--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/RBT.thy Mon Mar 03 14:03:19 2008 +0100
@@ -0,0 +1,1041 @@
+(* Title: RBT.thy
+ ID: $Id$
+ Author: Markus Reiter, TU Muenchen
+ Author: Alexander Krauss, TU Muenchen
+*)
+
+header {* Red-Black Trees *}
+
+(*<*)
+theory RBT
+imports Main AssocList
+begin
+
+datatype color = R | B
+datatype ('a,'b)"rbt" = Empty | Tr color "('a,'b)rbt" 'a 'b "('a,'b)rbt"
+
+(* Suchbaum-Eigenschaften *)
+
+primrec
+ pin_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+where
+ "pin_tree k v Empty = False"
+| "pin_tree k v (Tr c l x y r) = (k = x \<and> v = y \<or> pin_tree k v l \<or> pin_tree k v r)"
+
+primrec
+ keys :: "('k,'v) rbt \<Rightarrow> 'k set"
+where
+ "keys Empty = {}"
+| "keys (Tr _ l k _ r) = { k } \<union> keys l \<union> keys r"
+
+lemma pint_keys: "pin_tree k v t \<Longrightarrow> k \<in> keys t" by (induct t) auto
+
+primrec tlt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool"
+where
+ "tlt k Empty = True"
+| "tlt k (Tr c lt kt v rt) = (kt < k \<and> tlt k lt \<and> tlt k rt)"
+
+abbreviation tllt (infix "|\<guillemotleft>" 50)
+where "t |\<guillemotleft> x == tlt x t"
+
+primrec tgt :: "'a\<Colon>order \<Rightarrow> ('a,'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50)
+where
+ "tgt k Empty = True"
+| "tgt k (Tr c lt kt v rt) = (k < kt \<and> tgt k lt \<and> tgt k rt)"
+
+lemma tlt_prop: "(t |\<guillemotleft> k) = (\<forall>x\<in>keys t. x < k)" by (induct t) auto
+lemma tgt_prop: "(k \<guillemotleft>| t) = (\<forall>x\<in>keys t. k < x)" by (induct t) auto
+lemmas tlgt_props = tlt_prop tgt_prop
+
+lemmas tgt_nit = tgt_prop pint_keys
+lemmas tlt_nit = tlt_prop pint_keys
+
+lemma tlt_trans: "\<lbrakk> t |\<guillemotleft> x; x < y \<rbrakk> \<Longrightarrow> t |\<guillemotleft> y"
+ and tgt_trans: "\<lbrakk> x < y; y \<guillemotleft>| t\<rbrakk> \<Longrightarrow> x \<guillemotleft>| t"
+by (auto simp: tlgt_props)
+
+
+primrec st :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
+where
+ "st Empty = True"
+| "st (Tr c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> st l \<and> st r)"
+
+primrec map_of :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+where
+ "map_of Empty k = None"
+| "map_of (Tr _ l x y r) k = (if k < x then map_of l k else if x < k then map_of r k else Some y)"
+
+lemma map_of_tlt[simp]: "t |\<guillemotleft> k \<Longrightarrow> map_of t k = None"
+by (induct t) auto
+
+lemma map_of_tgt[simp]: "k \<guillemotleft>| t \<Longrightarrow> map_of t k = None"
+by (induct t) auto
+
+lemma mapof_keys: "st t \<Longrightarrow> dom (map_of t) = keys t"
+by (induct t) (auto simp: dom_def tgt_prop tlt_prop)
+
+lemma mapof_pit: "st t \<Longrightarrow> (map_of t k = Some v) = pin_tree k v t"
+by (induct t) (auto simp: tlt_prop tgt_prop pint_keys)
+
+lemma map_of_Empty: "map_of Empty = empty"
+by (rule ext) simp
+
+(* a kind of extensionality *)
+lemma mapof_from_pit:
+ assumes st: "st t1" "st t2"
+ and eq: "\<And>v. pin_tree (k\<Colon>'a\<Colon>linorder) v t1 = pin_tree k v t2"
+ shows "map_of t1 k = map_of t2 k"
+proof (cases "map_of t1 k")
+ case None
+ then have "\<And>v. \<not> pin_tree k v t1"
+ by (simp add: mapof_pit[symmetric] st)
+ with None show ?thesis
+ by (cases "map_of t2 k") (auto simp: mapof_pit st eq)
+next
+ case (Some a)
+ then show ?thesis
+ apply (cases "map_of t2 k")
+ apply (auto simp: mapof_pit st eq)
+ by (auto simp add: mapof_pit[symmetric] st Some)
+qed
+
+subsection {* Red-black properties *}
+
+primrec treec :: "('a,'b) rbt \<Rightarrow> color"
+where
+ "treec Empty = B"
+| "treec (Tr c _ _ _ _) = c"
+
+primrec inv1 :: "('a,'b) rbt \<Rightarrow> bool"
+where
+ "inv1 Empty = True"
+| "inv1 (Tr c lt k v rt) = (inv1 lt \<and> inv1 rt \<and> (c = B \<or> treec lt = B \<and> treec rt = B))"
+
+(* Weaker version *)
+primrec inv1l :: "('a,'b) rbt \<Rightarrow> bool"
+where
+ "inv1l Empty = True"
+| "inv1l (Tr c l k v r) = (inv1 l \<and> inv1 r)"
+lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
+
+primrec bh :: "('a,'b) rbt \<Rightarrow> nat"
+where
+ "bh Empty = 0"
+| "bh (Tr c lt k v rt) = (if c = B then Suc (bh lt) else bh lt)"
+
+primrec inv2 :: "('a,'b) rbt \<Rightarrow> bool"
+where
+ "inv2 Empty = True"
+| "inv2 (Tr c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bh lt = bh rt)"
+
+definition
+ "isrbt t = (inv1 t \<and> inv2 t \<and> treec t = B \<and> st t)"
+
+lemma isrbt_st[simp]: "isrbt t \<Longrightarrow> st t" by (simp add: isrbt_def)
+
+lemma rbt_cases:
+ obtains (Empty) "t = Empty"
+ | (Red) l k v r where "t = Tr R l k v r"
+ | (Black) l k v r where "t = Tr B l k v r"
+by (cases t, simp) (case_tac "color", auto)
+
+theorem Empty_isrbt[simp]: "isrbt Empty"
+unfolding isrbt_def by simp
+
+
+subsection {* Insertion *}
+
+fun (* slow, due to massive case splitting *)
+ balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "balance (Tr R a w x b) s t (Tr R c y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
+ "balance (Tr R (Tr R a w x b) s t c) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
+ "balance (Tr R a w x (Tr R b s t c)) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
+ "balance a w x (Tr R b s t (Tr R c y z d)) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
+ "balance a w x (Tr R (Tr R b s t c) y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" |
+ "balance a s t b = Tr B a s t b"
+
+lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)"
+ by (induct l k v r rule: balance.induct) auto
+
+lemma balance_bh: "bh l = bh r \<Longrightarrow> bh (balance l k v r) = Suc (bh l)"
+ by (induct l k v r rule: balance.induct) auto
+
+lemma balance_inv2:
+ assumes "inv2 l" "inv2 r" "bh l = bh r"
+ shows "inv2 (balance l k v r)"
+ using assms
+ by (induct l k v r rule: balance.induct) auto
+
+lemma balance_tgt[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)"
+ by (induct a k x b rule: balance.induct) auto
+
+lemma balance_tlt[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
+ by (induct a k x b rule: balance.induct) auto
+
+lemma balance_st:
+ fixes k :: "'a::linorder"
+ assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+ shows "st (balance l k v r)"
+using assms proof (induct l k v r rule: balance.induct)
+ case ("2_2" a x w b y t c z s va vb vd vc)
+ hence "y < z \<and> z \<guillemotleft>| Tr B va vb vd vc"
+ by (auto simp add: tlgt_props)
+ hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+ with "2_2" show ?case by simp
+next
+ case ("3_2" va vb vd vc x w b y s c z)
+ from "3_2" have "x < y \<and> tlt x (Tr B va vb vd vc)"
+ by (simp add: tlt.simps tgt.simps)
+ hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+ with "3_2" show ?case by simp
+next
+ case ("3_3" x w b y s c z t va vb vd vc)
+ from "3_3" have "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
+ hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+ with "3_3" show ?case by simp
+next
+ case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
+ hence "x < y \<and> tlt x (Tr B vd ve vg vf)" by simp
+ hence 1: "tlt y (Tr B vd ve vg vf)" by (blast dest: tlt_trans)
+ from "3_4" have "y < z \<and> tgt z (Tr B va vb vii vc)" by simp
+ hence "tgt y (Tr B va vb vii vc)" by (blast dest: tgt_trans)
+ with 1 "3_4" show ?case by simp
+next
+ case ("4_2" va vb vd vc x w b y s c z t dd)
+ hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
+ hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+ with "4_2" show ?case by simp
+next
+ case ("5_2" x w b y s c z t va vb vd vc)
+ hence "y < z \<and> tgt z (Tr B va vb vd vc)" by simp
+ hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+ with "5_2" show ?case by simp
+next
+ case ("5_3" va vb vd vc x w b y s c z t)
+ hence "x < y \<and> tlt x (Tr B va vb vd vc)" by simp
+ hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+ with "5_3" show ?case by simp
+next
+ case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
+ hence "x < y \<and> tlt x (Tr B va vb vg vc)" by simp
+ hence 1: "tlt y (Tr B va vb vg vc)" by (blast dest: tlt_trans)
+ from "5_4" have "y < z \<and> tgt z (Tr B vd ve vii vf)" by simp
+ hence "tgt y (Tr B vd ve vii vf)" by (blast dest: tgt_trans)
+ with 1 "5_4" show ?case by simp
+qed simp+
+
+lemma keys_balance[simp]:
+ "keys (balance l k v r) = { k } \<union> keys l \<union> keys r"
+by (induct l k v r rule: balance.induct) auto
+
+lemma balance_pit:
+ "pin_tree k x (balance l v y r) = (pin_tree k x l \<or> k = v \<and> x = y \<or> pin_tree k x r)"
+by (induct l v y r rule: balance.induct) auto
+
+lemma map_of_balance[simp]:
+fixes k :: "'a::linorder"
+assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+shows "map_of (balance l k v r) x = map_of (Tr B l k v r) x"
+by (rule mapof_from_pit) (auto simp:assms balance_pit balance_st)
+
+primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "paint c Empty = Empty"
+| "paint c (Tr _ l k v r) = Tr c l k v r"
+
+lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
+lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
+lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
+lemma paint_treec[simp]: "treec (paint B t) = B" by (cases t) auto
+lemma paint_st[simp]: "st t \<Longrightarrow> st (paint c t)" by (cases t) auto
+lemma paint_pit[simp]: "pin_tree k x (paint c t) = pin_tree k x t" by (cases t) auto
+lemma paint_mapof[simp]: "map_of (paint c t) = map_of t" by (rule ext) (cases t, auto)
+lemma paint_tgt[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
+lemma paint_tlt[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
+
+fun
+ ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "ins f k v Empty = Tr R Empty k v Empty" |
+ "ins f k v (Tr B l x y r) = (if k < x then balance (ins f k v l) x y r
+ else if k > x then balance l x y (ins f k v r)
