--- a/src/HOL/HOLCF/Library/List_Predomain.thy Mon Dec 20 07:50:47 2010 -0800
+++ b/src/HOL/HOLCF/Library/List_Predomain.thy Mon Dec 20 08:26:47 2010 -0800
@@ -96,13 +96,6 @@
subsection {* Lists are a predomain *}
-definition udefl :: "udom defl \<rightarrow> udom u defl"
- where "udefl = defl_fun1 (strictify\<cdot>up) (fup\<cdot>ID) ID"
-
-lemma cast_udefl:
- "cast\<cdot>(udefl\<cdot>t) = strictify\<cdot>up oo cast\<cdot>t oo fup\<cdot>ID"
-unfolding udefl_def by (simp add: cast_defl_fun1 ep_pair_strictify_up)
-
definition list_liftdefl :: "udom u defl \<rightarrow> udom u defl"
where "list_liftdefl = (\<Lambda> a. udefl\<cdot>(slist_defl\<cdot>(u_defl\<cdot>a)))"
@@ -110,9 +103,6 @@
using isodefl_slist [where fa="cast\<cdot>a" and da="a"]
unfolding isodefl_def by simp
-lemma u_emb_bottom: "u_emb\<cdot>\<bottom> = \<bottom>"
-by (rule pcpo_ep_pair.e_strict [unfolded pcpo_ep_pair_def, OF ep_pair_u])
-
instantiation list :: (predomain) predomain
begin
@@ -139,12 +129,12 @@
end
+subsection {* Configuring domain package to work with list type *}
+
lemma liftdefl_list [domain_defl_simps]:
"LIFTDEFL('a::predomain list) = list_liftdefl\<cdot>LIFTDEFL('a)"
by (rule liftdefl_list_def)
-subsection {* Configuring list type to work with domain package *}
-
abbreviation list_map :: "('a::cpo \<rightarrow> 'b::cpo) \<Rightarrow> 'a list \<rightarrow> 'b list"
where "list_map f \<equiv> Abs_cfun (map (Rep_cfun f))"
--- a/src/HOL/HOLCF/Library/Sum_Cpo.thy Mon Dec 20 07:50:47 2010 -0800
+++ b/src/HOL/HOLCF/Library/Sum_Cpo.thy Mon Dec 20 08:26:47 2010 -0800
@@ -175,6 +175,18 @@
shows "cont (\<lambda>x. case h x of Inl a \<Rightarrow> f x a | Inr b \<Rightarrow> g x b)"
using assms by (simp add: cont2cont_sum_case prod_cont_iff)
+text {* Continuity of map function. *}
+
+lemma sum_map_eq: "sum_map f g = sum_case (\<lambda>a. Inl (f a)) (\<lambda>b. Inr (g b))"
+by (rule ext, case_tac x, simp_all)
+
+lemma cont2cont_sum_map [simp, cont2cont]:
+ assumes f: "cont (\<lambda>(x, y). f x y)"
+ assumes g: "cont (\<lambda>(x, y). g x y)"
+ assumes h: "cont (\<lambda>x. h x)"
+ shows "cont (\<lambda>x. sum_map (\<lambda>y. f x y) (\<lambda>y. g x y) (h x))"
+using assms by (simp add: sum_map_eq prod_cont_iff)
+
subsection {* Compactness and chain-finiteness *}
lemma compact_Inl: "compact a \<Longrightarrow> compact (Inl a)"
@@ -260,6 +272,11 @@
apply (rename_tac b, case_tac b, simp, simp)
done
+text {* A deflation combinator for making unpointed types *}
+
+definition udefl :: "udom defl \<rightarrow> udom u defl"
+ where "udefl = defl_fun1 (strictify\<cdot>up) (fup\<cdot>ID) ID"
+
lemma ep_pair_strictify_up:
"ep_pair (strictify\<cdot>up) (fup\<cdot>ID)"
apply (rule ep_pair.intro)
@@ -267,20 +284,32 @@
apply (case_tac y, simp, simp add: strictify_conv_if)
done
+lemma cast_udefl:
+ "cast\<cdot>(udefl\<cdot>t) = strictify\<cdot>up oo cast\<cdot>t oo fup\<cdot>ID"
+unfolding udefl_def by (simp add: cast_defl_fun1 ep_pair_strictify_up)
+
+definition sum_liftdefl :: "udom u defl \<rightarrow> udom u defl \<rightarrow> udom u defl"
+ where "sum_liftdefl = (\<Lambda> a b. udefl\<cdot>(ssum_defl\<cdot>(u_defl\<cdot>a)\<cdot>(u_defl\<cdot>b)))"
+
+lemma u_emb_bottom: "u_emb\<cdot>\<bottom> = \<bottom>"
+by (rule pcpo_ep_pair.e_strict [unfolded pcpo_ep_pair_def, OF ep_pair_u])
+
+(*
definition sum_liftdefl :: "udom u defl \<rightarrow> udom u defl \<rightarrow> udom u defl"
