--- a/src/HOL/Library/Dlist.thy Tue Jan 12 09:28:08 2016 +0100
+++ b/src/HOL/Library/Dlist.thy Tue Jan 12 14:14:28 2016 +0100
@@ -1,4 +1,5 @@
-(* Author: Florian Haftmann, TU Muenchen *)
+(* Author: Florian Haftmann, TU Muenchen
+ Author: Andreas Lochbihler, ETH Zurich *)
section \<open>Lists with elements distinct as canonical example for datatype invariants\<close>
@@ -14,6 +15,8 @@
show "[] \<in> {xs. distinct xs}" by simp
qed
+setup_lifting type_definition_dlist
+
lemma dlist_eq_iff:
"dxs = dys \<longleftrightarrow> list_of_dlist dxs = list_of_dlist dys"
by (simp add: list_of_dlist_inject)
@@ -196,4 +199,140 @@
quickcheck_generator dlist predicate: distinct constructors: Dlist.empty, Dlist.insert
+subsection \<open>BNF instance\<close>
+
+context begin
+
+qualified fun wpull :: "('a \<times> 'b) list \<Rightarrow> ('b \<times> 'c) list \<Rightarrow> ('a \<times> 'c) list"
+where
+ "wpull [] ys = []"
+| "wpull xs [] = []"
+| "wpull ((a, b) # xs) ((b', c) # ys) =
+ (if b \<in> snd ` set xs then
+ (a, the (map_of (rev ((b', c) # ys)) b)) # wpull xs ((b', c) # ys)
+ else if b' \<in> fst ` set ys then
+ (the (map_of (map prod.swap (rev ((a, b) # xs))) b'), c) # wpull ((a, b) # xs) ys
+ else (a, c) # wpull xs ys)"
+
+qualified lemma wpull_eq_Nil_iff [simp]: "wpull xs ys = [] \<longleftrightarrow> xs = [] \<or> ys = []"
+by(cases "(xs, ys)" rule: wpull.cases) simp_all
+
+qualified lemma wpull_induct
+ [consumes 1,
+ case_names Nil left[xs eq in_set IH] right[xs ys eq in_set IH] step[xs ys eq IH] ]:
+ assumes eq: "remdups (map snd xs) = remdups (map fst ys)"
+ and Nil: "P [] []"
+ and left: "\<And>a b xs b' c ys.
+ \<lbrakk> b \<in> snd ` set xs; remdups (map snd xs) = remdups (map fst ((b', c) # ys));
+ (b, the (map_of (rev ((b', c) # ys)) b)) \<in> set ((b', c) # ys); P xs ((b', c) # ys) \<rbrakk>
+ \<Longrightarrow> P ((a, b) # xs) ((b', c) # ys)"
+ and right: "\<And>a b xs b' c ys.
+ \<lbrakk> b \<notin> snd ` set xs; b' \<in> fst ` set ys;
+ remdups (map snd ((a, b) # xs)) = remdups (map fst ys);
+ (the (map_of (map prod.swap (rev ((a, b) #xs))) b'), b') \<in> set ((a, b) # xs);
+ P ((a, b) # xs) ys \<rbrakk>
+ \<Longrightarrow> P ((a, b) # xs) ((b', c) # ys)"
+ and step: "\<And>a b xs c ys.
+ \<lbrakk> b \<notin> snd ` set xs; b \<notin> fst ` set ys; remdups (map snd xs) = remdups (map fst ys);
+ P xs ys \<rbrakk>
+ \<Longrightarrow> P ((a, b) # xs) ((b, c) # ys)"
+ shows "P xs ys"
+using eq
+proof(induction xs ys rule: wpull.induct)
+ case 1 thus ?case by(simp add: Nil)
+next
+ case 2 thus ?case by(simp split: split_if_asm)
+next
+ case Cons: (3 a b xs b' c ys)
+ let ?xs = "(a, b) # xs" and ?ys = "(b', c) # ys"
+ consider (xs) "b \<in> snd ` set xs" | (ys) "b \<notin> snd ` set xs" "b' \<in> fst ` set ys"
+ | (step) "b \<notin> snd ` set xs" "b' \<notin> fst ` set ys" by auto
+ thus ?case
+ proof cases
+ case xs
+ with Cons.prems have eq: "remdups (map snd xs) = remdups (map fst ?ys)" by auto
+ from xs eq have "b \<in> fst ` set ?ys" by (metis list.set_map set_remdups)
+ hence "map_of (rev ?ys) b \<noteq> None" unfolding map_of_eq_None_iff by auto
+ then obtain c' where "map_of (rev ?ys) b = Some c'" by blast
+ then have "(b, the (map_of (rev ?ys) b)) \<in> set ?ys" by(auto dest: map_of_SomeD split: split_if_asm)
+ from xs eq this Cons.IH(1)[OF xs eq] show ?thesis by(rule left)
+ next
+ case ys
+ from ys Cons.prems have eq: "remdups (map snd ?xs) = remdups (map fst ys)" by auto
+ from ys eq have "b' \<in> snd ` set ?xs" by (metis list.set_map set_remdups)
+ hence "map_of (map prod.swap (rev ?xs)) b' \<noteq> None"
+ unfolding map_of_eq_None_iff by(auto simp add: image_image)
