replaced rabs by overloaded abs;
authorwenzelm
Mon, 08 May 2000 20:57:02 +0200
changeset 8838 4eaa99f0d223
parent 8837 9ee87bdcba05
child 8839 31da5b9790c0
replaced rabs by overloaded abs;
src/HOL/Real/HahnBanach/Aux.thy
src/HOL/Real/HahnBanach/FunctionNorm.thy
src/HOL/Real/HahnBanach/HahnBanach.thy
src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy
src/HOL/Real/HahnBanach/NormedSpace.thy
src/HOL/Real/RealAbs.ML
src/HOL/Real/RealBin.ML
src/HOL/Real/RealOrd.thy
src/HOL/Real/RealPow.ML
--- a/src/HOL/Real/HahnBanach/Aux.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/Aux.thy	Mon May 08 20:57:02 2000 +0200
@@ -62,13 +62,13 @@
   finally; show "?thesis"; .;
 qed;
 
-lemma rabs_minus_one: "rabs (- 1r) = 1r"; 
+lemma abs_minus_one: "abs (- 1r) = 1r"; 
 proof -; 
   have "-1r < 0r"; 
     by (rule real_minus_zero_less_iff[RS iffD1], simp, 
         rule real_zero_less_one);
-  hence "rabs (- 1r) = - (- 1r)"; 
-    by (rule rabs_minus_eqI2);
+  hence "abs (- 1r) = - (- 1r)"; 
+    by (rule abs_minus_eqI2);
   also; have "... = 1r"; by simp; 
   finally; show ?thesis; .;
 qed;
--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy	Mon May 08 20:57:02 2000 +0200
@@ -20,14 +20,14 @@
   is_continuous ::
   "['a::{minus, plus} set, 'a => real, 'a => real] => bool" 
   "is_continuous V norm f == 
-    is_linearform V f & (EX c. ALL x:V. rabs (f x) <= c * norm x)";
+    is_linearform V f & (EX c. ALL x:V. abs (f x) <= c * norm x)";
 
 lemma continuousI [intro]: 
-  "[| is_linearform V f; !! x. x:V ==> rabs (f x) <= c * norm x |] 
+  "[| is_linearform V f; !! x. x:V ==> abs (f x) <= c * norm x |] 
   ==> is_continuous V norm f";
 proof (unfold is_continuous_def, intro exI conjI ballI);
-  assume r: "!! x. x:V ==> rabs (f x) <= c * norm x"; 
-  fix x; assume "x:V"; show "rabs (f x) <= c * norm x"; by (rule r);
+  assume r: "!! x. x:V ==> abs (f x) <= c * norm x"; 
+  fix x; assume "x:V"; show "abs (f x) <= c * norm x"; by (rule r);
 qed;
   
 lemma continuous_linearform [intro??]: 
@@ -36,7 +36,7 @@
 
 lemma continuous_bounded [intro??]:
   "is_continuous V norm f 
-  ==> EX c. ALL x:V. rabs (f x) <= c * norm x";
+  ==> EX c. ALL x:V. abs (f x) <= c * norm x";
   by (unfold is_continuous_def) force;
 
 subsection{* The norm of a linear form *};
@@ -66,7 +66,7 @@
 constdefs
   B :: "[ 'a set, 'a => real, 'a => real ] => real set"
   "B V norm f == 
-  {0r} \Un {rabs (f x) * rinv (norm x) | x. x ~= 00 & x:V}";
+  {0r} \Un {abs (f x) * rinv (norm x) | x. x ~= 00 & x:V}";
 
 text{* $n$ is the function norm of $f$, iff 
 $n$ is the supremum of $B$. 
@@ -97,7 +97,7 @@
   is_continuous_def Sup_def, elim conjE, rule selectI2EX);
   assume "is_normed_vectorspace V norm";
   assume "is_linearform V f" 
-  and e: "EX c. ALL x:V. rabs (f x) <= c * norm x";
+  and e: "EX c. ALL x:V. abs (f x) <= c * norm x";
 
   txt {* The existence of the supremum is shown using the 
   completeness of the reals. Completeness means, that
@@ -120,7 +120,7 @@
 
       txt {* We know that $f$ is bounded by some value $c$. *};  
   
-      fix c; assume a: "ALL x:V. rabs (f x) <= c * norm x";
+      fix c; assume a: "ALL x:V. abs (f x) <= c * norm x";
       def b == "max c 0r";
 
       show "?thesis";
@@ -165,13 +165,13 @@
         txt {* The thesis follows by a short calculation using the 
         fact that $f$ is bounded. *};
     
-        assume "y = rabs (f x) * rinv (norm x)";
+        assume "y = abs (f x) * rinv (norm x)";
         also; have "... <= c * norm x * rinv (norm x)";
         proof (rule real_mult_le_le_mono2);
           show "0r <= rinv (norm x)";
             by (rule real_less_imp_le, rule real_rinv_gt_zero, 
                 rule normed_vs_norm_gt_zero);
-          from a; show "rabs (f x) <= c * norm x"; ..;
+          from a; show "abs (f x) <= c * norm x"; ..;
         qed;
         also; have "... = c * (norm x * rinv (norm x))"; 
           by (rule real_mult_assoc);
@@ -208,9 +208,9 @@
            elim UnE singletonE CollectE exE conjE); 
       fix x r;
       assume "x : V" "x ~= 00" 
-        and r: "r = rabs (f x) * rinv (norm x)";
+        and r: "r = abs (f x) * rinv (norm x)";
 