where "sum_liftdefl = defl_fun2 (u_map\<cdot>emb oo strictify\<cdot>up)
(fup\<cdot>ID oo u_map\<cdot>prj) ssum_map"
+*)
instantiation sum :: (predomain, predomain) predomain
begin
definition
- "liftemb = (u_map\<cdot>emb oo strictify\<cdot>up) oo
- (ssum_map\<cdot>liftemb\<cdot>liftemb oo encode_sum_u)"
+ "liftemb = (strictify\<cdot>up oo ssum_emb) oo
+ (ssum_map\<cdot>(u_emb oo liftemb)\<cdot>(u_emb oo liftemb) oo encode_sum_u)"
definition
- "liftprj = (decode_sum_u oo ssum_map\<cdot>liftprj\<cdot>liftprj) oo
- (fup\<cdot>ID oo u_map\<cdot>prj)"
+ "liftprj = (decode_sum_u oo ssum_map\<cdot>(liftprj oo u_prj)\<cdot>(liftprj oo u_prj))
+ oo (ssum_prj oo fup\<cdot>ID)"
definition
"liftdefl (t::('a + 'b) itself) = sum_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
@@ -288,17 +317,56 @@
instance proof
show "ep_pair liftemb (liftprj :: udom u \<rightarrow> ('a + 'b) u)"
unfolding liftemb_sum_def liftprj_sum_def
- by (intro ep_pair_comp ep_pair_ssum_map ep_pair_u_map ep_pair_emb_prj
- ep_pair_strictify_up predomain_ep, simp add: ep_pair.intro)
+ by (intro ep_pair_comp ep_pair_ssum_map ep_pair_u predomain_ep
+ ep_pair_ssum ep_pair_strictify_up, simp add: ep_pair.intro)
show "cast\<cdot>LIFTDEFL('a + 'b) = liftemb oo (liftprj :: udom u \<rightarrow> ('a + 'b) u)"
unfolding liftemb_sum_def liftprj_sum_def liftdefl_sum_def
- apply (subst sum_liftdefl_def, subst cast_defl_fun2)
- apply (intro ep_pair_comp ep_pair_u_map ep_pair_emb_prj
- ep_pair_strictify_up)
- apply (erule (1) finite_deflation_ssum_map)
- by (simp add: cast_liftdefl cfcomp1 ssum_map_map)
+ by (simp add: sum_liftdefl_def cast_udefl cast_ssum_defl cast_u_defl
+ cast_liftdefl cfcomp1 ssum_map_map u_emb_bottom)
qed
end
+subsection {* Configuring domain package to work with sum type *}
+
+lemma liftdefl_sum [domain_defl_simps]:
+ "LIFTDEFL('a::predomain + 'b::predomain) =
+ sum_liftdefl\<cdot>LIFTDEFL('a)\<cdot>LIFTDEFL('b)"
+by (rule liftdefl_sum_def)
+
+abbreviation sum_map'
+ where "sum_map' f g \<equiv> Abs_cfun (sum_map (Rep_cfun f) (Rep_cfun g))"
+
+lemma sum_map_ID [domain_map_ID]: "sum_map' ID ID = ID"
+by (simp add: ID_def cfun_eq_iff Abs_cfun_inverse2 sum_map.identity)
+
+lemma deflation_sum_map [domain_deflation]:
+ "\<lbrakk>deflation d1; deflation d2\<rbrakk> \<Longrightarrow> deflation (sum_map' d1 d2)"
+apply default
+apply (induct_tac x, simp_all add: deflation.idem)
+apply (induct_tac x, simp_all add: deflation.below)
+done
+
+lemma encode_sum_u_sum_map:
+ "encode_sum_u\<cdot>(u_map\<cdot>(sum_map' f g)\<cdot>(decode_sum_u\<cdot>x))
+ = ssum_map\<cdot>(u_map\<cdot>f)\<cdot>(u_map\<cdot>g)\<cdot>x"
+apply (induct x, simp add: decode_sum_u_def encode_sum_u_def)
+apply (case_tac x, simp, simp add: decode_sum_u_def encode_sum_u_def)
+apply (case_tac y, simp, simp add: decode_sum_u_def encode_sum_u_def)
+done
+
+lemma isodefl_sum [domain_isodefl]:
+ fixes d :: "'a::predomain \<rightarrow> 'a"
+ assumes "isodefl' d1 t1" and "isodefl' d2 t2"
+ shows "isodefl' (sum_map' d1 d2) (sum_liftdefl\<cdot>t1\<cdot>t2)"
+using assms unfolding isodefl'_def liftemb_sum_def liftprj_sum_def
+apply (simp add: sum_liftdefl_def cast_udefl cast_ssum_defl cast_u_defl)
+apply (simp add: cfcomp1 encode_sum_u_sum_map)
+apply (simp add: ssum_map_map u_emb_bottom)
+done
+
+setup {*
+ Domain_Take_Proofs.add_rec_type (@{type_name "sum"}, [true, true])
+*}
+
end