--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Feb 13 16:35:07 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Feb 13 16:35:07 2013 +0100
@@ -170,99 +170,6 @@
where "countable D" "\<And>X. open X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> \<exists>d \<in> D. d \<in> X"
using countable_dense_exists by blast
-text {* Construction of an increasing sequence approximating open sets,
- therefore basis which is closed under union. *}
-
-definition union_closed_basis::"'a set set" where
- "union_closed_basis = (\<lambda>l. \<Union>set l) ` lists B"
-
-lemma basis_union_closed_basis: "topological_basis union_closed_basis"
-proof (rule topological_basisI)
- fix O' and x::'a assume "open O'" "x \<in> O'"
- from topological_basisE[OF is_basis this] guess B' . note B' = this
- thus "\<exists>B'\<in>union_closed_basis. x \<in> B' \<and> B' \<subseteq> O'" unfolding union_closed_basis_def
- by (auto intro!: bexI[where x="[B']"])
-next
- fix B' assume "B' \<in> union_closed_basis"
- thus "open B'"
- using topological_basis_open[OF is_basis]
- by (auto simp: union_closed_basis_def)
-qed
-
-lemma countable_union_closed_basis: "countable union_closed_basis"
- unfolding union_closed_basis_def using countable_basis by simp
-
-lemmas open_union_closed_basis = topological_basis_open[OF basis_union_closed_basis]
-
-lemma union_closed_basis_ex:
- assumes X: "X \<in> union_closed_basis"
- shows "\<exists>B'. finite B' \<and> X = \<Union>B' \<and> B' \<subseteq> B"
-proof -
- from X obtain l where "\<And>x. x\<in>set l \<Longrightarrow> x\<in>B" "X = \<Union>set l" by (auto simp: union_closed_basis_def)
- thus ?thesis by auto
-qed
-
-lemma union_closed_basisE:
- assumes "X \<in> union_closed_basis"
- obtains B' where "finite B'" "X = \<Union>B'" "B' \<subseteq> B" using union_closed_basis_ex[OF assms] by blast
-
-lemma union_closed_basisI:
- assumes "finite B'" "X = \<Union>B'" "B' \<subseteq> B"
- shows "X \<in> union_closed_basis"
-proof -
- from finite_list[OF `finite B'`] guess l ..
- thus ?thesis using assms unfolding union_closed_basis_def by (auto intro!: image_eqI[where x=l])
-qed
-
-lemma empty_basisI[intro]: "{} \<in> union_closed_basis"
- by (rule union_closed_basisI[of "{}"]) auto
-
-lemma union_basisI[intro]:
- assumes "X \<in> union_closed_basis" "Y \<in> union_closed_basis"
- shows "X \<union> Y \<in> union_closed_basis"
- using assms by (auto intro: union_closed_basisI elim!:union_closed_basisE)
-
-lemma open_imp_Union_of_incseq:
- assumes "open X"
- shows "\<exists>S. incseq S \<and> (\<Union>j. S j) = X \<and> range S \<subseteq> union_closed_basis"
-proof -
- from open_countable_basis_ex[OF `open X`]
- obtain B' where B': "B'\<subseteq>B" "X = \<Union>B'" by auto
- from this(1) countable_basis have "countable B'" by (rule countable_subset)
- show ?thesis
- proof cases
- assume "B' \<noteq> {}"
- def S \<equiv> "\<lambda>n. \<Union>i\<in>{0..n}. from_nat_into B' i"
- have S:"\<And>n. S n = \<Union>{from_nat_into B' i|i. i\<in>{0..n}}" unfolding S_def by force
- have "incseq S" by (force simp: S_def incseq_Suc_iff)
- moreover
- have "(\<Union>j. S j) = X" unfolding B'
- proof safe
- fix x X assume "X \<in> B'" "x \<in> X"
- then obtain n where "X = from_nat_into B' n"
- by (metis `countable B'` from_nat_into_surj)
- also have "\<dots> \<subseteq> S n" by (auto simp: S_def)
- finally show "x \<in> (\<Union>j. S j)" using `x \<in> X` by auto
- next
- fix x n
- assume "x \<in> S n"
- also have "\<dots> = (\<Union>i\<in>{0..n}. from_nat_into B' i)"
- by (simp add: S_def)
- also have "\<dots> \<subseteq> (\<Union>i. from_nat_into B' i)" by auto
- also have "\<dots> \<subseteq> \<Union>B'" using `B' \<noteq> {}` by (auto intro: from_nat_into)
- finally show "x \<in> \<Union>B'" .