-      have ge: "0r <= rabs (f x)"; by (simp! only: rabs_ge_zero);
+      have ge: "0r <= abs (f x)"; by (simp! only: abs_ge_zero);
       have "0r <= rinv (norm x)"; 
         by (rule real_less_imp_le, rule real_rinv_gt_zero, rule);(***
         proof (rule real_less_imp_le);
@@ -243,7 +243,7 @@
 
 lemma norm_fx_le_norm_f_norm_x: 
   "[| is_normed_vectorspace V norm; x:V; is_continuous V norm f |] 
-    ==> rabs (f x) <= function_norm V norm f * norm x"; 
+    ==> abs (f x) <= function_norm V norm f * norm x"; 
 proof -; 
   assume "is_normed_vectorspace V norm" "x:V" 
   and c: "is_continuous V norm f";
@@ -260,16 +260,16 @@
     holds $f\ap \zero = 0$. *};
 
     assume "x = 00";
-    have "rabs (f x) = rabs (f 00)"; by (simp!);
+    have "abs (f x) = abs (f 00)"; by (simp!);
     also; from v continuous_linearform; have "f 00 = 0r"; ..;
-    also; note rabs_zero;
+    also; note abs_zero;
     also; have "0r <= function_norm V norm f * norm x";
     proof (rule real_le_mult_order);
       show "0r <= function_norm V norm f"; ..;
       show "0r <= norm x"; ..;
     qed;
     finally; 
-    show "rabs (f x) <= function_norm V norm f * norm x"; .;
+    show "abs (f x) <= function_norm V norm f * norm x"; .;
 
   next;
     assume "x ~= 00";
@@ -282,28 +282,28 @@
     txt {* For the case $x\neq \zero$ we derive the following
     fact from the definition of the function norm:*};
 
-    have l: "rabs (f x) * rinv (norm x) <= function_norm V norm f";
+    have l: "abs (f x) * rinv (norm x) <= function_norm V norm f";
     proof (unfold function_norm_def, rule sup_ub);
       from ex_fnorm [OF _ c];
       show "is_Sup UNIV (B V norm f) (Sup UNIV (B V norm f))";
          by (simp! add: is_function_norm_def function_norm_def);
-      show "rabs (f x) * rinv (norm x) : B V norm f"; 
+      show "abs (f x) * rinv (norm x) : B V norm f"; 
         by (unfold B_def, intro UnI2 CollectI exI [of _ x]
             conjI, simp);
     qed;
 
     txt {* The thesis now follows by a short calculation: *};
 
-    have "rabs (f x) = rabs (f x) * 1r"; by (simp!);
+    have "abs (f x) = abs (f x) * 1r"; by (simp!);
     also; from nz; have "1r = rinv (norm x) * norm x"; 
       by (rule real_mult_inv_left [RS sym]);
     also; 
-    have "rabs (f x) * ... = rabs (f x) * rinv (norm x) * norm x";
-      by (simp! add: real_mult_assoc [of "rabs (f x)"]);
+    have "abs (f x) * ... = abs (f x) * rinv (norm x) * norm x";
+      by (simp! add: real_mult_assoc [of "abs (f x)"]);
     also; have "... <= function_norm V norm f * norm x"; 
       by (rule real_mult_le_le_mono2 [OF n l]);
     finally; 
-    show "rabs (f x) <= function_norm V norm f * norm x"; .;
+    show "abs (f x) <= function_norm V norm f * norm x"; .;
   qed;
 qed;
 
@@ -316,12 +316,12 @@
 
 lemma fnorm_le_ub: 
   "[| is_normed_vectorspace V norm; is_continuous V norm f;
-     ALL x:V. rabs (f x) <= c * norm x; 0r <= c |]
+     ALL x:V. abs (f x) <= c * norm x; 0r <= c |]
   ==> function_norm V norm f <= c";
 proof (unfold function_norm_def);
   assume "is_normed_vectorspace V norm"; 
   assume c: "is_continuous V norm f";
-  assume fb: "ALL x:V. rabs (f x) <= c * norm x"
+  assume fb: "ALL x:V. abs (f x) <= c * norm x"
          and "0r <= c";
 
   txt {* Suppose the inequation holds for some $c\geq 0$.
@@ -372,10 +372,10 @@
 	hence rinv_gez: "0r <= rinv (norm x)";
           by (rule real_less_imp_le);
 
-	assume "y = rabs (f x) * rinv (norm x)"; 
+	assume "y = abs (f x) * rinv (norm x)"; 
 	also; from rinv_gez; have "... <= c * norm x * rinv (norm x)";
 	  proof (rule real_mult_le_le_mono2);
-	    show "rabs (f x) <= c * norm x"; by (rule bspec);
+	    show "abs (f x) <= c * norm x"; by (rule bspec);
 	  qed;
 	also; have "... <= c"; by (simp add: nz real_mult_assoc);
 	finally; show ?thesis; .;
--- a/src/HOL/Real/HahnBanach/HahnBanach.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanach.thy	Mon May 08 20:57:02 2000 +0200
@@ -596,25 +596,25 @@
 subsection  {* Alternative formulation *};
 
 text {* The following alternative formulation of the Hahn-Banach
-Theorem\label{rabs-HahnBanach} uses the fact that for a real linear form
+Theorem\label{abs-HahnBanach} uses the fact that for a real linear form
 $f$ and a seminorm $p$ the
 following inequations are equivalent:\footnote{This was shown in lemma
-$\idt{rabs{\dsh}ineq{\dsh}iff}$ (see page \pageref{rabs-ineq-iff}).}
+$\idt{abs{\dsh}ineq{\dsh}iff}$ (see page \pageref{abs-ineq-iff}).}
 \begin{matharray}{ll}
 \forall x\in H.\ap |h\ap x|\leq p\ap x& {\rm and}\\
 \forall x\in H.\ap h\ap x\leq p\ap x\\
 \end{matharray}
 *};
 