+ else Tr B l x (f k y v) r)" |
+ "ins f k v (Tr R l x y r) = (if k < x then Tr R (ins f k v l) x y r
+ else if k > x then Tr R l x y (ins f k v r)
+ else Tr R l x (f k y v) r)"
+
+lemma ins_inv1_inv2:
+ assumes "inv1 t" "inv2 t"
+ shows "inv2 (ins f k x t)" "bh (ins f k x t) = bh t"
+ "treec t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
+ using assms
+ by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bh)
+
+lemma ins_tgt[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
+ by (induct f k x t rule: ins.induct) auto
+lemma ins_tlt[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
+ by (induct f k x t rule: ins.induct) auto
+lemma ins_st[simp]: "st t \<Longrightarrow> st (ins f k x t)"
+ by (induct f k x t rule: ins.induct) (auto simp: balance_st)
+
+lemma keys_ins: "keys (ins f k v t) = { k } \<union> keys t"
+by (induct f k v t rule: ins.induct) auto
+
+lemma map_of_ins:
+ fixes k :: "'a::linorder"
+ assumes "st t"
+ shows "map_of (ins f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v
+ | Some w \<Rightarrow> f k w v)) x"
+using assms by (induct f k v t rule: ins.induct) auto
+
+definition
+ insertwithkey :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "insertwithkey f k v t = paint B (ins f k v t)"
+
+lemma insertwk_st: "st t \<Longrightarrow> st (insertwithkey f k x t)"
+ by (auto simp: insertwithkey_def)
+
+theorem insertwk_isrbt:
+ assumes inv: "isrbt t"
+ shows "isrbt (insertwithkey f k x t)"
+using assms
+unfolding insertwithkey_def isrbt_def
+by (auto simp: ins_inv1_inv2)
+
+lemma map_of_insertwk:
+ assumes "st t"
+ shows "map_of (insertwithkey f k v t) x = ((map_of t)(k |-> case map_of t k of None \<Rightarrow> v
+ | Some w \<Rightarrow> f k w v)) x"
+unfolding insertwithkey_def using assms
+by (simp add:map_of_ins)
+
+definition
+ insertw_def: "insertwith f = insertwithkey (\<lambda>_. f)"
+
+lemma insertw_st: "st t \<Longrightarrow> st (insertwith f k v t)" by (simp add: insertwk_st insertw_def)
+theorem insertw_isrbt: "isrbt t \<Longrightarrow> isrbt (insertwith f k v t)" by (simp add: insertwk_isrbt insertw_def)
+
+lemma map_of_insertw:
+ assumes "isrbt t"
+ shows "map_of (insertwith f k v t) = (map_of t)(k \<mapsto> (if k:dom (map_of t) then f (the (map_of t k)) v else v))"
+using assms
+unfolding insertw_def
+by (rule_tac ext) (cases "map_of t k", auto simp:map_of_insertwk dom_def)
+
+
+definition
+ "insrt k v t = insertwithkey (\<lambda>_ _ nv. nv) k v t"
+
+lemma insrt_st: "st t \<Longrightarrow> st (insrt k v t)" by (simp add: insertwk_st insrt_def)
+theorem insrt_isrbt: "isrbt t \<Longrightarrow> isrbt (insrt k v t)" by (simp add: insertwk_isrbt insrt_def)
+
+lemma map_of_insert:
+ assumes "isrbt t"
+ shows "map_of (insrt k v t) = (map_of t)(k\<mapsto>v)"
+unfolding insrt_def
+using assms
+by (rule_tac ext) (simp add: map_of_insertwk split:option.split)
+
+
+subsection {* Deletion *}
+
+(*definition
+ [simp]: "ibn t = (bh t > 0 \<and> treec t = B)"
+*)
+lemma bh_paintR'[simp]: "treec t = B \<Longrightarrow> bh (paint R t) = bh t - 1"
+by (cases t rule: rbt_cases) auto
+
+fun
+ balleft :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "balleft (Tr R a k x b) s y c = Tr R (Tr B a k x b) s y c" |
+ "balleft bl k x (Tr B a s y b) = balance bl k x (Tr R a s y b)" |
+ "balleft bl k x (Tr R (Tr B a s y b) t z c) = Tr R (Tr B bl k x a) s y (balance b t z (paint R c))" |
+ "balleft t k x s = Empty"
+
+lemma balleft_inv2_with_inv1:
+ assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "inv1 rt"
+ shows "bh (balleft lt k v rt) = bh lt + 1"
+ and "inv2 (balleft lt k v rt)"
+using assms
+by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bh)
+
+lemma balleft_inv2_app:
+ assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "treec rt = B"
+ shows "inv2 (balleft lt k v rt)"
+ "bh (balleft lt k v rt) = bh rt"
+using assms
+by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bh)+
+
+lemma balleft_inv1: "\<lbrakk>inv1l a; inv1 b; treec b = B\<rbrakk> \<Longrightarrow> inv1 (balleft a k x b)"
+ by (induct a k x b rule: balleft.induct) (simp add: balance_inv1)+
+
+lemma balleft_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balleft lt k x rt)"
+by (induct lt k x rt rule: balleft.induct) (auto simp: balance_inv1)
+
+lemma balleft_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balleft l k v r)"
+apply (induct l k v r rule: balleft.induct)
+apply (auto simp: balance_st)
+apply (unfold tgt_prop tlt_prop)
+by force+
+
+lemma balleft_tgt:
+ fixes k :: "'a::order"
+ assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x"
+ shows "k \<guillemotleft>| balleft a x t b"
+using assms
+by (induct a x t b rule: balleft.induct) auto
+
+lemma balleft_tlt:
+ fixes k :: "'a::order"
+ assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k"
+ shows "balleft a x t b |\<guillemotleft> k"
+using assms
