Traces, Determinant of square matrices and some properties
authorchaieb
Mon, 09 Feb 2009 17:21:19 +0000
changeset 29846 57dccccc37b3
parent 29845 5ef75225c9c2
child 29847 af32126ee729
Traces, Determinant of square matrices and some properties
src/HOL/Library/Determinants.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Determinants.thy	Mon Feb 09 17:21:19 2009 +0000
@@ -0,0 +1,1151 @@
+(* Title:      Determinants
+   ID:         $Id: 
+   Author:     Amine Chaieb, University of Cambridge
+*)
+
+header {* Traces, Determinant of square matrices and some properties *}
+
+theory Determinants
+  imports Euclidean_Space Permutations
+begin
+
+subsection{* First some facts about products*}
+lemma setprod_insert_eq: "finite A \<Longrightarrow> setprod f (insert a A) = (if a \<in> A then setprod f A else f a * setprod f A)"
+apply clarsimp
+by(subgoal_tac "insert a A = A", auto)
+
+lemma setprod_add_split:
+  assumes mn: "(m::nat) <= n + 1"
+  shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}"
+proof-
+  let ?A = "{m .. n+p}"
+  let ?B = "{m .. n}"
+  let ?C = "{n+1..n+p}"
+  from mn have un: "?B \<union> ?C = ?A" by auto
+  from mn have dj: "?B \<inter> ?C = {}" by auto
+  have f: "finite ?B" "finite ?C" by simp_all
+  from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis .
+qed
+
+
+lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\<lambda>i. f (i + p)) {m..n}"
+apply (rule setprod_reindex_cong[where f="op + p"])
+apply (auto simp add: image_iff Bex_def inj_on_def)
+apply arith
+apply (rule ext)
+apply (simp add: add_commute)
+done
+
+lemma setprod_singleton: "setprod f {x} = f x" by simp
+
+lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" by simp
+
+lemma setprod_numseg: "setprod f {m..0} = (if m=0 then f 0 else 1)"
+  "setprod f {m .. Suc n} = (if m \<le> Suc n then f (Suc n) * setprod f {m..n} 
+                             else setprod f {m..n})"
+  by (auto simp add: atLeastAtMostSuc_conv)
+
+lemma setprod_le: assumes fS: "finite S" and fg: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (g x :: 'a::ordered_idom)"
+  shows "setprod f S \<le> setprod g S"
+using fS fg
+apply(induct S)
+apply simp
+apply auto
+apply (rule mult_mono)
+apply (auto intro: setprod_nonneg)
+done
+
+  (* FIXME: In Finite_Set there is a useless further assumption *)
+lemma setprod_inversef: "finite A ==> setprod (inverse \<circ> f) A = (inverse (setprod f A) :: 'a:: {division_by_zero, field})"
+  apply (erule finite_induct)
+  apply (simp)
+  apply simp
+  done
+
+lemma setprod_le_1: assumes fS: "finite S" and f: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (1::'a::ordered_idom)"
+  shows "setprod f S \<le> 1"
+using setprod_le[OF fS f] unfolding setprod_1 .
+
+subsection{* Trace *}
+
+definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" where
+  "trace A = setsum (\<lambda>i. ((A$i)$i)) {1..dimindex(UNIV::'n set)}"
+
+lemma trace_0: "trace(mat 0) = 0"
+  by (simp add: trace_def mat_def Cart_lambda_beta setsum_0)
+
+lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(dimindex(UNIV::'n set))"
+  by (simp add: trace_def mat_def Cart_lambda_beta)
+
+lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B"
+  by (simp add: trace_def setsum_addf Cart_lambda_beta vector_component)
+
+lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B"
+  by (simp add: trace_def setsum_subtractf Cart_lambda_beta vector_component)
+
+lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'n) ** B) = trace (B**A)"
+  apply (simp add: trace_def matrix_matrix_mult_def Cart_lambda_beta)
+  apply (subst setsum_commute)
+  by (simp add: mult_commute)
+
+(* ------------------------------------------------------------------------- *)
+(* Definition of determinant.                                                *)
+(* ------------------------------------------------------------------------- *)
+
+definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where
+  "det A = setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)}) {p. p permutes {1 .. dimindex(UNIV :: 'n set)}}"
+
+(* ------------------------------------------------------------------------- *)
+(* A few general lemmas we need below.                                       *)
+(* ------------------------------------------------------------------------- *)
+
+lemma Cart_lambda_beta_perm: assumes p: "p permutes {1..dimindex(UNIV::'n set)}" 
+  and i: "i \<in> {1..dimindex(UNIV::'n set)}" 
+  shows "Cart_nth (Cart_lambda g ::'a^'n) (p i) = g(p i)"
+  using permutes_in_image[OF p] i
+  by (simp add:  Cart_lambda_beta permutes_in_image[OF p])
+
+lemma setprod_permute:
+  assumes p: "p permutes S" 
+  shows "setprod f S = setprod (f o p) S"
+proof-
+  {assume "\<not> finite S" hence ?thesis by simp}
+  moreover
+  {assume fS: "finite S"
+    then have ?thesis 
+      apply (simp add: setprod_def)
+      apply (rule ab_semigroup_mult.fold_image_permute)
+      apply (auto simp add: p)
+      apply unfold_locales
+      done}
+  ultimately show ?thesis by blast
+qed
+
+lemma setproduct_permute_nat_interval: "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}"
+  by (auto intro: setprod_permute)
+
+(* ------------------------------------------------------------------------- *)
+(* Basic determinant properties.                                             *)
+(* ------------------------------------------------------------------------- *)
+
+lemma det_transp: "det (transp A) = det (A::'a::comm_ring_1 ^'n^'n)"
+proof-
+  let ?di = "\<lambda>A i j. A$i$j"
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  have fU: "finite ?U" by blast
+  {fix p assume p: "p \<in> {p. p permutes ?U}"
+    from p have pU: "p permutes ?U" by blast
+    have sth: "sign (inv p) = sign p" 
+      by (metis sign_inverse fU p mem_def Collect_def permutation_permutes)
+    from permutes_inj[OF pU] 
+    have pi: "inj_on p ?U" by (blast intro: subset_inj_on)
+    from permutes_image[OF pU]
+    have "setprod (\<lambda>i. ?di (transp A) i (inv p i)) ?U = setprod (\<lambda>i. ?di (transp A) i (inv p i)) (p ` ?U)" by simp
+    also have "\<dots> = setprod ((\<lambda>i. ?di (transp A) i (inv p i)) o p) ?U"
+      unfolding setprod_reindex[OF pi] ..