-theorem rabs_HahnBanach:
+theorem abs_HahnBanach:
   "[| is_vectorspace E; is_subspace F E; is_linearform F f; 
-  is_seminorm E p; ALL x:F. rabs (f x) <= p x |]
+  is_seminorm E p; ALL x:F. abs (f x) <= p x |]
   ==> EX g. is_linearform E g & (ALL x:F. g x = f x)
-   & (ALL x:E. rabs (g x) <= p x)";
+   & (ALL x:E. abs (g x) <= p x)";
 proof -;
   assume "is_vectorspace E" "is_subspace F E" "is_seminorm E p" 
-    "is_linearform F f"  "ALL x:F. rabs (f x) <= p x";
-  have "ALL x:F. f x <= p x";  by (rule rabs_ineq_iff [RS iffD1]);
+    "is_linearform F f"  "ALL x:F. abs (f x) <= p x";
+  have "ALL x:F. f x <= p x";  by (rule abs_ineq_iff [RS iffD1]);
   hence "EX g. is_linearform E g & (ALL x:F. g x = f x) 
               & (ALL x:E. g x <= p x)";
     by (simp! only: HahnBanach);
@@ -622,8 +622,8 @@
   proof (elim exE conjE);
     fix g; assume "is_linearform E g" "ALL x:F. g x = f x" 
                   "ALL x:E. g x <= p x";
-    hence "ALL x:E. rabs (g x) <= p x";
-      by (simp! add: rabs_ineq_iff [OF subspace_refl]);
+    hence "ALL x:E. abs (g x) <= p x";
+      by (simp! add: abs_ineq_iff [OF subspace_refl]);
     thus ?thesis; by (intro exI conjI);
   qed;
 qed;
@@ -672,16 +672,16 @@
 
     txt{* $p$ is absolutely homogenous: *};
 
-    show "p (a (*) x) = rabs a * p x";
+    show "p (a (*) x) = abs a * p x";
     proof -; 
       have "p (a (*) x) = function_norm F norm f * norm (a (*) x)";
         by (simp!);
-      also; have "norm (a (*) x) = rabs a * norm x"; 
-        by (rule normed_vs_norm_rabs_homogenous);
-      also; have "function_norm F norm f * (rabs a * norm x) 
-        = rabs a * (function_norm F norm f * norm x)";
+      also; have "norm (a (*) x) = abs a * norm x"; 
+        by (rule normed_vs_norm_abs_homogenous);
+      also; have "function_norm F norm f * (abs a * norm x) 
+        = abs a * (function_norm F norm f * norm x)";
         by (simp! only: real_mult_left_commute);
-      also; have "... = rabs a * p x"; by (simp!);
+      also; have "... = abs a * p x"; by (simp!);
       finally; show ?thesis; .;
     qed;
 
@@ -706,10 +706,10 @@
 
   txt{* $f$ is bounded by $p$. *}; 
 
-  have "ALL x:F. rabs (f x) <= p x";
+  have "ALL x:F. abs (f x) <= p x";
   proof;
     fix x; assume "x:F";
-     from f_norm; show "rabs (f x) <= p x"; 
+     from f_norm; show "abs (f x) <= p x"; 
        by (simp! add: norm_fx_le_norm_f_norm_x);
   qed;
 
@@ -721,14 +721,14 @@
 
   with e f q; 
   have "EX g. is_linearform E g & (ALL x:F. g x = f x) 
-            & (ALL x:E. rabs (g x) <= p x)";
-    by (simp! add: rabs_HahnBanach);
+            & (ALL x:E. abs (g x) <= p x)";
+    by (simp! add: abs_HahnBanach);
 
   thus ?thesis;
   proof (elim exE conjE); 
     fix g;
     assume "is_linearform E g" and a: "ALL x:F. g x = f x" 
-       and b: "ALL x:E. rabs (g x) <= p x";
+       and b: "ALL x:E. abs (g x) <= p x";
 
     show "EX g. is_linearform E g 
             & is_continuous E norm g 
@@ -743,7 +743,7 @@
       proof;
         fix x; assume "x:E";
         from b [RS bspec, OF this]; 
-        show "rabs (g x) <= function_norm F norm f * norm x";
+        show "abs (g x) <= function_norm F norm f * norm x";
           by (unfold p_def);
       qed; 
 
@@ -765,10 +765,10 @@
         \end{matharray}
         *};
  
-        have "ALL x:E. rabs (g x) <= function_norm F norm f * norm x";
+        have "ALL x:E. abs (g x) <= function_norm F norm f * norm x";
         proof;
           fix x; assume "x:E"; 
-          show "rabs (g x) <= function_norm F norm f * norm x";
+          show "abs (g x) <= function_norm F norm f * norm x";
             by (simp!);
         qed;
 
@@ -780,17 +780,17 @@
         txt{* The other direction is achieved by a similar 
         argument. *};
 