+by (induct a x t b rule: balleft.induct) auto
+
+lemma balleft_pit:
+ assumes "inv1l l" "inv1 r" "bh l + 1 = bh r"
+ shows "pin_tree k v (balleft l a b r) = (pin_tree k v l \<or> k = a \<and> v = b \<or> pin_tree k v r)"
+using assms
+by (induct l k v r rule: balleft.induct) (auto simp: balance_pit)
+
+fun
+ balright :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "balright a k x (Tr R b s y c) = Tr R a k x (Tr B b s y c)" |
+ "balright (Tr B a k x b) s y bl = balance (Tr R a k x b) s y bl" |
+ "balright (Tr R a k x (Tr B b s y c)) t z bl = Tr R (balance (paint R a) k x b) s y (Tr B c t z bl)" |
+ "balright t k x s = Empty"
+
+lemma balright_inv2_with_inv1:
+ assumes "inv2 lt" "inv2 rt" "bh lt = bh rt + 1" "inv1 lt"
+ shows "inv2 (balright lt k v rt) \<and> bh (balright lt k v rt) = bh lt"
+using assms
+by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bh)
+
+lemma balright_inv1: "\<lbrakk>inv1 a; inv1l b; treec a = B\<rbrakk> \<Longrightarrow> inv1 (balright a k x b)"
+by (induct a k x b rule: balright.induct) (simp add: balance_inv1)+
+
+lemma balright_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balright lt k x rt)"
+by (induct lt k x rt rule: balright.induct) (auto simp: balance_inv1)
+
+lemma balright_st: "\<lbrakk> st l; st r; tlt k l; tgt k r \<rbrakk> \<Longrightarrow> st (balright l k v r)"
+apply (induct l k v r rule: balright.induct)
+apply (auto simp:balance_st)
+apply (unfold tlt_prop tgt_prop)
+by force+
+
+lemma balright_tgt:
+ fixes k :: "'a::order"
+ assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x"
+ shows "k \<guillemotleft>| balright a x t b"
+using assms by (induct a x t b rule: balright.induct) auto
+
+lemma balright_tlt:
+ fixes k :: "'a::order"
+ assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k"
+ shows "balright a x t b |\<guillemotleft> k"
+using assms by (induct a x t b rule: balright.induct) auto
+
+lemma balright_pit:
+ assumes "inv1 l" "inv1l r" "bh l = bh r + 1" "inv2 l" "inv2 r"
+ shows "pin_tree x y (balright l k v r) = (pin_tree x y l \<or> x = k \<and> y = v \<or> pin_tree x y r)"
+using assms by (induct l k v r rule: balright.induct) (auto simp: balance_pit)
+
+
+text {* app *}
+
+fun
+ app :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "app Empty x = x"
+| "app x Empty = x"
+| "app (Tr R a k x b) (Tr R c s y d) = (case (app b c) of
+ Tr R b2 t z c2 \<Rightarrow> (Tr R (Tr R a k x b2) t z (Tr R c2 s y d)) |
+ bc \<Rightarrow> Tr R a k x (Tr R bc s y d))"
+| "app (Tr B a k x b) (Tr B c s y d) = (case (app b c) of
+ Tr R b2 t z c2 \<Rightarrow> Tr R (Tr B a k x b2) t z (Tr B c2 s y d) |
+ bc \<Rightarrow> balleft a k x (Tr B bc s y d))"
+| "app a (Tr R b k x c) = Tr R (app a b) k x c"
+| "app (Tr R a k x b) c = Tr R a k x (app b c)"
+
+lemma app_inv2:
+ assumes "inv2 lt" "inv2 rt" "bh lt = bh rt"
+ shows "bh (app lt rt) = bh lt" "inv2 (app lt rt)"
+using assms
+by (induct lt rt rule: app.induct)
+ (auto simp: balleft_inv2_app split: rbt.splits color.splits)
+
+lemma app_inv1:
+ assumes "inv1 lt" "inv1 rt"
+ shows "treec lt = B \<Longrightarrow> treec rt = B \<Longrightarrow> inv1 (app lt rt)"
+ "inv1l (app lt rt)"
+using assms
+by (induct lt rt rule: app.induct)
+ (auto simp: balleft_inv1 split: rbt.splits color.splits)
+
+lemma app_tgt[simp]:
+ fixes k :: "'a::linorder"
+ assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r"
+ shows "k \<guillemotleft>| app l r"
+using assms
+by (induct l r rule: app.induct)
+ (auto simp: balleft_tgt split:rbt.splits color.splits)
+
+lemma app_tlt[simp]:
+ fixes k :: "'a::linorder"
+ assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k"
+ shows "app l r |\<guillemotleft> k"
+using assms
+by (induct l r rule: app.induct)
+ (auto simp: balleft_tlt split:rbt.splits color.splits)
+
+lemma app_st:
+ fixes k :: "'a::linorder"
+ assumes "st l" "st r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+ shows "st (app l r)"
+using assms proof (induct l r rule: app.induct)
+ case (3 a x v b c y w d)
+ hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
+ by auto
+ with 3
+ show ?case
+ apply (cases "app b c" rule: rbt_cases)
+ apply auto
+ by (metis app_tgt app_tlt ineqs ineqs tlt.simps(2) tgt.simps(2) tgt_trans tlt_trans)+
+next
+ case (4 a x v b c y w d)
+ hence "x < k \<and> tgt k c" by simp
+ hence "tgt x c" by (blast dest: tgt_trans)
+ with 4 have 2: "tgt x (app b c)" by (simp add: app_tgt)
+ from 4 have "k < y \<and> tlt k b" by simp
+ hence "tlt y b" by (blast dest: tlt_trans)
+ with 4 have 3: "tlt y (app b c)" by (simp add: app_tlt)
+ show ?case
+ proof (cases "app b c" rule: rbt_cases)
+ case Empty
+ from 4 have "x < y \<and> tgt y d" by auto
+ hence "tgt x d" by (blast dest: tgt_trans)
+ with 4 Empty have "st a" and "st (Tr B Empty y w d)" and "tlt x a" and "tgt x (Tr B Empty y w d)" by auto
+ with Empty show ?thesis by (simp add: balleft_st)