- qed
- moreover have "range S \<subseteq> union_closed_basis" using B'
- by (auto intro!: union_closed_basisI[OF _ S] simp: from_nat_into `B' \<noteq> {}`)
- ultimately show ?thesis by auto
- qed (auto simp: B')
-qed
-
-lemma open_incseqE:
- assumes "open X"
- obtains S where "incseq S" "(\<Union>j. S j) = X" "range S \<subseteq> union_closed_basis"
- using open_imp_Union_of_incseq assms by atomize_elim
-
end
class first_countable_topology = topological_space +
--- a/src/HOL/Probability/Borel_Space.thy Wed Feb 13 16:35:07 2013 +0100
+++ b/src/HOL/Probability/Borel_Space.thy Wed Feb 13 16:35:07 2013 +0100
@@ -149,10 +149,6 @@
thus "b \<in> sigma_sets UNIV (Collect open)" by auto
qed simp_all
-lemma borel_eq_union_closed_basis:
- "borel = sigma UNIV union_closed_basis"
- by (rule borel_eq_countable_basis[OF countable_union_closed_basis basis_union_closed_basis])
-
lemma borel_measurable_Pair[measurable (raw)]:
fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
assumes f[measurable]: "f \<in> borel_measurable M"
--- a/src/HOL/Probability/Fin_Map.thy Wed Feb 13 16:35:07 2013 +0100
+++ b/src/HOL/Probability/Fin_Map.thy Wed Feb 13 16:35:07 2013 +0100
@@ -93,17 +93,6 @@
show "x = y" using assms by (simp add: extensional_restrict)
qed
-lemma finmap_choice:
- assumes *: "\<And>i. i \<in> I \<Longrightarrow> \<exists>x. P i x" and I: "finite I"
- shows "\<exists>fm. domain fm = I \<and> (\<forall>i\<in>I. P i (fm i))"
-proof -
- have "\<exists>f. \<forall>i\<in>I. P i (f i)"
- unfolding bchoice_iff[symmetric] using * by auto
- then guess f ..
- with I show ?thesis
- by (intro exI[of _ "finmap_of I f"]) auto
-qed
-
subsection {* Product set of Finite Maps *}
text {* This is @{term Pi} for Finite Maps, most of this is copied *}
@@ -532,40 +521,50 @@
instantiation finmap :: (countable, second_countable_topology) second_countable_topology
begin
+definition basis_proj::"'b set set"
+ where "basis_proj = (SOME B. countable B \<and> topological_basis B)"
+
+lemma countable_basis_proj: "countable basis_proj" and basis_proj: "topological_basis basis_proj"
+ unfolding basis_proj_def by (intro is_basis countable_basis)+
+
definition basis_finmap::"('a \<Rightarrow>\<^isub>F 'b) set set"
- where "basis_finmap = {Pi' I S|I S. finite I \<and> (\<forall>i \<in> I. S i \<in> union_closed_basis)}"
+ where "basis_finmap = {Pi' I S|I S. finite I \<and> (\<forall>i \<in> I. S i \<in> basis_proj)}"
lemma in_basis_finmapI:
- assumes "finite I" assumes "\<And>i. i \<in> I \<Longrightarrow> S i \<in> union_closed_basis"
+ assumes "finite I" assumes "\<And>i. i \<in> I \<Longrightarrow> S i \<in> basis_proj"
shows "Pi' I S \<in> basis_finmap"
using assms unfolding basis_finmap_def by auto
-lemma in_basis_finmapE:
- assumes "x \<in> basis_finmap"
