intfunc.map Rat.neg (snd v)) :vector;
 
 fun vector_add (v1:vector) (v2:vector) =
- let val m = dim v1  
-     val n = dim v2 
+ let val m = dim v1
+     val n = dim v2
  in if m <> n then error "vector_add: incompatible dimensions"
-    else (n,FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector 
+    else (n,FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector
  end;
 
 fun vector_sub v1 v2 = vector_add v1 (vector_neg v2);
 
 fun vector_dot (v1:vector) (v2:vector) =
- let val m = dim v1 
-     val n = dim v2 
- in if m <> n then error "vector_dot: incompatible dimensions" 
-    else FuncUtil.Intfunc.fold (fn (i,x) => fn a => x +/ a) 
+ let val m = dim v1
+     val n = dim v2
+ in if m <> n then error "vector_dot: incompatible dimensions"
+    else FuncUtil.Intfunc.fold (fn (i,x) => fn a => x +/ a)
         (FuncUtil.Intfunc.combine (curry op */) (fn x => x =/ rat_0) (snd v1) (snd v2)) rat_0
  end;
 
 fun vector_of_list l =
- let val n = length l 
+ let val n = length l
  in (n,fold_rev2 (curry FuncUtil.Intfunc.update) (1 upto n) l FuncUtil.Intfunc.empty) :vector
  end;
 
@@ -170,18 +170,18 @@
 val matrix_1 = matrix_const rat_1;
 
 fun matrix_cmul c (m:matrix) =
- let val (i,j) = dimensions m 
+ let val (i,j) = dimensions m
  in if c =/ rat_0 then matrix_0 (i,j)
     else ((i,j),FuncUtil.Intpairfunc.map (fn x => c */ x) (snd m))
  end;
 
-fun matrix_neg (m:matrix) = 
+fun matrix_neg (m:matrix) =
   (dimensions m, FuncUtil.Intpairfunc.map Rat.neg (snd m)) :matrix;
 
 fun matrix_add (m1:matrix) (m2:matrix) =
- let val d1 = dimensions m1 
-     val d2 = dimensions m2 
- in if d1 <> d2 
+ let val d1 = dimensions m1
+     val d2 = dimensions m2
+ in if d1 <> d2
      then error "matrix_add: incompatible dimensions"
     else (d1,FuncUtil.Intpairfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd m1) (snd m2)) :matrix
  end;;
@@ -189,33 +189,33 @@
 fun matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);
 
 fun row k (m:matrix) =
- let val (i,j) = dimensions m 
+ let val (i,j) = dimensions m
  in (j,
    FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then FuncUtil.Intfunc.update (j,c) a else a) (snd m) FuncUtil.Intfunc.empty ) : vector
  end;
 
 fun column k (m:matrix) =
-  let val (i,j) = dimensions m 
+  let val (i,j) = dimensions m
   in (i,
    FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if j = k then FuncUtil.Intfunc.update (i,c) a else a) (snd m)  FuncUtil.Intfunc.empty)
    : vector
  end;
 
 fun transp (m:matrix) =
-  let val (i,j) = dimensions m 
+  let val (i,j) = dimensions m
   in
   ((j,i),FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => FuncUtil.Intpairfunc.update ((j,i), c) a) (snd m) FuncUtil.Intpairfunc.empty) :matrix
  end;
 
 fun diagonal (v:vector) =
- let val n = dim v 
+ let val n = dim v
  in ((n,n),FuncUtil.Intfunc.fold (fn (i, c) => fn a => FuncUtil.Intpairfunc.update ((i,i), c) a) (snd v) FuncUtil.Intpairfunc.empty) : matrix
  end;
 
 fun matrix_of_list l =
- let val m = length l 
+ let val m = length l
  in if m = 0 then matrix_0 (0,0) else
-   let val n = length (hd l) 
+   let val n = length (hd l)
    in ((m,n),itern 1 l (fn v => fn i => itern 1 v (fn c => fn j => FuncUtil.Intpairfunc.update ((i,j), c))) FuncUtil.Intpairfunc.empty)
    end
  end;
@@ -240,20 +240,20 @@
   FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => FuncUtil.Ctermfunc.tryapplyd m2 x 0 >= k andalso a) m1 true;;
 
 fun monomial_div m1 m2 =
- let val m = FuncUtil.Ctermfunc.combine (curry op +) 
-   (fn x => x = 0) m1 (FuncUtil.Ctermfunc.map (fn x => ~ x) m2) 
+ let val m = FuncUtil.Ctermfunc.combine (curry op +)
+   (fn x => x = 0) m1 (FuncUtil.Ctermfunc.map (fn x => ~ x) m2)
  in if FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => k >= 0 andalso a) m true then m
   else error "monomial_div: non-divisible"
  end;
 
-fun monomial_degree x m = 
+fun monomial_degree x m =
   FuncUtil.Ctermfunc.tryapplyd m x 0;;
 
 fun monomial_lcm m1 m2 =
   fold_rev (fn x => FuncUtil.Ctermfunc.update (x, max (monomial_degree x m1) (monomial_degree x m2)))
           (gen_union (is_equal o  FuncUtil.cterm_ord) (FuncUtil.Ctermfunc.dom m1, FuncUtil.Ctermfunc.dom m2)) (FuncUtil.Ctermfunc.empty);
 
-fun monomial_multidegree m = 
+fun monomial_multidegree m =
  FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => k + a) m 0;;
 
 fun monomial_variables m = FuncUtil.Ctermfunc.dom m;;
@@ -265,7 +265,7 @@
 
 val poly_0 = FuncUtil.Monomialfunc.empty;
 
-fun poly_isconst p = 
+fun poly_isconst p =
   FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => FuncUtil.Ctermfunc.is_empty m andalso a) p true;
 
 fun poly_var x = FuncUtil.Monomialfunc.onefunc (monomial_var x,rat_1);
@@ -286,7 +286,7 @@
 
 fun poly_cmmul (c,m) p =
  if c =/ rat_0 then poly_0
- else if FuncUtil.Ctermfunc.is_empty m 
+ else if FuncUtil.Ctermfunc.is_empty m
       then FuncUtil.Monomialfunc.map (fn d => c */ d) p
       else FuncUtil.Monomialfunc.fold (fn (m', d) => fn a => (FuncUtil.Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0;
 