+ next
+ case (Red lta va ka rta)
+ with 2 4 have "x < va \<and> tlt x a" by simp
+ hence 5: "tlt va a" by (blast dest: tlt_trans)
+ from Red 3 4 have "va < y \<and> tgt y d" by simp
+ hence "tgt va d" by (blast dest: tgt_trans)
+ with Red 2 3 4 5 show ?thesis by simp
+ next
+ case (Black lta va ka rta)
+ from 4 have "x < y \<and> tgt y d" by auto
+ hence "tgt x d" by (blast dest: tgt_trans)
+ with Black 2 3 4 have "st a" and "st (Tr B (app b c) y w d)" and "tlt x a" and "tgt x (Tr B (app b c) y w d)" by auto
+ with Black show ?thesis by (simp add: balleft_st)
+ qed
+next
+ case (5 va vb vd vc b x w c)
+ hence "k < x \<and> tlt k (Tr B va vb vd vc)" by simp
+ hence "tlt x (Tr B va vb vd vc)" by (blast dest: tlt_trans)
+ with 5 show ?case by (simp add: app_tlt)
+next
+ case (6 a x v b va vb vd vc)
+ hence "x < k \<and> tgt k (Tr B va vb vd vc)" by simp
+ hence "tgt x (Tr B va vb vd vc)" by (blast dest: tgt_trans)
+ with 6 show ?case by (simp add: app_tgt)
+qed simp+
+
+lemma app_pit:
+ assumes "inv2 l" "inv2 r" "bh l = bh r" "inv1 l" "inv1 r"
+ shows "pin_tree k v (app l r) = (pin_tree k v l \<or> pin_tree k v r)"
+using assms
+proof (induct l r rule: app.induct)
+ case (4 _ _ _ b c)
+ hence a: "bh (app b c) = bh b" by (simp add: app_inv2)
+ from 4 have b: "inv1l (app b c)" by (simp add: app_inv1)
+
+ show ?case
+ proof (cases "app b c" rule: rbt_cases)
+ case Empty
+ with 4 a show ?thesis by (auto simp: balleft_pit)
+ next
+ case (Red lta ka va rta)
+ with 4 show ?thesis by auto
+ next
+ case (Black lta ka va rta)
+ with a b 4 show ?thesis by (auto simp: balleft_pit)
+ qed
+qed (auto split: rbt.splits color.splits)
+
+fun
+ delformLeft :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
+ delformRight :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
+ del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "del x Empty = Empty" |
+ "del x (Tr c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" |
+ "delformLeft x (Tr B lt z v rt) y s b = balleft (del x (Tr B lt z v rt)) y s b" |
+ "delformLeft x a y s b = Tr R (del x a) y s b" |
+ "delformRight x a y s (Tr B lt z v rt) = balright a y s (del x (Tr B lt z v rt))" |
+ "delformRight x a y s b = Tr R a y s (del x b)"
+
+lemma
+ assumes "inv2 lt" "inv1 lt"
+ shows
+ "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
+ inv2 (delformLeft x lt k v rt) \<and> bh (delformLeft x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformLeft x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformLeft x lt k v rt))"
+ and "\<lbrakk>inv2 rt; bh lt = bh rt; inv1 rt\<rbrakk> \<Longrightarrow>
+ inv2 (delformRight x lt k v rt) \<and> bh (delformRight x lt k v rt) = bh lt \<and> (treec lt = B \<and> treec rt = B \<and> inv1 (delformRight x lt k v rt) \<or> (treec lt \<noteq> B \<or> treec rt \<noteq> B) \<and> inv1l (delformRight x lt k v rt))"
+ and del_inv1_inv2: "inv2 (del x lt) \<and> (treec lt = R \<and> bh (del x lt) = bh lt \<and> inv1 (del x lt)
+ \<or> treec lt = B \<and> bh (del x lt) = bh lt - 1 \<and> inv1l (del x lt))"
+using assms
+proof (induct x lt k v rt and x lt k v rt and x lt rule: delformLeft_delformRight_del.induct)
+case (2 y c _ y')
+ have "y = y' \<or> y < y' \<or> y > y'" by auto
+ thus ?case proof (elim disjE)
+ assume "y = y'"
+ with 2 show ?thesis by (cases c) (simp add: app_inv2 app_inv1)+
+ next
+ assume "y < y'"
+ with 2 show ?thesis by (cases c) auto
+ next
+ assume "y' < y"
+ with 2 show ?thesis by (cases c) auto
+ qed
+next
+ case (3 y lt z v rta y' ss bb)
+ thus ?case by (cases "treec (Tr B lt z v rta) = B \<and> treec bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+
+next
+ case (5 y a y' ss lt z v rta)
+ thus ?case by (cases "treec a = B \<and> treec (Tr B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+
+next
+ case ("6_1" y a y' ss) thus ?case by (cases "treec a = B \<and> treec Empty = B") simp+
+qed auto
+
+lemma
+ delformLeft_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformLeft x lt k y rt)"
+ and delformRight_tlt: "\<lbrakk>tlt v lt; tlt v rt; k < v\<rbrakk> \<Longrightarrow> tlt v (delformRight x lt k y rt)"
+ and del_tlt: "tlt v lt \<Longrightarrow> tlt v (del x lt)"
+by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
+ (auto simp: balleft_tlt balright_tlt)
+
+lemma delformLeft_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformLeft x lt k y rt)"
+ and delformRight_tgt: "\<lbrakk>tgt v lt; tgt v rt; k > v\<rbrakk> \<Longrightarrow> tgt v (delformRight x lt k y rt)"
+ and del_tgt: "tgt v lt \<Longrightarrow> tgt v (del x lt)"
+by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
+ (auto simp: balleft_tgt balright_tgt)
+
+lemma "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformLeft x lt k y rt)"
+ and "\<lbrakk>st lt; st rt; tlt k lt; tgt k rt\<rbrakk> \<Longrightarrow> st (delformRight x lt k y rt)"