-        have "ALL x:F. rabs (f x) <= function_norm E norm g * norm x";
+        have "ALL x:F. abs (f x) <= function_norm E norm g * norm x";
         proof;
           fix x; assume "x : F"; 
           from a; have "g x = f x"; ..;
-          hence "rabs (f x) = rabs (g x)"; by simp;
+          hence "abs (f x) = abs (g x)"; by simp;
           also; from _ _ g_cont;
           have "... <= function_norm E norm g * norm x";
           proof (rule norm_fx_le_norm_f_norm_x);
             show "x:E"; ..;
           qed;
-          finally; show "rabs (f x) <= function_norm E norm g * norm x"; .;
+          finally; show "abs (f x) <= function_norm E norm g * norm x"; .;
         qed; 
         thus "?R <= ?L"; 
         proof (rule fnorm_le_ub [OF f_norm f_cont]);
--- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Mon May 08 20:57:02 2000 +0200
@@ -297,7 +297,7 @@
         by (rule real_mult_diff_distrib);
       also; from lz vs y; have "- a * (p (rinv a (*) y + x0)) 
                                = p (a (*) (rinv a (*) y + x0))";
-        by (simp add: seminorm_rabs_homogenous rabs_minus_eqI2);
+        by (simp add: seminorm_abs_homogenous abs_minus_eqI2);
       also; from nz vs y; have "... = p (y + a (*) x0)";
         by (simp add: vs_add_mult_distrib1);
       also; from nz vs y; have "a * (h (rinv a (*) y)) =  h y";
@@ -329,7 +329,7 @@
       also; from gz vs y; 
       have "a * p (rinv a (*) y + x0) 
            = p (a (*) (rinv a (*) y + x0))";
-        by (simp add: seminorm_rabs_homogenous rabs_eqI2);
+        by (simp add: seminorm_abs_homogenous abs_eqI2);
       also; from nz vs y; 
       have "... = p (y + a (*) x0)";
         by (simp add: vs_add_mult_distrib1);
--- a/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy	Mon May 08 20:57:02 2000 +0200
@@ -638,7 +638,7 @@
 
 text{* \medskip The following lemma is a property of linear forms on 
 real vector spaces. It will be used for the lemma 
-$\idt{rabs{\dsh}HahnBanach}$ (see page \pageref{rabs-HahnBanach}). \label{rabs-ineq-iff}
+$\idt{abs{\dsh}HahnBanach}$ (see page \pageref{abs-HahnBanach}). \label{abs-ineq-iff}
 For real vector spaces the following inequations are equivalent:
 \begin{matharray}{ll} 
 \forall x\in H.\ap |h\ap x|\leq p\ap x& {\rm and}\\ 
@@ -646,10 +646,10 @@
 \end{matharray}
 *};
 
-lemma rabs_ineq_iff: 
+lemma abs_ineq_iff: 
   "[| is_subspace H E; is_vectorspace E; is_seminorm E p; 
   is_linearform H h |] 
-  ==> (ALL x:H. rabs (h x) <= p x) = (ALL x:H. h x <= p x)" 
+  ==> (ALL x:H. abs (h x) <= p x) = (ALL x:H. h x <= p x)" 
   (concl is "?L = ?R");
 proof -;
   assume "is_subspace H E" "is_vectorspace E" "is_seminorm E p" 
@@ -661,7 +661,7 @@
     show ?R;
     proof;
       fix x; assume x: "x:H";
-      have "h x <= rabs (h x)"; by (rule rabs_ge_self);
+      have "h x <= abs (h x)"; by (rule abs_ge_self);
       also; from l; have "... <= p x"; ..;
       finally; show "h x <= p x"; .;
     qed;
@@ -670,7 +670,7 @@
     show ?L;
     proof; 
       fix x; assume "x:H";
-      show "!! a b. [| - a <= b; b <= a |] ==> rabs b <= a";
+      show "!! a b::real. [| - a <= b; b <= a |] ==> abs b <= a";
         by arith;
       show "- p x <= h x";
       proof (rule real_minus_le);
--- a/src/HOL/Real/HahnBanach/NormedSpace.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/NormedSpace.thy	Mon May 08 20:57:02 2000 +0200
@@ -19,12 +19,12 @@
   is_seminorm :: "['a::{plus, minus} set, 'a => real] => bool"
   "is_seminorm V norm == ALL x: V. ALL y:V. ALL a. 
         0r <= norm x 
-      & norm (a (*) x) = (rabs a) * (norm x)
+      & norm (a (*) x) = (abs a) * (norm x)
       & norm (x + y) <= norm x + norm y";
 
 lemma is_seminormI [intro]: 
   "[| !! x y a. [| x:V; y:V|] ==> 0r <= norm x;
-  !! x a. x:V ==> norm (a (*) x) = (rabs a) * (norm x);
+  !! x a. x:V ==> norm (a (*) x) = (abs a) * (norm x);
   !! x y. [|x:V; y:V |] ==> norm (x + y) <= norm x + norm y |] 
   ==> is_seminorm V norm";
   by (unfold is_seminorm_def, force);
@@ -33,9 +33,9 @@
   "[| is_seminorm V norm; x:V |] ==> 0r <= norm x";
   by (unfold is_seminorm_def, force);
 
-lemma seminorm_rabs_homogenous: 
+lemma seminorm_abs_homogenous: 
   "[| is_seminorm V norm; x:V |] 
-  ==> norm (a (*) x) = (rabs a) * (norm x)";
+  ==> norm (a (*) x) = (abs a) * (norm x)";
   by (unfold is_seminorm_def, force);
 
 lemma seminorm_subadditive: 
@@ -52,9 +52,9 @@
     by (simp! add: diff_eq2 negate_eq2);
   also; have "... <= norm x + norm  (- 1r (*) y)"; 
     by (simp! add: seminorm_subadditive);
-  also; have "norm (- 1r (*) y) = rabs (- 1r) * norm y"; 
-    by (rule seminorm_rabs_homogenous);
-  also; have "rabs (- 1r) = 1r"; by (rule rabs_minus_one);
+  also; have "norm (- 1r (*) y) = abs (- 1r) * norm y"; 
+    by (rule seminorm_abs_homogenous);
+  also; have "abs (- 1r) = 1r"; by (rule abs_minus_one);
   finally; show "norm (x - y) <= norm x + norm y"; by simp;
 qed;
 
