author paulson Sun, 27 Aug 2017 13:50:23 +0100 changeset 66523 5a1a2ac950c2 parent 66520 b6d04f487ddd child 66524 0d8dab1f6903
division_of_nontrivial partial cleanup
```--- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Sat Aug 26 23:58:03 2017 +0100
+++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Sun Aug 27 13:50:23 2017 +0100
@@ -548,60 +548,52 @@
lemma has_integral_neg_iff: "((\<lambda>x. - f x) has_integral k) S \<longleftrightarrow> (f has_integral - k) S"
using has_integral_neg[of f "- k"] has_integral_neg[of "\<lambda>x. - f x" k] by auto

+  fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector"
+  assumes "(f has_integral k) (cbox a b)" "(g has_integral l) (cbox a b)"
+  shows "((\<lambda>x. f x + g x) has_integral (k + l)) (cbox a b)"
+  using assms
+    unfolding has_integral_cbox
+
fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector"
-  assumes "(f has_integral k) S"
-    and "(g has_integral l) S"
+  assumes f: "(f has_integral k) S" and g: "(g has_integral l) S"
shows "((\<lambda>x. f x + g x) has_integral (k + l)) S"
-proof -
-  have lem: "(f has_integral k) (cbox a b) \<Longrightarrow> (g has_integral l) (cbox a b) \<Longrightarrow>
-    ((\<lambda>x. f x + g x) has_integral (k + l)) (cbox a b)"
-    for f :: "'n \<Rightarrow> 'a" and g a b k l
-    unfolding has_integral_cbox
-  {
-    presume "\<not> (\<exists>a b. S = cbox a b) \<Longrightarrow> ?thesis"
-    then show ?thesis
-      using assms lem by force
-  }
-  assume nonbox: "\<not> (\<exists>a b. S = cbox a b)"
+proof (cases "\<exists>a b. S = cbox a b")
+  case True with has_integral_add_cbox assms show ?thesis
+    by blast
+next
+  let ?S = "\<lambda>f x. if x \<in> S then f x else 0"
+  case False
then show ?thesis
proof (subst has_integral_alt, clarsimp, goal_cases)
case (1 e)
-    then have *: "e/2 > 0"
+    then have e2: "e/2 > 0"
by auto
-    from has_integral_altD[OF assms(1) nonbox *]
-    obtain B1 where B1:
-        "0 < B1"
-        "\<And>a b. ball 0 B1 \<subseteq> cbox a b \<Longrightarrow>
-          \<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b) \<and> norm (z - k) < e/2"
-      by blast
-    from has_integral_altD[OF assms(2) nonbox *]
-    obtain B2 where B2:
-        "0 < B2"
-        "\<And>a b. ball 0 B2 \<subseteq> (cbox a b) \<Longrightarrow>
-          \<exists>z. ((\<lambda>x. if x \<in> S then g x else 0) has_integral z) (cbox a b) \<and> norm (z - l) < e/2"
-      by blast
+    obtain Bf where "0 < Bf"
+      and Bf: "\<And>a b. ball 0 Bf \<subseteq> cbox a b \<Longrightarrow>
+                     \<exists>z. (?S f has_integral z) (cbox a b) \<and> norm (z - k) < e/2"
+      using has_integral_altD[OF f False e2] by blast
+    obtain Bg where "0 < Bg"
+      and Bg: "\<And>a b. ball 0 Bg \<subseteq> (cbox a b) \<Longrightarrow>
+                     \<exists>z. (?S g has_integral z) (cbox a b) \<and> norm (z - l) < e/2"
+      using has_integral_altD[OF g False e2] by blast
show ?case
-    proof (rule_tac x="max B1 B2" in exI, clarsimp simp add: max.strict_coboundedI1 B1)
+    proof (rule_tac x="max Bf Bg" in exI, clarsimp simp add: max.strict_coboundedI1 \<open>0 < Bf\<close>)
fix a b
-      assume "ball 0 (max B1 B2) \<subseteq> cbox a (b::'n)"
-      then have *: "ball 0 B1 \<subseteq> cbox a (b::'n)" "ball 0 B2 \<subseteq> cbox a (b::'n)"
+      assume "ball 0 (max Bf Bg) \<subseteq> cbox a (b::'n)"
+      then have fs: "ball 0 Bf \<subseteq> cbox a (b::'n)" and gs: "ball 0 Bg \<subseteq> cbox a (b::'n)"
by auto
-      obtain w where w:
-        "((\<lambda>x. if x \<in> S then f x else 0) has_integral w) (cbox a b)"
-        "norm (w - k) < e/2"
-        using B1(2)[OF *(1)] by blast
-      obtain z where z:
-        "((\<lambda>x. if x \<in> S then g x else 0) has_integral z) (cbox a b)"
-        "norm (z - l) < e/2"
-        using B2(2)[OF *(2)] by blast
-      have *: "\<And>x. (if x \<in> S then f x + g x else 0) =
-        (if x \<in> S then f x else 0) + (if x \<in> S then g x else 0)"
+      obtain w where w: "(?S f has_integral w) (cbox a b)" "norm (w - k) < e/2"
+        using Bf[OF fs] by blast
+      obtain z where z: "(?S g has_integral z) (cbox a b)" "norm (z - l) < e/2"
+        using Bg[OF gs] by blast
+      have *: "\<And>x. (if x \<in> S then f x + g x else 0) = (?S f x) + (?S g x)"
by auto
-      show "\<exists>z. ((\<lambda>x. if x \<in> S then f x + g x else 0) has_integral z) (cbox a b) \<and> norm (z - (k + l)) < e"
+      show "\<exists>z. (?S(\<lambda>x. f x + g x) has_integral z) (cbox a b) \<and> norm (z - (k + l)) < e"
apply (rule_tac x="w + z" in exI)
-        apply (simp add: lem[OF w(1) z(1), unfolded *[symmetric]])
+        apply (simp add: has_integral_add_cbox[OF w(1) z(1), unfolded *[symmetric]])
using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2)
apply (auto simp add: field_simps)
done
@@ -2877,106 +2869,76 @@

lemma division_of_nontrivial:
fixes s :: "'a::euclidean_space set set"
-  assumes "s division_of (cbox a b)"
+  assumes s: "s division_of (cbox a b)"
and "content (cbox a b) \<noteq> 0"
shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of (cbox a b)"
-  using assms(1)
-  apply -
-proof (induct "card s" arbitrary: s rule: nat_less_induct)
-  fix s::"'a set set"
-  assume assm: "s division_of (cbox a b)"
-    "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow>
-      x division_of (cbox a b) \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of (cbox a b)"
-  note s = division_ofD[OF assm(1)]
-  let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of (cbox a b)"
+  using s
+proof (induction "card s" arbitrary: s rule: less_induct)
+  case less
+  note s = division_ofD[OF less.prems]
{
-    presume *: "{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
-    show ?thesis
-      apply cases
-      defer
-      apply (rule *)
-      apply assumption
-      using assm(1)
-      apply auto
-      done
+    presume *: "{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?case"
+    then show ?case
+      using less.prems by fastforce
}
assume noteq: "{k \<in> s. content k \<noteq> 0} \<noteq> s"
-  then obtain k c d where k: "k \<in> s" "content k = 0" "k = cbox c d"
-    using s(4) by blast
+  then obtain k c d where "k \<in> s" and contk: "content k = 0" and keq: "k = cbox c d"
+    using s(4) by blast
then have "card s > 0"
-    unfolding card_gt_0_iff using assm(1) by auto
+    unfolding card_gt_0_iff using less by auto
then have card: "card (s - {k}) < card s"
-    using assm(1) k(1)
-    apply (subst card_Diff_singleton_if)
-    apply auto
-    done
-  have *: "closed (\<Union>(s - {k}))"
-    apply (rule closed_Union)
-    defer
-    apply rule
-    apply (drule DiffD1,drule s(4))
-    using assm(1)
-    apply auto
-    done
+    using less \<open>k \<in> s\<close> by (simp add: s(1))
+  have closed: "closed (\<Union>(s - {k}))"
+    using less.prems by auto
have "k \<subseteq> \<Union>(s - {k})"
apply safe
-    apply (rule *[unfolded closed_limpt,rule_format])
+    apply (rule closed[unfolded closed_limpt,rule_format])
unfolding islimpt_approachable
proof safe
-    fix x
-    fix e :: real
-    assume as: "x \<in> k" "e > 0"
+    fix x and e :: real
+    assume "x \<in> k" "e > 0"
obtain i where i: "c\<bullet>i = d\<bullet>i" "i\<in>Basis"
-      using k(2) s(3)[OF k(1)] unfolding box_ne_empty k
-      by (metis dual_order.antisym content_eq_0)
+      using contk s(3) [OF \<open>k \<in> s\<close>] unfolding box_ne_empty keq
+      by (meson content_eq_0 dual_order.antisym)
