tuned layout
authornipkow
Mon, 31 Dec 2018 13:05:15 +0100 (2018-12-31)
changeset 69554 4d4aedf9e57f
parent 69553 2c2e2b3e19b7
child 69555 b07ccc6fb13f
tuned layout
src/HOL/Analysis/Sigma_Algebra.thy
--- a/src/HOL/Analysis/Sigma_Algebra.thy	Mon Dec 31 12:25:21 2018 +0100
+++ b/src/HOL/Analysis/Sigma_Algebra.thy	Mon Dec 31 13:05:15 2018 +0100
@@ -802,7 +802,7 @@
 
 subsubsection%unimportant \<open>Ring generated by a semiring\<close>
 
-definition (in semiring_of_sets)
+definition (in semiring_of_sets) generated_ring :: "'a set set" where
   "generated_ring = { \<Union>C | C. C \<subseteq> M \<and> finite C \<and> disjoint C }"
 
 lemma (in semiring_of_sets) generated_ringE[elim?]:
@@ -947,7 +947,7 @@
 
 subsubsection \<open>Closed CDI\<close>
 
-definition%important closed_cdi where
+definition%important closed_cdi :: "'a set \<Rightarrow> 'a set set \<Rightarrow> bool" where
   "closed_cdi \<Omega> M \<longleftrightarrow>
    M \<subseteq> Pow \<Omega> &
    (\<forall>s \<in> M. \<Omega> - s \<in> M) &
@@ -1243,7 +1243,8 @@
 
 subsubsection "Intersection sets systems"
 
-definition%important "Int_stable M \<longleftrightarrow> (\<forall> a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)"
+definition%important Int_stable :: "'a set set \<Rightarrow> bool" where
+"Int_stable M \<longleftrightarrow> (\<forall> a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)"
 
 lemma (in algebra) Int_stable: "Int_stable M"
   unfolding Int_stable_def by auto
@@ -1283,7 +1284,7 @@
 
 subsubsection "Smallest Dynkin systems"
 
-definition%important dynkin where
+definition%important dynkin :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set" where
   "dynkin \<Omega> M =  (\<Inter>{D. dynkin_system \<Omega> D \<and> M \<subseteq> D})"
 
 lemma dynkin_system_dynkin:
@@ -1460,13 +1461,16 @@
   "positive M \<mu> \<longleftrightarrow> \<mu> {} = 0"
 
 definition%important countably_additive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
-  "countably_additive M f \<longleftrightarrow> (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
+"countably_additive M f \<longleftrightarrow>
+  (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
     (\<Sum>i. f (A i)) = f (\<Union>i. A i))"
 
 definition%important measure_space :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
-  "measure_space \<Omega> A \<mu> \<longleftrightarrow> sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>"
+"measure_space \<Omega> A \<mu> \<longleftrightarrow>
+  sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>"
 
-typedef%important 'a measure = "{(\<Omega>::'a set, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu> }"
+typedef%important 'a measure =
+  "{(\<Omega>::'a set, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu> }"
 proof%unimportant
   have "sigma_algebra UNIV {{}, UNIV}"
     by (auto simp: sigma_algebra_iff2)
@@ -1498,8 +1502,10 @@
 interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure"
   using measure_space[of M] by (auto simp: measure_space_def)
 
-definition%important measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
-  "measure_of \<Omega> A \<mu> = Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
+definition%important measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure"
+  where
+"measure_of \<Omega> A \<mu> =
+  Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
     \<lambda>a. if a \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> a else 0)"
 
 abbreviation "sigma \<Omega> A \<equiv> measure_of \<Omega> A (\<lambda>x. 0)"
@@ -1715,8 +1721,9 @@
 
 subsubsection \<open>Measurable functions\<close>
 
-definition%important measurable :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>M" 60) where
-  "measurable A B = {f \<in> space A \<rightarrow> space B. \<forall>y \<in> sets B. f -` y \<inter> space A \<in> sets A}"
+definition%important measurable :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set"
+  (infixr "\<rightarrow>\<^sub>M" 60) where
+"measurable A B = {f \<in> space A \<rightarrow> space B. \<forall>y \<in> sets B. f -` y \<inter> space A \<in> sets A}"
 
 lemma measurableI:
   "(\<And>x. x \<in> space M \<Longrightarrow> f x \<in> space N) \<Longrightarrow> (\<And>A. A \<in> sets N \<Longrightarrow> f -` A \<inter> space M \<in> sets M) \<Longrightarrow>
@@ -1878,7 +1885,7 @@
 subsubsection \<open>Counting space\<close>
 
 definition%important count_space :: "'a set \<Rightarrow> 'a measure" where
-  "count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then of_nat (card A) else \<infinity>)"
+"count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then of_nat (card A) else \<infinity>)"
 
 lemma
   shows space_count_space[simp]: "space (count_space \<Omega>) = \<Omega>"
@@ -1955,7 +1962,9 @@
 
 subsubsection%unimportant \<open>Extend measure\<close>
 
-definition "extend_measure \<Omega> I G \<mu> =
+definition extend_measure :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('b \<Rightarrow> 'a set) \<Rightarrow> ('b \<Rightarrow> ennreal) \<Rightarrow> 'a measure"
+  where
+"extend_measure \<Omega> I G \<mu> =
   (if (\<exists>\<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>') \<and> \<not> (\<forall>i\<in>I. \<mu> i = 0)
       then measure_of \<Omega> (G`I) (SOME \<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>')
       else measure_of \<Omega> (G`I) (\<lambda>_. 0))"
@@ -2015,7 +2024,7 @@
 
 subsection \<open>The smallest $\sigma$-algebra regarding a function\<close>
 
-definition%important
+definition%important vimage_algebra :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure \<Rightarrow> 'a measure" where
   "vimage_algebra X f M = sigma X {f -` A \<inter> X | A. A \<in> sets M}"
 
 lemma space_vimage_algebra[simp]: "space (vimage_algebra X f M) = X"
@@ -2090,7 +2099,7 @@
 
 subsubsection \<open>Restricted Space Sigma Algebra\<close>
 
-definition restrict_space where
+definition restrict_space :: "'a measure \<Rightarrow> 'a set \<Rightarrow> 'a measure" where
   "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) (((\<inter>) \<Omega>) ` sets M) (emeasure M)"
 
 lemma space_restrict_space: "space (restrict_space M \<Omega>) = \<Omega> \<inter> space M"