+    also have "\<dots> = setprod (\<lambda>i. ?di A i (p i)) ?U"
+    proof-
+      {fix i assume i: "i \<in> ?U"
+	from i permutes_inv_o[OF pU] permutes_in_image[OF pU]
+	have "((\<lambda>i. ?di (transp A) i (inv p i)) o p) i = ?di A i (p i)"
+	  unfolding transp_def by (simp add: Cart_lambda_beta expand_fun_eq)}
+      then show "setprod ((\<lambda>i. ?di (transp A) i (inv p i)) o p) ?U = setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)  
+    qed
+    finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transp A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth
+      by simp}
+  then show ?thesis unfolding det_def apply (subst setsum_permutations_inverse)
+  apply (rule setsum_cong2) by blast
+qed
+
+lemma det_lowerdiagonal: 
+  fixes A :: "'a::comm_ring_1^'n^'n"
+  assumes ld: "\<And>i j. i \<in> {1 .. dimindex (UNIV:: 'n set)} \<Longrightarrow> j \<in> {1 .. dimindex(UNIV:: 'n set)} \<Longrightarrow> i < j \<Longrightarrow> A$i$j = 0"
+  shows "det A = setprod (\<lambda>i. A$i$i) {1..dimindex(UNIV:: 'n set)}"
+proof-
+  let ?U = "{1..dimindex(UNIV:: 'n set)}"
+  let ?PU = "{p. p permutes ?U}"
+  let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)}"
+  have fU: "finite ?U" by blast
+  from finite_permutations[OF fU] have fPU: "finite ?PU" .
+  have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
+  {fix p assume p: "p \<in> ?PU -{id}"
+    from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
+    from permutes_natset_le[OF pU] pid obtain i where
+      i: "i \<in> ?U" "p i > i" by (metis not_le)
+    from permutes_in_image[OF pU] i(1) have piU: "p i \<in> ?U" by blast
+    from ld[OF i(1) piU i(2)] i(1) have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
+    from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
+  then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
+  from setsum_superset[OF fPU id0 p0] show ?thesis
+    unfolding det_def by (simp add: sign_id)
+qed
+
+lemma det_upperdiagonal: 
+  fixes A :: "'a::comm_ring_1^'n^'n"
+  assumes ld: "\<And>i j. i \<in> {1 .. dimindex (UNIV:: 'n set)} \<Longrightarrow> j \<in> {1 .. dimindex(UNIV:: 'n set)} \<Longrightarrow> i > j \<Longrightarrow> A$i$j = 0"
+  shows "det A = setprod (\<lambda>i. A$i$i) {1..dimindex(UNIV:: 'n set)}"
+proof-
+  let ?U = "{1..dimindex(UNIV:: 'n set)}"
+  let ?PU = "{p. p permutes ?U}"
+  let ?pp = "(\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) {1 .. dimindex(UNIV :: 'n set)})"
+  have fU: "finite ?U" by blast
+  from finite_permutations[OF fU] have fPU: "finite ?PU" .
+  have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
+  {fix p assume p: "p \<in> ?PU -{id}"
+    from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
+    from permutes_natset_ge[OF pU] pid obtain i where
+      i: "i \<in> ?U" "p i < i" by (metis not_le)
+    from permutes_in_image[OF pU] i(1) have piU: "p i \<in> ?U" by blast
+    from ld[OF i(1) piU i(2)] i(1) have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
+    from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
+  then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
+  from setsum_superset[OF fPU id0 p0] show ?thesis
+    unfolding det_def by (simp add: sign_id)
+qed
+
+lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1"
+proof-
+  let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n"
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?f = "\<lambda>i j. ?A$i$j"
+  {fix i assume i: "i \<in> ?U"
+    have "?f i i = 1" using i by (vector mat_def)}
+  hence th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U"
+    by (auto intro: setprod_cong)
+  {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i < j"
+    have "?f i j = 0" using i j ij by (vector mat_def) }
+  then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" using det_lowerdiagonal
+    by blast
+  also have "\<dots> = 1" unfolding th setprod_1 ..
+  finally show ?thesis . 
+qed
+
+lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n) = 0"
+proof-
+  let ?A = "mat 0 :: 'a::comm_ring_1^'n^'n"
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?f = "\<lambda>i j. ?A$i$j"
+  have th:"setprod (\<lambda>i. ?f i i) ?U = 0"
+    apply (rule setprod_zero)
+    apply simp
+    apply (rule bexI[where x=1])
+    using dimindex_ge_1[of "UNIV :: 'n set"]
+    by (simp_all add: mat_def Cart_lambda_beta)
+  {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i < j"
+    have "?f i j = 0" using i j ij by (vector mat_def) }
+  then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" using det_lowerdiagonal
+    by blast
+  also have "\<dots> = 0" unfolding th  ..
+  finally show ?thesis . 
+qed
+
+lemma det_permute_rows:
+  fixes A :: "'a::comm_ring_1^'n^'n"
+  assumes p: "p permutes {1 .. dimindex (UNIV :: 'n set)}"
+  shows "det(\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A"
+  apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric] del: One_nat_def)
+  apply (subst sum_permutations_compose_right[OF p])  
+proof(rule setsum_cong2)
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?PU = "{p. p permutes ?U}"
+  let ?Ap = "(\<chi> i. A$p i :: 'a^'n^'n)"
+  fix q assume qPU: "q \<in> ?PU"
+  have fU: "finite ?U" by blast
+  from qPU have q: "q permutes ?U" by blast
+  from p q have pp: "permutation p" and qp: "permutation q"
+    by (metis fU permutation_permutes)+
+  from permutes_inv[OF p] have ip: "inv p permutes ?U" .
+    {fix i assume i: "i \<in> ?U"
+      from Cart_lambda_beta[rule_format, OF i, of "\<lambda>i. A$ p i"]
+      have "?Ap$i$ (q o p) i = A $ p i $ (q o p) i " by simp}
+    hence "setprod (\<lambda>i. ?Ap$i$ (q o p) i) ?U = setprod (\<lambda>i. A$p i$(q o p) i) ?U"
+      by (auto intro: setprod_cong)
+    also have "\<dots> = setprod ((\<lambda>i. A$p i$(q o p) i) o inv p) ?U" 
+      by (simp only: setprod_permute[OF ip, symmetric])
+    also have "\<dots> = setprod (\<lambda>i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U"
+      by (simp only: o_def)
+    also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p])
+    finally   have thp: "setprod (\<lambda>i. ?Ap$i$ (q o p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U" 
+      by blast
+  show "of_int (sign (q o p)) * setprod (\<lambda>i. ?Ap$i$ (q o p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U" 
+    by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult)
+qed
+
+lemma det_permute_columns:
+  fixes A :: "'a::comm_ring_1^'n^'n"
+  assumes p: "p permutes {1 .. dimindex (UNIV :: 'n set)}"
+  shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A"
+proof-
+  let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n"
+  let ?At = "transp A"
+  have "of_int (sign p) * det A = det (transp (\<chi> i. transp A $ p i))"
+    unfolding det_permute_rows[OF p, of ?At] det_transp ..