@@ -294,9 +294,9 @@
   FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0;
 
 fun poly_div p1 p2 =
- if not(poly_isconst p2) 
+ if not(poly_isconst p2)
  then error "poly_div: non-constant" else
- let val c = eval FuncUtil.Ctermfunc.empty p2 
+ let val c = eval FuncUtil.Ctermfunc.empty p2
  in if c =/ rat_0 then error "poly_div: division by zero"
     else poly_cmul (Rat.inv c) p1
  end;
@@ -310,11 +310,11 @@
       if k mod 2 = 1 then poly_mul p q else q end;
 
 fun poly_exp p1 p2 =
-  if not(poly_isconst p2) 
-  then error "poly_exp: not a constant" 
+  if not(poly_isconst p2)
+  then error "poly_exp: not a constant"
   else poly_pow p1 (int_of_rat (eval FuncUtil.Ctermfunc.empty p2));
 
-fun degree x p = 
+fun degree x p =
  FuncUtil.Monomialfunc.fold (fn (m,c) => fn a => max (monomial_degree x m) a) p 0;
 
 fun multidegree p =
@@ -329,14 +329,14 @@
 
 local
  fun ord (l1,l2) = case (l1,l2) of
-  (_,[]) => LESS 
+  (_,[]) => LESS
  | ([],_) => GREATER
- | (h1::t1,h2::t2) => 
-   (case humanorder_varpow (h1, h2) of 
+ | (h1::t1,h2::t2) =>
+   (case humanorder_varpow (h1, h2) of
      LESS => LESS
    | EQUAL => ord (t1,t2)
    | GREATER => GREATER)
-in fun humanorder_monomial m1 m2 = 
+in fun humanorder_monomial m1 m2 =
  ord (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m1),
   sort humanorder_varpow (FuncUtil.Ctermfunc.dest m2))
 end;
@@ -344,30 +344,30 @@
 (* Conversions to strings.                                                   *)
 
 fun string_of_vector min_size max_size (v:vector) =
- let val n_raw = dim v 
+ let val n_raw = dim v
  in if n_raw = 0 then "[]" else
-  let 
-   val n = max min_size (min n_raw max_size) 
-   val xs = map (Rat.string_of_rat o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
+  let
+   val n = max min_size (min n_raw max_size)
+   val xs = map (Rat.string_of_rat o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n)
   in "[" ^ space_implode ", " xs ^
   (if n_raw > max_size then ", ...]" else "]")
   end
  end;
 
 fun string_of_matrix max_size (m:matrix) =
- let 
+ let
   val (i_raw,j_raw) = dimensions m
-  val i = min max_size i_raw 
+  val i = min max_size i_raw
   val j = min max_size j_raw
-  val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) 
+  val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i)
  in "["^ space_implode ";\n " rstr ^
   (if j > max_size then "\n ...]" else "]")
  end;
 
-fun string_of_term t = 
+fun string_of_term t =
  case t of
    a$b => "("^(string_of_term a)^" "^(string_of_term b)^")"
- | Abs x => 
+ | Abs x =>
     let val (xn, b) = Term.dest_abs x
     in "(\\"^xn^"."^(string_of_term b)^")"
     end
@@ -379,13 +379,13 @@
 val string_of_cterm = string_of_term o term_of;
 
 fun string_of_varpow x k =
-  if k = 1 then string_of_cterm x 
+  if k = 1 then string_of_cterm x
   else string_of_cterm x^"^"^string_of_int k;
 
 fun string_of_monomial m =
  if FuncUtil.Ctermfunc.is_empty m then "1" else
  let val vps = fold_rev (fn (x,k) => fn a => string_of_varpow x k :: a)
-  (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m)) [] 
+  (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m)) []
  in space_implode "*" vps
  end;
 
@@ -396,14 +396,14 @@
 
 fun string_of_poly p =
  if FuncUtil.Monomialfunc.is_empty p then "<<0>>" else
- let 
+ let
   val cms = sort (fn ((m1,_),(m2,_)) => humanorder_monomial m1  m2) (FuncUtil.Monomialfunc.dest p)
   val s = fold (fn (m,c) => fn a =>
              if c </ rat_0 then a ^ " - " ^ string_of_cmonomial(Rat.neg c,m)
              else a ^ " + " ^ string_of_cmonomial(c,m))
           cms ""
   val s1 = String.substring (s, 0, 3)
-  val s2 = String.substring (s, 3, String.size s - 3) 
+  val s2 = String.substring (s, 3, String.size s - 3)
  in "<<" ^(if s1 = " + " then s2 else "-"^s2)^">>"
  end;
 
@@ -422,36 +422,36 @@
  fun is_comb t = case t of _$_ => true | _ => false
  fun poly_of_term tm =
   if tm aconvc zero_tm then poly_0
-  else if RealArith.is_ratconst tm 
+  else if RealArith.is_ratconst tm
        then poly_const(RealArith.dest_ratconst tm)
-  else 
+  else
   (let val (lop,r) = Thm.dest_comb tm
    in if lop aconvc neg_tm then poly_neg(poly_of_term r)
       else if lop aconvc inv_tm then
-       let val p = poly_of_term r 
-       in if poly_isconst p 
+       let val p = poly_of_term r
+       in if poly_isconst p
           then poly_const(Rat.inv (eval FuncUtil.Ctermfunc.empty p))
           else error "poly_of_term: inverse of non-constant polyomial"
        end
    else (let val (opr,l) = Thm.dest_comb lop
-         in 
-          if opr aconvc pow_tm andalso is_numeral r 
+         in
+          if opr aconvc pow_tm andalso is_numeral r
           then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r)
-          else if opr aconvc add_tm 
+          else if opr aconvc add_tm
            then poly_add (poly_of_term l) (poly_of_term r)
-          else if opr aconvc sub_tm 
+          else if opr aconvc sub_tm
            then poly_sub (poly_of_term l) (poly_of_term r)
-          else if opr aconvc mul_tm 
+          else if opr aconvc mul_tm
            then poly_mul (poly_of_term l) (poly_of_term r)
-          else if opr aconvc div_tm 
-           then let 
-                  val p = poly_of_term l 
-                  val q = poly_of_term r 
+          else if opr aconvc div_tm
+           then let
+                  val p = poly_of_term l
+                  val q = poly_of_term r
                 in if poly_isconst q then poly_cmul (Rat.inv (eval FuncUtil.Ctermfunc.empty q)) p
                    else error "poly_of_term: division by non-constant polynomial"
                 end
           else poly_var tm
- 
+
          end
          handle CTERM ("dest_comb",_) => poly_var tm)
    end
@@ -465,21 +465,21 @@
 (* String of vector (just a list of space-separated numbers).                *)
 