- obtains I S where "x = Pi' I S" "finite I" "\<And>i. i \<in> I \<Longrightarrow> S i \<in> union_closed_basis"
- using assms unfolding basis_finmap_def by auto
-
lemma basis_finmap_eq:
- "basis_finmap = (\<lambda>f. Pi' (domain f) (\<lambda>i. from_nat_into union_closed_basis ((f)\<^isub>F i))) `
+ assumes "basis_proj \<noteq> {}"
+ shows "basis_finmap = (\<lambda>f. Pi' (domain f) (\<lambda>i. from_nat_into basis_proj ((f)\<^isub>F i))) `
(UNIV::('a \<Rightarrow>\<^isub>F nat) set)" (is "_ = ?f ` _")
unfolding basis_finmap_def
proof safe
fix I::"'a set" and S::"'a \<Rightarrow> 'b set"
- assume "finite I" "\<forall>i\<in>I. S i \<in> union_closed_basis"
- hence "Pi' I S = ?f (finmap_of I (\<lambda>x. to_nat_on union_closed_basis (S x)))"
- by (force simp: Pi'_def countable_union_closed_basis)
+ assume "finite I" "\<forall>i\<in>I. S i \<in> basis_proj"
+ hence "Pi' I S = ?f (finmap_of I (\<lambda>x. to_nat_on basis_proj (S x)))"
+ by (force simp: Pi'_def countable_basis_proj)
thus "Pi' I S \<in> range ?f" by simp
-qed (metis (mono_tags) empty_basisI equals0D finite_domain from_nat_into)
+next
+ fix x and f::"'a \<Rightarrow>\<^isub>F nat"
+ show "\<exists>I S. (\<Pi>' i\<in>domain f. from_nat_into local.basis_proj ((f)\<^isub>F i)) = Pi' I S \<and>
+ finite I \<and> (\<forall>i\<in>I. S i \<in> local.basis_proj)"
+ using assms by (auto intro: from_nat_into)
+qed
+
+lemma basis_finmap_eq_empty: "basis_proj = {} \<Longrightarrow> basis_finmap = {Pi' {} undefined}"
+ by (auto simp: Pi'_iff basis_finmap_def)
lemma countable_basis_finmap: "countable basis_finmap"
- unfolding basis_finmap_eq by simp
+ by (cases "basis_proj = {}") (auto simp: basis_finmap_eq basis_finmap_eq_empty)
lemma finmap_topological_basis:
"topological_basis basis_finmap"
proof (subst topological_basis_iff, safe)
fix B' assume "B' \<in> basis_finmap"
thus "open B'"
- by (auto intro!: open_Pi'I topological_basis_open[OF basis_union_closed_basis]
+ by (auto intro!: open_Pi'I topological_basis_open[OF basis_proj]
simp: topological_basis_def basis_finmap_def Let_def)
next
fix O'::"('a \<Rightarrow>\<^isub>F 'b) set" and x
@@ -586,12 +585,12 @@
thus ?case by blast
qed (auto simp: Pi'_def)
have "\<exists>B.
- (\<forall>i\<in>domain x. x i \<in> B i \<and> B i \<subseteq> a i \<and> B i \<in> union_closed_basis)"
+ (\<forall>i\<in>domain x. x i \<in> B i \<and> B i \<subseteq> a i \<and> B i \<in> basis_proj)"
proof (rule bchoice, safe)
fix i assume "i \<in> domain x"
hence "open (a i)" "x i \<in> a i" using a by auto
- from topological_basisE[OF basis_union_closed_basis this] guess b' .
- thus "\<exists>y. x i \<in> y \<and> y \<subseteq> a i \<and> y \<in> union_closed_basis" by auto
+ from topological_basisE[OF basis_proj this] guess b' .