+  moreover
+  have "?Ap = transp (\<chi> i. transp A $ p i)"
+    by (simp add: transp_def Cart_eq Cart_lambda_beta Cart_lambda_beta_perm[OF p])
+  ultimately show ?thesis by simp 
+qed
+
+lemma det_identical_rows:
+  fixes A :: "'a::ordered_idom^'n^'n"
+  assumes i: "i\<in>{1 .. dimindex (UNIV :: 'n set)}" 
+  and j: "j\<in>{1 .. dimindex (UNIV :: 'n set)}"
+  and ij: "i \<noteq> j"
+  and r: "row i A = row j A"
+  shows	"det A = 0"
+proof-
+  have tha: "\<And>(a::'a) b. a = b ==> b = - a ==> a = 0" 
+    by simp
+  have th1: "of_int (-1) = - 1" by (metis of_int_1 of_int_minus number_of_Min)
+  let ?p = "Fun.swap i j id"
+  let ?A = "\<chi> i. A $ ?p i"
+  from r have "A = ?A" by (simp add: Cart_eq Cart_lambda_beta Cart_lambda_beta_perm[OF permutes_swap_id[OF i j]] row_def swap_def)
+  hence "det A = det ?A" by simp
+  moreover have "det A = - det ?A"
+    by (simp add: det_permute_rows[OF permutes_swap_id[OF i j]] sign_swap_id ij th1)
+  ultimately show "det A = 0" by (metis tha) 
+qed
+
+lemma det_identical_columns:
+  fixes A :: "'a::ordered_idom^'n^'n"
+  assumes i: "i\<in>{1 .. dimindex (UNIV :: 'n set)}" 
+  and j: "j\<in>{1 .. dimindex (UNIV :: 'n set)}"
+  and ij: "i \<noteq> j"
+  and r: "column i A = column j A"
+  shows	"det A = 0"
+apply (subst det_transp[symmetric])
+apply (rule det_identical_rows[OF i j ij])
+by (metis row_transp i j r)
+
+lemma det_zero_row: 
+  fixes A :: "'a::{idom, ring_char_0}^'n^'n"
+  assumes i: "i\<in>{1 .. dimindex (UNIV :: 'n set)}" 
+  and r: "row i A = 0"
+  shows "det A = 0"
+using i r
+apply (simp add: row_def det_def Cart_lambda_beta Cart_eq vector_component del: One_nat_def)
+apply (rule setsum_0')
+apply (clarsimp simp add: sign_nz simp del: One_nat_def)
+apply (rule setprod_zero)
+apply simp
+apply (rule bexI[where x=i])
+apply (erule_tac x="a i" in ballE)
+apply (subgoal_tac "(0\<Colon>'a ^ 'n) $ a i = 0")
+apply simp
+apply (rule zero_index)
+apply (drule permutes_in_image[of _ _ i]) 
+apply simp
+apply (drule permutes_in_image[of _ _ i]) 
+apply simp
+apply simp
+done
+
+lemma det_zero_column:
+  fixes A :: "'a::{idom,ring_char_0}^'n^'n"
+  assumes i: "i\<in>{1 .. dimindex (UNIV :: 'n set)}" 
+  and r: "column i A = 0"
+  shows "det A = 0"
+  apply (subst det_transp[symmetric])
+  apply (rule det_zero_row[OF i])
+  by (metis row_transp r i)
+
+lemma setsum_lambda_beta[simp]: "setsum (\<lambda>i. ((\<chi> i. g i) :: 'a::{comm_monoid_add}^'n) $ i ) {1 .. dimindex (UNIV :: 'n set)} = setsum g {1 .. dimindex (UNIV :: 'n set)}"
+  by (simp add: Cart_lambda_beta)
+
+lemma setprod_lambda_beta[simp]: "setprod (\<lambda>i. ((\<chi> i. g i) :: 'a::{comm_monoid_mult}^'n) $ i ) {1 .. dimindex (UNIV :: 'n set)} = setprod g {1 .. dimindex (UNIV :: 'n set)}"
+  apply (rule setprod_cong)
+  apply simp
+  apply (simp add: Cart_lambda_beta')
+  done
+
+lemma setprod_lambda_beta2[simp]: "setprod (\<lambda>i. ((\<chi> i. g i) :: 'a::{comm_monoid_mult}^'n^'n) $ i$ f i ) {1 .. dimindex (UNIV :: 'n set)} = setprod (\<lambda>i. g i $ f i) {1 .. dimindex (UNIV :: 'n set)}"
+proof(rule setprod_cong[OF refl])
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  fix i assume i: "i \<in> ?U"
+  from Cart_lambda_beta'[OF i, of g] have 
+    "((\<chi> i. g i) :: 'a^'n^'n) $ i = g i" .
+  hence "((\<chi> i. g i) :: 'a^'n^'n) $ i $ f i = g i $ f i" by simp
+  then
+  show "((\<chi> i. g i):: 'a^'n^'n) $ i $ f i = g i $ f i"   .
+qed
+
+lemma det_row_add:
+  assumes k: "k \<in> {1 .. dimindex (UNIV :: 'n set)}" 
+  shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) =
+             det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) +
+             det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)"
+unfolding det_def setprod_lambda_beta2 setsum_addf[symmetric]
+proof (rule setsum_cong2)
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?pU = "{p. p permutes ?U}"
+  let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::nat \<Rightarrow> 'a::comm_ring_1^'n"
+  let ?g = "(\<lambda> i. if i = k then a i else c i)::nat \<Rightarrow> 'a::comm_ring_1^'n"
+  let ?h = "(\<lambda> i. if i = k then b i else c i)::nat \<Rightarrow> 'a::comm_ring_1^'n"
+  fix p assume p: "p \<in> ?pU"
+  let ?Uk = "?U - {k}"
+  from p have pU: "p permutes ?U" by blast
+  from k have pkU: "p k \<in> ?U" by (simp only: permutes_in_image[OF pU])
+  note pin[simp] = permutes_in_image[OF pU]
+  have kU: "?U = insert k ?Uk" using k by blast
+  {fix j assume j: "j \<in> ?Uk"
+    from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j" 
+      by simp_all}
+  then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
+    and th2: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?h i $ p i) ?Uk"
+    apply -
+    apply (rule setprod_cong, simp_all)+
+    done
+  have th3: "finite ?Uk" "k \<notin> ?Uk" using k by auto
+  have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"
+    unfolding kU[symmetric] ..
+  also have "\<dots> = ?f k $ p k  * setprod (\<lambda>i. ?f i $ p i) ?Uk"
+    apply (rule setprod_insert)
+    apply simp
+    using k by blast
+  also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)" using pkU by (simp add: ring_simps vector_component)
+  also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)" by (metis th1 th2)
+  also have "\<dots> = setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + setprod (\<lambda>i. ?h i $ p i) (insert k ?Uk)"
+    unfolding  setprod_insert[OF th3] by simp
+  finally have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" unfolding kU[symmetric] .