 fun sdpa_of_vector (v:vector) =
- let 
+ let
   val n = dim v
-  val strs = map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) 
+  val strs = map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n)
  in space_implode " " strs ^ "\n"
  end;
 
-fun triple_int_ord ((a,b,c),(a',b',c')) = 
- prod_ord int_ord (prod_ord int_ord int_ord) 
+fun triple_int_ord ((a,b,c),(a',b',c')) =
+ prod_ord int_ord (prod_ord int_ord int_ord)
     ((a,(b,c)),(a',(b',c')));
 structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord);
 
 (* String for block diagonal matrix numbered k.                              *)
 
 fun sdpa_of_blockdiagonal k m =
- let 
+ let
   val pfx = string_of_int k ^" "
   val ents =
     Inttriplefunc.fold (fn ((b,i,j), c) => fn a => if i > j then a else ((b,i,j),c)::a) m []
@@ -492,10 +492,10 @@
 (* String for a matrix numbered k, in SDPA sparse format.                    *)
 
 fun sdpa_of_matrix k (m:matrix) =
- let 
+ let
   val pfx = string_of_int k ^ " 1 "
-  val ms = FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn  a => if i > j then a else ((i,j),c)::a) (snd m) [] 
-  val mss = sort ((prod_ord int_ord int_ord) o pairself fst) ms 
+  val ms = FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn  a => if i > j then a else ((i,j),c)::a) (snd m) []
+  val mss = sort ((prod_ord int_ord int_ord) o pairself fst) ms
  in fold_rev (fn ((i,j),c) => fn a =>
      pfx ^ string_of_int i ^ " " ^ string_of_int j ^
      " " ^ decimalize 20 c ^ "\n" ^ a) mss ""
@@ -509,9 +509,9 @@
 (* ------------------------------------------------------------------------- *)
 
 fun sdpa_of_problem obj mats =
- let 
+ let
   val m = length mats - 1
-  val (n,_) = dimensions (hd mats) 
+  val (n,_) = dimensions (hd mats)
  in
   string_of_int m ^ "\n" ^
   "1\n" ^
@@ -525,10 +525,10 @@
   else if String.sub(str,pos) = chr then pos
   else index_char str chr (pos + 1);
 fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b);
-fun rat_of_string s = 
+fun rat_of_string s =
  let val n = index_char s #"/" 0 in
   if n = ~1 then s |> IntInf.fromString |> valOf |> Rat.rat_of_int
-  else 
+  else
    let val SOME numer = IntInf.fromString(String.substring(s,0,n))
        val SOME den = IntInf.fromString (String.substring(s,n+1,String.size s - n - 1))
    in rat_of_quotient(numer, den)
@@ -551,7 +551,7 @@
     decimalint -- Scan.option (Scan.$$ "." |-- decimalfrac)
     >> (fn (h,NONE) => h | (h,SOME x) => h +/ x)
  fun signed prs =
-       $$ "-" |-- prs >> Rat.neg 
+       $$ "-" |-- prs >> Rat.neg
     || $$ "+" |-- prs
     || prs;
 
@@ -563,8 +563,8 @@
     >> (fn (h, x) => h */ pow10 (int_of_rat x));
 
  fun mkparser p s =
-  let val (x,rst) = p (explode s) 
-  in if null rst then x 
+  let val (x,rst) = p (explode s)
+  in if null rst then x
      else error "mkparser: unparsed input"
   end;;
 
@@ -590,23 +590,23 @@
   fun common_denominator fld amat acc =
       fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
   fun maximal_element fld amat acc =
-    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
+    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc
 fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
                      in Real.fromLargeInt a / Real.fromLargeInt b end;
 in
 
 fun pi_scale_then solver (obj:vector)  mats =
- let 
+ let
   val cd1 = fold_rev (common_denominator FuncUtil.Intpairfunc.fold) mats (rat_1)
-  val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj)  (rat_1) 
+  val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj)  (rat_1)
   val mats' = map (FuncUtil.Intpairfunc.map (fn x => cd1 */ x)) mats
   val obj' = vector_cmul cd2 obj
   val max1 = fold_rev (maximal_element FuncUtil.Intpairfunc.fold) mats' (rat_0)
-  val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) 
+  val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0)
   val scal1 = pow2 (20 - trunc(Math.ln (float_of_rat max1) / Math.ln 2.0))
-  val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
+  val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0))
   val mats'' = map (FuncUtil.Intpairfunc.map (fn x => x */ scal1)) mats'
-  val obj'' = vector_cmul scal2 obj' 
+  val obj'' = vector_cmul scal2 obj'
  in solver obj'' mats''
   end
 end;
@@ -622,24 +622,24 @@
   fun common_denominator fld amat acc =
       fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc
   fun maximal_element fld amat acc =
-    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc 
+    fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc
 fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x
                      in Real.fromLargeInt a / Real.fromLargeInt b end;
 fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0)
 in
 