then have xi: "x\<bullet>i = d\<bullet>i"
-      using as unfolding k mem_box by (metis antisym)
+      using \<open>x \<in> k\<close> unfolding keq mem_box by (metis antisym)
define y where "y = (\<Sum>j\<in>Basis. (if j = i then if c\<bullet>i \<le> (a\<bullet>i + b\<bullet>i) / 2 then c\<bullet>i +
min e (b\<bullet>i - c\<bullet>i) / 2 else c\<bullet>i - min e (c\<bullet>i - a\<bullet>i) / 2 else x\<bullet>j) *\<^sub>R j)"
show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e"
apply (rule_tac x=y in bexI)
proof
have "d \<in> cbox c d"
-        using s(3)[OF k(1)]
-        unfolding k box_eq_empty mem_box
-        by (fastforce simp add: not_less)
+        using s(3)[OF \<open>k \<in> s\<close>] by (simp add: box_ne_empty(1) keq mem_box(2))
then have "d \<in> cbox a b"
-        using s(2)[OF k(1)]
-        unfolding k
+        using s(2)[OF \<open>k \<in> s\<close>]
+        unfolding keq
by auto
note di = this[unfolded mem_box,THEN bspec[where x=i]]
then have xyi: "y\<bullet>i \<noteq> x\<bullet>i"
unfolding y_def i xi
-        using as(2) assms(2)[unfolded content_eq_0] i(2)
+        using \<open>e > 0\<close> assms(2)[unfolded content_eq_0] i(2)
by (auto elim!: ballE[of _ _ i])
then show "y \<noteq> x"
unfolding euclidean_eq_iff[where 'a='a] using i by auto
-      have *: "Basis = insert i (Basis - {i})"
-        using i by auto
-      have "norm (y-x) < e + sum (\<lambda>i. 0) Basis"
-        apply (rule le_less_trans[OF norm_le_l1])
-        apply (subst *)
-        apply (subst sum.insert)
-        prefer 3
-        apply (rule add_less_le_mono)
-      proof -
+      have "norm (y-x) \<le> (\<Sum>b\<in>Basis. \<bar>(y - x) \<bullet> b\<bar>)"
+        by (rule norm_le_l1)
+      also have "... = \<bar>(y - x) \<bullet> i\<bar> + (\<Sum>b \<in> Basis - {i}. \<bar>(y - x) \<bullet> b\<bar>)"
+        by (meson finite_Basis i(2) sum.remove)
+      also have "... <  e + sum (\<lambda>i. 0) Basis"
+      proof (rule add_less_le_mono)
show "\<bar>(y-x) \<bullet> i\<bar> < e"
-          using di as(2) y_def i xi by (auto simp: inner_simps)
+          using di \<open>e > 0\<close> y_def i xi by (auto simp: inner_simps)
show "(\<Sum>i\<in>Basis - {i}. \<bar>(y-x) \<bullet> i\<bar>) \<le> (\<Sum>i\<in>Basis. 0)"
unfolding y_def by (auto simp: inner_simps)
-      qed auto
+      qed
+      finally have "norm (y-x) < e + sum (\<lambda>i. 0) Basis" .
then show "dist y x < e"
unfolding dist_norm by auto
have "y \<notin> k"
-        unfolding k mem_box
-        apply rule
-        apply (erule_tac x=i in ballE)
-        using xyi k i xi
-        apply auto
-        done
+        unfolding keq mem_box using i(1) i(2) xi xyi by fastforce
moreover
have "y \<in> \<Union>s"
-        using set_rev_mp[OF as(1) s(2)[OF k(1)]] as(2) di i
+        using subsetD[OF s(2)[OF \<open>k \<in> s\<close>] \<open>x \<in> k\<close>] \<open>e > 0\<close> di i
unfolding s mem_box y_def
by (auto simp: field_simps elim!: ballE[of _ _ i])
ultimately
@@ -2985,19 +2947,14 @@
qed
then have "\<Union>(s - {k}) = cbox a b"
unfolding s(6)[symmetric] by auto
-  then have  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of (cbox a b)"
-    apply -
-    apply (rule assm(2)[rule_format,OF card refl])
-    apply (rule division_ofI)
-    defer
-    apply (rule_tac[1-4] s)
-    using assm(1)
-    apply auto
-    done
+  then have "s - {k} division_of cbox a b"
+    by (metis Diff_subset less.prems division_of_subset s(6))
+  then have "{ka \<in> s - {k}. content ka \<noteq> 0} division_of (cbox a b)"
+    using card less.hyps by blast
moreover
have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}"
-    using k by auto
-  ultimately show ?thesis by auto
+    using contk by auto
+  ultimately show ?case by auto
qed

```