+ thus "\<exists>y. x i \<in> y \<and> y \<subseteq> a i \<and> y \<in> basis_proj" by auto
qed
then guess B .. note B = this
def B' \<equiv> "Pi' (domain x) (\<lambda>i. (B i)::'b set)"
@@ -1017,9 +1016,8 @@
text {* adapted from @{thm sigma_prod_algebra_sigma_eq} *}
lemma sigma_fprod_algebra_sigma_eq:
- fixes E :: "'i \<Rightarrow> 'a set set"
+ fixes E :: "'i \<Rightarrow> 'a set set" and S :: "'i \<Rightarrow> nat \<Rightarrow> 'a set"
assumes [simp]: "finite I" "I \<noteq> {}"
- assumes S_mono: "\<And>i. i \<in> I \<Longrightarrow> incseq (S i)"
and S_union: "\<And>i. i \<in> I \<Longrightarrow> (\<Union>j. S i j) = space (M i)"
and S_in_E: "\<And>i. i \<in> I \<Longrightarrow> range (S i) \<subseteq> E i"
assumes E_closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M i))"
@@ -1028,6 +1026,9 @@
shows "sets (PiF {I} M) = sigma_sets (space (PiF {I} M)) P"
proof
let ?P = "sigma (space (Pi\<^isub>F {I} M)) P"
+ from `finite I`[THEN ex_bij_betw_finite_nat] guess T ..
+ then have T: "\<And>i. i \<in> I \<Longrightarrow> T i < card I" "\<And>i. i\<in>I \<Longrightarrow> the_inv_into I T (T i) = i"
+ by (auto simp add: bij_betw_def set_eq_iff image_iff the_inv_into_f_f simp del: `finite I`)
have P_closed: "P \<subseteq> Pow (space (Pi\<^isub>F {I} M))"
using E_closed by (auto simp: space_PiF P_def Pi'_iff subset_eq)
then have space_P: "space ?P = (\<Pi>' i\<in>I. space (M i))"
@@ -1050,15 +1051,20 @@
using E_closed `i \<in> I` by (auto simp: space_P Pi_iff subset_eq split: split_if_asm)
also have "\<dots> = (\<Pi>' j\<in>I. \<Union>n. if i = j then A else S j n)"
by (intro Pi'_cong) (simp_all add: S_union)
- also have "\<dots> = (\<Union>n. \<Pi>' j\<in>I. if i = j then A else S j n)"
- using S_mono
- by (subst Pi'_UN[symmetric, OF `finite I`]) (auto simp: incseq_def)
+ also have "\<dots> = (\<Union>xs\<in>{xs. length xs = card I}. \<Pi>' j\<in>I. if i = j then A else S j (xs ! T j))"
+ using T
+ apply auto
+ apply (simp_all add: Pi'_iff bchoice_iff)
+ apply (erule conjE exE)+
+ apply (rule_tac x="map (\<lambda>n. f (the_inv_into I T n)) [0..<card I]" in exI)
+ apply (auto simp: bij_betw_def)
+ done
also have "\<dots> \<in> sets ?P"
proof (safe intro!: sets.countable_UN)
- fix n show "(\<Pi>' j\<in>I. if i = j then A else S j n) \<in> sets ?P"
+ fix xs show "(\<Pi>' j\<in>I. if i = j then A else S j (xs ! T j)) \<in> sets ?P"
using A S_in_E
by (simp add: P_closed)
- (auto simp: P_def subset_eq intro!: exI[of _ "\<lambda>j. if i = j then A else S j n"])
+ (auto simp: P_def subset_eq intro!: exI[of _ "\<lambda>j. if i = j then A else S j (xs ! T j)"])
qed
finally show "(\<lambda>x. (x)\<^isub>F i) -` A \<inter> space ?P \<in> sets ?P"
using P_closed by simp
@@ -1078,76 +1084,28 @@
by (auto intro!: sets.sigma_sets_subset product_in_sets_PiFI simp: E_generates P_def)
qed
-lemma sets_PiF_eq_sigma_union_closed_basis_single:
- assumes "I \<noteq> {}"
- assumes [simp]: "finite I"
- shows "sets (PiF {I} (\<lambda>_. borel)) = sigma_sets (space (PiF {I} (\<lambda>_. borel)))
- {Pi' I F |F. (\<forall>i\<in>I. F i \<in> union_closed_basis)}"
-proof -
- from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
- show ?thesis
- proof (rule sigma_fprod_algebra_sigma_eq)
- show "finite I" by simp
- show "I \<noteq> {}" by fact
- show "incseq S" "(\<Union>j. S j) = space borel" "range S \<subseteq> union_closed_basis"
- using S by simp_all
- show "union_closed_basis \<subseteq> Pow (space borel)" by simp