 fun tri_scale_then solver (obj:vector)  mats =
- let 
+ let
   val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1)
-  val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj)  (rat_1) 
+  val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj)  (rat_1)
   val mats' = map (Inttriplefunc.map (fn x => cd1 */ x)) mats
   val obj' = vector_cmul cd2 obj
   val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0)
-  val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) 
+  val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0)
   val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0))
-  val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) 
+  val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0))
   val mats'' = map (Inttriplefunc.map (fn x => x */ scal1)) mats'
-  val obj'' = vector_cmul scal2 obj' 
+  val obj'' = vector_cmul scal2 obj'
  in solver obj'' mats''
   end
 end;
@@ -647,10 +647,10 @@
 (* Round a vector to "nice" rationals.                                       *)
 
 fun nice_rational n x = round_rat (n */ x) // n;;
-fun nice_vector n ((d,v) : vector) = 
- (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => 
-   let val y = nice_rational n c 
-   in if c =/ rat_0 then a 
+fun nice_vector n ((d,v) : vector) =
+ (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a =>
+   let val y = nice_rational n c
+   in if c =/ rat_0 then a
       else FuncUtil.Intfunc.update (i,y) a end) v FuncUtil.Intfunc.empty):vector
 
 fun dest_ord f x = is_equal (f x);
@@ -663,7 +663,7 @@
 fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
 
 fun tri_equation_eval assig eq =
- let fun value v = Inttriplefunc.apply assig v 
+ let fun value v = Inttriplefunc.apply assig v
  in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
  end;
 
@@ -676,16 +676,16 @@
    [] => error "extract_first"
  | h::t => if p h then (h,t) else
           let val (k,s) = extract_first p t in (k,h::s) end
-fun eliminate vars dun eqs = case vars of 
+fun eliminate vars dun eqs = case vars of
   [] => if forall Inttriplefunc.is_empty eqs then dun
         else raise Unsolvable
  | v::vs =>
-  ((let 
-    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
+  ((let
+    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs
     val a = Inttriplefunc.apply eq v
     val eq' = tri_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.delete_safe v eq)
     fun elim e =
-     let val b = Inttriplefunc.tryapplyd e v rat_0 
+     let val b = Inttriplefunc.tryapplyd e v rat_0
      in if b =/ rat_0 then e else
         tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
      end
@@ -694,7 +694,7 @@
   handle Failure _ => eliminate vs dun eqs)
 in
 fun tri_eliminate_equations one vars eqs =
- let 
+ let
   val assig = eliminate vars Inttriplefunc.empty eqs
   val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
   in (distinct (dest_ord triple_int_ord) vs, assig)
@@ -704,50 +704,50 @@
 (* Eliminate all variables, in an essentially arbitrary order.               *)
 
 fun tri_eliminate_all_equations one =
- let 
+ let
   fun choose_variable eq =
-   let val (v,_) = Inttriplefunc.choose eq 
+   let val (v,_) = Inttriplefunc.choose eq
    in if is_equal (triple_int_ord(v,one)) then
-      let val eq' = Inttriplefunc.delete_safe v eq 
-      in if Inttriplefunc.is_empty eq' then error "choose_variable" 
+      let val eq' = Inttriplefunc.delete_safe v eq
+      in if Inttriplefunc.is_empty eq' then error "choose_variable"
          else fst (Inttriplefunc.choose eq')
       end
-    else v 
+    else v
    end
-  fun eliminate dun eqs = case eqs of 
+  fun eliminate dun eqs = case eqs of
     [] => dun
   | eq::oeqs =>
     if Inttriplefunc.is_empty eq then eliminate dun oeqs else
     let val v = choose_variable eq
         val a = Inttriplefunc.apply eq v
-        val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) 
+        val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a)
                    (Inttriplefunc.delete_safe v eq)
         fun elim e =
-         let val b = Inttriplefunc.tryapplyd e v rat_0 
-         in if b =/ rat_0 then e 
+         let val b = Inttriplefunc.tryapplyd e v rat_0
+         in if b =/ rat_0 then e
             else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq)
          end
-    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) 
-                 (map elim oeqs) 
+    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun))
+                 (map elim oeqs)
     end
 in fn eqs =>
- let 
+ let
   val assig = eliminate Inttriplefunc.empty eqs
   val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
  in (distinct (dest_ord triple_int_ord) vs,assig)
  end
 end;
- 
+
 (* Solve equations by assigning arbitrary numbers.                           *)
 
 fun tri_solve_equations one eqs =
- let 
+ let
   val (vars,assigs) = tri_eliminate_all_equations one eqs
-  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
+  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars
             (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
   val ass =
-    Inttriplefunc.combine (curry op +/) (K false) 
-    (Inttriplefunc.map (tri_equation_eval vfn) assigs) vfn 
+    Inttriplefunc.combine (curry op +/) (K false)
+    (Inttriplefunc.map (tri_equation_eval vfn) assigs) vfn
  in if forall (fn e => tri_equation_eval ass e =/ rat_0) eqs
     then Inttriplefunc.delete_safe one ass else raise Sanity
  end;
@@ -758,8 +758,8 @@
  FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a =>
   FuncUtil.Monomialfunc.fold (fn (m2,e) => fn b =>
    let val m =  monomial_mul m1 m2
-       val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty 
-   in FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b 
+       val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty
+   in FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b
    end) q a) p acc ;
 
 (* Usual operations on equation-parametrized poly.                           *)
@@ -781,7 +781,7 @@
 fun pi_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2;
 
 fun pi_equation_eval assig eq =
- let fun value v = Inttriplefunc.apply assig v 
+ let fun value v = Inttriplefunc.apply assig v
  in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0
  end;
 
