--- a/src/HOL/Decision_Procs/Polynomial_List.thy Tue Aug 06 22:27:52 2013 +0200
+++ b/src/HOL/Decision_Procs/Polynomial_List.thy Tue Aug 06 23:20:25 2013 +0200
@@ -10,62 +10,61 @@
text{* Application of polynomial as a real function. *}
-primrec poly :: "'a list => 'a => ('a::{comm_ring})"
+primrec poly :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a::comm_ring"
where
poly_Nil: "poly [] x = 0"
-| poly_Cons: "poly (h#t) x = h + x * poly t x"
+| poly_Cons: "poly (h # t) x = h + x * poly t x"
subsection{*Arithmetic Operations on Polynomials*}
text{*addition*}
-primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "+++" 65)
+primrec padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a::comm_ring_1 list" (infixl "+++" 65)
where
padd_Nil: "[] +++ l2 = l2"
-| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t
- else (h + hd l2)#(t +++ tl l2))"
+| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))"
text{*Multiplication by a constant*}
-primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70)
+primrec cmult :: "'a::comm_ring_1 \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "%*" 70)
where
cmult_Nil: "c %* [] = []"
-| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)"
+| cmult_Cons: "c %* (h # t) = (c * h) # (c %* t)"
text{*Multiplication by a polynomial*}
-primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "***" 70)
+primrec pmult :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a::comm_ring_1 list" (infixl "***" 70)
where
pmult_Nil: "[] *** l2 = []"
-| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2
- else (h %* l2) +++ ((0) # (t *** l2)))"
+| pmult_Cons: "(h # t) *** l2 =
+ (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))"
text{*Repeated multiplication by a polynomial*}
-primrec mulexp :: "[nat, 'a list, 'a list] => ('a ::comm_ring_1) list"
+primrec mulexp :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a::comm_ring_1 list"
where
mulexp_zero: "mulexp 0 p q = q"
| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q"
text{*Exponential*}
-primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list" (infixl "%^" 80)
+primrec pexp :: "'a list \<Rightarrow> nat \<Rightarrow> 'a::comm_ring_1 list" (infixl "%^" 80)
where
pexp_0: "p %^ 0 = [1]"
| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)"
text{*Quotient related value of dividing a polynomial by x + a*}
(* Useful for divisor properties in inductive proofs *)
-primrec pquot :: "['a list, 'a::field] => 'a list"
+primrec pquot :: "'a list \<Rightarrow> 'a::field \<Rightarrow> 'a list"
where
- pquot_Nil: "pquot [] a= []"
-| pquot_Cons:
- "pquot (h#t) a = (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))"
+ pquot_Nil: "pquot [] a = []"
+| pquot_Cons: "pquot (h # t) a =
+ (if t = [] then [h] else (inverse a * (h - hd (pquot t a))) # pquot t a)"
text{*normalization of polynomials (remove extra 0 coeff)*}
-primrec pnormalize :: "('a::comm_ring_1) list => 'a list"
+primrec pnormalize :: "'a::comm_ring_1 list \<Rightarrow> 'a list"
where
pnormalize_Nil: "pnormalize [] = []"
-| pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = [])
- then (if (h = 0) then [] else [h])
- else (h#(pnormalize p)))"
+| pnormalize_Cons: "pnormalize (h # p) =
+ (if (pnormalize p = []) then (if h = 0 then [] else [h])
+ else (h # pnormalize p))"
definition "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])"
definition "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))"
@@ -74,20 +73,18 @@
definition poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80)
where "-- p = (- 1) %* p"
-definition divides :: "[('a::comm_ring_1) list, 'a list] => bool" (infixl "divides" 70)
- where "p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"
+definition divides :: "'a::comm_ring_1 list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "divides" 70)
+ where "p1 divides p2 = (\<exists>q. poly p2 = poly (p1 *** q))"
-definition order :: "('a::comm_ring_1) => 'a list => nat" --{*order of a polynomial*}
- where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ (Suc n)) divides p))"