@@ -64,9 +64,9 @@
 proof -;
   assume "is_seminorm V norm" "x:V" "is_vectorspace V";
   have "norm (- x) = norm (- 1r (*) x)"; by (simp! only: negate_eq1);
-  also; have "... = rabs (- 1r) * norm x"; 
-    by (rule seminorm_rabs_homogenous);
-  also; have "rabs (- 1r) = 1r"; by (rule rabs_minus_one);
+  also; have "... = abs (- 1r) * norm x"; 
+    by (rule seminorm_abs_homogenous);
+  also; have "abs (- 1r) = 1r"; by (rule abs_minus_one);
   finally; show "norm (- x) = norm x"; by simp;
 qed;
 
@@ -142,10 +142,10 @@
   finally; show "0r < norm x"; .;
 qed;
 
-lemma normed_vs_norm_rabs_homogenous [intro??]: 
+lemma normed_vs_norm_abs_homogenous [intro??]: 
   "[| is_normed_vectorspace V norm; x:V |] 
-  ==> norm (a (*) x) = (rabs a) * (norm x)";
-  by (rule seminorm_rabs_homogenous, rule norm_is_seminorm, 
+  ==> norm (a (*) x) = (abs a) * (norm x)";
+  by (rule seminorm_abs_homogenous, rule norm_is_seminorm, 
       rule normed_vs_norm);
 
 lemma normed_vs_norm_subadditive [intro??]: 
@@ -170,7 +170,7 @@
     proof;
       fix x y a; presume "x : E";
       show "0r <= norm x"; ..;
-      show "norm (a (*) x) = rabs a * norm x"; ..;
+      show "norm (a (*) x) = abs a * norm x"; ..;
       presume "y : E";
       show "norm (x + y) <= norm x + norm y"; ..;
     qed (simp!)+;
--- a/src/HOL/Real/RealAbs.ML	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/RealAbs.ML	Mon May 08 20:57:02 2000 +0200
@@ -9,62 +9,62 @@
        Properties of the absolute value function over the reals
        (adapted version of previously proved theorems about abs)
  ----------------------------------------------------------------------------*)
-Goalw [rabs_def] "rabs r = (if 0r<=r then r else -r)";
+Goalw [abs_real_def] "abs r = (if 0r<=r then r else -r)";
 by Auto_tac;
-qed "rabs_iff";
+qed "abs_iff";
 
-Goalw [rabs_def] "rabs 0r = 0r";
+Goalw [abs_real_def] "abs 0r = 0r";
 by (rtac (real_le_refl RS if_P) 1);
-qed "rabs_zero";
+qed "abs_zero";
 
-Addsimps [rabs_zero];
+Addsimps [abs_zero];
 
-Goalw [rabs_def] "rabs 0r = -0r";
+Goalw [abs_real_def] "abs 0r = -0r";
 by (Simp_tac 1);
-qed "rabs_minus_zero";
+qed "abs_minus_zero";
 
-Goalw [rabs_def] "0r<=x ==> rabs x = x";
+Goalw [abs_real_def] "0r<=x ==> abs x = x";
 by (Asm_simp_tac 1);
-qed "rabs_eqI1";
+qed "abs_eqI1";
 
-Goalw [rabs_def] "0r<x ==> rabs x = x";
+Goalw [abs_real_def] "0r<x ==> abs x = x";
 by (Asm_simp_tac 1);
-qed "rabs_eqI2";
+qed "abs_eqI2";
 
-Goalw [rabs_def,real_le_def] "x<0r ==> rabs x = -x";
+Goalw [abs_real_def,real_le_def] "x<0r ==> abs x = -x";
 by (Asm_simp_tac 1);
-qed "rabs_minus_eqI2";
+qed "abs_minus_eqI2";
 
-Goalw [rabs_def] "x<=0r ==> rabs x = -x";
+Goalw [abs_real_def] "x<=0r ==> abs x = -x";
 by (asm_full_simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_minus_eqI1";
+qed "abs_minus_eqI1";
 
-Goalw [rabs_def] "0r<= rabs x";
+Goalw [abs_real_def] "0r<= abs x";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_ge_zero";
+qed "abs_ge_zero";
 
-Goalw [rabs_def] "rabs(rabs x)=rabs x";
+Goalw [abs_real_def] "abs(abs x)=abs (x::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_idempotent";
+qed "abs_idempotent";
 
-Goalw [rabs_def] "(x=0r) = (rabs x = 0r)";
+Goalw [abs_real_def] "(x=0r) = (abs x = 0r)";
 by (Full_simp_tac 1);
-qed "rabs_zero_iff";
+qed "abs_zero_iff";
 
-Goal  "(x ~= 0r) = (rabs x ~= 0r)";
-by (full_simp_tac (simpset() addsimps [rabs_zero_iff RS sym]) 1);
-qed "rabs_not_zero_iff";
+Goal  "(x ~= 0r) = (abs x ~= 0r)";
+by (full_simp_tac (simpset() addsimps [abs_zero_iff RS sym]) 1);
+qed "abs_not_zero_iff";
 