@@ -790,20 +790,20 @@
 (* "one" that's used for a constant term.                                    *)
 
 local
-fun extract_first p l = case l of 
+fun extract_first p l = case l of
    [] => error "extract_first"
  | h::t => if p h then (h,t) else
           let val (k,s) = extract_first p t in (k,h::s) end
-fun eliminate vars dun eqs = case vars of 
+fun eliminate vars dun eqs = case vars of
   [] => if forall Inttriplefunc.is_empty eqs then dun
         else raise Unsolvable
  | v::vs =>
-   let 
-    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs 
+   let
+    val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs
     val a = Inttriplefunc.apply eq v
     val eq' = pi_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.delete_safe v eq)
     fun elim e =
-     let val b = Inttriplefunc.tryapplyd e v rat_0 
+     let val b = Inttriplefunc.tryapplyd e v rat_0
      in if b =/ rat_0 then e else
         pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
      end
@@ -812,7 +812,7 @@
   handle Failure _ => eliminate vs dun eqs
 in
 fun pi_eliminate_equations one vars eqs =
- let 
+ let
   val assig = eliminate vars Inttriplefunc.empty eqs
   val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
   in (distinct (dest_ord triple_int_ord) vs, assig)
@@ -822,50 +822,50 @@
 (* Eliminate all variables, in an essentially arbitrary order.               *)
 
 fun pi_eliminate_all_equations one =
- let 
+ let
   fun choose_variable eq =
-   let val (v,_) = Inttriplefunc.choose eq 
+   let val (v,_) = Inttriplefunc.choose eq
    in if is_equal (triple_int_ord(v,one)) then
-      let val eq' = Inttriplefunc.delete_safe v eq 
-      in if Inttriplefunc.is_empty eq' then error "choose_variable" 
+      let val eq' = Inttriplefunc.delete_safe v eq
+      in if Inttriplefunc.is_empty eq' then error "choose_variable"
          else fst (Inttriplefunc.choose eq')
       end
-    else v 
+    else v
    end
-  fun eliminate dun eqs = case eqs of 
+  fun eliminate dun eqs = case eqs of
     [] => dun
   | eq::oeqs =>
     if Inttriplefunc.is_empty eq then eliminate dun oeqs else
     let val v = choose_variable eq
         val a = Inttriplefunc.apply eq v
-        val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) 
+        val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a)
                    (Inttriplefunc.delete_safe v eq)
         fun elim e =
-         let val b = Inttriplefunc.tryapplyd e v rat_0 
-         in if b =/ rat_0 then e 
+         let val b = Inttriplefunc.tryapplyd e v rat_0
+         in if b =/ rat_0 then e
             else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq)
          end
-    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) 
-                 (map elim oeqs) 
+    in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun))
+                 (map elim oeqs)
     end
 in fn eqs =>
- let 
+ let
   val assig = eliminate Inttriplefunc.empty eqs
   val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig []
  in (distinct (dest_ord triple_int_ord) vs,assig)
  end
 end;
- 
+
 (* Solve equations by assigning arbitrary numbers.                           *)
 
 fun pi_solve_equations one eqs =
- let 
+ let
   val (vars,assigs) = pi_eliminate_all_equations one eqs
-  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars 
+  val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars
             (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1))
   val ass =
-    Inttriplefunc.combine (curry op +/) (K false) 
-    (Inttriplefunc.map (pi_equation_eval vfn) assigs) vfn 
+    Inttriplefunc.combine (curry op +/) (K false)
+    (Inttriplefunc.map (pi_equation_eval vfn) assigs) vfn
  in if forall (fn e => pi_equation_eval ass e =/ rat_0) eqs
     then Inttriplefunc.delete_safe one ass else raise Sanity
  end;
@@ -876,8 +876,8 @@
  FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a =>
   FuncUtil.Monomialfunc.fold (fn (m2,e) => fn b =>
    let val m =  monomial_mul m1 m2
-       val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty 
-   in FuncUtil.Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b 
+       val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty
+   in FuncUtil.Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b
    end) q a) p acc ;
 
 (* Usual operations on equation-parametrized poly.                           *)
@@ -906,19 +906,19 @@
 
 local
 fun diagonalize n i m =
- if FuncUtil.Intpairfunc.is_empty (snd m) then [] 
+ if FuncUtil.Intpairfunc.is_empty (snd m) then []
  else
-  let val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0 
+  let val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0
   in if a11 </ rat_0 then raise Failure "diagonalize: not PSD"
     else if a11 =/ rat_0 then
           if FuncUtil.Intfunc.is_empty (snd (row i m)) then diagonalize n (i + 1) m
           else raise Failure "diagonalize: not PSD ___ "
     else
-     let 
+     let
       val v = row i m
-      val v' = (fst v, FuncUtil.Intfunc.fold (fn (i, c) => fn a => 
-       let val y = c // a11 
-       in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a 
+      val v' = (fst v, FuncUtil.Intfunc.fold (fn (i, c) => fn a =>
+       let val y = c // a11
+       in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a
        end)  (snd v) FuncUtil.Intfunc.empty)
       fun upt0 x y a = if y = rat_0 then a else FuncUtil.Intpairfunc.update (x,y) a
       val m' =
@@ -927,15 +927,15 @@
           iter (i+1,n) (fn k =>
               (upt0 (j,k) (FuncUtil.Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ FuncUtil.Intfunc.tryapplyd (snd v) j rat_0 */ FuncUtil.Intfunc.tryapplyd (snd v') k rat_0))))
           FuncUtil.Intpairfunc.empty)
-     in (a11,v')::diagonalize n (i + 1) m' 
+     in (a11,v')::diagonalize n (i + 1) m'
      end
   end
 in
 fun diag m =
- let 
-   val nn = dimensions m 
-   val n = fst nn 
- in if snd nn <> n then error "diagonalize: non-square matrix" 
+ let
+   val nn = dimensions m
+   val n = fst nn
+ in if snd nn <> n then error "diagonalize: non-square matrix"
     else diagonalize n 1 m
  end
 end;
@@ -946,13 +946,13 @@
   (* FIXME : Potentially polymorphic keys, but here only: integers!! *)
 local
  fun upd0 x y a = if y =/ rat_0 then a else FuncUtil.Intfunc.update(x,y) a;
- fun mapa f (d,v) = 
+ fun mapa f (d,v) =
   (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => upd0 i (f c) a) v FuncUtil.Intfunc.empty)
  fun adj (c,l) =
- let val a = 
-  FuncUtil.Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) 
+ let val a =
+  FuncUtil.Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c))
     (snd l) rat_1 //
-  FuncUtil.Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) 
+  FuncUtil.Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c))
     (snd l) rat_0
   in ((c // (a */ a)),mapa (fn x => a */ x) l)
   end
@@ -960,20 +960,20 @@
 fun deration d = if null d then (rat_0,d) else
  let val d' = map adj d
      val a = fold (lcm_rat o denominator_rat o fst) d' rat_1 //
-          fold (gcd_rat o numerator_rat o fst) d' rat_0 
+          fold (gcd_rat o numerator_rat o fst) d' rat_0
  in ((rat_1 // a),map (fn (c,l) => (a */ c,l)) d')
  end
 end;
- 
+
 (* Enumeration of monomials with given multidegree bound.                    *)
 