+definition order :: "'a::comm_ring_1 \<Rightarrow> 'a list \<Rightarrow> nat" --{*order of a polynomial*}
+ where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ Suc n) divides p))"
-definition degree :: "('a::comm_ring_1) list => nat" --{*degree of a polynomial*}
+definition degree :: "'a::comm_ring_1 list \<Rightarrow> nat" --{*degree of a polynomial*}
where "degree p = length (pnormalize p) - 1"
-definition
- rsquarefree :: "('a::comm_ring_1) list => bool" where
- --{*squarefree polynomials --- NB with respect to real roots only.*}
- "rsquarefree p = (poly p \<noteq> poly [] &
- (\<forall>a. (order a p = 0) | (order a p = 1)))"
+definition rsquarefree :: "'a::comm_ring_1 list \<Rightarrow> bool"
+ where --{*squarefree polynomials --- NB with respect to real roots only.*}
+ "rsquarefree p = (poly p \<noteq> poly [] \<and> (\<forall>a. order a p = 0 \<or> order a p = 1))"
lemma padd_Nil2 [simp]: "p +++ [] = p"
by (induct p) auto
@@ -110,63 +107,58 @@
text{*Handy general properties*}
lemma padd_commut: "b +++ a = a +++ b"
- apply (subgoal_tac "\<forall>a. b +++ a = a +++ b")
- apply (induct_tac [2] "b", auto)
+ apply (induct b arbitrary: a)
+ apply auto
apply (rule padd_Cons [THEN ssubst])
- apply (case_tac "aa", auto)
+ apply (case_tac aa)
+ apply auto
done
-lemma padd_assoc [rule_format]: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)"
- apply (induct "a", simp, clarify)
- apply (case_tac b, simp_all)
+lemma padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)"
+ apply (induct a arbitrary: b c)
+ apply simp
+ apply (case_tac b)
+ apply simp_all
done
-lemma poly_cmult_distr [rule_format]: "\<forall>q. a %* ( p +++ q) = (a %* p +++ a %* q)"
- apply (induct p)
+lemma poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)"
+ apply (induct p arbitrary: q)
apply simp
- apply clarify
apply (case_tac q)
apply (simp_all add: distrib_left)
done
-lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)"
- apply (induct t)
- apply simp
- apply (auto simp add: padd_commut)
- done
+lemma pmult_by_x [simp]: "[0, 1] *** t = ((0)#t)"
+ by (induct t) (auto simp add: padd_commut)
text{*properties of evaluation of polynomials.*}
lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
- apply (subgoal_tac "\<forall>p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x")
- apply (induct_tac [2] "p1", auto)
+ apply (induct p1 arbitrary: p2)
+ apply auto
apply (case_tac "p2")
apply (auto simp add: distrib_left)
done
lemma poly_cmult: "poly (c %* p) x = c * poly p x"
- apply (induct "p")
- apply (case_tac [2] "x=0")
+ apply (induct p)
+ apply simp
+ apply (cases "x = 0")
apply (auto simp add: distrib_left mult_ac)
done
lemma poly_minus: "poly (-- p) x = - (poly p x)"
- apply (simp add: poly_minus_def)
- apply (auto simp add: poly_cmult)
- done
+ by (simp add: poly_minus_def poly_cmult)
lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
- apply (subgoal_tac "\<forall>p2. poly (p1 *** p2) x = poly p1 x * poly p2 x")
- apply (simp (no_asm_simp))
- apply (induct "p1")
- apply (auto simp add: poly_cmult)
+ apply (induct p1 arbitrary: p2)
apply (case_tac p1)
apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac)
done
lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n"
- by (induct "n") (auto simp add: poly_cmult poly_mult)
+ by (induct n) (auto simp add: poly_cmult poly_mult)
text{*More Polynomial Evaluation Lemmas*}
@@ -177,45 +169,49 @@
by (simp add: poly_mult mult_assoc)
lemma poly_mult_Nil2 [simp]: "poly (p *** []) x = 0"
- by (induct "p") auto
+ by (induct p) auto
lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x"
- by (induct "n") (auto simp add: poly_mult mult_assoc)
+ by (induct n) (auto simp add: poly_mult mult_assoc)
subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides
@{term "p(x)"} *}
-lemma lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q"
- apply (induct "t", safe)
+lemma poly_linear_rem: "\<exists>q r. h # t = [r] +++ [-a, 1] *** q"
+ apply (induct t arbitrary: h)