+  then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U"
+    by (simp add: ring_simps)
+qed
+
+lemma det_row_mul:
+  assumes k: "k \<in> {1 .. dimindex (UNIV :: 'n set)}" 
+  shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) =
+             c* det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)"
+
+unfolding det_def setprod_lambda_beta2 setsum_right_distrib
+proof (rule setsum_cong2)
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?pU = "{p. p permutes ?U}"
+  let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::nat \<Rightarrow> 'a::comm_ring_1^'n"
+  let ?g = "(\<lambda> i. if i = k then a i else b i)::nat \<Rightarrow> 'a::comm_ring_1^'n"
+  fix p assume p: "p \<in> ?pU"
+  let ?Uk = "?U - {k}"
+  from p have pU: "p permutes ?U" by blast
+  from k have pkU: "p k \<in> ?U" by (simp only: permutes_in_image[OF pU])
+  note pin[simp] = permutes_in_image[OF pU]
+  have kU: "?U = insert k ?Uk" using k by blast
+  {fix j assume j: "j \<in> ?Uk"
+    from j have "?f j $ p j = ?g j $ p j" by simp}
+  then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
+    apply -
+    apply (rule setprod_cong, simp_all)
+    done
+  have th3: "finite ?Uk" "k \<notin> ?Uk" using k by auto
+  have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"
+    unfolding kU[symmetric] ..
+  also have "\<dots> = ?f k $ p k  * setprod (\<lambda>i. ?f i $ p i) ?Uk"
+    apply (rule setprod_insert)
+    apply simp
+    using k by blast
+  also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" using pkU by (simp add: ring_simps vector_component)
+  also have "\<dots> = c* (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk)"
+    unfolding th1 using pkU by (simp add: vector_component mult_ac)
+  also have "\<dots> = c* (setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk))"
+    unfolding  setprod_insert[OF th3] by simp
+  finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)" unfolding kU[symmetric] .
+  then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)"
+    by (simp add: ring_simps)
+qed
+
+lemma det_row_0:
+  assumes k: "k \<in> {1 .. dimindex (UNIV :: 'n set)}" 
+  shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0"
+using det_row_mul[OF k, of 0 "\<lambda>i. 1" b]
+apply (simp)
+  unfolding vector_smult_lzero .
+
+lemma det_row_operation:
+  fixes A :: "'a::ordered_idom^'n^'n"
+  assumes i: "i \<in> {1 .. dimindex(UNIV :: 'n set)}"
+  and j: "j \<in> {1 .. dimindex(UNIV :: 'n set)}"
+  and ij: "i \<noteq> j"
+  shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A"
+proof-
+  let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n"
+  have th: "row i ?Z = row j ?Z" using i j by (vector row_def)
+  have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A"
+    using i j by (vector row_def)
+  show ?thesis
+    unfolding det_row_add [OF i] det_row_mul[OF i] det_identical_rows[OF i j ij th] th2
+    by simp
+qed
+
+lemma det_row_span:
+  fixes A :: "'a:: ordered_idom^'n^'n"
+  assumes i: "i \<in> {1 .. dimindex(UNIV :: 'n set)}"
+  and x: "x \<in> span {row j A |j. j\<in> {1 .. dimindex(UNIV :: 'n set)} \<and> j\<noteq> i}"
+  shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A"
+proof-
+  let ?U = "{1 .. dimindex(UNIV :: 'n set)}"
+  let ?S = "{row j A |j. j\<in> ?U \<and> j\<noteq> i}"
+  let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)"
+  let ?P = "\<lambda>x. ?d (row i A + x) = det A"
+  {fix k 
+    
+    have "(if k = i then row i A + 0 else row k A) = row k A" by simp}
+  then have P0: "?P 0"
+    apply -
+    apply (rule cong[of det, OF refl])
+    using i by (vector row_def)
+  moreover
+  {fix c z y assume zS: "z \<in> ?S" and Py: "?P y"
+    from zS obtain j where j: "z = row j A" "j \<in> ?U" "i \<noteq> j" by blast
+    let ?w = "row i A + y"
+    have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector
+    have thz: "?d z = 0"
+      apply (rule det_identical_rows[OF i j(2,3)])
+      using i j by (vector row_def)
+    have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" unfolding th0 ..
+    then have "?P (c*s z + y)" unfolding thz Py det_row_mul[OF i] det_row_add[OF i] 
+      by simp }
+
+  ultimately show ?thesis 
+    apply -
+    apply (rule span_induct_alt[of ?P ?S, OF P0])
+    apply blast
+    apply (rule x)
+    done
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* May as well do this, though it's a bit unsatisfactory since it ignores    *)
+(* exact duplicates by considering the rows/columns as a set.                *)
+(* ------------------------------------------------------------------------- *)
+
+lemma det_dependent_rows:
+  fixes A:: "'a::ordered_idom^'n^'n"
+  assumes d: "dependent (rows A)"
+  shows "det A = 0"
+proof-
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  from d obtain i where i: "i \<in> ?U" "row i A \<in> span (rows A - {row i A})"
+    unfolding dependent_def rows_def by blast
+  {fix j k assume j: "j \<in>?U" and k: "k \<in> ?U" and jk: "j \<noteq> k"
+    and c: "row j A = row k A" 
+    from det_identical_rows[OF j k jk c] have ?thesis .}
+  moreover
+  {assume H: "\<And> i j. i\<in> ?U \<Longrightarrow> j \<in> ?U \<Longrightarrow> i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A"
+    have th0: "- row i A \<in> span {row j A|j. j \<in> ?U \<and> j \<noteq> i}"
+      apply (rule span_neg)
+      apply (rule set_rev_mp)
+      apply (rule i(2))
+      apply (rule span_mono)
+      using H i by (auto simp add: rows_def)
+    from det_row_span[OF i(1) th0]
+    have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)"
+      unfolding right_minus vector_smult_lzero ..
+    with det_row_mul[OF i(1), of "0::'a" "\<lambda>i. 1"] 
+    have "det A = 0" by simp}
+  ultimately show ?thesis by blast
+qed
+
+lemma det_dependent_columns: assumes d: "dependent(columns (A::'a::ordered_idom^'n^'n))" shows "det A = 0"
+by (metis d det_dependent_rows rows_transp det_transp)
+
+(* ------------------------------------------------------------------------- *)
+(* Multilinearity and the multiplication formula.                            *)
+(* ------------------------------------------------------------------------- *)
+
+lemma Cart_lambda_cong: "(\<And>x. x \<in> {1 .. dimindex (UNIV :: 'n set)} \<Longrightarrow> f x = g x) \<Longrightarrow> (Cart_lambda f::'a^'n) = (Cart_lambda g :: 'a^'n)"
+  apply (rule iffD1[OF Cart_lambda_unique]) by vector
+
+lemma det_linear_row_setsum: 
+  assumes fS: "finite S" and k: "k \<in> {1 .. dimindex (UNIV :: 'n set)}"
+  shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = setsum (\<lambda>j. det ((\<chi> i. if i = k then a  i j else c i)::'a^'n^'n)) S"
+  using k
+proof(induct rule: finite_induct[OF fS])
+  case 1 thus ?case apply simp  unfolding setsum_empty det_row_0[OF k] ..