-fun enumerate_monomials d vars = 
+fun enumerate_monomials d vars =
  if d < 0 then []
  else if d = 0 then [FuncUtil.Ctermfunc.empty]
  else if null vars then [monomial_1] else
  let val alts =
-  map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) 
-               in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) 
+  map (fn k => let val oths = enumerate_monomials (d - k) (tl vars)
+               in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d)
  in flat alts
  end;
 
@@ -982,12 +982,12 @@
 (* Give the output polynomial and a record of how it was derived.            *)
 
 fun enumerate_products d pols =
-if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)] 
+if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)]
 else if d < 0 then [] else
-case pols of 
+case pols of
    [] => [(poly_const rat_1,RealArith.Rational_lt rat_1)]
- | (p,b)::ps => 
-    let val e = multidegree p 
+ | (p,b)::ps =>
+    let val e = multidegree p
     in if e = 0 then enumerate_products d ps else
        enumerate_products d ps @
        map (fn (q,c) => (poly_mul p q,RealArith.Product(b,c)))
@@ -1002,13 +1002,13 @@
 (* String for block diagonal matrix numbered k.                              *)
 
 fun sdpa_of_blockdiagonal k m =
- let 
+ let
   val pfx = string_of_int k ^" "
   val ents =
-    Inttriplefunc.fold 
-      (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) 
-      m [] 
-  val entss = sort (triple_int_ord o pairself fst) ents 
+    Inttriplefunc.fold
+      (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a)
+      m []
+  val entss = sort (triple_int_ord o pairself fst) ents
  in fold_rev (fn ((b,i,j),c) => fn a =>
      pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
      " " ^ decimalize 20 c ^ "\n" ^ a) entss ""
@@ -1017,7 +1017,7 @@
 (* SDPA for problem using block diagonal (i.e. multiple SDPs)                *)
 
 fun sdpa_of_blockproblem nblocks blocksizes obj mats =
- let val m = length mats - 1 
+ let val m = length mats - 1
  in
   string_of_int m ^ "\n" ^
   string_of_int nblocks ^ "\n" ^
@@ -1049,7 +1049,7 @@
  map (fn (bs,b0) =>
       let val m = Inttriplefunc.fold
           (fn ((b,i,j),c) => fn a => if b = b0 then FuncUtil.Intpairfunc.update ((i,j),c) a else a) bm FuncUtil.Intpairfunc.empty
-          val d = FuncUtil.Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 
+          val d = FuncUtil.Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0
       in (((bs,bs),m):matrix) end)
  (blocksizes ~~ (1 upto length blocksizes));;
 
@@ -1057,43 +1057,43 @@
 local
   fun tryfind_with msg f [] = raise Failure msg
     | tryfind_with msg f (x::xs) = (f x handle Failure s => tryfind_with s f xs);
-in 
+in
   fun tryfind f = tryfind_with "tryfind" f
 end
 
 (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
 
- 
+
 fun real_positivnullstellensatz_general prover linf d eqs leqs pol =
-let 
- val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) 
+let
+ val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables)
               (pol::eqs @ map fst leqs) []
- val monoid = if linf then 
+ val monoid = if linf then
       (poly_const rat_1,RealArith.Rational_lt rat_1)::
       (filter (fn (p,c) => multidegree p <= d) leqs)
     else enumerate_products d leqs
  val nblocks = length monoid
  fun mk_idmultiplier k p =
-  let 
+  let
    val e = d - multidegree p
    val mons = enumerate_monomials e vars
-   val nons = mons ~~ (1 upto length mons) 
+   val nons = mons ~~ (1 upto length mons)
   in (mons,
       fold_rev (fn (m,n) => FuncUtil.Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons FuncUtil.Monomialfunc.empty)
   end
 
  fun mk_sqmultiplier k (p,c) =
-  let 
+  let
    val e = (d - multidegree p) div 2
    val mons = enumerate_monomials e vars
-   val nons = mons ~~ (1 upto length mons) 
-  in (mons, 
+   val nons = mons ~~ (1 upto length mons)
+  in (mons,
       fold_rev (fn (m1,n1) =>
        fold_rev (fn (m2,n2) => fn  a =>
-        let val m = monomial_mul m1 m2 
+        let val m = monomial_mul m1 m2
         in if n1 > n2 then a else
           let val c = if n1 = n2 then rat_1 else rat_2
-              val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty 
+              val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty
           in FuncUtil.Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a
           end
         end)  nons)
@@ -1112,7 +1112,7 @@
   val qvars = (0,0,0)::pvs
   val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig
   fun mk_matrix v =
-    Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => 
+    Inttriplefunc.fold (fn ((b,i,j), ass) => fn m =>
         if b < 0 then m else
          let val c = Inttriplefunc.tryapplyd ass v rat_0
          in if c = rat_0 then m else
@@ -1133,15 +1133,15 @@
   fun cterm_element (d,v) i = FuncUtil.Ctermfunc.tryapplyd v i rat_0
 
   fun find_rounding d =
-   let 
-    val _ = if !debugging 
-          then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") 
+   let
+    val _ = if !debugging
+          then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n")
           else ()
     val vec = nice_vector d raw_vec
     val blockmat = iter (1,dim vec)
      (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a)
      (bmatrix_neg (nth mats 0))
-    val allmats = blocks blocksizes blockmat 
+    val allmats = blocks blocksizes blockmat
    in (vec,map diag allmats)
    end
   val (vec,ratdias) =
@@ -1178,7 +1178,7 @@
 