+ then obtain a' where "map_of (map prod.swap (rev ?xs)) b' = Some a'" by blast
+ then have "(the (map_of (map prod.swap (rev ?xs)) b'), b') \<in> set ?xs"
+ by(auto dest: map_of_SomeD split: split_if_asm)
+ from ys eq this Cons.IH(2)[OF ys eq] show ?thesis by(rule right)
+ next
+ case *: step
+ hence "remdups (map snd xs) = remdups (map fst ys)" "b = b'" using Cons.prems by auto
+ from * this(1) Cons.IH(3)[OF * this(1)] show ?thesis unfolding \<open>b = b'\<close> by(rule step)
+ qed
+qed
+
+qualified lemma set_wpull_subset:
+ assumes "remdups (map snd xs) = remdups (map fst ys)"
+ shows "set (wpull xs ys) \<subseteq> set xs O set ys"
+using assms by(induction xs ys rule: wpull_induct) auto
+
+qualified lemma set_fst_wpull:
+ assumes "remdups (map snd xs) = remdups (map fst ys)"
+ shows "fst ` set (wpull xs ys) = fst ` set xs"
+using assms by(induction xs ys rule: wpull_induct)(auto intro: rev_image_eqI)
+
+qualified lemma set_snd_wpull:
+ assumes "remdups (map snd xs) = remdups (map fst ys)"
+ shows "snd ` set (wpull xs ys) = snd ` set ys"
+using assms by(induction xs ys rule: wpull_induct)(auto intro: rev_image_eqI)
+
+qualified lemma wpull:
+ assumes "distinct xs"
+ and "distinct ys"
+ and "set xs \<subseteq> {(x, y). R x y}"
+ and "set ys \<subseteq> {(x, y). S x y}"
+ and eq: "remdups (map snd xs) = remdups (map fst ys)"
+ shows "\<exists>zs. distinct zs \<and> set zs \<subseteq> {(x, y). (R OO S) x y} \<and>
+ remdups (map fst zs) = remdups (map fst xs) \<and> remdups (map snd zs) = remdups (map snd ys)"
+proof(intro exI conjI)
+ let ?zs = "remdups (wpull xs ys)"
+ show "distinct ?zs" by simp
+ show "set ?zs \<subseteq> {(x, y). (R OO S) x y}" using assms(3-4) set_wpull_subset[OF eq] by fastforce
+ show "remdups (map fst ?zs) = remdups (map fst xs)" unfolding remdups_map_remdups using eq
+ by(induction xs ys rule: wpull_induct)(auto simp add: set_fst_wpull intro: rev_image_eqI)
+ show "remdups (map snd ?zs) = remdups (map snd ys)" unfolding remdups_map_remdups using eq
+ by(induction xs ys rule: wpull_induct)(auto simp add: set_snd_wpull intro: rev_image_eqI)
+qed
+
+qualified lift_definition set :: "'a dlist \<Rightarrow> 'a set" is List.set .
+
+qualified lemma map_transfer [transfer_rule]:
+ "(rel_fun op = (rel_fun (pcr_dlist op =) (pcr_dlist op =))) (\<lambda>f x. remdups (List.map f x)) Dlist.map"
+by(simp add: rel_fun_def dlist.pcr_cr_eq cr_dlist_def Dlist.map_def remdups_remdups)
+
+bnf "'a dlist"
+ map: Dlist.map
+ sets: set
+ bd: natLeq
+ wits: Dlist.empty
+unfolding OO_Grp_alt mem_Collect_eq
+subgoal by(rule ext)(simp add: dlist_eq_iff)
+subgoal by(rule ext)(simp add: dlist_eq_iff remdups_map_remdups)
+subgoal by(simp add: dlist_eq_iff set_def cong: list.map_cong)
+subgoal by(simp add: set_def fun_eq_iff)
+subgoal by(simp add: natLeq_card_order)
+subgoal by(simp add: natLeq_cinfinite)
+subgoal by(rule ordLess_imp_ordLeq)(simp add: finite_iff_ordLess_natLeq[symmetric] set_def)
+subgoal by(rule predicate2I)(transfer; auto simp add: wpull)
+subgoal by(rule refl)
+subgoal by(simp add: set_def)
+done
+
+lifting_update dlist.lifting
+lifting_forget dlist.lifting
+
end
+
+end
\ No newline at end of file
--- a/src/HOL/Product_Type.thy Tue Jan 12 09:28:08 2016 +0100
+++ b/src/HOL/Product_Type.thy Tue Jan 12 14:14:28 2016 +0100
@@ -997,6 +997,12 @@
"(case prod.swap p of (y, x) \<Rightarrow> f x y) = (case p of (x, y) \<Rightarrow> f x y)"
by (cases p) simp
+lemma fst_swap [simp]: "fst (prod.swap x) = snd x"
+by(cases x) simp
+
+lemma snd_swap [simp]: "snd (prod.swap x) = fst x"
+by(cases x) simp
+
text \<open>
Disjoint union of a family of sets -- Sigma.
\<close>