+next
+  case (2 x F)
+  then  show ?case by (simp add: det_row_add cong del: if_weak_cong)
+qed
+
+lemma finite_bounded_functions:
+  assumes fS: "finite S"
+  shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}"
+proof(induct k)
+  case 0 
+  have th: "{f. \<forall>i. f i = i} = {id}" by (auto intro: ext)
+  show ?case by (auto simp add: th)
+next
+  case (Suc k)
+  let ?f = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i"
+  let ?S = "?f ` (S \<times> {f. (\<forall>i\<in>{1..k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)})"
+  have "?S = {f. (\<forall>i\<in>{1.. Suc k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. Suc k} \<longrightarrow> f i = i)}"
+    apply (auto simp add: image_iff)
+    apply (rule_tac x="x (Suc k)" in bexI)
+    apply (rule_tac x = "\<lambda>i. if i = Suc k then i else x i" in exI)
+    apply (auto intro: ext)
+    done
+  with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f]
+  show ?case by metis 
+qed
+
+
+lemma eq_id_iff[simp]: "(\<forall>x. f x = x) = (f = id)" by (auto intro: ext)
+
+lemma det_linear_rows_setsum_lemma:
+  assumes fS: "finite S" and k: "k \<le> dimindex (UNIV :: 'n set)"
+  shows "det((\<chi> i. if i <= k then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) =
+             setsum (\<lambda>f. det((\<chi> i. if i <= k then a i (f i) else c i)::'a^'n^'n))
+                 {f. (\<forall>i \<in> {1 .. k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)}"
+using k
+proof(induct k arbitrary: a c)
+  case 0
+  have th0: "\<And>x y. (\<chi> i. if i <= 0 then x i else y i) = (\<chi> i. y i)" by vector
+  from "0.prems"  show ?case unfolding th0 by simp
+next
+  case (Suc k a c)
+  let ?F = "\<lambda>k. {f. (\<forall>i \<in> {1 .. k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)}"
+  let ?h = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i"
+  let ?k = "\<lambda>h. (h(Suc k),(\<lambda>i. if i = Suc k then i else h i))"
+  let ?s = "\<lambda> k a c f. det((\<chi> i. if i <= k then a i (f i) else c i)::'a^'n^'n)"
+  let ?c = "\<lambda>i. if i = Suc k then a i j else c i"
+  from Suc.prems have Sk: "Suc k \<in> {1 .. dimindex (UNIV :: 'n set)}" by simp
+  from Suc.prems have k': "k \<le> dimindex (UNIV :: 'n set)" by arith
+  have thif: "\<And>a b c d. (if b \<or> a then c else d) = (if a then c else if b then c else d)" by simp
+  have thif2: "\<And>a b c d e. (if a then b else if c then d else e) =
+     (if c then (if a then b else d) else (if a then b else e))" by simp 
+  have "det (\<chi> i. if i \<le> Suc k then setsum (a i) S else c i) = 
+        det (\<chi> i. if i = Suc k then setsum (a i) S 
+                 else if i \<le> k then setsum (a i) S else c i)"
+    unfolding le_Suc_eq thif  ..
+  also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<le> k then setsum (a i) S
+                    else if i = Suc k then a i j else c i))"
+    unfolding det_linear_row_setsum[OF fS Sk]
+    apply (subst thif2)
+    by (simp cong del: if_weak_cong cong add: if_cong)
+  finally have tha: 
+    "det (\<chi> i. if i \<le> Suc k then setsum (a i) S else c i) = 
+     (\<Sum>(j, f)\<in>S \<times> ?F k. det (\<chi> i. if i \<le> k then a i (f i)
+                                else if i = Suc k then a i j
+                                else c i))" 
+    unfolding  Suc.hyps[OF k'] unfolding setsum_cartesian_product by blast
+  show ?case unfolding tha
+    apply(rule setsum_eq_general_reverses[where h= "?h" and k= "?k"], 
+      blast intro: finite_cartesian_product fS finite_bounded_functions[OF fS],
+      blast intro: finite_cartesian_product fS finite_bounded_functions[OF fS], auto intro: ext)
+    apply (rule cong[OF refl[of det]])
+    by vector
+qed
+
+lemma det_linear_rows_setsum:
+  assumes fS: "finite S"
+  shows "det (\<chi> i. setsum (a i) S) = setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. (\<forall>i \<in> {1 .. dimindex (UNIV :: 'n set)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. dimindex (UNIV :: 'n set)} \<longrightarrow> f i = i)}"
+proof-
+  have th0: "\<And>x y. ((\<chi> i. if i <= dimindex(UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" by vector
+  
+  from det_linear_rows_setsum_lemma[OF fS, of "dimindex (UNIV :: 'n set)" a, unfolded th0, OF order_refl] show ?thesis by blast
+qed
+
+lemma matrix_mul_setsum_alt:
+  fixes A B :: "'a::comm_ring_1^'n^'n"
+  shows "A ** B = (\<chi> i. setsum (\<lambda>k. A$i$k *s B $ k) {1 .. dimindex (UNIV :: 'n set)})"
+  by (vector matrix_matrix_mult_def setsum_component)
+
+lemma det_rows_mul:
+  "det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n) =
+  setprod (\<lambda>i. c i) {1..dimindex(UNIV:: 'n set)} * det((\<chi> i. a i)::'a^'n^'n)"
+proof (simp add: det_def Cart_lambda_beta' setsum_right_distrib vector_component cong add: setprod_cong del: One_nat_def, rule setsum_cong2)
+  let ?U = "{1 .. dimindex(UNIV :: 'n set)}"
+  let ?PU = "{p. p permutes ?U}"
+  fix p assume pU: "p \<in> ?PU"
+  let ?s = "of_int (sign p)"
+  from pU have p: "p permutes ?U" by blast
+  have "setprod (\<lambda>i. (c i *s a i) $ p i) ?U = setprod (\<lambda>i. c i * a i $ p i) ?U"
+    apply (rule setprod_cong, blast)
+    by (auto simp only: permutes_in_image[OF p] intro: vector_smult_component)
+  also have "\<dots> = setprod c ?U * setprod (\<lambda>i. a i $ p i) ?U"
+    unfolding setprod_timesf ..
+  finally show "?s * (\<Prod>xa\<in>?U. (c xa *s a xa) $ p xa) =
+        setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" by (simp add: ring_simps)
+qed
+
+lemma det_mul:
+  fixes A B :: "'a::ordered_idom^'n^'n"
+  shows "det (A ** B) = det A * det B"
+proof-
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}"
+  let ?PU = "{p. p permutes ?U}"
+  have fU: "finite ?U" by simp
+  have fF: "finite ?F"  using finite_bounded_functions[OF fU] .