-Goalw [rabs_def] "x<=rabs x";
+Goalw [abs_real_def] "x<=abs (x::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_ge_self";
+qed "abs_ge_self";
 
-Goalw [rabs_def] "-x<=rabs x";
+Goalw [abs_real_def] "-x<=abs (x::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_ge_minus_self";
+qed "abs_ge_minus_self";
 
 (* case splits nightmare *)
-Goalw [rabs_def] "rabs(x*y) = (rabs x)*(rabs y)";
+Goalw [abs_real_def] "abs (x * y) = abs x * abs (y::real)";
 by (auto_tac (claset(),
 	      simpset() addsimps [real_minus_mult_eq1, real_minus_mult_commute,
 				  real_minus_mult_eq2]));
@@ -75,9 +75,9 @@
 by (dtac real_mult_less_zero1 5 THEN assume_tac 5);
 by (auto_tac (claset() addDs [real_less_asym,sym],
 	      simpset() addsimps [real_minus_mult_eq2 RS sym] @real_mult_ac));
-qed "rabs_mult";
+qed "abs_mult";
 
-Goalw [rabs_def] "x~= 0r ==> rabs(rinv(x)) = rinv(rabs(x))";
+Goalw [abs_real_def] "x~= 0r ==> abs(rinv(x)) = rinv(abs(x))";
 by (auto_tac (claset(), simpset() addsimps [real_minus_rinv]));
 by (ALLGOALS(dtac not_real_leE));
 by (etac real_less_asym 1);
@@ -86,40 +86,40 @@
 by (rtac (real_rinv_less_zero RSN (2,real_less_asym)) 1);
 by (assume_tac 2);
 by (blast_tac (claset() addSDs [real_le_imp_less_or_eq]) 1);
-qed "rabs_rinv";
+qed "abs_rinv";
 
-Goal "y ~= 0r ==> rabs(x*rinv(y)) = rabs(x)*rinv(rabs(y))";
-by (asm_simp_tac (simpset() addsimps [rabs_mult, rabs_rinv]) 1);
-qed "rabs_mult_rinv";
+Goal "y ~= 0r ==> abs(x*rinv(y)) = abs(x)*rinv(abs(y))";
+by (asm_simp_tac (simpset() addsimps [abs_mult, abs_rinv]) 1);
+qed "abs_mult_rinv";
 
-Goalw [rabs_def] "rabs(x+y) <= rabs x + rabs y";
+Goalw [abs_real_def] "abs(x+y) <= abs x + abs (y::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_triangle_ineq";
+qed "abs_triangle_ineq";
 
 (*Unused, but perhaps interesting as an example*)
-Goal "rabs(w + x + y + z) <= rabs(w) + rabs(x) + rabs(y) + rabs(z)";
-by (simp_tac (simpset() addsimps [rabs_triangle_ineq RS order_trans]) 1);
-qed "rabs_triangle_ineq_four";
+Goal "abs(w + x + y + z) <= abs(w) + abs(x) + abs(y) + abs(z::real)";
+by (simp_tac (simpset() addsimps [abs_triangle_ineq RS order_trans]) 1);
+qed "abs_triangle_ineq_four";
 
-Goalw [rabs_def] "rabs(-x)=rabs(x)";
+Goalw [abs_real_def] "abs(-x)=abs(x::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_minus_cancel";
+qed "abs_minus_cancel";
 
-Goalw [rabs_def] "rabs(x + (-y)) = rabs (y + (-x))";
+Goalw [abs_real_def] "abs(x + (-y)) = abs (y + (-(x::real)))";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_minus_add_cancel";
+qed "abs_minus_add_cancel";
 
-Goalw [rabs_def] "rabs(x + (-y)) <= rabs x + rabs y";
+Goalw [abs_real_def] "abs(x + (-y)) <= abs x + abs (y::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_triangle_minus_ineq";
+qed "abs_triangle_minus_ineq";
 
-Goalw [rabs_def] "rabs x < r --> rabs y < s --> rabs(x+y) < r+s";
+Goalw [abs_real_def] "abs x < r --> abs y < s --> abs(x+y) < r+(s::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed_spec_mp "rabs_add_less";
+qed_spec_mp "abs_add_less";
 
-Goalw [rabs_def] "rabs x < r --> rabs y < s --> rabs(x+ (-y)) < r+s";
+Goalw [abs_real_def] "abs x < r --> abs y < s --> abs(x+ (-y)) < r+(s::real)";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0]) 1);
-qed "rabs_add_minus_less";
+qed "abs_add_minus_less";
 
 (* lemmas manipulating terms *)
 Goal "(0r*x<r)=(0r<r)";
@@ -139,69 +139,68 @@
 
 (* proofs lifted from previous older version
    FIXME: use a stronger version of real_mult_less_mono *)
-Goal "[| rabs x<r; rabs y<s |] ==> rabs(x*y)<r*s";
-by (simp_tac (simpset() addsimps [rabs_mult]) 1);
+Goal "[| abs x<r; abs y<s |] ==> abs(x*y)<r*(s::real)";
+by (simp_tac (simpset() addsimps [abs_mult]) 1);
 by (rtac real_mult_le_less_trans 1);
-by (rtac rabs_ge_zero 1);
+by (rtac abs_ge_zero 1);
 by (assume_tac 1);
-by (blast_tac (HOL_cs addIs [rabs_ge_zero, real_mult_less_mono1, 
+by (blast_tac (HOL_cs addIs [abs_ge_zero, real_mult_less_mono1, 
 			     real_le_less_trans]) 1);
-by (blast_tac (HOL_cs addIs [rabs_ge_zero, real_mult_order, 
+by (blast_tac (HOL_cs addIs [abs_ge_zero, real_mult_order, 
 			     real_le_less_trans]) 1);
-qed "rabs_mult_less";
+qed "abs_mult_less";
 
