Modification of examples for the new operators, < and le.
--- a/src/ZF/ex/BT_Fn.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/BT_Fn.ML Tue Oct 05 17:49:23 1993 +0100
@@ -12,11 +12,11 @@
(** bt_rec -- by Vset recursion **)
-goalw BT.thy BT.con_defs "rank(l) : rank(Br(a,l,r))";
+goalw BT.thy BT.con_defs "rank(l) < rank(Br(a,l,r))";
by (simp_tac rank_ss 1);
val rank_Br1 = result();
-goalw BT.thy BT.con_defs "rank(r) : rank(Br(a,l,r))";
+goalw BT.thy BT.con_defs "rank(r) < rank(Br(a,l,r))";
by (simp_tac rank_ss 1);
val rank_Br2 = result();
@@ -28,8 +28,7 @@
goal BT_Fn.thy
"bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))";
by (rtac (bt_rec_def RS def_Vrec RS trans) 1);
-by (simp_tac (ZF_ss addsimps
- (BT.case_eqns @ [Vset_rankI, rank_Br1, rank_Br2])) 1);
+by (simp_tac (rank_ss addsimps (BT.case_eqns @ [rank_Br1, rank_Br2])) 1);
val bt_rec_Br = result();
(*Type checking -- proved by induction, as usual*)
--- a/src/ZF/ex/Integ.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/Integ.ML Tue Oct 05 17:49:23 1993 +0100
@@ -175,19 +175,18 @@
goalw Integ.thy [znegative_def, znat_def]
"~ znegative($# n)";
by (safe_tac intrel_cs);
-by (rtac (add_not_less_self RS notE) 1);
+by (rtac (add_le_self2 RS le_imp_not_lt RS notE) 1);
by (etac ssubst 3);
by (asm_simp_tac (arith_ss addsimps [add_0_right]) 3);
by (REPEAT (assume_tac 1));
val not_znegative_znat = result();
-val [nnat] = goalw Integ.thy [znegative_def, znat_def]
- "n: nat ==> znegative($~ $# succ(n))";
-by (simp_tac (intrel_ss addsimps [zminus,nnat]) 1);
+goalw Integ.thy [znegative_def, znat_def]
+ "!!n. n: nat ==> znegative($~ $# succ(n))";
+by (asm_simp_tac (intrel_ss addsimps [zminus]) 1);
by (REPEAT
- (resolve_tac [refl, exI, conjI, nat_0_in_succ,
- refl RS intrelI RS imageI, consI1, nnat, nat_0I,
- nat_succI] 1));
+ (ares_tac [refl, exI, conjI, nat_0_le,
+ refl RS intrelI RS imageI, consI1, nat_0I, nat_succI] 1));
val znegative_zminus_znat = result();
@@ -227,14 +226,14 @@
(ZF_ss addsimps (prems@[zmagnitude_ize UN_equiv_class, SigmaI])) 1);
val zmagnitude = result();
-val [nnat] = goalw Integ.thy [znat_def]
- "n: nat ==> zmagnitude($# n) = n";
-by (simp_tac (intrel_ss addsimps [zmagnitude,nnat]) 1);
+goalw Integ.thy [znat_def]
+ "!!n. n: nat ==> zmagnitude($# n) = n";
+by (asm_simp_tac (intrel_ss addsimps [zmagnitude]) 1);
val zmagnitude_znat = result();
-val [nnat] = goalw Integ.thy [znat_def]
- "n: nat ==> zmagnitude($~ $# n) = n";
-by (simp_tac (intrel_ss addsimps [zmagnitude,zminus,nnat,add_0_right]) 1);
+goalw Integ.thy [znat_def]
+ "!!n. n: nat ==> zmagnitude($~ $# n) = n";
+by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus ,add_0_right]) 1);
val zmagnitude_zminus_znat = result();
--- a/src/ZF/ex/Integ.thy Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/Integ.thy Tue Oct 05 17:49:23 1993 +0100
@@ -33,7 +33,7 @@
zminus_def "$~ Z == UN p:Z. split(%x y. intrel``{<y,x>}, p)"
znegative_def
- "znegative(Z) == EX x y. x:y & y:nat & <x,y>:Z"
+ "znegative(Z) == EX x y. x<y & y:nat & <x,y>:Z"
zmagnitude_def
"zmagnitude(Z) == UN p:Z. split(%x y. (y#-x) #+ (x#-y), p)"
--- a/src/ZF/ex/Primrec0.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/Primrec0.ML Tue Oct 05 17:49:23 1993 +0100
@@ -127,76 +127,72 @@
ack_type, naturals_are_ordinals];
(*PROPERTY A 4*)
-goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j : ack(i,j)";
+goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j < ack(i,j)";
by (etac nat_induct 1);
by (asm_simp_tac ack_ss 1);
by (rtac ballI 1);
by (eres_inst_tac [("n","j")] nat_induct 1);
-by (ALLGOALS (asm_simp_tac ack_ss));
-by (rtac ([succI1, asm_rl,naturals_are_ordinals] MRS Ord_trans) 1);
-by (rtac (succ_mem_succI RS Ord_trans1) 3);
-by (etac bspec 5);
-by (ALLGOALS (asm_simp_tac ack_ss));
-val less_ack2_lemma = result();
-val less_ack2 = standard (less_ack2_lemma RS bspec);
+by (DO_GOAL [rtac (nat_0I RS nat_0_le RS lt_trans),
+ asm_simp_tac ack_ss] 1);
+by (DO_GOAL [etac (succ_leI RS lt_trans1),
+ asm_simp_tac ack_ss] 1);
+val lt_ack2_lemma = result();
+val lt_ack2 = standard (lt_ack2_lemma RS bspec);
(*PROPERTY A 5-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(i, succ(j))";
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(i, succ(j))";
by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [less_ack2])));
-val ack_less_ack_succ2 = result();
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [lt_ack2])));
+val ack_lt_ack_succ2 = result();
(*PROPERTY A 5, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| j:k; i:nat; k:nat |] ==> ack(i,j) : ack(i,k)";
-by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
+goal Primrec.thy "!!i j k. [| j<k; i:nat; k:nat |] ==> ack(i,j) < ack(i,k)";
+by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
+by (etac succ_lt_induct 1);
by (assume_tac 1);
-by (etac succ_less_induct 1);
-by (assume_tac 1);
-by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