apply (rule_tac x = "[]" in exI)
- apply (rule_tac x = h in exI, simp)
- apply (drule_tac x = aa in spec, safe)
+ apply (rule_tac x = h in exI)
+ apply simp
+ apply (drule_tac x = aa in meta_spec)
+ apply safe
apply (rule_tac x = "r#q" in exI)
apply (rule_tac x = "a*r + h" in exI)
- apply (case_tac "q", auto)
+ apply (case_tac q)
+ apply auto
done
-lemma poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q"
- using lemma_poly_linear_rem [where t = t and a = a] by auto
-
-
-lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"
+lemma poly_linear_divides: "poly p a = 0 \<longleftrightarrow> p = [] \<or> (\<exists>q. p = [-a, 1] *** q)"
apply (auto simp add: poly_add poly_cmult distrib_left)
- apply (case_tac "p", simp)
- apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe)
- apply (case_tac "q", auto)
- apply (drule_tac x = "[]" in spec, simp)
+ apply (case_tac p)
+ apply simp
+ apply (cut_tac h = aa and t = list and a = a in poly_linear_rem)
+ apply safe
+ apply (case_tac q)
+ apply auto
+ apply (drule_tac x = "[]" in spec)
+ apply simp
apply (auto simp add: poly_add poly_cmult add_assoc)
- apply (drule_tac x = "aa#lista" in spec, auto)
+ apply (drule_tac x = "aa#lista" in spec)
+ apply auto
done
-lemma lemma_poly_length_mult [simp]: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)"
- by (induct p) auto
+lemma lemma_poly_length_mult [simp]: "length (k %* p +++ (h # (a %* p))) = Suc (length p)"
+ by (induct p arbitrary: h k a) auto
-lemma lemma_poly_length_mult2 [simp]: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)"
- by (induct p) auto
+lemma lemma_poly_length_mult2 [simp]: "length (k %* p +++ (h # p)) = Suc (length p)"
+ by (induct p arbitrary: h k) auto
-lemma poly_length_mult [simp]: "length([-a,1] *** q) = Suc (length q)"
+lemma poly_length_mult [simp]: "length([-a, 1] *** q) = Suc (length q)"
by auto
@@ -224,26 +220,23 @@
lemma poly_cmult_length [simp]: "length (a %* p) = length p"
by (induct p) auto
-lemma poly_add_length [rule_format]:
- "\<forall>p2. length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)"
- apply (induct p1)
- apply simp_all
- apply arith
- done
+lemma poly_add_length:
+ "length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)"
+ by (induct p1 arbitrary: p2) auto
-lemma poly_root_mult_length [simp]: "length([a,b] *** p) = Suc (length p)"
+lemma poly_root_mult_length [simp]: "length ([a, b] *** p) = Suc (length p)"
by simp
-lemma poly_mult_not_eq_poly_Nil [simp]: "(poly (p *** q) x \<noteq> poly [] x) =
- (poly p x \<noteq> poly [] x & poly q x \<noteq> poly [] (x::'a::idom))"
+lemma poly_mult_not_eq_poly_Nil [simp]:
+ "poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] (x::'a::idom)"
by (auto simp add: poly_mult)
-lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)"
+lemma poly_mult_eq_zero_disj: "poly (p *** q) (x::'a::idom) = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0"
by (auto simp add: poly_mult)
text{*Normalisation Properties*}
-lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"
+lemma poly_normalized_nil: "pnormalize p = [] \<longrightarrow> poly p x = 0"
by (induct p) auto
text{*A nontrivial polynomial of degree n has no more than n roots*}
@@ -251,16 +244,21 @@
lemma poly_roots_index_lemma0 [rule_format]:
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n
--> (\<exists>i. \<forall>x. (poly p x = (0::'a::idom)) --> (\<exists>m. (m \<le> n & x = i m)))"
- apply (induct "n", safe)
+ apply (induct n)
+ apply safe
apply (rule ccontr)
- apply (subgoal_tac "\<exists>a. poly p a = 0", safe)
- apply (drule poly_linear_divides [THEN iffD1], safe)
+ apply (subgoal_tac "\<exists>a. poly p a = 0")
+ apply safe
+ apply (drule poly_linear_divides [THEN iffD1])
+ apply safe
apply (drule_tac x = q in spec)
apply (drule_tac x = x in spec)
apply (simp del: poly_Nil pmult_Cons)
apply (erule exE)
- apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe)
- apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe)
+ apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec)