-Goal "[| rabs x < r; rabs y < s |] ==> rabs(x)*rabs(y)<r*s";
-by (auto_tac (claset() addIs [rabs_mult_less],
-              simpset() addsimps [rabs_mult RS sym]));
-qed "rabs_mult_less2";
+Goal "[| abs x < r; abs y < s |] ==> abs(x)*abs(y)<r*(s::real)";
+by (auto_tac (claset() addIs [abs_mult_less],
+              simpset() addsimps [abs_mult RS sym]));
+qed "abs_mult_less2";
 
-Goal "1r < rabs x ==> rabs y <= rabs(x*y)";
-by (cut_inst_tac [("x1","y")] (rabs_ge_zero RS real_le_imp_less_or_eq) 1);
+Goal "1r < abs x ==> abs y <= abs(x*y)";
+by (cut_inst_tac [("x1","y")] (abs_ge_zero RS real_le_imp_less_or_eq) 1);
 by (EVERY1[etac disjE,rtac real_less_imp_le]);
 by (dres_inst_tac [("W","1r")]  real_less_sum_gt_zero 1);
-by (forw_inst_tac [("y","rabs x + (-1r)")] real_mult_order 1);
+by (forw_inst_tac [("y","abs x + (-1r)")] real_mult_order 1);
 by (assume_tac 1);
 by (rtac real_sum_gt_zero_less 1);
 by (asm_full_simp_tac (simpset() addsimps [real_add_mult_distrib2,
-					   real_mult_commute, rabs_mult]) 1);
+					   real_mult_commute, abs_mult]) 1);
 by (dtac sym 1);
-by (asm_full_simp_tac (simpset() addsimps [rabs_mult]) 1);
-qed "rabs_mult_le";
+by (asm_full_simp_tac (simpset() addsimps [abs_mult]) 1);
+qed "abs_mult_le";
 
-Goal "[| 1r < rabs x; r < rabs y|] ==> r < rabs(x*y)";
-by (blast_tac (HOL_cs addIs [rabs_mult_le, real_less_le_trans]) 1);
-qed "rabs_mult_gt";
+Goal "[| 1r < abs x; r < abs y|] ==> r < abs(x*y)";
+by (blast_tac (HOL_cs addIs [abs_mult_le, real_less_le_trans]) 1);
+qed "abs_mult_gt";
 
-Goal "rabs(x)<r ==> 0r<r";
-by (blast_tac (claset() addSIs [real_le_less_trans,rabs_ge_zero]) 1);
-qed "rabs_less_gt_zero";
+Goal "abs(x)<r ==> 0r<r";
+by (blast_tac (claset() addSIs [real_le_less_trans,abs_ge_zero]) 1);
+qed "abs_less_gt_zero";
 
-Goalw [rabs_def] "rabs 1r = 1r";
+Goalw [abs_real_def] "abs 1r = 1r";
 by (simp_tac (simpset() addsimps [zero_eq_numeral_0, one_eq_numeral_1]) 1);
-qed "rabs_one";
+qed "abs_one";
 
-Goalw [rabs_def] "rabs x =x | rabs x = -x";
+Goalw [abs_real_def] "abs x =x | abs x = -(x::real)";
 by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_disj";
+qed "abs_disj";
 
-Goalw [rabs_def] "(rabs x < r) = (-r<x & x<r)";
+Goalw [abs_real_def] "(abs x < r) = (-r<x & x<(r::real))";
 by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_interval_iff";
+qed "abs_interval_iff";
 
-Goalw [rabs_def] "(rabs x <= r) = (-r<=x & x<=r)";
+Goalw [abs_real_def] "(abs x <= r) = (-r<=x & x<=(r::real))";
 by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_le_interval_iff";
+qed "abs_le_interval_iff";
 
-Goalw [rabs_def] "(rabs (x + (-y)) < r) = (y + (-r) < x & x < y + r)";
+Goalw [abs_real_def] "(abs (x + (-y)) < r) = (y + (-r) < x & x < y + (r::real))";
 by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_add_minus_interval_iff";
-
-Goalw [rabs_def] "0r < k ==> 0r < k + rabs(x)";
-by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_add_pos_gt_zero";
+qed "abs_add_minus_interval_iff";
 
-Goalw [rabs_def] "0r < 1r + rabs(x)";
+Goalw [abs_real_def] "0r < k ==> 0r < k + abs(x)";
+by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
+qed "abs_add_pos_gt_zero";
+
+Goalw [abs_real_def] "0r < 1r + abs(x)";
 by (auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0, one_eq_numeral_1]));
-qed "rabs_add_one_gt_zero";
-Addsimps [rabs_add_one_gt_zero];
-
+qed "abs_add_one_gt_zero";
+Addsimps [abs_add_one_gt_zero];
--- a/src/HOL/Real/RealBin.ML	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/RealBin.ML	Mon May 08 20:57:02 2000 +0200
@@ -110,10 +110,10 @@
 Addsimps [le_real_number_of_eq_not_less];
 
 
-(** rabs (absolute value) **)
+(** abs (absolute value) **)
 