-by (REPEAT (ares_tac ([ack_less_ack_succ2, ack_type] @ pr0_typechecks) 1));
-val ack_less_mono2 = result();
+by (rtac lt_trans 2);
+by (REPEAT (ares_tac ([ack_lt_ack_succ2, ack_type] @ pr0_typechecks) 1));
+val ack_lt_mono2 = result();
(*PROPERTY A 5', monotonicity for <= *)
goal Primrec.thy
- "!!i j k. [| j<=k; i:nat; j:nat; k:nat |] ==> ack(i,j) <= ack(i,k)";
-by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_less_mono_imp_mono 1);
-by (REPEAT (ares_tac [ack_less_mono2, ack_type, Ord_nat] 1));
-val ack_mono2 = result();
+ "!!i j k. [| j le k; i: nat; k:nat |] ==> ack(i,j) le ack(i,k)";
+by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_lt_mono_imp_le_mono 1);
+by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS naturals_are_ordinals] 1));
+val ack_le_mono2 = result();
(*PROPERTY A 6*)
goal Primrec.thy
- "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) <= ack(succ(i), j)";
+ "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) le ack(succ(i), j)";
by (nat_ind_tac "j" [] 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [subset_refl])));
-by (rtac ack_mono2 1);
-by (rtac (less_ack2 RS Ord_succ_subsetI RS subset_trans) 1);
-by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type] @ pr0_typechecks) 1));
-val ack2_leq_ack1 = result();
+by (ALLGOALS (asm_simp_tac ack_ss));
+by (rtac ack_le_mono2 1);
+by (rtac (lt_ack2 RS succ_leI RS le_trans) 1);
+by (REPEAT (ares_tac (ack_typechecks) 1));
+val ack2_le_ack1 = result();
(*PROPERTY A 7-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(succ(i),j)";
-by (rtac (ack_less_mono2 RS Ord_trans2) 1);
-by (rtac (ack2_leq_ack1 RS member_succI) 4);
-by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type, succI1] @
- pr0_typechecks) 1));
-val ack_less_ack_succ1 = result();
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(succ(i),j)";
+by (rtac (ack_lt_mono2 RS lt_trans2) 1);
+by (rtac ack2_le_ack1 4);
+by (REPEAT (ares_tac ([nat_le_refl, ack_type] @ pr0_typechecks) 1));
+val ack_lt_ack_succ1 = result();
(*PROPERTY A 7, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| i:j; j:nat; k:nat |] ==> ack(i,k) : ack(j,k)";
-by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
-by (assume_tac 1);
-by (etac succ_less_induct 1);
+goal Primrec.thy "!!i j k. [| i<j; j:nat; k:nat |] ==> ack(i,k) < ack(j,k)";
+by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
+by (etac succ_lt_induct 1);
by (assume_tac 1);
-by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
-by (REPEAT (ares_tac ([ack_less_ack_succ1, ack_type] @ pr0_typechecks) 1));
-val ack_less_mono1 = result();
+by (rtac lt_trans 2);
+by (REPEAT (ares_tac ([ack_lt_ack_succ1, ack_type] @ pr0_typechecks) 1));
+val ack_lt_mono1 = result();
-(*PROPERTY A 7', monotonicity for <= *)
+(*PROPERTY A 7', monotonicity for le *)
goal Primrec.thy
- "!!i j k. [| i<=j; i:nat; j:nat; k:nat |] ==> ack(i,k) <= ack(j,k)";
-by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_less_mono_imp_mono 1);
-by (REPEAT (ares_tac [ack_less_mono1, ack_type, Ord_nat] 1));
-val ack_mono1 = result();
+ "!!i j k. [| i le j; j:nat; k:nat |] ==> ack(i,k) le ack(j,k)";
+by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_lt_mono_imp_le_mono 1);
+by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS naturals_are_ordinals] 1));
+val ack_le_mono1 = result();
(*PROPERTY A 8*)
goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))";
@@ -213,44 +209,36 @@
(*PROPERTY A 10*)
goal Primrec.thy
"!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
-\ ack(i1, ack(i2,j)) : ack(succ(succ(i1#+i2)), j)";
-by (rtac Ord_trans2 1);
-by (rtac (ack2_leq_ack1 RS member_succI) 2);
+\ ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)";
+by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1);
by (asm_simp_tac ack_ss 1);
-by (rtac ([ack_mono1 RS member_succI, ack_less_mono2] MRS Ord_trans1) 1);
-by (rtac add_leq_self 1);
-by (tc_tac []);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_less_succ_self RS ack_less_mono1) 3);
+by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1);
+by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 5);
by (tc_tac []);
val ack_nest_bound = result();
(*PROPERTY A 11*)
goal Primrec.thy
- "!!i1 i2. [| i1:nat; i2:nat |] ==> \
-\ EX k:nat. ALL j:nat. ack(i1,j) #+ ack(i2,j) : ack(k,j)";
-by (rtac (Ord_trans RS ballI RS bexI) 1);
-by (res_inst_tac [("i1.0", "succ(1)"), ("i2.0", "i1#+i2")] ack_nest_bound 2);
-by (rtac (ack_2 RS ssubst) 1);
-by (tc_tac []);
-by (rtac (member_succI RS succI2 RS succI2) 1);
-by (rtac (add_leq_self RS ack_mono1 RS add_mono) 1);
-by (tc_tac []);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_leq_self RS ack_mono1) 3);
-by (tc_tac []);
+ "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
+\ ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)";
+by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1);
+by (asm_simp_tac (ack_ss addsimps [ack_2]) 1);