+ apply safe
+ apply (drule poly_mult_eq_zero_disj [THEN iffD1])
+ apply safe
apply (drule_tac x = "Suc (length q)" in spec)
apply (auto simp add: field_simps)
apply (drule_tac x = xa in spec)
@@ -278,7 +276,8 @@
lemma poly_roots_finite_lemma:
"poly p (x::'a::idom) \<noteq> poly [] x \<Longrightarrow>
\<exists>N i. \<forall>x. (poly p x = 0) \<longrightarrow> (\<exists>n. (n::nat) < N & x = i n)"
- apply (drule poly_roots_index_length0, safe)
+ apply (drule poly_roots_index_length0)
+ apply safe
apply (rule_tac x = "Suc (length p)" in exI)
apply (rule_tac x = i in exI)
apply (simp add: less_Suc_eq_le)
@@ -286,22 +285,25 @@
lemma real_finite_lemma:
- assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)"
+ assumes "\<forall>x. P x \<longrightarrow> (\<exists>n. n < length j & x = j!n)"
shows "finite {(x::'a::idom). P x}"
proof -
let ?M = "{x. P x}"
let ?N = "set j"
- have "?M \<subseteq> ?N" using P by auto
+ have "?M \<subseteq> ?N" using assms by auto
then show ?thesis using finite_subset by auto
qed
lemma poly_roots_index_lemma [rule_format]:
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n
\<longrightarrow> (\<exists>i. \<forall>x. (poly p x = (0::'a::{idom})) \<longrightarrow> x \<in> set i)"
- apply (induct "n", safe)
+ apply (induct n)
+ apply safe
apply (rule ccontr)
- apply (subgoal_tac "\<exists>a. poly p a = 0", safe)
- apply (drule poly_linear_divides [THEN iffD1], safe)
+ apply (subgoal_tac "\<exists>a. poly p a = 0")
+ apply safe
+ apply (drule poly_linear_divides [THEN iffD1])
+ apply safe
apply (drule_tac x = q in spec)
apply (drule_tac x = x in spec)
apply (auto simp del: poly_Nil pmult_Cons)
@@ -348,21 +350,21 @@
lemma UNIV_ring_char_0_infinte: "\<not> finite (UNIV:: ('a::ring_char_0) set)"
proof
assume F: "finite (UNIV :: 'a set)"
- have th0: "of_nat ` UNIV \<subseteq> (UNIV:: 'a set)" by simp
+ have th0: "of_nat ` UNIV \<subseteq> (UNIV :: 'a set)" by simp
from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" .
- have th': "inj_on (of_nat::nat \<Rightarrow> 'a) (UNIV)"
+ have th': "inj_on (of_nat::nat \<Rightarrow> 'a) UNIV"
unfolding inj_on_def by auto
from finite_imageD[OF th th'] UNIV_nat_infinite
show False by blast
qed
-lemma poly_roots_finite: "(poly p \<noteq> poly []) = finite {x. poly p x = (0::'a::{idom, ring_char_0})}"
+lemma poly_roots_finite: "poly p \<noteq> poly [] \<longleftrightarrow> finite {x. poly p x = (0::'a::{idom,ring_char_0})}"
proof
- assume H: "poly p \<noteq> poly []"
- show "finite {x. poly p x = (0::'a)}"
- using H
+ assume "poly p \<noteq> poly []"
+ then show "finite {x. poly p x = (0::'a)}"
apply -
- apply (erule contrapos_np, rule ext)
+ apply (erule contrapos_np)
+ apply (rule ext)
apply (rule ccontr)
apply (clarify dest!: poly_roots_finite_lemma')
using finite_subset
@@ -376,7 +378,8 @@
qed
next
assume "finite {x. poly p x = (0\<Colon>'a)}"
- then show "poly p \<noteq> poly []" using UNIV_ring_char_0_infinte by auto
+ then show "poly p \<noteq> poly []"
+ using UNIV_ring_char_0_infinte by auto
qed
text{*Entirety and Cancellation for polynomials*}
@@ -387,21 +390,21 @@
by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq)
lemma poly_entire:
- "(poly (p *** q) =
- poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))"
+ "poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list) \<longleftrightarrow>
+ (poly p = poly [] \<or> poly q = poly [])"
apply (auto dest: fun_cong simp add: poly_entire_lemma poly_mult)
apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst])
done
lemma poly_entire_neg:
- "(poly (p *** q) \<noteq> poly ([]::('a::{idom,ring_char_0}) list)) =
- ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
+ "poly (p *** q) \<noteq> poly ([]::('a::{idom,ring_char_0}) list) \<longleftrightarrow>
+ poly p \<noteq> poly [] \<and> poly q \<noteq> poly []"
by (simp add: poly_entire)
lemma fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
by auto
-lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)"