- show "sets borel = sigma_sets (space borel) union_closed_basis"
- by (simp add: borel_eq_union_closed_basis)
- qed
-qed
-
-text {* adapted from @{thm sets_PiF_eq_sigma_union_closed_basis_single} *}
-
-lemma sets_PiM_eq_sigma_union_closed_basis:
- assumes "I \<noteq> {}"
- assumes [simp]: "finite I"
- shows "sets (PiM I (\<lambda>_. borel)) = sigma_sets (space (PiM I (\<lambda>_. borel)))
- {Pi\<^isub>E I F |F. \<forall>i\<in>I. F i \<in> union_closed_basis}"
-proof -
- from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
- show ?thesis
- proof (rule sigma_prod_algebra_sigma_eq)
- show "finite I" by simp note[[show_types]]
- fix i show "(\<Union>j. S j) = space borel" "range S \<subseteq> union_closed_basis"
- using S by simp_all
- show "union_closed_basis \<subseteq> Pow (space borel)" by simp
- show "sets borel = sigma_sets (space borel) union_closed_basis"
- by (simp add: borel_eq_union_closed_basis)
- qed
-qed
-
lemma product_open_generates_sets_PiF_single:
assumes "I \<noteq> {}"
assumes [simp]: "finite I"
shows "sets (PiF {I} (\<lambda>_. borel::'b::second_countable_topology measure)) =
sigma_sets (space (PiF {I} (\<lambda>_. borel))) {Pi' I F |F. (\<forall>i\<in>I. F i \<in> Collect open)}"
proof -
- from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
+ from open_countable_basisE[OF open_UNIV] guess S::"'b set set" . note S = this
show ?thesis
proof (rule sigma_fprod_algebra_sigma_eq)
show "finite I" by simp
show "I \<noteq> {}" by fact
- show "incseq S" "(\<Union>j. S j) = space borel" "range S \<subseteq> Collect open"
- using S by (auto simp: open_union_closed_basis)
- show "Collect open \<subseteq> Pow (space borel)" by simp
- show "sets borel = sigma_sets (space borel) (Collect open)"
- by (simp add: borel_def)
- qed
-qed
-
-lemma product_open_generates_sets_PiM:
- assumes "I \<noteq> {}"
- assumes [simp]: "finite I"
- shows "sets (PiM I (\<lambda>_. borel::'b::second_countable_topology measure)) =
- sigma_sets (space (PiM I (\<lambda>_. borel))) {Pi\<^isub>E I F |F. \<forall>i\<in>I. F i \<in> Collect open}"
-proof -
- from open_incseqE[OF open_UNIV] guess S::"nat \<Rightarrow> 'b set" . note S = this
- show ?thesis
- proof (rule sigma_prod_algebra_sigma_eq)
- show "finite I" by simp note[[show_types]]
- fix i show "(\<Union>j. S j) = space borel" "range S \<subseteq> Collect open"
- using S by (auto simp: open_union_closed_basis)
+ def S'\<equiv>"from_nat_into S"
+ show "(\<Union>j. S' j) = space borel"
+ using S
+ apply (auto simp add: from_nat_into countable_basis_proj S'_def basis_proj_def)
+ apply (metis (lifting, mono_tags) UNIV_I UnionE basis_proj_def countable_basis_proj countable_subset from_nat_into_surj)
+ done
+ show "range S' \<subseteq> Collect open"
+ using S
+ apply (auto simp add: from_nat_into countable_basis_proj S'_def)
+ apply (metis UNIV_not_empty Union_empty from_nat_into set_mp topological_basis_open[OF basis_proj] basis_proj_def)
+ done
show "Collect open \<subseteq> Pow (space borel)" by simp
show "sets borel = sigma_sets (space borel) (Collect open)"
by (simp add: borel_def)
@@ -1174,7 +1132,7 @@
proof
fix x assume "x \<in> B'" with B' have "x \<in> basis_finmap" by auto
then obtain J X where "x = Pi' J X" "finite J" "X \<in> J \<rightarrow> sigma_sets UNIV (Collect open)"
- by (auto simp: basis_finmap_def open_union_closed_basis)
+ by (auto simp: basis_finmap_def topological_basis_open[OF basis_proj])
thus "x \<in> sets ?s" by auto
qed
qed