+by (rtac (ack_nest_bound RS lt_trans2) 2);
+by (asm_simp_tac ack_ss 5);
+by (rtac (add_le_mono RS leI RS leI) 1);
+by (REPEAT (ares_tac ([add_le_self, add_le_self2, ack_le_mono1] @
+ ack_typechecks) 1));
val ack_add_bound = result();
-(*PROPERTY A 12 -- note quantifier nesting
- Article uses existential quantifier but the ALF proof used a concrete
- expression, namely k#+4. *)
+(*PROPERTY A 12. Article uses existential quantifier but the ALF proof
+ used k#+4. Quantified version must be nested EX k'. ALL i,j... *)
goal Primrec.thy
- "!!k. k: nat ==> \
-\ EX k':nat. ALL i:nat. ALL j:nat. i : ack(k,j) --> i#+j : ack(k',j)";
-by (res_inst_tac [("i1.1", "k"), ("i2.1", "0")] (ack_add_bound RS bexE) 1);
-by (rtac (Ord_trans RS impI RS ballI RS ballI RS bexI) 3);
-by (etac bspec 4);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [add_less_mono])));
+ "!!i j k. [| i < ack(k,j); j:nat; k:nat |] ==> \
+\ i#+j < ack(succ(succ(succ(succ(k)))), j)";
+by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1);
+by (rtac (ack_add_bound RS lt_trans2) 2);
+by (asm_simp_tac (ack_ss addsimps [add_0_right]) 5);
+by (REPEAT (ares_tac ([add_lt_mono, lt_ack2] @ ack_typechecks) 1));
val ack_add_bound2 = result();
(*** MAIN RESULT ***)
@@ -260,41 +248,38 @@
naturals_are_ordinals];
goalw Primrec.thy [SC_def]
- "!!l. l: list(nat) ==> SC ` l : ack(1, list_add(l))";
+ "!!l. l: list(nat) ==> SC ` l < ack(1, list_add(l))";
by (etac List.elim 1);
by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1);
-by (asm_simp_tac (ack2_ss addsimps
- [ack_1, add_less_succ_self RS succ_mem_succI]) 1);
+by (asm_simp_tac (ack2_ss addsimps [ack_1, add_le_self]) 1);
val SC_case = result();
-(*PROPERTY A 4'?? Extra lemma needed for CONST case, constant functions*)
-goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i : ack(i,j)";
+(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*)
+goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i < ack(i,j)";
by (etac nat_induct 1);
-by (asm_simp_tac (ack_ss addsimps [nat_0_in_succ]) 1);
-by (etac ([succ_mem_succI, ack_less_ack_succ1] MRS Ord_trans1) 1);
+by (asm_simp_tac (ack_ss addsimps [nat_0_le]) 1);
+by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1);
by (tc_tac []);
-val less_ack1 = result();
+val lt_ack1 = result();
goalw Primrec.thy [CONST_def]
- "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l : ack(k, list_add(l))";
-by (asm_simp_tac (ack2_ss addsimps [less_ack1]) 1);
+ "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l < ack(k, list_add(l))";
+by (asm_simp_tac (ack2_ss addsimps [lt_ack1]) 1);
val CONST_case = result();
goalw Primrec.thy [PROJ_def]
- "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l : ack(0, list_add(l))";
+ "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l < ack(0, list_add(l))";
by (asm_simp_tac ack2_ss 1);
by (etac List.induct 1);
-by (asm_simp_tac (ack2_ss addsimps [nat_0_in_succ]) 1);
+by (asm_simp_tac (ack2_ss addsimps [nat_0_le]) 1);
by (asm_simp_tac ack2_ss 1);
by (rtac ballI 1);
by (eres_inst_tac [("n","x")] natE 1);
-by (asm_simp_tac (ack2_ss addsimps [add_less_succ_self]) 1);
+by (asm_simp_tac (ack2_ss addsimps [add_le_self]) 1);
by (asm_simp_tac ack2_ss 1);
-by (etac (bspec RS Ord_trans2) 1);
-by (assume_tac 1);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_less_succ_self RS succ_mem_succI) 3);
-by (tc_tac [list_add_type]);
+by (etac (bspec RS lt_trans2) 1);
+by (rtac (add_le_self2 RS succ_leI) 2);
+by (tc_tac []);
val PROJ_case_lemma = result();
val PROJ_case = PROJ_case_lemma RS bspec;
@@ -303,98 +288,91 @@
goal Primrec.thy
"!!fs. fs : list({f: primrec . \
\ EX kf:nat. ALL l:list(nat). \
-\ f`l : ack(kf, list_add(l))}) \
+\ f`l < ack(kf, list_add(l))}) \
\ ==> EX k:nat. ALL l: list(nat). \
-\ list_add(map(%f. f ` l, fs)) : ack(k, list_add(l))";
+\ list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))";
by (etac List.induct 1);
by (DO_GOAL [res_inst_tac [("x","0")] bexI,
- asm_simp_tac (ack2_ss addsimps [less_ack1,nat_0_in_succ]),
+ asm_simp_tac (ack2_ss addsimps [lt_ack1, nat_0_le]),
resolve_tac nat_typechecks] 1);
by (safe_tac ZF_cs);
by (asm_simp_tac ack2_ss 1);
-by (res_inst_tac [("i1.1", "kf"), ("i2.1", "k")] (ack_add_bound RS bexE) 1
- THEN REPEAT (assume_tac 1));
by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS add_less_mono RS Ord_trans) 1);
+by (rtac (add_lt_mono RS lt_trans) 1);
by (REPEAT (FIRSTGOAL (etac bspec)));
-by (tc_tac [list_add_type]);
+by (rtac ack_add_bound 5);
+by (tc_tac []);
val COMP_map_lemma = result();
goalw Primrec.thy [COMP_def]
"!!g. [| g: primrec; kg: nat; \
-\ ALL l:list(nat). g`l : ack(kg, list_add(l)); \
+\ ALL l:list(nat). g`l < ack(kg, list_add(l)); \
\ fs : list({f: primrec . \
\ EX kf:nat. ALL l:list(nat). \
-\ f`l : ack(kf, list_add(l))}) \
-\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l : ack(k, list_add(l))";
+\ f`l < ack(kf, list_add(l))}) \