+ and del_st: "st lt \<Longrightarrow> st (del x lt)"
+proof (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct)
+ case (3 x lta zz v rta yy ss bb)
+ from 3 have "tlt yy (Tr B lta zz v rta)" by simp
+ hence "tlt yy (del x (Tr B lta zz v rta))" by (rule del_tlt)
+ with 3 show ?case by (simp add: balleft_st)
+next
+ case ("4_2" x vaa vbb vdd vc yy ss bb)
+ hence "tlt yy (Tr R vaa vbb vdd vc)" by simp
+ hence "tlt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tlt)
+ with "4_2" show ?case by simp
+next
+ case (5 x aa yy ss lta zz v rta)
+ hence "tgt yy (Tr B lta zz v rta)" by simp
+ hence "tgt yy (del x (Tr B lta zz v rta))" by (rule del_tgt)
+ with 5 show ?case by (simp add: balright_st)
+next
+ case ("6_2" x aa yy ss vaa vbb vdd vc)
+ hence "tgt yy (Tr R vaa vbb vdd vc)" by simp
+ hence "tgt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tgt)
+ with "6_2" show ?case by simp
+qed (auto simp: app_st)
+
+lemma "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x < kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformLeft x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
+ and "\<lbrakk>st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x > kt\<rbrakk> \<Longrightarrow> pin_tree k v (delformRight x lt kt y rt) = (False \<or> (x \<noteq> k \<and> pin_tree k v (Tr c lt kt y rt)))"
+ and del_pit: "\<lbrakk>st t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> pin_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> pin_tree k v t))"
+proof (induct x lt kt y rt and x lt kt y rt and x t rule: delformLeft_delformRight_del.induct)
+ case (2 xx c aa yy ss bb)
+ have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
+ from this 2 show ?case proof (elim disjE)
+ assume "xx = yy"
+ with 2 show ?thesis proof (cases "xx = k")
+ case True
+ from 2 `xx = yy` `xx = k` have "st (Tr c aa yy ss bb) \<and> k = yy" by simp
+ hence "\<not> pin_tree k v aa" "\<not> pin_tree k v bb" by (auto simp: tlt_nit tgt_prop)
+ with `xx = yy` 2 `xx = k` show ?thesis by (simp add: app_pit)
+ qed (simp add: app_pit)
+ qed simp+
+next
+ case (3 xx lta zz vv rta yy ss bb)
+ def mt[simp]: mt == "Tr B lta zz vv rta"
+ from 3 have "inv2 mt \<and> inv1 mt" by simp
+ hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+ with 3 have 4: "pin_tree k v (delformLeft xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> pin_tree k v mt \<or> (k = yy \<and> v = ss) \<or> pin_tree k v bb)" by (simp add: balleft_pit)
+ thus ?case proof (cases "xx = k")
+ case True
+ from 3 True have "tgt yy bb \<and> yy > k" by simp
+ hence "tgt k bb" by (blast dest: tgt_trans)
+ with 3 4 True show ?thesis by (auto simp: tgt_nit)
+ qed auto
+next
+ case ("4_1" xx yy ss bb)
+ show ?case proof (cases "xx = k")
+ case True
+ with "4_1" have "tgt yy bb \<and> k < yy" by simp
+ hence "tgt k bb" by (blast dest: tgt_trans)
+ with "4_1" `xx = k`
+ have "pin_tree k v (Tr R Empty yy ss bb) = pin_tree k v Empty" by (auto simp: tgt_nit)
+ thus ?thesis by auto
+ qed simp+
+next
+ case ("4_2" xx vaa vbb vdd vc yy ss bb)
+ thus ?case proof (cases "xx = k")
+ case True
+ with "4_2" have "k < yy \<and> tgt yy bb" by simp
+ hence "tgt k bb" by (blast dest: tgt_trans)
+ with True "4_2" show ?thesis by (auto simp: tgt_nit)
+ qed simp
+next
+ case (5 xx aa yy ss lta zz vv rta)
+ def mt[simp]: mt == "Tr B lta zz vv rta"
+ from 5 have "inv2 mt \<and> inv1 mt" by simp
+ hence "inv2 (del xx mt) \<and> (treec mt = R \<and> bh (del xx mt) = bh mt \<and> inv1 (del xx mt) \<or> treec mt = B \<and> bh (del xx mt) = bh mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+ with 5 have 3: "pin_tree k v (delformRight xx aa yy ss mt) = (pin_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> pin_tree k v mt)" by (simp add: balright_pit)
+ thus ?case proof (cases "xx = k")
+ case True
+ from 5 True have "tlt yy aa \<and> yy < k" by simp
+ hence "tlt k aa" by (blast dest: tlt_trans)
+ with 3 5 True show ?thesis by (auto simp: tlt_nit)
+ qed auto
+next
+ case ("6_1" xx aa yy ss)
+ show ?case proof (cases "xx = k")
+ case True
+ with "6_1" have "tlt yy aa \<and> k > yy" by simp
+ hence "tlt k aa" by (blast dest: tlt_trans)
+ with "6_1" `xx = k` show ?thesis by (auto simp: tlt_nit)
+ qed simp
+next
+ case ("6_2" xx aa yy ss vaa vbb vdd vc)
+ thus ?case proof (cases "xx = k")
+ case True
+ with "6_2" have "k > yy \<and> tlt yy aa" by simp
+ hence "tlt k aa" by (blast dest: tlt_trans)
+ with True "6_2" show ?thesis by (auto simp: tlt_nit)
+ qed simp
+qed simp
+
+
+definition delete where
+ delete_def: "delete k t = paint B (del k t)"
+
+theorem delete_isrbt[simp]: assumes "isrbt t" shows "isrbt (delete k t)"
+proof -
+ from assms have "inv2 t" and "inv1 t" unfolding isrbt_def by auto
+ hence "inv2 (del k t) \<and> (treec t = R \<and> bh (del k t) = bh t \<and> inv1 (del k t) \<or> treec t = B \<and> bh (del k t) = bh t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
+ hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "treec t") auto
+ with assms show ?thesis
+ unfolding isrbt_def delete_def
+ by (auto intro: paint_st del_st)
+qed
+
+lemma delete_pit:
+ assumes "isrbt t"
+ shows "pin_tree k v (delete x t) = (x \<noteq> k \<and> pin_tree k v t)"
+ using assms unfolding isrbt_def delete_def
+ by (auto simp: del_pit)
+
+lemma map_of_delete:
+ assumes isrbt: "isrbt t"
+ shows "map_of (delete k t) = (map_of t)|`(-{k})"
+proof
+ fix x
+ show "map_of (delete k t) x = (map_of t |` (-{k})) x"
+ proof (cases "x = k")
+ assume "x = k"
+ with isrbt show ?thesis
+ by (cases "map_of (delete k t) k") (auto simp: mapof_pit delete_pit)
+ next
+ assume "x \<noteq> k"
+ thus ?thesis
+ by auto (metis isrbt delete_isrbt delete_pit isrbt_st mapof_from_pit)
+ qed
+qed
+
+subsection {* Union *}
+
+primrec
+ unionwithkey :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "unionwithkey f t Empty = t"
+| "unionwithkey f t (Tr c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt"
+
+lemma unionwk_st: "st lt \<Longrightarrow> st (unionwithkey f lt rt)"
+ by (induct rt arbitrary: lt) (auto simp: insertwk_st)
+theorem unionwk_isrbt[simp]: "isrbt lt \<Longrightarrow> isrbt (unionwithkey f lt rt)"
+ by (induct rt arbitrary: lt) (simp add: insertwk_isrbt)+
+
+definition
+ unionwith where
+ "unionwith f = unionwithkey (\<lambda>_. f)"
+
+theorem unionw_isrbt: "isrbt lt \<Longrightarrow> isrbt (unionwith f lt rt)" unfolding unionwith_def by simp
+
+definition union where
+ "union = unionwithkey (%_ _ rv. rv)"
+
+theorem union_isrbt: "isrbt lt \<Longrightarrow> isrbt (union lt rt)" unfolding union_def by simp
+
+lemma union_Tr[simp]:
+ "union t (Tr c lt k v rt) = union (union (insrt k v t) lt) rt"
+ unfolding union_def insrt_def
+ by simp
+
+lemma map_of_union:
+ assumes "isrbt s" "st t"
+ shows "map_of (union s t) = map_of s ++ map_of t"
+using assms
+proof (induct t arbitrary: s)
+ case Empty thus ?case by (auto simp: union_def)
+next
+ case (Tr c l k v r s)
+ hence strl: "st r" "st l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
+
+ have meq: "map_of s(k \<mapsto> v) ++ map_of l ++ map_of r =
+ map_of s ++
+ (\<lambda>a. if a < k then map_of l a
+ else if k < a then map_of r a else Some v)" (is "?m1 = ?m2")
+ proof (rule ext)
+ fix a
+
+ have "k < a \<or> k = a \<or> k > a" by auto
+ thus "?m1 a = ?m2 a"
+ proof (elim disjE)
+ assume "k < a"
+ with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tlt_trans)
+ with `k < a` show ?thesis
+ by (auto simp: map_add_def split: option.splits)
+ next
+ assume "k = a"
+ with `l |\<guillemotleft> k` `k \<guillemotleft>| r`
+ show ?thesis by (auto simp: map_add_def)
+ next
+ assume "a < k"
+ from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tgt_trans)
+ with `a < k` show ?thesis
+ by (auto simp: map_add_def split: option.splits)
+ qed
+ qed
+
+ from Tr
+ have IHs:
+ "map_of (union (union (insrt k v s) l) r) = map_of (union (insrt k v s) l) ++ map_of r"
+ "map_of (union (insrt k v s) l) = map_of (insrt k v s) ++ map_of l"
+ by (auto intro: union_isrbt insrt_isrbt)
+
+ with meq show ?case
+ by (auto simp: map_of_insert[OF Tr(3)])
+qed
+
+subsection {* Adjust *}
+
+primrec
+ adjustwithkey :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+ "adjustwithkey f k Empty = Empty"
+| "adjustwithkey f k (Tr c lt x v rt) = (if k < x then (Tr c (adjustwithkey f k lt) x v rt) else if k > x then (Tr c lt x v (adjustwithkey f k rt)) else (Tr c lt x (f x v) rt))"
+
+lemma adjustwk_treec: "treec (adjustwithkey f k t) = treec t" by (induct t) simp+
+lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_treec)+
+lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bh (adjustwithkey f k t) = bh t" by (induct t) simp+
+lemma adjustwk_tgt: "tgt k (adjustwithkey f kk t) = tgt k t" by (induct t) simp+
+lemma adjustwk_tlt: "tlt k (adjustwithkey f kk t) = tlt k t" by (induct t) simp+
+lemma adjustwk_st: "st (adjustwithkey f k t) = st t" by (induct t) (simp add: adjustwk_tlt adjustwk_tgt)+
+
+theorem adjustwk_isrbt[simp]: "isrbt (adjustwithkey f k t) = isrbt t"
+unfolding isrbt_def by (simp add: adjustwk_inv2 adjustwk_treec adjustwk_st adjustwk_inv1 )
+
+theorem adjustwithkey_map[simp]:
+ "map_of (adjustwithkey f k t) x =
+ (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f k y)
+ else map_of t x)"
+by (induct t arbitrary: x) (auto split:option.splits)
+
+definition adjust where
+ "adjust f = adjustwithkey (\<lambda>_. f)"
+
+theorem adjust_isrbt[simp]: "isrbt (adjust f k t) = isrbt t" unfolding adjust_def by simp
+
+theorem adjust_map[simp]:
+ "map_of (adjust f k t) x =
+ (if x = k then case map_of t x of None \<Rightarrow> None | Some y \<Rightarrow> Some (f y)
+ else map_of t x)"
+unfolding adjust_def by simp
+
+subsection {* Map *}
+
+primrec
+ mapwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'c) rbt"
+where
+ "mapwithkey f Empty = Empty"
+| "mapwithkey f (Tr c lt k v rt) = Tr c (mapwithkey f lt) k (f k v) (mapwithkey f rt)"
+
+theorem mapwk_keys[simp]: "keys (mapwithkey f t) = keys t" by (induct t) auto
+lemma mapwk_tgt: "tgt k (mapwithkey f t) = tgt k t" by (induct t) simp+
+lemma mapwk_tlt: "tlt k (mapwithkey f t) = tlt k t" by (induct t) simp+
+lemma mapwk_st: "st (mapwithkey f t) = st t" by (induct t) (simp add: mapwk_tlt mapwk_tgt)+
+lemma mapwk_treec: "treec (mapwithkey f t) = treec t" by (induct t) simp+
+lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_treec)+
+lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bh (mapwithkey f t) = bh t" by (induct t) simp+
+theorem mapwk_isrbt[simp]: "isrbt (mapwithkey f t) = isrbt t"
+unfolding isrbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_st mapwk_treec)
+
+theorem map_of_mapwk[simp]: "map_of (mapwithkey f t) x = option_map (f x) (map_of t x)"
+by (induct t) auto
+
+definition map
+where map_def: "map f == mapwithkey (\<lambda>_. f)"
+
+theorem map_keys[simp]: "keys (map f t) = keys t" unfolding map_def by simp
+theorem map_isrbt[simp]: "isrbt (map f t) = isrbt t" unfolding map_def by simp
+theorem map_of_map[simp]: "map_of (map f t) = option_map f o map_of t"
+ by (rule ext) (simp add:map_def)
+
+subsection {* Fold *}
+
+text {* The following is still incomplete... *}
+
+primrec
+ foldwithkey :: "('a::linorder \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
+where
+ "foldwithkey f Empty v = v"
+| "foldwithkey f (Tr c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))"
+
+primrec alist_of
+where
+ "alist_of Empty = []"
+| "alist_of (Tr _ l k v r) = alist_of l @ (k,v) # alist_of r"
+
+lemma map_of_alist_of:
+ shows "st t \<Longrightarrow> Map.map_of (alist_of t) = map_of t"
+ oops
+
+lemma fold_alist_fold:
+ "foldwithkey f t x = foldl (\<lambda>x (k,v). f k v x) x (alist_of t)"
+by (induct t arbitrary: x) auto
+
+lemma alist_pit[simp]: "(k, v) \<in> set (alist_of t) = pin_tree k v t"
+by (induct t) auto
+
+lemma sorted_alist:
+ "st t \<Longrightarrow> sorted (List.map fst (alist_of t))"
+by (induct t)
+ (force simp: sorted_append sorted_Cons tlgt_props
+ dest!:pint_keys)+
+
+lemma distinct_alist:
+ "st t \<Longrightarrow> distinct (List.map fst (alist_of t))"
+by (induct t)
+ (force simp: sorted_append sorted_Cons tlgt_props
+ dest!:pint_keys)+
+(*>*)
+
+text {*
+ This theory defines purely functional red-black trees which can be
+ used as an efficient representation of finite maps.
+*}
+
+subsection {* Data type and invariant *}
+
+text {*
+ The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of
+ type @{typ "'k"} and values of type @{typ "'v"}. To function
+ properly, the key type must belong to the @{text "linorder"} class.
+
+ A value @{term t} of this type is a valid red-black tree if it
+ satisfies the invariant @{text "isrbt t"}.
+ This theory provides lemmas to prove that the invariant is
+ satisfied throughout the computation.
+
+ The interpretation function @{const "map_of"} returns the partial
+ map represented by a red-black tree:
+ @{term_type[display] "map_of"}
+
+ This function should be used for reasoning about the semantics of the RBT
+ operations. Furthermore, it implements the lookup functionality for
+ the data structure: It is executable and the lookup is performed in
+ $O(\log n)$.
+*}
+
+subsection {* Operations *}
+
+text {*
+ Currently, the following operations are supported:
+
+ @{term_type[display] "Empty"}
+ Returns the empty tree. $O(1)$
+
+ @{term_type[display] "insrt"}
+ Updates the map at a given position. $O(\log n)$
+
+ @{term_type[display] "delete"}
+ Deletes a map entry at a given position. $O(\log n)$
+
+ @{term_type[display] "union"}
+ Forms the union of two trees, preferring entries from the first one.
+
+ @{term_type[display] "map"}
+ Maps a function over the values of a map. $O(n)$
+*}
+
+
+subsection {* Invariant preservation *}
+
+text {*
+ \noindent
+ @{thm Empty_isrbt}\hfill(@{text "Empty_isrbt"})
+
+ \noindent
+ @{thm insrt_isrbt}\hfill(@{text "insrt_isrbt"})
+
+ \noindent
+ @{thm delete_isrbt}\hfill(@{text "delete_isrbt"})
+
+ \noindent
+ @{thm union_isrbt}\hfill(@{text "union_isrbt"})
+
+ \noindent
+ @{thm map_isrbt}\hfill(@{text "map_isrbt"})
+*}
+
+subsection {* Map Semantics *}
+
+text {*
+ \noindent
+ \underline{@{text "map_of_Empty"}}
+ @{thm[display] map_of_Empty}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "map_of_insert"}}
+ @{thm[display] map_of_insert}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "map_of_delete"}}
+ @{thm[display] map_of_delete}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "map_of_union"}}
+ @{thm[display] map_of_union}
+ \vspace{1ex}
+
+ \noindent
+ \underline{@{text "map_of_map"}}
+ @{thm[display] map_of_map}
+ \vspace{1ex}
+*}
+
+end