-Goalw [rabs_def]
-     "rabs (number_of v :: real) = \
+Goalw [abs_real_def]
+     "abs (number_of v :: real) = \
 \       (if neg (number_of v) then number_of (bin_minus v) \
 \        else number_of v)";
 by (simp_tac
@@ -121,9 +121,9 @@
       bin_arith_simps@
       [minus_real_number_of, zero_eq_numeral_0, le_real_number_of_eq_not_less,
        less_real_number_of, real_of_int_le_iff]) 1);
-qed "rabs_nat_number_of";
+qed "abs_nat_number_of";
 
-Addsimps [rabs_nat_number_of];
+Addsimps [abs_nat_number_of];
 
 
 (*** New versions of existing theorems involving 0r, 1r ***)
@@ -210,10 +210,10 @@
 Addsimprocs [fast_real_arith_simproc]
 end;
 
-Goalw [rabs_def]
-  "P(rabs x) = ((#0 <= x --> P x) & (x < #0 --> P(-x)))";
+Goalw [abs_real_def]
+  "P(abs (x::real)) = ((#0 <= x --> P x) & (x < #0 --> P(-x)))";
 by(auto_tac (claset(), simpset() addsimps [zero_eq_numeral_0]));
-qed "rabs_split";
+qed "abs_split";
 
-arith_tac_split_thms := !arith_tac_split_thms @ [rabs_split];
+arith_tac_split_thms := !arith_tac_split_thms @ [abs_split];
 
--- a/src/HOL/Real/RealOrd.thy	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/RealOrd.thy	Mon May 08 20:57:02 2000 +0200
@@ -11,8 +11,7 @@
 instance real :: order (real_le_refl,real_le_trans,real_le_anti_sym,real_less_le)
 instance real :: linorder (real_le_linear)
 
-constdefs
-   rabs   :: real => real
-   "rabs r      == if 0r<=r then r else -r" 
+defs
+  abs_real_def "abs r == (if 0r <= r then r else -r)"
 
 end
--- a/src/HOL/Real/RealPow.ML	Mon May 08 18:20:04 2000 +0200
+++ b/src/HOL/Real/RealPow.ML	Mon May 08 20:57:02 2000 +0200
@@ -30,11 +30,11 @@
     simpset()));
 qed_spec_mp "realpow_rinv";
 
-Goal "rabs r ^ n = rabs (r ^ n)";
+Goal "abs (r::real) ^ n = abs (r ^ n)";
 by (induct_tac "n" 1);
 by (auto_tac (claset(),simpset() addsimps 
-    [rabs_mult,rabs_one]));
-qed "realpow_rabs";
+    [abs_mult,abs_one]));
+qed "realpow_abs";
 
 Goal "(r::real) ^ (n + m) = (r ^ n) * (r ^ m)";
 by (induct_tac "n" 1);
@@ -100,18 +100,18 @@
 Addsimps (map (rename_numerals thy) [realpow_zero, realpow_eq_one]);
 
 
-Goal "rabs(-(1r ^ n)) = 1r";
+Goal "abs(-(1r ^ n)) = 1r";
 by (simp_tac (simpset() addsimps 
-    [rabs_minus_cancel,rabs_one]) 1);
-qed "rabs_minus_realpow_one";
-Addsimps [rabs_minus_realpow_one];
+    [abs_minus_cancel,abs_one]) 1);
+qed "abs_minus_realpow_one";
+Addsimps [abs_minus_realpow_one];
 
-Goal "rabs((-1r) ^ n) = 1r";
+Goal "abs((-1r) ^ n) = 1r";
 by (induct_tac "n" 1);
-by (auto_tac (claset(),simpset() addsimps [rabs_mult,
-         rabs_minus_cancel,rabs_one]));
-qed "rabs_realpow_minus_one";
-Addsimps [rabs_realpow_minus_one];
+by (auto_tac (claset(),simpset() addsimps [abs_mult,
+         abs_minus_cancel,abs_one]));
+qed "abs_realpow_minus_one";
+Addsimps [abs_realpow_minus_one];
 
 Goal "((r::real) * s) ^ n = (r ^ n) * (s ^ n)";
 by (induct_tac "n" 1);
@@ -123,16 +123,16 @@
 qed "realpow_two_le";
 Addsimps [realpow_two_le];
 
-Goal "rabs(x ^ 2) = x ^ 2";
-by (simp_tac (simpset() addsimps [rabs_eqI1]) 1);
-qed "rabs_realpow_two";
-Addsimps [rabs_realpow_two];
+Goal "abs((x::real) ^ 2) = x ^ 2";
+by (simp_tac (simpset() addsimps [abs_eqI1]) 1);
+qed "abs_realpow_two";
+Addsimps [abs_realpow_two];
 
-Goal "rabs(x) ^ 2 = x ^ 2";
+Goal "abs(x::real) ^ 2 = x ^ 2";
 by (simp_tac (simpset() addsimps 
-    [realpow_rabs,rabs_eqI1] delsimps [realpow_Suc]) 1);
-qed "realpow_two_rabs";
-Addsimps [realpow_two_rabs];
+    [realpow_abs,abs_eqI1] delsimps [realpow_Suc]) 1);
+qed "realpow_two_abs";
+Addsimps [realpow_two_abs];
 
 Goal "1r < r ==> 1r < r ^ 2";
 by (auto_tac (claset(),simpset() addsimps [realpow_two]));
@@ -373,5 +373,5 @@
 
 Addsimps (map (rename_numerals thy) 
 	  [realpow_two_le, realpow_zero_le,
-	   rabs_minus_realpow_one, rabs_realpow_minus_one,
+	   abs_minus_realpow_one, abs_realpow_minus_one,
 	   realpow_minus_one, realpow_minus_one2, realpow_minus_one_odd]);