+\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l < ack(k, list_add(l))";
by (asm_simp_tac ZF_ss 1);
by (forward_tac [list_CollectD] 1);
by (etac (COMP_map_lemma RS bexE) 1);
by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS Ord_trans) 1);
-by (rtac Ord_trans 2);
+by (etac (bspec RS lt_trans) 1);
+by (rtac lt_trans 2);
by (rtac ack_nest_bound 3);
-by (etac (bspec RS ack_less_mono2) 2);
+by (etac (bspec RS ack_lt_mono2) 2);
by (tc_tac [map_type]);
val COMP_case = result();
(** PREC case **)
goalw Primrec.thy [PREC_def]
- "!!f g. [| f: primrec; kf: nat; \
+ "!!f g. [| ALL l:list(nat). f`l #+ list_add(l) < ack(kf, list_add(l)); \
+\ ALL l:list(nat). g`l #+ list_add(l) < ack(kg, list_add(l)); \
+\ f: primrec; kf: nat; \
\ g: primrec; kg: nat; \
-\ ALL l:list(nat). f`l #+ list_add(l) : ack(kf, list_add(l)); \
-\ ALL l:list(nat). g`l #+ list_add(l) : ack(kg, list_add(l)); \
\ l: list(nat) \
-\ |] ==> PREC(f,g)`l #+ list_add(l) : ack(succ(kf#+kg), list_add(l))";
+\ |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))";
by (etac List.elim 1);
-by (asm_simp_tac (ack2_ss addsimps [[succI1, less_ack2] MRS Ord_trans]) 1);
+by (asm_simp_tac (ack2_ss addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1);
by (asm_simp_tac ack2_ss 1);
be ssubst 1; (*get rid of the needless assumption*)
by (eres_inst_tac [("n","a")] nat_induct 1);
-by (asm_simp_tac ack2_ss 1);
-by (rtac Ord_trans 1);
-by (etac bspec 1);
-by (assume_tac 1);
-by (rtac ack_less_mono1 1);
-by (rtac add_less_succ_self 1);
-by (tc_tac [list_add_type]);
-(*ind step -- level 13*)
+(*base case*)
+by (DO_GOAL [asm_simp_tac ack2_ss, rtac lt_trans, etac bspec,
+ assume_tac, rtac (add_le_self RS ack_lt_mono1),
+ REPEAT o ares_tac (ack_typechecks)] 1);
+(*ind step*)
by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1);
-by (rtac (succ_mem_succI RS Ord_trans1) 1);
-by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] Ord_trans1 1);
+by (rtac (succ_leI RS lt_trans1) 1);
+by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1);
by (etac bspec 2);
-by (rtac (subset_refl RS add_mono RS member_succI) 1);
+by (rtac (nat_le_refl RS add_le_mono) 1);
by (tc_tac []);
-by (asm_simp_tac (ack2_ss addsimps [add_leq_self2]) 1);
-by (asm_simp_tac ack2_ss 1);
+by (asm_simp_tac (ack2_ss addsimps [add_le_self2]) 1);
(*final part of the simplification*)
-by (rtac (member_succI RS Ord_trans1) 1);
-by (rtac (add_leq_self2 RS ack_mono1) 1);
-by (etac ack_less_mono2 8);
+by (asm_simp_tac ack2_ss 1);
+by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1);
+by (etac ack_lt_mono2 5);
by (tc_tac []);
val PREC_case_lemma = result();
goal Primrec.thy
"!!f g. [| f: primrec; kf: nat; \
\ g: primrec; kg: nat; \
-\ ALL l:list(nat). f`l : ack(kf, list_add(l)); \
-\ ALL l:list(nat). g`l : ack(kg, list_add(l)) \
+\ ALL l:list(nat). f`l < ack(kf, list_add(l)); \
+\ ALL l:list(nat). g`l < ack(kg, list_add(l)) \
\ |] ==> EX k:nat. ALL l: list(nat). \
-\ PREC(f,g)`l: ack(k, list_add(l))";
-by (etac (ack_add_bound2 RS bexE) 1);
-by (etac (ack_add_bound2 RS bexE) 1);
+\ PREC(f,g)`l< ack(k, list_add(l))";
by (rtac (ballI RS bexI) 1);
-by (rtac ([add_leq_self RS member_succI, PREC_case_lemma] MRS Ord_trans1) 1);
-by (DEPTH_SOLVE
+by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1);
+by (REPEAT
(SOMEGOAL
(FIRST' [test_assume_tac,
- match_tac (ballI::ack_typechecks),
- eresolve_tac [bspec, bspec RS bspec RS mp]])));
+ match_tac (ack_typechecks),
+ rtac (ack_add_bound2 RS ballI) THEN' etac bspec])));
val PREC_case = result();
goal Primrec.thy
- "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l : ack(k, list_add(l))";
+ "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l < ack(k, list_add(l))";
by (etac Primrec.induct 1);
by (safe_tac ZF_cs);
by (DEPTH_SOLVE
@@ -406,7 +384,7 @@
"~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec";
by (rtac notI 1);
by (etac (ack_bounds_primrec RS bexE) 1);
-by (rtac mem_anti_refl 1);
+by (rtac lt_anti_refl 1);
by (dres_inst_tac [("x", "[x]")] bspec 1);
by (asm_simp_tac ack2_ss 1);
by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1);
--- a/src/ZF/ex/TermFn.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/TermFn.ML Tue Oct 05 17:49:23 1993 +0100
@@ -16,13 +16,13 @@
(*Lemma: map works correctly on the underlying list of terms*)
val [major,ordi] = goal ListFn.thy
"[| l: list(A); Ord(i) |] ==> \
-\ rank(l): i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)";
+\ rank(l)<i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)";
by (rtac (major RS List.induct) 1);
by (simp_tac list_ss 1);
by (rtac impI 1);
-by (forward_tac [rank_Cons1 RS Ord_trans] 1);
-by (dtac (rank_Cons2 RS Ord_trans) 2);
-by (ALLGOALS (asm_simp_tac (list_ss addsimps [ordi, VsetI])));
+by (forward_tac [rank_Cons1 RS lt_trans] 1);
+by (dtac (rank_Cons2 RS lt_trans) 1);
+by (asm_simp_tac (list_ss addsimps [ordi, VsetI]) 1);
val map_lemma = result();