+lemma poly_add_minus_zero_iff: "poly (p +++ -- q) = poly [] \<longleftrightarrow> poly p = poly q"
by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult)
lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
@@ -409,26 +412,27 @@
lemma poly_mult_left_cancel:
"(poly (p *** q) = poly (p *** r)) =
- (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)"
+ (poly p = poly ([]::('a::{idom,ring_char_0}) list) | poly q = poly r)"
apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst])
apply (auto simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
done
lemma poly_exp_eq_zero [simp]:
- "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \<noteq> 0)"
+ "poly (p %^ n) = poly ([]::('a::idom) list) \<longleftrightarrow> poly p = poly [] \<and> n \<noteq> 0"
apply (simp only: fun_eq add: HOL.all_simps [symmetric])
apply (rule arg_cong [where f = All])
apply (rule ext)
- apply (induct_tac "n")
+ apply (induct_tac n)
apply (auto simp add: poly_mult)
done
-lemma poly_prime_eq_zero [simp]: "poly [a,(1::'a::comm_ring_1)] \<noteq> poly []"
+lemma poly_prime_eq_zero [simp]: "poly [a, 1::'a::comm_ring_1] \<noteq> poly []"
apply (simp add: fun_eq)
- apply (rule_tac x = "1 - a" in exI, simp)
+ apply (rule_tac x = "1 - a" in exI)
+ apply simp
done
-lemma poly_exp_prime_eq_zero [simp]: "(poly ([a, (1::'a::idom)] %^ n) \<noteq> poly [])"
+lemma poly_exp_prime_eq_zero [simp]: "poly ([a, (1::'a::idom)] %^ n) \<noteq> poly []"
by auto
text{*A more constructive notion of polynomials being trivial*}
@@ -437,8 +441,10 @@
"poly (h # t) = poly [] \<Longrightarrow> h = (0::'a::{idom,ring_char_0}) & poly t = poly []"
apply (simp add: fun_eq)
apply (case_tac "h = 0")
- apply (drule_tac [2] x = 0 in spec, auto)
- apply (case_tac "poly t = poly []", simp)
+ apply (drule_tac [2] x = 0 in spec)
+ apply auto
+ apply (case_tac "poly t = poly []")
+ apply simp
proof -
fix x
assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []"
@@ -450,7 +456,7 @@
show "poly t x = (0\<Colon>'a)" by simp
qed
-lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p"
+lemma poly_zero: "poly p = poly [] \<longleftrightarrow> list_all (\<lambda>c. c = (0::'a::{idom,ring_char_0})) p"
apply (induct p)
apply simp
apply (rule iffI)
@@ -461,7 +467,7 @@
text{*Basics of divisibility.*}
-lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)"
+lemma poly_primes: "[a, (1::'a::idom)] divides (p *** q) \<longleftrightarrow> [a, 1] divides p \<or> [a, 1] divides q"
apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric])
apply (drule_tac x = "-a" in spec)
apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric])
@@ -477,7 +483,8 @@
done
lemma poly_divides_trans: "p divides q \<Longrightarrow> q divides r \<Longrightarrow> p divides r"
- apply (simp add: divides_def, safe)
+ apply (simp add: divides_def)
+ apply safe
apply (rule_tac x = "qa *** qaa" in exI)
apply (auto simp add: poly_mult fun_eq mult_assoc)
done
@@ -495,25 +502,26 @@
by (blast intro: poly_divides_exp poly_divides_trans)
lemma poly_divides_add: "p divides q \<Longrightarrow> p divides r \<Longrightarrow> p divides (q +++ r)"
- apply (simp add: divides_def, auto)
+ apply (simp add: divides_def)
+ apply auto
apply (rule_tac x = "qa +++ qaa" in exI)
apply (auto simp add: poly_add fun_eq poly_mult distrib_left)
done
lemma poly_divides_diff: "p divides q \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides r"
- apply (simp add: divides_def, auto)
+ apply (auto simp add: divides_def)
apply (rule_tac x = "qaa +++ -- qa" in exI)
apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps)
done
-lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q"
+lemma poly_divides_diff2: "p divides r \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides q"
apply (erule poly_divides_diff)
apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac)
done
-lemma poly_divides_zero: "poly p = poly [] ==> q divides p"
+lemma poly_divides_zero: "poly p = poly [] \<Longrightarrow> q divides p"
apply (simp add: divides_def)
- apply (rule exI[where x="[]"])
+ apply (rule exI [where x = "[]"])