+  {fix p assume p: "p permutes ?U"
+    
+    have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p]
+      using p[unfolded permutes_def] by simp}
+  then have PUF: "?PU \<subseteq> ?F"  by blast 
+  {fix f assume fPU: "f \<in> ?F - ?PU"
+    have fUU: "f ` ?U \<subseteq> ?U" using fPU by auto
+    from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U"
+      "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" unfolding permutes_def 
+      by auto
+    
+    let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n"
+    let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n"
+    {assume fni: "\<not> inj_on f ?U"
+      then obtain i j where ij: "i \<in> ?U" "j \<in> ?U" "f i = f j" "i \<noteq> j"
+	unfolding inj_on_def by blast
+      from ij 
+      have rth: "row i ?B = row j ?B" by (vector row_def)
+      from det_identical_rows[OF ij(1,2,4) rth] 
+      have "det (\<chi> i. A$i$f i *s B$f i) = 0" 
+	unfolding det_rows_mul by simp}
+    moreover
+    {assume fi: "inj_on f ?U"
+      from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j"
+	unfolding inj_on_def
+	apply (case_tac "i \<in> ?U")
+	apply (case_tac "j \<in> ?U") by metis+
+      note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]]
+      
+      {fix y
+	from fs f have "\<exists>x. f x = y" by (cases "y \<in> ?U") blast+
+	then obtain x where x: "f x = y" by blast
+	{fix z assume z: "f z = y" from fith x z have "z = x" by metis}
+	with x have "\<exists>!x. f x = y" by blast}
+      with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
+    ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
+  hence zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" by simp
+  {fix p assume pU: "p \<in> ?PU"
+    from pU have p: "p permutes ?U" by blast
+    let ?s = "\<lambda>p. of_int (sign p)"
+    let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
+               (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))"
+    have "(setsum (\<lambda>q. ?s q *
+            (\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) =
+        (setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
+               (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)"
+      unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f]
+    proof(rule setsum_cong2)
+      fix q assume qU: "q \<in> ?PU"
+      hence q: "q permutes ?U" by blast
+      from p q have pp: "permutation p" and pq: "permutation q"
+	unfolding permutation_permutes by auto 
+      have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" 
+	"\<And>a. of_int (sign p) * (of_int (sign p) * a) = a" 
+	unfolding mult_assoc[symmetric]	unfolding of_int_mult[symmetric] 
+	by (simp_all add: sign_idempotent)
+      have ths: "?s q = ?s p * ?s (q o inv p)"
+	using pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
+	by (simp add:  th00 mult_ac sign_idempotent sign_compose)
+      have th001: "setprod (\<lambda>i. B$i$ q (inv p i)) ?U = setprod ((\<lambda>i. B$i$ q (inv p i)) o p) ?U"
+	by (rule setprod_permute[OF p])
+      have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U" 
+	unfolding th001 setprod_timesf[symmetric] o_def permutes_inverses[OF p]
+	apply (rule setprod_cong[OF refl])
+	using permutes_in_image[OF q] by vector
+      show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = ?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\<lambda>i. B$i$(q o inv p) i) ?U)"
+	using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
+	by (simp add: sign_nz th00 ring_simps sign_idempotent sign_compose)
+    qed
+  }
+  then have th2: "setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU = det A * det B" 
+    unfolding det_def setsum_product
+    by (rule setsum_cong2) 
+  have "det (A**B) = setsum (\<lambda>f.  det (\<chi> i. A $ i $ f i *s B $ f i)) ?F"
+    unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] .. 
+  also have "\<dots> = setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU"
+    unfolding setsum_superset[OF fF PUF zth, symmetric] 
+    unfolding det_rows_mul ..
+  finally show ?thesis unfolding th2 .
+qed  
+
+(* ------------------------------------------------------------------------- *)
+(* Relation to invertibility.                                                *)
+(* ------------------------------------------------------------------------- *)
+
+lemma invertible_left_inverse:
+  fixes A :: "real^'n^'n"
+  shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). B** A = mat 1)"
+  by (metis invertible_def matrix_left_right_inverse)
+
+lemma invertible_righ_inverse:
+  fixes A :: "real^'n^'n"
+  shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). A** B = mat 1)"
+  by (metis invertible_def matrix_left_right_inverse)
+
+lemma invertible_det_nz: 
+  fixes A::"real ^'n^'n"
+  shows "invertible A \<longleftrightarrow> det A \<noteq> 0"
+proof-
+  {assume "invertible A"
+    then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1"
+      unfolding invertible_righ_inverse by blast
+    hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp
+    hence "det A \<noteq> 0"
+      apply (simp add: det_mul det_I) by algebra }
+  moreover
+  {assume H: "\<not> invertible A"
+    let ?U = "{1 .. dimindex(UNIV :: 'n set)}"
+    have fU: "finite ?U" by simp
+    from H obtain c i where c: "setsum (\<lambda>i. c i *s row i A) ?U = 0" 
+      and iU: "i \<in> ?U" and ci: "c i \<noteq> 0"
+      unfolding invertible_righ_inverse
+      unfolding matrix_right_invertible_independent_rows by blast
+    have stupid: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"
+      apply (drule_tac f="op + (- a)" in cong[OF refl])
+      apply (simp only: ab_left_minus add_assoc[symmetric])
+      apply simp
+      done
+    from c ci 
+    have thr0: "- row i A = setsum (\<lambda>j. (1/ c i) *s c j *s row j A) (?U - {i})"
+      unfolding setsum_diff1'[OF fU iU] setsum_cmul 
+      apply (simp add: field_simps)
+      apply (rule vector_mul_lcancel_imp[OF ci])
+      apply (auto simp add: vector_smult_assoc vector_smult_rneg field_simps)
+      unfolding stupid ..