(*Typing premise is necessary to invoke map_lemma*)
--- a/src/ZF/ex/bt_fn.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/bt_fn.ML Tue Oct 05 17:49:23 1993 +0100
@@ -12,11 +12,11 @@
(** bt_rec -- by Vset recursion **)
-goalw BT.thy BT.con_defs "rank(l) : rank(Br(a,l,r))";
+goalw BT.thy BT.con_defs "rank(l) < rank(Br(a,l,r))";
by (simp_tac rank_ss 1);
val rank_Br1 = result();
-goalw BT.thy BT.con_defs "rank(r) : rank(Br(a,l,r))";
+goalw BT.thy BT.con_defs "rank(r) < rank(Br(a,l,r))";
by (simp_tac rank_ss 1);
val rank_Br2 = result();
@@ -28,8 +28,7 @@
goal BT_Fn.thy
"bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))";
by (rtac (bt_rec_def RS def_Vrec RS trans) 1);
-by (simp_tac (ZF_ss addsimps
- (BT.case_eqns @ [Vset_rankI, rank_Br1, rank_Br2])) 1);
+by (simp_tac (rank_ss addsimps (BT.case_eqns @ [rank_Br1, rank_Br2])) 1);
val bt_rec_Br = result();
(*Type checking -- proved by induction, as usual*)
--- a/src/ZF/ex/integ.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/integ.ML Tue Oct 05 17:49:23 1993 +0100
@@ -175,19 +175,18 @@
goalw Integ.thy [znegative_def, znat_def]
"~ znegative($# n)";
by (safe_tac intrel_cs);
-by (rtac (add_not_less_self RS notE) 1);
+by (rtac (add_le_self2 RS le_imp_not_lt RS notE) 1);
by (etac ssubst 3);
by (asm_simp_tac (arith_ss addsimps [add_0_right]) 3);
by (REPEAT (assume_tac 1));
val not_znegative_znat = result();
-val [nnat] = goalw Integ.thy [znegative_def, znat_def]
- "n: nat ==> znegative($~ $# succ(n))";
-by (simp_tac (intrel_ss addsimps [zminus,nnat]) 1);
+goalw Integ.thy [znegative_def, znat_def]
+ "!!n. n: nat ==> znegative($~ $# succ(n))";
+by (asm_simp_tac (intrel_ss addsimps [zminus]) 1);
by (REPEAT
- (resolve_tac [refl, exI, conjI, nat_0_in_succ,
- refl RS intrelI RS imageI, consI1, nnat, nat_0I,
- nat_succI] 1));
+ (ares_tac [refl, exI, conjI, nat_0_le,
+ refl RS intrelI RS imageI, consI1, nat_0I, nat_succI] 1));
val znegative_zminus_znat = result();
@@ -227,14 +226,14 @@
(ZF_ss addsimps (prems@[zmagnitude_ize UN_equiv_class, SigmaI])) 1);
val zmagnitude = result();
-val [nnat] = goalw Integ.thy [znat_def]
- "n: nat ==> zmagnitude($# n) = n";
-by (simp_tac (intrel_ss addsimps [zmagnitude,nnat]) 1);
+goalw Integ.thy [znat_def]
+ "!!n. n: nat ==> zmagnitude($# n) = n";
+by (asm_simp_tac (intrel_ss addsimps [zmagnitude]) 1);
val zmagnitude_znat = result();
-val [nnat] = goalw Integ.thy [znat_def]
- "n: nat ==> zmagnitude($~ $# n) = n";
-by (simp_tac (intrel_ss addsimps [zmagnitude,zminus,nnat,add_0_right]) 1);
+goalw Integ.thy [znat_def]
+ "!!n. n: nat ==> zmagnitude($~ $# n) = n";
+by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus ,add_0_right]) 1);
val zmagnitude_zminus_znat = result();
--- a/src/ZF/ex/integ.thy Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/integ.thy Tue Oct 05 17:49:23 1993 +0100
@@ -33,7 +33,7 @@
zminus_def "$~ Z == UN p:Z. split(%x y. intrel``{<y,x>}, p)"
znegative_def
- "znegative(Z) == EX x y. x:y & y:nat & <x,y>:Z"
+ "znegative(Z) == EX x y. x<y & y:nat & <x,y>:Z"
zmagnitude_def
"zmagnitude(Z) == UN p:Z. split(%x y. (y#-x) #+ (x#-y), p)"
--- a/src/ZF/ex/primrec0.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/primrec0.ML Tue Oct 05 17:49:23 1993 +0100
@@ -127,76 +127,72 @@
ack_type, naturals_are_ordinals];
(*PROPERTY A 4*)
-goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j : ack(i,j)";
+goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j < ack(i,j)";
by (etac nat_induct 1);
by (asm_simp_tac ack_ss 1);
by (rtac ballI 1);
by (eres_inst_tac [("n","j")] nat_induct 1);
-by (ALLGOALS (asm_simp_tac ack_ss));
-by (rtac ([succI1, asm_rl,naturals_are_ordinals] MRS Ord_trans) 1);
-by (rtac (succ_mem_succI RS Ord_trans1) 3);
-by (etac bspec 5);
-by (ALLGOALS (asm_simp_tac ack_ss));
-val less_ack2_lemma = result();
-val less_ack2 = standard (less_ack2_lemma RS bspec);
+by (DO_GOAL [rtac (nat_0I RS nat_0_le RS lt_trans),
+ asm_simp_tac ack_ss] 1);
+by (DO_GOAL [etac (succ_leI RS lt_trans1),
+ asm_simp_tac ack_ss] 1);
+val lt_ack2_lemma = result();
+val lt_ack2 = standard (lt_ack2_lemma RS bspec);
(*PROPERTY A 5-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(i, succ(j))";
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(i, succ(j))";
by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [less_ack2])));
-val ack_less_ack_succ2 = result();
+by (ALLGOALS (asm_simp_tac (ack_ss addsimps [lt_ack2])));
+val ack_lt_ack_succ2 = result();
(*PROPERTY A 5, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| j:k; i:nat; k:nat |] ==> ack(i,j) : ack(i,k)";
-by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
+goal Primrec.thy "!!i j k. [| j<k; i:nat; k:nat |] ==> ack(i,j) < ack(i,k)";
+by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
+by (etac succ_lt_induct 1);
by (assume_tac 1);
-by (etac succ_less_induct 1);
-by (assume_tac 1);
-by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