apply (auto simp add: fun_eq poly_mult)
done
@@ -525,33 +533,40 @@
text{*At last, we can consider the order of a root.*}
-
lemma poly_order_exists_lemma [rule_format]:
"\<forall>p. length p = d \<longrightarrow> poly p \<noteq> poly [] \<longrightarrow>
(\<exists>n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \<noteq> 0)"
apply (induct "d")
- apply (simp add: fun_eq, safe)
+ apply (simp add: fun_eq)
+ apply safe
apply (case_tac "poly p a = 0")
- apply (drule_tac poly_linear_divides [THEN iffD1], safe)
+ apply (drule_tac poly_linear_divides [THEN iffD1])
+ apply safe
apply (drule_tac x = q in spec)
- apply (drule_tac poly_entire_neg [THEN iffD1], safe, force)
+ apply (drule_tac poly_entire_neg [THEN iffD1])
+ apply safe
+ apply force
apply (rule_tac x = "Suc n" in exI)
apply (rule_tac x = qa in exI)
apply (simp del: pmult_Cons)
- apply (rule_tac x = 0 in exI, force)
+ apply (rule_tac x = 0 in exI)
+ apply force
done
(* FIXME: Tidy up *)
lemma poly_order_exists:
- "[| length p = d; poly p \<noteq> poly [] |]
- ==> \<exists>n. ([-a, 1] %^ n) divides p &
- ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)"
- apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)
- apply (rule_tac x = n in exI, safe)
+ "length p = d \<Longrightarrow> poly p \<noteq> poly [] \<Longrightarrow>
+ \<exists>n. ([-a, 1] %^ n) divides p \<and> \<not> (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)"
+ apply (drule poly_order_exists_lemma [where a=a])
+ apply assumption
+ apply clarify
+ apply (rule_tac x = n in exI)
+ apply safe
apply (unfold divides_def)
apply (rule_tac x = q in exI)
- apply (induct_tac n, simp)
- apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult distrib_left mult_ac)
+ apply (induct_tac n)
+ apply simp
+ apply (simp add: poly_add poly_cmult poly_mult distrib_left mult_ac)
apply safe
apply (subgoal_tac "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** qa)")
apply simp
@@ -567,19 +582,18 @@
lemma poly_one_divides [simp]: "[1] divides p"
by (auto simp: divides_def)
-lemma poly_order: "poly p \<noteq> poly []
- ==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p &
- ~(([-a, 1] %^ (Suc n)) divides p)"
+lemma poly_order: "poly p \<noteq> poly [] \<Longrightarrow>
+ \<exists>! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p \<and> \<not> (([-a, 1] %^ Suc n) divides p)"
apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc)
apply (cut_tac x = y and y = n in less_linear)
apply (drule_tac m = n in poly_exp_divides)
apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides]
- simp del: pmult_Cons pexp_Suc)
+ simp del: pmult_Cons pexp_Suc)
done
text{*Order*}
-lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n"
+lemma some1_equalityD: "n = (SOME n. P n) \<Longrightarrow> EX! n. P n \<Longrightarrow> P n"
by (blast intro: someI2)
lemma order:
@@ -597,14 +611,14 @@
~(([-a, 1] %^ (Suc(order a p))) divides p)"
by (simp add: order del: pexp_Suc)
-lemma order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;
- ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)
- |] ==> (n = order a p)"
+lemma order_unique: "poly p \<noteq> poly [] \<Longrightarrow> ([-a, 1] %^ n) divides p \<Longrightarrow>
+ \<not> (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) \<Longrightarrow> n = order a p"
using order [of a n p] by auto
-lemma order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &
- ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p))
- ==> (n = order a p)"
+lemma order_unique_lemma:
+ "(poly p \<noteq> poly [] \<and> ([-a, 1] %^ n) divides p \<and>
+ \<not> (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) \<Longrightarrow>
+ n = order a p"
by (blast intro: order_unique)
lemma order_poly: "poly p = poly q ==> order a p = order a q"
@@ -613,40 +627,44 @@
lemma pexp_one [simp]: "p %^ (Suc 0) = p"
by (induct p) simp_all
-lemma lemma_order_root [rule_format]:
- "\<forall>p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p
- --> poly p a = 0"
- apply (induct n)
+lemma lemma_order_root:
+ "0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p \<Longrightarrow> poly p a = 0"
+ apply (induct n arbitrary: p a)
apply blast
apply (auto simp add: divides_def poly_mult simp del: pmult_Cons)
done
-lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \<noteq> 0)"
- apply (case_tac "poly p = poly []", auto)
- apply (simp add: poly_linear_divides del: pmult_Cons, safe)
+lemma order_root: "poly p a = (0::'a::{idom,ring_char_0}) \<longleftrightarrow> poly p = poly [] \<or> order a p \<noteq> 0"
+ apply (cases "poly p = poly []")
+ apply auto
+ apply (simp add: poly_linear_divides del: pmult_Cons)
+ apply safe
apply (drule_tac [!] a = a in order2)
apply (rule ccontr)
- apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)
- using neq0_conv
- apply (blast intro: lemma_order_root)
+ apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons)
+ apply blast
+ using neq0_conv apply (blast intro: lemma_order_root)
done
-lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
- apply (case_tac "poly p = poly []", auto)
+lemma order_divides: "([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p \<longleftrightarrow>
+ poly p = poly [] \<or> n \<le> order a p"
+ apply (cases "poly p = poly []")
+ apply auto
apply (simp add: divides_def fun_eq poly_mult)
apply (rule_tac x = "[]" in exI)
- apply (auto dest!: order2 [where a=a]
- intro: poly_exp_divides simp del: pexp_Suc)
+ apply (auto dest!: order2 [where a = a] intro: poly_exp_divides simp del: pexp_Suc)
done
lemma order_decomp:
"poly p \<noteq> poly [] \<Longrightarrow>
- \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) &
- ~([-a, 1::'a::{idom,ring_char_0}] divides q)"
+ \<exists>q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \<and>
+ \<not> ([-a, 1::'a::{idom,ring_char_0}] divides q)"
apply (unfold divides_def)
apply (drule order2 [where a = a])
- apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe)
- apply (rule_tac x = q in exI, safe)
+ apply (simp add: divides_def del: pexp_Suc pmult_Cons)
+ apply safe
+ apply (rule_tac x = q in exI)
+ apply safe
apply (drule_tac x = qa in spec)
apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons)
done
@@ -659,25 +677,29 @@
apply (auto simp add: poly_entire simp del: pmult_Cons)
apply (drule_tac a = a in order2)+
apply safe
- apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)
+ apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons)
+ apply safe
apply (rule_tac x = "qa *** qaa" in exI)
apply (simp add: poly_mult mult_ac del: pmult_Cons)
apply (drule_tac a = a in order_decomp)+
apply safe
- apply (subgoal_tac "[-a,1] divides (qa *** qaa) ")
+ apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ")
apply (simp add: poly_primes del: pmult_Cons)
apply (auto simp add: divides_def simp del: pmult_Cons)
apply (rule_tac x = qb in exI)
- apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")
- apply (drule poly_mult_left_cancel [THEN iffD1], force)
- apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
- apply (drule poly_mult_left_cancel [THEN iffD1], force)
+ apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) =
+ poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")
+ apply (drule poly_mult_left_cancel [THEN iffD1])
+ apply force
+ apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) =
+ poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
+ apply (drule poly_mult_left_cancel [THEN iffD1])
+ apply force
apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)
done
-lemma order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \<noteq> 0)"
- by (rule order_root [THEN ssubst], auto)
-
+lemma order_root2: "poly p \<noteq> poly [] \<Longrightarrow> poly p a = 0 \<longleftrightarrow> order (a::'a::{idom,ring_char_0}) p \<noteq> 0"
+ by (rule order_root [THEN ssubst]) auto
lemma pmult_one [simp]: "[1] *** p = p"
by auto
@@ -686,17 +708,20 @@
by (simp add: fun_eq)
lemma rsquarefree_decomp:
- "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |]
- ==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0"