+    have thr: "- row i A \<in> span {row j A| j. j\<in> ?U \<and> j \<noteq> i}" 
+      unfolding thr0
+      apply (rule span_setsum)
+      apply simp
+      apply (rule ballI)
+      apply (rule span_mul)+
+      apply (rule span_superset)
+      apply auto
+      done
+    let ?B = "(\<chi> k. if k = i then 0 else row k A) :: real ^'n^'n"
+    have thrb: "row i ?B = 0" using iU by (vector row_def) 
+    have "det A = 0" 
+      unfolding det_row_span[OF iU thr, symmetric] right_minus
+      unfolding  det_zero_row[OF iU thrb]  ..}
+  ultimately show ?thesis by blast
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* Cramer's rule.                                                            *)
+(* ------------------------------------------------------------------------- *)
+
+lemma cramer_lemma_transp:
+  fixes A:: "'a::ordered_idom^'n^'n" and x :: "'a ^'n"
+  assumes k: "k \<in> {1 .. dimindex(UNIV ::'n set)}"
+  shows "det ((\<chi> i. if i = k then setsum (\<lambda>i. x$i *s row i A) {1 .. dimindex(UNIV::'n set)}
+                           else row i A)::'a^'n^'n) = x$k * det A" 
+  (is "?lhs = ?rhs") 
+proof-
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  let ?Uk = "?U - {k}"
+  have U: "?U = insert k ?Uk" using k by blast
+  have fUk: "finite ?Uk" by simp
+  have kUk: "k \<notin> ?Uk" by simp
+  have th00: "\<And>k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s"
+    by (vector ring_simps)
+  have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" by (auto intro: ext)
+  have "(\<chi> i. row i A) = A" by (vector row_def)
+  then have thd1: "det (\<chi> i. row i A) = det A"  by simp 
+  have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A"
+    apply (rule det_row_span[OF k])
+    apply (rule span_setsum[OF fUk])
+    apply (rule ballI)
+    apply (rule span_mul)
+    apply (rule span_superset)
+    apply auto
+    done
+  show "?lhs = x$k * det A"
+    apply (subst U)
+    unfolding setsum_insert[OF fUk kUk] 
+    apply (subst th00)
+    unfolding add_assoc
+    apply (subst det_row_add[OF k])
+    unfolding thd0
+    unfolding det_row_mul[OF k]
+    unfolding th001[of k "\<lambda>i. row i A"]
+    unfolding thd1  by (simp add: ring_simps)
+qed
+
+lemma cramer_lemma:
+  fixes A :: "'a::ordered_idom ^'n^'n"
+  assumes k: "k \<in> {1 .. dimindex (UNIV :: 'n set)}" (is " _ \<in> ?U")
+  shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: 'a^'n^'n) = x$k * det A"
+proof-
+  have stupid: "\<And>c. setsum (\<lambda>i. c i *s row i (transp A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U"
+    by (auto simp add: row_transp intro: setsum_cong2)
+  show ?thesis 
+  unfolding matrix_mult_vsum 
+  unfolding cramer_lemma_transp[OF k, of x "transp A", unfolded det_transp, symmetric]
+  unfolding stupid[of "\<lambda>i. x$i"]
+  apply (subst det_transp[symmetric])
+  apply (rule cong[OF refl[of det]]) by (vector transp_def column_def row_def)
+qed
+
+lemma cramer:
+  fixes A ::"real^'n^'n"
+  assumes d0: "det A \<noteq> 0" 
+  shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)"
+proof-
+  from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1"  
+    unfolding invertible_det_nz[symmetric] invertible_def by blast
+  have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid)
+  hence "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc)
+  then have xe: "\<exists>x. A*v x = b" by blast
+  {fix x assume x: "A *v x = b"
+  have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)"
+    unfolding x[symmetric]
+    using d0 by (simp add: Cart_eq Cart_lambda_beta' cramer_lemma field_simps)}
+  with xe show ?thesis by auto
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* Orthogonality of a transformation and matrix.                             *)
+(* ------------------------------------------------------------------------- *)
+
+definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)"
+
+lemma orthogonal_transformation: "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^'n). norm (f v) = norm v)"
+  unfolding orthogonal_transformation_def
+  apply auto 
+  apply (erule_tac x=v in allE)+
+  apply (simp add: real_vector_norm_def)
+  by (simp add: dot_norm  linear_add[symmetric]) 
+
+definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transp Q ** Q = mat 1 \<and> Q ** transp Q = mat 1"
+
+lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n)  \<longleftrightarrow> transp Q ** Q = mat 1"
+  by (metis matrix_left_right_inverse orthogonal_matrix_def)
+
+lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1)"
+  by (simp add: orthogonal_matrix_def transp_mat matrix_mul_lid)
+
+lemma orthogonal_matrix_mul: 
+  fixes A :: "real ^'n^'n"
+  assumes oA : "orthogonal_matrix A"
+  and oB: "orthogonal_matrix B" 
+  shows "orthogonal_matrix(A ** B)"
+  using oA oB 
+  unfolding orthogonal_matrix matrix_transp_mul
+  apply (subst matrix_mul_assoc)
+  apply (subst matrix_mul_assoc[symmetric])
+  by (simp add: matrix_mul_rid)
+
+lemma orthogonal_transformation_matrix:
+  fixes f:: "real^'n \<Rightarrow> real^'n"
+  shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  let ?mf = "matrix f"
+  let ?ot = "orthogonal_transformation f"
+  let ?U = "{1 .. dimindex (UNIV :: 'n set)}"
+  have fU: "finite ?U" by simp
+  let ?m1 = "mat 1 :: real ^'n^'n"
+  {assume ot: ?ot
+    from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w"
+      unfolding  orthogonal_transformation_def orthogonal_matrix by blast+
+    {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U"
+      let ?A = "transp ?mf ** ?mf"
+      have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)"
+	"\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)"
+	by simp_all
+      from fd[rule_format, of "basis i" "basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul] i j
+      have "?A$i$j = ?m1 $ i $ j" 
+	by (simp add: Cart_lambda_beta' dot_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def del: One_nat_def)}
+    hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector
+    with lf have ?rhs by blast}
+  moreover
+  {assume lf: "linear f" and om: "orthogonal_matrix ?mf"
+    from lf om have ?lhs
+      unfolding orthogonal_matrix_def norm_eq orthogonal_transformation
+      unfolding matrix_works[OF lf, symmetric]
+      apply (subst dot_matrix_vector_mul)
+      by (simp add: dot_matrix_product matrix_mul_lid del: One_nat_def)}
+  ultimately show ?thesis by blast
+qed
+
+lemma det_orthogonal_matrix: 
+  fixes Q:: "'a::ordered_idom^'n^'n"
+  assumes oQ: "orthogonal_matrix Q"
+  shows "det Q = 1 \<or> det Q = - 1"
+proof-
+  
+  have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x") 
+  proof- 
+    fix x:: 'a
+    have th0: "x*x - 1 = (x - 1)*(x + 1)" by (simp add: ring_simps)
+    have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0" 
+      apply (subst eq_iff_diff_eq_0) by simp
+    have "x*x = 1 \<longleftrightarrow> x*x - 1 = 0" by simp
+    also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" unfolding th0 th1 by simp
+    finally show "?ths x" ..
+  qed
+  from oQ have "Q ** transp Q = mat 1" by (metis orthogonal_matrix_def)
+  hence "det (Q ** transp Q) = det (mat 1:: 'a^'n^'n)" by simp
+  hence "det Q * det Q = 1" by (simp add: det_mul det_I det_transp)
+  then show ?thesis unfolding th . 