-by (REPEAT (ares_tac ([ack_less_ack_succ2, ack_type] @ pr0_typechecks) 1));
-val ack_less_mono2 = result();
+by (rtac lt_trans 2);
+by (REPEAT (ares_tac ([ack_lt_ack_succ2, ack_type] @ pr0_typechecks) 1));
+val ack_lt_mono2 = result();
(*PROPERTY A 5', monotonicity for <= *)
goal Primrec.thy
- "!!i j k. [| j<=k; i:nat; j:nat; k:nat |] ==> ack(i,j) <= ack(i,k)";
-by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_less_mono_imp_mono 1);
-by (REPEAT (ares_tac [ack_less_mono2, ack_type, Ord_nat] 1));
-val ack_mono2 = result();
+ "!!i j k. [| j le k; i: nat; k:nat |] ==> ack(i,j) le ack(i,k)";
+by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_lt_mono_imp_le_mono 1);
+by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS naturals_are_ordinals] 1));
+val ack_le_mono2 = result();
(*PROPERTY A 6*)
goal Primrec.thy
- "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) <= ack(succ(i), j)";
+ "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) le ack(succ(i), j)";
by (nat_ind_tac "j" [] 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [subset_refl])));
-by (rtac ack_mono2 1);
-by (rtac (less_ack2 RS Ord_succ_subsetI RS subset_trans) 1);
-by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type] @ pr0_typechecks) 1));
-val ack2_leq_ack1 = result();
+by (ALLGOALS (asm_simp_tac ack_ss));
+by (rtac ack_le_mono2 1);
+by (rtac (lt_ack2 RS succ_leI RS le_trans) 1);
+by (REPEAT (ares_tac (ack_typechecks) 1));
+val ack2_le_ack1 = result();
(*PROPERTY A 7-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(succ(i),j)";
-by (rtac (ack_less_mono2 RS Ord_trans2) 1);
-by (rtac (ack2_leq_ack1 RS member_succI) 4);
-by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type, succI1] @
- pr0_typechecks) 1));
-val ack_less_ack_succ1 = result();
+goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(succ(i),j)";
+by (rtac (ack_lt_mono2 RS lt_trans2) 1);
+by (rtac ack2_le_ack1 4);
+by (REPEAT (ares_tac ([nat_le_refl, ack_type] @ pr0_typechecks) 1));
+val ack_lt_ack_succ1 = result();
(*PROPERTY A 7, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| i:j; j:nat; k:nat |] ==> ack(i,k) : ack(j,k)";
-by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1);
-by (assume_tac 1);
-by (etac succ_less_induct 1);
+goal Primrec.thy "!!i j k. [| i<j; j:nat; k:nat |] ==> ack(i,k) < ack(j,k)";
+by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
+by (etac succ_lt_induct 1);
by (assume_tac 1);
-by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2);
-by (REPEAT (ares_tac ([ack_less_ack_succ1, ack_type] @ pr0_typechecks) 1));
-val ack_less_mono1 = result();
+by (rtac lt_trans 2);
+by (REPEAT (ares_tac ([ack_lt_ack_succ1, ack_type] @ pr0_typechecks) 1));
+val ack_lt_mono1 = result();
-(*PROPERTY A 7', monotonicity for <= *)
+(*PROPERTY A 7', monotonicity for le *)
goal Primrec.thy
- "!!i j k. [| i<=j; i:nat; j:nat; k:nat |] ==> ack(i,k) <= ack(j,k)";
-by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_less_mono_imp_mono 1);
-by (REPEAT (ares_tac [ack_less_mono1, ack_type, Ord_nat] 1));
-val ack_mono1 = result();
+ "!!i j k. [| i le j; j:nat; k:nat |] ==> ack(i,k) le ack(j,k)";
+by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_lt_mono_imp_le_mono 1);
+by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS naturals_are_ordinals] 1));
+val ack_le_mono1 = result();
(*PROPERTY A 8*)
goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))";
@@ -213,44 +209,36 @@
(*PROPERTY A 10*)
goal Primrec.thy
"!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
-\ ack(i1, ack(i2,j)) : ack(succ(succ(i1#+i2)), j)";
-by (rtac Ord_trans2 1);
-by (rtac (ack2_leq_ack1 RS member_succI) 2);
+\ ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)";
+by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1);
by (asm_simp_tac ack_ss 1);
-by (rtac ([ack_mono1 RS member_succI, ack_less_mono2] MRS Ord_trans1) 1);
-by (rtac add_leq_self 1);
-by (tc_tac []);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_less_succ_self RS ack_less_mono1) 3);
+by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1);
+by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 5);
by (tc_tac []);
val ack_nest_bound = result();
(*PROPERTY A 11*)
goal Primrec.thy
- "!!i1 i2. [| i1:nat; i2:nat |] ==> \
-\ EX k:nat. ALL j:nat. ack(i1,j) #+ ack(i2,j) : ack(k,j)";
-by (rtac (Ord_trans RS ballI RS bexI) 1);
-by (res_inst_tac [("i1.0", "succ(1)"), ("i2.0", "i1#+i2")] ack_nest_bound 2);
-by (rtac (ack_2 RS ssubst) 1);
-by (tc_tac []);
-by (rtac (member_succI RS succI2 RS succI2) 1);
-by (rtac (add_leq_self RS ack_mono1 RS add_mono) 1);
-by (tc_tac []);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_leq_self RS ack_mono1) 3);
-by (tc_tac []);
+ "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
+\ ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)";
+by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1);
+by (asm_simp_tac (ack_ss addsimps [ack_2]) 1);
