--- a/src/HOL/Isar_examples/BasicLogic.thy Sat Jul 03 00:23:17 1999 +0200
+++ b/src/HOL/Isar_examples/BasicLogic.thy Sat Jul 03 00:26:00 1999 +0200
@@ -70,10 +70,10 @@
lemma "A & B --> B & A";
proof;
- assume AB: "A & B";
- from AB; have A: A; ..;
- from AB; have B: B; ..;
- from B A; show "B & A"; ..;
+ assume ab: "A & B";
+ from ab; have a: A; ..;
+ from ab; have b: B; ..;
+ from b a; show "B & A"; ..;
qed;
--- a/src/HOL/Isar_examples/Group.thy Sat Jul 03 00:23:17 1999 +0200
+++ b/src/HOL/Isar_examples/Group.thy Sat Jul 03 00:26:00 1999 +0200
@@ -95,19 +95,19 @@
have "... = x * inv x * x";
by (simp add: group_assoc);
- note calculation = trans[OF calculation facts]
+ note calculation = trans [OF calculation facts]
-- {* general calculational step: compose with transitivity rule *};
have "... = one * x";
by (simp add: group_right_inverse);
- note calculation = trans[OF calculation facts]
+ note calculation = trans [OF calculation facts]
-- {* general calculational step: compose with transitivity rule *};
have "... = x";
by (simp add: group_left_unit);
- note calculation = trans[OF calculation facts]
+ note calculation = trans [OF calculation facts]
-- {* final calculational step: compose with transitivity rule ... *};
from calculation
-- {* ... and pick up final result *};
--- a/src/HOL/Isar_examples/Peirce.thy Sat Jul 03 00:23:17 1999 +0200
+++ b/src/HOL/Isar_examples/Peirce.thy Sat Jul 03 00:26:00 1999 +0200
@@ -9,35 +9,35 @@
theorem "((A --> B) --> A) --> A";
proof;
- assume ABA: "(A --> B) --> A";
+ assume aba: "(A --> B) --> A";
show A;
proof (rule classical);
- assume notA: "~ A";
+ assume not_a: "~ A";
- have AB: "A --> B";
+ have ab: "A --> B";
proof;
- assume A: A;
- from notA A; show B; ..;
+ assume a: A;
+ from not_a a; show B; ..;
qed;
- from ABA AB; show A; ..;
+ from aba ab; show A; ..;
qed;
qed;
theorem "((A --> B) --> A) --> A";
proof;
- assume ABA: "(A --> B) --> A";
+ assume aba: "(A --> B) --> A";
show A;
proof (rule classical);
- presume AB: "A --> B";
- from ABA AB; show A; ..;
+ presume ab: "A --> B";
+ from aba ab; show A; ..;
next;
- assume notA: "~ A";
+ assume not_a: "~ A";
show "A --> B";
proof;
- assume A: A;
- from notA A; show B; ..;
+ assume a: A;
+ from not_a a; show B; ..;
qed;
qed;
qed;