- apply (simp add: rsquarefree_def, safe)
+ "rsquarefree p \<Longrightarrow> poly p a = (0::'a::{idom,ring_char_0}) \<Longrightarrow>
+ \<exists>q. poly p = poly ([-a, 1] *** q) \<and> poly q a \<noteq> 0"
+ apply (simp add: rsquarefree_def)
+ apply safe
apply (frule_tac a = a in order_decomp)
apply (drule_tac x = a in spec)
apply (drule_tac a = a in order_root2 [symmetric])
apply (auto simp del: pmult_Cons)
- apply (rule_tac x = q in exI, safe)
+ apply (rule_tac x = q in exI)
+ apply safe
apply (simp add: poly_mult fun_eq)
apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1])
- apply (simp add: divides_def del: pmult_Cons, safe)
+ apply (simp add: divides_def del: pmult_Cons)
+ apply safe
apply (drule_tac x = "[]" in spec)
apply (auto simp add: fun_eq)
done
@@ -710,45 +735,55 @@
text{*The degree of a polynomial.*}
-lemma lemma_degree_zero: "list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []"
+lemma lemma_degree_zero: "list_all (\<lambda>c. c = 0) p \<longleftrightarrow> pnormalize p = []"
by (induct p) auto
-lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \<Longrightarrow> (degree p = 0)"
+lemma degree_zero: "poly p = poly ([] :: 'a::{idom,ring_char_0} list) \<Longrightarrow> degree p = 0"
+ apply (cases "pnormalize p = []")
apply (simp add: degree_def)
- apply (case_tac "pnormalize p = []")
- apply (auto simp add: poly_zero lemma_degree_zero )
+ apply (auto simp add: poly_zero lemma_degree_zero)
done
-lemma pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp
+lemma pnormalize_sing: "pnormalize [x] = [x] \<longleftrightarrow> x \<noteq> 0"
+ by simp
-lemma pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp
+lemma pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])"
+ by simp
-lemma pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"
+lemma pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c # p)"
unfolding pnormal_def by simp
-lemma pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"
+lemma pnormal_tail: "p \<noteq> [] \<Longrightarrow> pnormal (c # p) \<Longrightarrow> pnormal p"
unfolding pnormal_def
- apply (cases "pnormalize p = []", auto)
- apply (cases "c = 0", auto)
+ apply (cases "pnormalize p = []")
+ apply auto
+ apply (cases "c = 0")
+ apply auto
done
-lemma pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"
- apply (induct p, auto simp add: pnormal_def)
- apply (case_tac "pnormalize p = []", auto)
- apply (case_tac "a=0", auto)
+lemma pnormal_last_nonzero: "pnormal p \<Longrightarrow> last p \<noteq> 0"
+ apply (induct p)
+ apply (auto simp add: pnormal_def)
+ apply (case_tac "pnormalize p = []")
+ apply auto
+ apply (case_tac "a = 0")
+ apply auto
done
lemma pnormal_length: "pnormal p \<Longrightarrow> 0 < length p"
unfolding pnormal_def length_greater_0_conv by blast
-lemma pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p"
- apply (induct p, auto)
- apply (case_tac "p = []", auto)
+lemma pnormal_last_length: "0 < length p \<Longrightarrow> last p \<noteq> 0 \<Longrightarrow> pnormal p"
+ apply (induct p)
+ apply auto
+ apply (case_tac "p = []")
+ apply auto
apply (simp add: pnormal_def)
- apply (rule pnormal_cons, auto)
+ apply (rule pnormal_cons)
+ apply auto
done
-lemma pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)"
+lemma pnormal_id: "pnormal p \<longleftrightarrow> 0 < length p \<and> last p \<noteq> 0"
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast
text{*Tidier versions of finiteness of roots.*}
@@ -759,13 +794,15 @@
text{*bound for polynomial.*}
-lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{linordered_idom})) \<le> poly (map abs p) k"
- apply (induct "p", auto)
+lemma poly_mono: "abs x \<le> k \<Longrightarrow> abs (poly p (x::'a::{linordered_idom})) \<le> poly (map abs p) k"
+ apply (induct p)
+ apply auto
apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans)
apply (rule abs_triangle_ineq)
apply (auto intro!: mult_mono simp add: abs_mult)
done
-lemma poly_Sing: "poly [c] x = c" by simp
+lemma poly_Sing: "poly [c] x = c"
+ by simp
end