+by (rtac (ack_nest_bound RS lt_trans2) 2);
+by (asm_simp_tac ack_ss 5);
+by (rtac (add_le_mono RS leI RS leI) 1);
+by (REPEAT (ares_tac ([add_le_self, add_le_self2, ack_le_mono1] @
+ ack_typechecks) 1));
val ack_add_bound = result();
-(*PROPERTY A 12 -- note quantifier nesting
- Article uses existential quantifier but the ALF proof used a concrete
- expression, namely k#+4. *)
+(*PROPERTY A 12. Article uses existential quantifier but the ALF proof
+ used k#+4. Quantified version must be nested EX k'. ALL i,j... *)
goal Primrec.thy
- "!!k. k: nat ==> \
-\ EX k':nat. ALL i:nat. ALL j:nat. i : ack(k,j) --> i#+j : ack(k',j)";
-by (res_inst_tac [("i1.1", "k"), ("i2.1", "0")] (ack_add_bound RS bexE) 1);
-by (rtac (Ord_trans RS impI RS ballI RS ballI RS bexI) 3);
-by (etac bspec 4);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [add_less_mono])));
+ "!!i j k. [| i < ack(k,j); j:nat; k:nat |] ==> \
+\ i#+j < ack(succ(succ(succ(succ(k)))), j)";
+by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1);
+by (rtac (ack_add_bound RS lt_trans2) 2);
+by (asm_simp_tac (ack_ss addsimps [add_0_right]) 5);
+by (REPEAT (ares_tac ([add_lt_mono, lt_ack2] @ ack_typechecks) 1));
val ack_add_bound2 = result();
(*** MAIN RESULT ***)
@@ -260,41 +248,38 @@
naturals_are_ordinals];
goalw Primrec.thy [SC_def]
- "!!l. l: list(nat) ==> SC ` l : ack(1, list_add(l))";
+ "!!l. l: list(nat) ==> SC ` l < ack(1, list_add(l))";
by (etac List.elim 1);
by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1);
-by (asm_simp_tac (ack2_ss addsimps
- [ack_1, add_less_succ_self RS succ_mem_succI]) 1);
+by (asm_simp_tac (ack2_ss addsimps [ack_1, add_le_self]) 1);
val SC_case = result();
-(*PROPERTY A 4'?? Extra lemma needed for CONST case, constant functions*)
-goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i : ack(i,j)";
+(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*)
+goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i < ack(i,j)";
by (etac nat_induct 1);
-by (asm_simp_tac (ack_ss addsimps [nat_0_in_succ]) 1);
-by (etac ([succ_mem_succI, ack_less_ack_succ1] MRS Ord_trans1) 1);
+by (asm_simp_tac (ack_ss addsimps [nat_0_le]) 1);
+by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1);
by (tc_tac []);
-val less_ack1 = result();
+val lt_ack1 = result();
goalw Primrec.thy [CONST_def]
- "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l : ack(k, list_add(l))";
-by (asm_simp_tac (ack2_ss addsimps [less_ack1]) 1);
+ "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l < ack(k, list_add(l))";
+by (asm_simp_tac (ack2_ss addsimps [lt_ack1]) 1);
val CONST_case = result();
goalw Primrec.thy [PROJ_def]
- "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l : ack(0, list_add(l))";
+ "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l < ack(0, list_add(l))";
by (asm_simp_tac ack2_ss 1);
by (etac List.induct 1);
-by (asm_simp_tac (ack2_ss addsimps [nat_0_in_succ]) 1);
+by (asm_simp_tac (ack2_ss addsimps [nat_0_le]) 1);
by (asm_simp_tac ack2_ss 1);
by (rtac ballI 1);
by (eres_inst_tac [("n","x")] natE 1);
-by (asm_simp_tac (ack2_ss addsimps [add_less_succ_self]) 1);
+by (asm_simp_tac (ack2_ss addsimps [add_le_self]) 1);
by (asm_simp_tac ack2_ss 1);
-by (etac (bspec RS Ord_trans2) 1);
-by (assume_tac 1);
-by (rtac (add_commute RS ssubst) 1);
-by (rtac (add_less_succ_self RS succ_mem_succI) 3);
-by (tc_tac [list_add_type]);
+by (etac (bspec RS lt_trans2) 1);
+by (rtac (add_le_self2 RS succ_leI) 2);
+by (tc_tac []);
val PROJ_case_lemma = result();
val PROJ_case = PROJ_case_lemma RS bspec;
@@ -303,98 +288,91 @@
goal Primrec.thy
"!!fs. fs : list({f: primrec . \
\ EX kf:nat. ALL l:list(nat). \
-\ f`l : ack(kf, list_add(l))}) \
+\ f`l < ack(kf, list_add(l))}) \
\ ==> EX k:nat. ALL l: list(nat). \
-\ list_add(map(%f. f ` l, fs)) : ack(k, list_add(l))";
+\ list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))";
by (etac List.induct 1);
by (DO_GOAL [res_inst_tac [("x","0")] bexI,
- asm_simp_tac (ack2_ss addsimps [less_ack1,nat_0_in_succ]),
+ asm_simp_tac (ack2_ss addsimps [lt_ack1, nat_0_le]),
resolve_tac nat_typechecks] 1);
by (safe_tac ZF_cs);
by (asm_simp_tac ack2_ss 1);
-by (res_inst_tac [("i1.1", "kf"), ("i2.1", "k")] (ack_add_bound RS bexE) 1
- THEN REPEAT (assume_tac 1));
by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS add_less_mono RS Ord_trans) 1);
+by (rtac (add_lt_mono RS lt_trans) 1);
by (REPEAT (FIRSTGOAL (etac bspec)));
-by (tc_tac [list_add_type]);
+by (rtac ack_add_bound 5);
+by (tc_tac []);
val COMP_map_lemma = result();
goalw Primrec.thy [COMP_def]
"!!g. [| g: primrec; kg: nat; \
-\ ALL l:list(nat). g`l : ack(kg, list_add(l)); \
+\ ALL l:list(nat). g`l < ack(kg, list_add(l)); \
\ fs : list({f: primrec . \
\ EX kf:nat. ALL l:list(nat). \
-\ f`l : ack(kf, list_add(l))}) \
-\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l : ack(k, list_add(l))";
+\ f`l < ack(kf, list_add(l))}) \
+\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l < ack(k, list_add(l))";