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* Linearity of scaling, and hence isometry, that preserves origin.          *)
+(* ------------------------------------------------------------------------- *)
+lemma scaling_linear: 
+  fixes f :: "real ^'n \<Rightarrow> real ^'n"
+  assumes f0: "f 0 = 0" and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"
+  shows "linear f"
+proof-
+  {fix v w 
+    {fix x note fd[rule_format, of x 0, unfolded dist_def f0 diff_0_right] }
+    note th0 = this
+    have "f v \<bullet> f w = c^2 * (v \<bullet> w)" 
+      unfolding dot_norm_neg dist_def[symmetric]
+      unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}
+  note fc = this
+  show ?thesis unfolding linear_def vector_eq
+    by (simp add: dot_lmult dot_ladd dot_rmult dot_radd fc ring_simps)
+qed    
+
+lemma isometry_linear:
+  "f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y
+        \<Longrightarrow> linear f"
+by (rule scaling_linear[where c=1]) simp_all
+
+(* ------------------------------------------------------------------------- *)
+(* Hence another formulation of orthogonal transformation.                   *)
+(* ------------------------------------------------------------------------- *)
+
+lemma orthogonal_transformation_isometry:
+  "orthogonal_transformation f \<longleftrightarrow> f(0::real^'n) = (0::real^'n) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)"
+  unfolding orthogonal_transformation 
+  apply (rule iffI)
+  apply clarify
+  apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_def)
+  apply (rule conjI)
+  apply (rule isometry_linear)
+  apply simp
+  apply simp
+  apply clarify
+  apply (erule_tac x=v in allE)
+  apply (erule_tac x=0 in allE)
+  by (simp add: dist_def)
+
+(* ------------------------------------------------------------------------- *)
+(* Can extend an isometry from unit sphere.                                  *)
+(* ------------------------------------------------------------------------- *)
+
+lemma isometry_sphere_extend:
+  fixes f:: "real ^'n \<Rightarrow> real ^'n"
+  assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1"
+  and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y"
+  shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)"
+proof-
+  {fix x y x' y' x0 y0 x0' y0' :: "real ^'n" 
+    assume H: "x = norm x *s x0" "y = norm y *s y0"
+    "x' = norm x *s x0'" "y' = norm y *s y0'" 
+    "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
+    "norm(x0' - y0') = norm(x0 - y0)"
+    
+    have "norm(x' - y') = norm(x - y)"
+      apply (subst H(1))
+      apply (subst H(2))
+      apply (subst H(3))
+      apply (subst H(4))
+      using H(5-9)
+      apply (simp add: norm_eq norm_eq_1)
+      apply (simp add: dot_lsub dot_rsub dot_lmult dot_rmult)
+      apply (simp add: ring_simps)
+      by (simp only: right_distrib[symmetric])}
+  note th0 = this
+  let ?g = "\<lambda>x. if x = 0 then 0 else norm x *s f (inverse (norm x) *s x)"
+  {fix x:: "real ^'n" assume nx: "norm x = 1"
+    have "?g x = f x" using nx by (simp add: norm_eq_0[symmetric])}
+  hence thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" by blast
+  have g0: "?g 0 = 0" by simp
+  {fix x y :: "real ^'n"
+    {assume "x = 0" "y = 0"
+      then have "dist (?g x) (?g y) = dist x y" by simp }
+    moreover
+    {assume "x = 0" "y \<noteq> 0"
+      then have "dist (?g x) (?g y) = dist x y" 
+	apply (simp add: dist_def norm_neg norm_mul norm_eq_0)
+	apply (rule f1[rule_format])
+	by(simp add: norm_mul norm_eq_0 field_simps)}
+    moreover
+    {assume "x \<noteq> 0" "y = 0"
+      then have "dist (?g x) (?g y) = dist x y" 
+	apply (simp add: dist_def norm_neg norm_mul norm_eq_0)
+	apply (rule f1[rule_format])
+	by(simp add: norm_mul norm_eq_0 field_simps)}
+    moreover
+    {assume z: "x \<noteq> 0" "y \<noteq> 0"
+      have th00: "x = norm x *s inverse (norm x) *s x" "y = norm y *s inverse (norm y) *s y" "norm x *s f (inverse (norm x) *s x) = norm x *s f (inverse (norm x) *s x)"
+	"norm y *s f (inverse (norm y) *s y) = norm y *s f (inverse (norm y) *s y)"
+	"norm (inverse (norm x) *s x) = 1"
+	"norm (f (inverse (norm x) *s x)) = 1"
+	"norm (inverse (norm y) *s y) = 1"
+	"norm (f (inverse (norm y) *s y)) = 1"
+	"norm (f (inverse (norm x) *s x) - f (inverse (norm y) *s y)) =
+	norm (inverse (norm x) *s x - inverse (norm y) *s y)"
+	using z
+	by (auto simp add: norm_eq_0 vector_smult_assoc field_simps norm_mul intro: f1[rule_format] fd1[rule_format, unfolded dist_def])
+      from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" 
+	by (simp add: dist_def)}
+    ultimately have "dist (?g x) (?g y) = dist x y" by blast}
+  note thd = this
+    show ?thesis 
+    apply (rule exI[where x= ?g])
+    unfolding orthogonal_transformation_isometry
+      using  g0 thfg thd by metis 
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* Rotation, reflection, rotoinversion.                                      *)
+(* ------------------------------------------------------------------------- *)
+
+definition "rotation_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = 1"
+definition "rotoinversion_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = - 1"
+
+lemma orthogonal_rotation_or_rotoinversion: 
+  fixes Q :: "'a::ordered_idom^'n^'n"
+  shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q"
+  by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix)
+(* ------------------------------------------------------------------------- *)
+(* Explicit formulas for low dimensions.                                     *)
+(* ------------------------------------------------------------------------- *)
+
+lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp
+
+lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2" 
+  by (simp add: nat_number setprod_numseg mult_commute)
+lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3" 
+  by (simp add: nat_number setprod_numseg mult_commute)
+
+lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1"
+  by (simp add: det_def dimindex_def permutes_sing sign_id del: One_nat_def)
+
+lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1"
+proof-
+  have f12: "finite {2::nat}" "1 \<notin> {2::nat}" by auto
+  have th12: "{1 .. 2} = insert (1::nat) {2}" by auto
+  show ?thesis 
+  apply (simp add: det_def dimindex_def th12 del: One_nat_def)
+  unfolding setsum_over_permutations_insert[OF f12]
+  unfolding permutes_sing
+  apply (simp add: sign_swap_id sign_id swap_id_eq del: One_nat_def)
+  by (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31))
+qed
+
+lemma det_3: "det (A::'a::comm_ring_1^3^3) = 
+  A$1$1 * A$2$2 * A$3$3 +
+  A$1$2 * A$2$3 * A$3$1 +
+  A$1$3 * A$2$1 * A$3$2 -
+  A$1$1 * A$2$3 * A$3$2 -
+  A$1$2 * A$2$1 * A$3$3 -
+  A$1$3 * A$2$2 * A$3$1"
+proof-
+  have f123: "finite {(2::nat), 3}" "1 \<notin> {(2::nat), 3}" by auto
+  have f23: "finite {(3::nat)}" "2 \<notin> {(3::nat)}" by auto
+  have th12: "{1 .. 3} = insert (1::nat) (insert 2 {3})" by auto
+
+  show ?thesis 
+  apply (simp add: det_def dimindex_def th12 del: One_nat_def)
+  unfolding setsum_over_permutations_insert[OF f123]
+  unfolding setsum_over_permutations_insert[OF f23]
+
+  unfolding permutes_sing
+  apply (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq del: One_nat_def)
+  apply (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31) One_nat_def)
+  by (simp add: ring_simps)
+qed
+
+end
\ No newline at end of file