 (* Iterative deepening.                                                      *)
 
-fun deepen f n = 
+fun deepen f n =
   (writeln ("Searching with depth limit " ^ string_of_int n) ; (f n handle Failure s => (writeln ("failed with message: " ^ s) ; deepen f (n+1))))
 
 
@@ -1197,14 +1197,14 @@
 in
   (* FIXME: Replace tryfind by get_first !! *)
 fun real_nonlinear_prover proof_method ctxt =
- let 
+ let
   val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
-      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
+      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"}))
      simple_cterm_ord
   val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
        real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
-  fun mainf cert_choice translator (eqs,les,lts) = 
-  let 
+  fun mainf cert_choice translator (eqs,les,lts) =
+  let
    val eq0 = map (poly_of_term o Thm.dest_arg1 o concl) eqs
    val le0 = map (poly_of_term o Thm.dest_arg o concl) les
    val lt0 = map (poly_of_term o Thm.dest_arg o concl) lts
@@ -1216,19 +1216,19 @@
    val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0
    fun trivial_axiom (p,ax) =
     case ax of
-       RealArith.Axiom_eq n => if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n 
+       RealArith.Axiom_eq n => if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n
                      else raise Failure "trivial_axiom: Not a trivial axiom"
-     | RealArith.Axiom_le n => if eval FuncUtil.Ctermfunc.empty p </ Rat.zero then nth les n 
+     | RealArith.Axiom_le n => if eval FuncUtil.Ctermfunc.empty p </ Rat.zero then nth les n
                      else raise Failure "trivial_axiom: Not a trivial axiom"
-     | RealArith.Axiom_lt n => if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n 
+     | RealArith.Axiom_lt n => if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n
                      else raise Failure "trivial_axiom: Not a trivial axiom"
      | _ => error "trivial_axiom: Not a trivial axiom"
-   in 
+   in
   (let val th = tryfind trivial_axiom (keq @ klep @ kltp)
    in
     (fconv_rule (arg_conv (arg1_conv real_poly_conv) then_conv field_comp_conv) th, RealArith.Trivial)
    end)
-   handle Failure _ => 
+   handle Failure _ =>
      (let val proof =
        (case proof_method of Certificate certs =>
          (* choose certificate *)
@@ -1242,13 +1242,13 @@
          end
        | Prover prover =>
          (* call prover *)
-         let 
+         let
           val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one)
           val leq = lep @ ltp
           fun tryall d =
            let val e = multidegree pol
                val k = if e = 0 then 0 else d div e
-               val eq' = map fst eq 
+               val eq' = map fst eq
            in tryfind (fn i => (d,i,real_positivnullstellensatz_general prover false d eq' leq
                                  (poly_neg(poly_pow pol i))))
                    (0 upto k)
@@ -1258,11 +1258,11 @@
            map2 (fn q => fn (p,ax) => RealArith.Eqmul(q,ax)) cert_ideal eq
          val proofs_cone = map cterm_of_sos cert_cone
          val proof_ne = if null ltp then RealArith.Rational_lt Rat.one else
-           let val p = foldr1 RealArith.Product (map snd ltp) 
+           let val p = foldr1 RealArith.Product (map snd ltp)
            in  funpow i (fn q => RealArith.Product(p,q)) (RealArith.Rational_lt Rat.one)
            end
-         in 
-           foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone) 
+         in
+           foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone)
          end)
      in
         (translator (eqs,les,lts) proof, RealArith.Cert proof)
@@ -1273,8 +1273,8 @@
 
 fun C f x y = f y x;
   (* FIXME : This is very bad!!!*)
-fun subst_conv eqs t = 
- let 
+fun subst_conv eqs t =
+ let
   val t' = fold (Thm.cabs o Thm.lhs_of) eqs t
  in Conv.fconv_rule (Thm.beta_conversion true) (fold (C combination) eqs (reflexive t'))
  end
@@ -1285,62 +1285,62 @@
  open Conv
   fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
  val concl = Thm.dest_arg o cprop_of
- val shuffle1 = 
+ val shuffle1 =
    fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps) })
  val shuffle2 =
     fconv_rule (rewr_conv @{lemma "(x + a == y) ==  (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps)})
  fun substitutable_monomial fvs tm = case term_of tm of
-    Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) 
+    Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm)
                            else raise Failure "substitutable_monomial"
-  | @{term "op * :: real => _"}$c$(t as Free _ ) => 
+  | @{term "op * :: real => _"}$c$(t as Free _ ) =>
      if RealArith.is_ratconst (Thm.dest_arg1 tm) andalso not (member (op aconvc) fvs (Thm.dest_arg tm))
          then (RealArith.dest_ratconst (Thm.dest_arg1 tm),Thm.dest_arg tm) else raise Failure "substitutable_monomial"
-  | @{term "op + :: real => _"}$s$t => 
+  | @{term "op + :: real => _"}$s$t =>
        (substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg tm) fvs) (Thm.dest_arg1 tm)
         handle Failure _ => substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg1 tm) fvs) (Thm.dest_arg tm))
   | _ => raise Failure "substitutable_monomial"
 