by (asm_simp_tac ZF_ss 1);
by (forward_tac [list_CollectD] 1);
by (etac (COMP_map_lemma RS bexE) 1);
by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS Ord_trans) 1);
-by (rtac Ord_trans 2);
+by (etac (bspec RS lt_trans) 1);
+by (rtac lt_trans 2);
by (rtac ack_nest_bound 3);
-by (etac (bspec RS ack_less_mono2) 2);
+by (etac (bspec RS ack_lt_mono2) 2);
by (tc_tac [map_type]);
val COMP_case = result();
(** PREC case **)
goalw Primrec.thy [PREC_def]
- "!!f g. [| f: primrec; kf: nat; \
+ "!!f g. [| ALL l:list(nat). f`l #+ list_add(l) < ack(kf, list_add(l)); \
+\ ALL l:list(nat). g`l #+ list_add(l) < ack(kg, list_add(l)); \
+\ f: primrec; kf: nat; \
\ g: primrec; kg: nat; \
-\ ALL l:list(nat). f`l #+ list_add(l) : ack(kf, list_add(l)); \
-\ ALL l:list(nat). g`l #+ list_add(l) : ack(kg, list_add(l)); \
\ l: list(nat) \
-\ |] ==> PREC(f,g)`l #+ list_add(l) : ack(succ(kf#+kg), list_add(l))";
+\ |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))";
by (etac List.elim 1);
-by (asm_simp_tac (ack2_ss addsimps [[succI1, less_ack2] MRS Ord_trans]) 1);
+by (asm_simp_tac (ack2_ss addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1);
by (asm_simp_tac ack2_ss 1);
be ssubst 1; (*get rid of the needless assumption*)
by (eres_inst_tac [("n","a")] nat_induct 1);
-by (asm_simp_tac ack2_ss 1);
-by (rtac Ord_trans 1);
-by (etac bspec 1);
-by (assume_tac 1);
-by (rtac ack_less_mono1 1);
-by (rtac add_less_succ_self 1);
-by (tc_tac [list_add_type]);
-(*ind step -- level 13*)
+(*base case*)
+by (DO_GOAL [asm_simp_tac ack2_ss, rtac lt_trans, etac bspec,
+ assume_tac, rtac (add_le_self RS ack_lt_mono1),
+ REPEAT o ares_tac (ack_typechecks)] 1);
+(*ind step*)
by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1);
-by (rtac (succ_mem_succI RS Ord_trans1) 1);
-by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] Ord_trans1 1);
+by (rtac (succ_leI RS lt_trans1) 1);
+by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1);
by (etac bspec 2);
-by (rtac (subset_refl RS add_mono RS member_succI) 1);
+by (rtac (nat_le_refl RS add_le_mono) 1);
by (tc_tac []);
-by (asm_simp_tac (ack2_ss addsimps [add_leq_self2]) 1);
-by (asm_simp_tac ack2_ss 1);
+by (asm_simp_tac (ack2_ss addsimps [add_le_self2]) 1);
(*final part of the simplification*)
-by (rtac (member_succI RS Ord_trans1) 1);
-by (rtac (add_leq_self2 RS ack_mono1) 1);
-by (etac ack_less_mono2 8);
+by (asm_simp_tac ack2_ss 1);
+by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1);
+by (etac ack_lt_mono2 5);
by (tc_tac []);
val PREC_case_lemma = result();
goal Primrec.thy
"!!f g. [| f: primrec; kf: nat; \
\ g: primrec; kg: nat; \
-\ ALL l:list(nat). f`l : ack(kf, list_add(l)); \
-\ ALL l:list(nat). g`l : ack(kg, list_add(l)) \
+\ ALL l:list(nat). f`l < ack(kf, list_add(l)); \
+\ ALL l:list(nat). g`l < ack(kg, list_add(l)) \
\ |] ==> EX k:nat. ALL l: list(nat). \
-\ PREC(f,g)`l: ack(k, list_add(l))";
-by (etac (ack_add_bound2 RS bexE) 1);
-by (etac (ack_add_bound2 RS bexE) 1);
+\ PREC(f,g)`l< ack(k, list_add(l))";
by (rtac (ballI RS bexI) 1);
-by (rtac ([add_leq_self RS member_succI, PREC_case_lemma] MRS Ord_trans1) 1);
-by (DEPTH_SOLVE
+by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1);
+by (REPEAT
(SOMEGOAL
(FIRST' [test_assume_tac,
- match_tac (ballI::ack_typechecks),
- eresolve_tac [bspec, bspec RS bspec RS mp]])));
+ match_tac (ack_typechecks),
+ rtac (ack_add_bound2 RS ballI) THEN' etac bspec])));
val PREC_case = result();
goal Primrec.thy
- "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l : ack(k, list_add(l))";
+ "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l < ack(k, list_add(l))";
by (etac Primrec.induct 1);
by (safe_tac ZF_cs);
by (DEPTH_SOLVE
@@ -406,7 +384,7 @@
"~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec";
by (rtac notI 1);
by (etac (ack_bounds_primrec RS bexE) 1);
-by (rtac mem_anti_refl 1);
+by (rtac lt_anti_refl 1);
by (dres_inst_tac [("x", "[x]")] bspec 1);
by (asm_simp_tac ack2_ss 1);
by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1);
--- a/src/ZF/ex/termfn.ML Tue Oct 05 17:27:05 1993 +0100
+++ b/src/ZF/ex/termfn.ML Tue Oct 05 17:49:23 1993 +0100
@@ -16,13 +16,13 @@
(*Lemma: map works correctly on the underlying list of terms*)
val [major,ordi] = goal ListFn.thy
"[| l: list(A); Ord(i) |] ==> \
-\ rank(l): i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)";
+\ rank(l)<i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)";
by (rtac (major RS List.induct) 1);
by (simp_tac list_ss 1);
by (rtac impI 1);
-by (forward_tac [rank_Cons1 RS Ord_trans] 1);
-by (dtac (rank_Cons2 RS Ord_trans) 2);
-by (ALLGOALS (asm_simp_tac (list_ss addsimps [ordi, VsetI])));
+by (forward_tac [rank_Cons1 RS lt_trans] 1);
+by (dtac (rank_Cons2 RS lt_trans) 1);
+by (asm_simp_tac (list_ss addsimps [ordi, VsetI]) 1);
val map_lemma = result();
(*Typing premise is necessary to invoke map_lemma*)