-  fun isolate_variable v th = 
+  fun isolate_variable v th =
    let val w = Thm.dest_arg1 (cprop_of th)
    in if v aconvc w then th
       else case term_of w of
-           @{term "op + :: real => _"}$s$t => 
-              if Thm.dest_arg1 w aconvc v then shuffle2 th 
+           @{term "op + :: real => _"}$s$t =>
+              if Thm.dest_arg1 w aconvc v then shuffle2 th
               else isolate_variable v (shuffle1 th)
           | _ => error "isolate variable : This should not happen?"
-   end 
+   end
 in
 
 fun real_nonlinear_subst_prover prover ctxt =
- let 
+ let
   val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
-      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
+      (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"}))
      simple_cterm_ord
 
   val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv,
        real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main)
 
   fun make_substitution th =
-   let 
+   let
     val (c,v) = substitutable_monomial [] (Thm.dest_arg1(concl th))
     val th1 = Drule.arg_cong_rule (Thm.capply @{cterm "op * :: real => _"} (RealArith.cterm_of_rat (Rat.inv c))) (mk_meta_eq th)
     val th2 = fconv_rule (binop_conv real_poly_mul_conv) th1
    in fconv_rule (arg_conv real_poly_conv) (isolate_variable v th2)
    end
-   fun oprconv cv ct = 
+   fun oprconv cv ct =
     let val g = Thm.dest_fun2 ct
-    in if g aconvc @{cterm "op <= :: real => _"} 
-         orelse g aconvc @{cterm "op < :: real => _"} 
+    in if g aconvc @{cterm "op <= :: real => _"}
+         orelse g aconvc @{cterm "op < :: real => _"}
        then arg_conv cv ct else arg1_conv cv ct
     end
   fun mainf cert_choice translator =
-   let 
+   let
     fun substfirst(eqs,les,lts) =
-      ((let 
+      ((let
            val eth = tryfind make_substitution eqs
            val modify = fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv real_poly_conv)))
        in  substfirst
-             (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t 
+             (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t
                                    aconvc @{cterm "0::real"}) (map modify eqs),
                                    map modify les,map modify lts)
        end)
@@ -1358,51 +1358,46 @@
   RealArith.gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt)
 end;
 
-val known_sos_constants = 
-  [@{term "op ==>"}, @{term "Trueprop"}, 
-   @{term "op -->"}, @{term "op &"}, @{term "op |"}, 
-   @{term "Not"}, @{term "op = :: bool => _"}, 
-   @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"}, 
-   @{term "op = :: real => _"}, @{term "op < :: real => _"}, 
-   @{term "op <= :: real => _"}, 
-   @{term "op + :: real => _"}, @{term "op - :: real => _"}, 
-   @{term "op * :: real => _"}, @{term "uminus :: real => _"}, 
+val known_sos_constants =
+  [@{term "op ==>"}, @{term "Trueprop"},
+   @{term "op -->"}, @{term "op &"}, @{term "op |"},
+   @{term "Not"}, @{term "op = :: bool => _"},
+   @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"},
+   @{term "op = :: real => _"}, @{term "op < :: real => _"},
+   @{term "op <= :: real => _"},
+   @{term "op + :: real => _"}, @{term "op - :: real => _"},
+   @{term "op * :: real => _"}, @{term "uminus :: real => _"},
    @{term "op / :: real => _"}, @{term "inverse :: real => _"},
-   @{term "op ^ :: real => _"}, @{term "abs :: real => _"}, 
+   @{term "op ^ :: real => _"}, @{term "abs :: real => _"},
    @{term "min :: real => _"}, @{term "max :: real => _"},
    @{term "0::real"}, @{term "1::real"}, @{term "number_of :: int => real"},
    @{term "number_of :: int => nat"},
-   @{term "Int.Bit0"}, @{term "Int.Bit1"}, 
+   @{term "Int.Bit0"}, @{term "Int.Bit1"},
    @{term "Int.Pls"}, @{term "Int.Min"}];
 
-fun check_sos kcts ct = 
+fun check_sos kcts ct =
  let
   val t = term_of ct
-  val _ = if not (null (Term.add_tfrees t []) 
-                  andalso null (Term.add_tvars t [])) 
+  val _ = if not (null (Term.add_tfrees t [])
+                  andalso null (Term.add_tvars t []))
           then error "SOS: not sos. Additional type varables" else ()
   val fs = Term.add_frees t []
-  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs 
+  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs
           then error "SOS: not sos. Variables with type not real" else ()
   val vs = Term.add_vars t []
-  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) vs 
+  val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) vs
           then error "SOS: not sos. Variables with type not real" else ()
   val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t [])
-  val _ = if  null ukcs then () 
+  val _ = if  null ukcs then ()
               else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs))
 in () end
 
-fun core_sos_tac print_cert prover ctxt i = 
+fun core_sos_tac print_cert prover = SUBPROOF (fn {concl, context, ...} =>
   let
-    fun core_tac {concl, context, ...} =
-      let
-        val _ = check_sos known_sos_constants concl
-        val (ths, certificates) = real_sos prover context (Thm.dest_arg concl)
-        val _ = print_cert certificates
-      in rtac ths i end
-  in
-    SUBPROOF core_tac ctxt i
-  end
+    val _ = check_sos known_sos_constants concl
+    val (ths, certificates) = real_sos prover context (Thm.dest_arg concl)
+    val _ = print_cert certificates
+  in rtac ths 1 end)
 
 fun default_SOME f NONE v = SOME v
   | default_SOME f (SOME v) _ = SOME v;
@@ -1415,7 +1410,7 @@
  val is_numeral = can (HOLogic.dest_number o term_of)
 in
 fun get_denom b ct = case term_of ct of
-  @{term "op / :: real => _"} $ _ $ _ => 
+  @{term "op / :: real => _"} $ _ $ _ =>
      if is_numeral (Thm.dest_arg ct) then get_denom b (Thm.dest_arg1 ct)
      else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct))   (Thm.dest_arg ct, b)
  | @{term "op < :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct)
@@ -1424,15 +1419,15 @@
  | _ => NONE
 end;
 
-fun elim_one_denom_tac ctxt = 
-CSUBGOAL (fn (P,i) => 
- case get_denom false P of 
+fun elim_one_denom_tac ctxt =
+CSUBGOAL (fn (P,i) =>
+ case get_denom false P of
    NONE => no_tac
- | SOME (d,ord) => 
-     let 
-      val ss = simpset_of ctxt addsimps @{thms field_simps} 
+ | SOME (d,ord) =>
+     let
+      val ss = simpset_of ctxt addsimps @{thms field_simps}
                addsimps [@{thm nonzero_power_divide}, @{thm power_divide}]
-      val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] 
+      val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)]
          (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto}
           else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast})
      in (rtac th i THEN Simplifier.asm_full_simp_tac ss i) end);