moved Refute to "HOL/Library" to speed up building "Main" even more
authorblanchet
Wed, 31 Oct 2012 11:23:21 +0100
changeset 49985 5b4b0e4e5205
parent 49984 9f655a6bffd8
child 49986 90e7be285b49
moved Refute to "HOL/Library" to speed up building "Main" even more
src/HOL/Library/Refute.thy
src/HOL/Library/refute.ML
src/HOL/ROOT
src/HOL/Refute.thy
src/HOL/SAT.thy
src/HOL/TPTP/ATP_Problem_Import.thy
src/HOL/TPTP/atp_problem_import.ML
src/HOL/Tools/Nitpick/nitpick_hol.ML
src/HOL/Tools/Nitpick/nitpick_isar.ML
src/HOL/Tools/Nitpick/nitpick_util.ML
src/HOL/Tools/refute.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Refute.thy	Wed Oct 31 11:23:21 2012 +0100
@@ -0,0 +1,113 @@
+(*  Title:      HOL/Refute.thy
+    Author:     Tjark Weber
+    Copyright   2003-2007
+
+Basic setup and documentation for the 'refute' (and 'refute_params') command.
+*)
+
+header {* Refute *}
+
+theory Refute
+imports Hilbert_Choice List Sledgehammer
+keywords "refute" :: diag and "refute_params" :: thy_decl
+begin
+
+ML_file "refute.ML"
+setup Refute.setup
+
+refute_params
+ [itself = 1,
+  minsize = 1,
+  maxsize = 8,
+  maxvars = 10000,
+  maxtime = 60,
+  satsolver = auto,
+  no_assms = false]
+
+text {*
+\small
+\begin{verbatim}
+(* ------------------------------------------------------------------------- *)
+(* REFUTE                                                                    *)
+(*                                                                           *)
+(* We use a SAT solver to search for a (finite) model that refutes a given   *)
+(* HOL formula.                                                              *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* NOTE                                                                      *)
+(*                                                                           *)
+(* I strongly recommend that you install a stand-alone SAT solver if you     *)
+(* want to use 'refute'.  For details see 'HOL/Tools/sat_solver.ML'.  If you *)
+(* have installed (a supported version of) zChaff, simply set 'ZCHAFF_HOME'  *)
+(* in 'etc/settings'.                                                        *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* USAGE                                                                     *)
+(*                                                                           *)
+(* See the file 'HOL/ex/Refute_Examples.thy' for examples.  The supported    *)
+(* parameters are explained below.                                           *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* CURRENT LIMITATIONS                                                       *)
+(*                                                                           *)
+(* 'refute' currently accepts formulas of higher-order predicate logic (with *)
+(* equality), including free/bound/schematic variables, lambda abstractions, *)
+(* sets and set membership, "arbitrary", "The", "Eps", records and           *)
+(* inductively defined sets.  Constants are unfolded automatically, and sort *)
+(* axioms are added as well.  Other, user-asserted axioms however are        *)
+(* ignored.  Inductive datatypes and recursive functions are supported, but  *)
+(* may lead to spurious countermodels.                                       *)
+(*                                                                           *)
+(* The (space) complexity of the algorithm is non-elementary.                *)
+(*                                                                           *)
+(* Schematic type variables are not supported.                               *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* PARAMETERS                                                                *)
+(*                                                                           *)
+(* The following global parameters are currently supported (and required,    *)
+(* except for "expect"):                                                     *)
+(*                                                                           *)
+(* Name          Type    Description                                         *)
+(*                                                                           *)
+(* "minsize"     int     Only search for models with size at least           *)
+(*                       'minsize'.                                          *)
+(* "maxsize"     int     If >0, only search for models with size at most     *)
+(*                       'maxsize'.                                          *)
+(* "maxvars"     int     If >0, use at most 'maxvars' boolean variables      *)
+(*                       when transforming the term into a propositional     *)
+(*                       formula.                                            *)
+(* "maxtime"     int     If >0, terminate after at most 'maxtime' seconds.   *)
+(*                       This value is ignored under some ML compilers.      *)
+(* "satsolver"   string  Name of the SAT solver to be used.                  *)
+(* "no_assms"    bool    If "true", assumptions in structured proofs are     *)
+(*                       not considered.                                     *)
+(* "expect"      string  Expected result ("genuine", "potential", "none", or *)
+(*                       "unknown").                                         *)
+(*                                                                           *)
+(* The size of particular types can be specified in the form type=size       *)
+(* (where 'type' is a string, and 'size' is an int).  Examples:              *)
+(* "'a"=1                                                                    *)
+(* "List.list"=2                                                             *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* FILES                                                                     *)
+(*                                                                           *)
+(* HOL/Tools/prop_logic.ML     Propositional logic                           *)
+(* HOL/Tools/sat_solver.ML     SAT solvers                                   *)
+(* HOL/Tools/refute.ML         Translation HOL -> propositional logic and    *)
+(*                             Boolean assignment -> HOL model               *)
+(* HOL/Refute.thy              This file: loads the ML files, basic setup,   *)
+(*                             documentation                                 *)
+(* HOL/SAT.thy                 Sets default parameters                       *)
+(* HOL/ex/Refute_Examples.thy  Examples                                      *)
+(* ------------------------------------------------------------------------- *)
+\end{verbatim}
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/refute.ML	Wed Oct 31 11:23:21 2012 +0100
@@ -0,0 +1,3229 @@
+(*  Title:      HOL/Tools/refute.ML
+    Author:     Tjark Weber, TU Muenchen
+
+Finite model generation for HOL formulas, using a SAT solver.
+*)
+
+(* ------------------------------------------------------------------------- *)
+(* Declares the 'REFUTE' signature as well as a structure 'Refute'.          *)
+(* Documentation is available in the Isabelle/Isar theory 'HOL/Refute.thy'.  *)
+(* ------------------------------------------------------------------------- *)
+
+signature REFUTE =
+sig
+
+  exception REFUTE of string * string
+
+(* ------------------------------------------------------------------------- *)
+(* Model/interpretation related code (translation HOL -> propositional logic *)
+(* ------------------------------------------------------------------------- *)
+
+  type params
+  type interpretation
+  type model
+  type arguments
+
+  exception MAXVARS_EXCEEDED
+
+  val add_interpreter : string -> (Proof.context -> model -> arguments -> term ->
+    (interpretation * model * arguments) option) -> theory -> theory
+  val add_printer : string -> (Proof.context -> model -> typ ->
+    interpretation -> (int -> bool) -> term option) -> theory -> theory
+
+  val interpret : Proof.context -> model -> arguments -> term ->
+    (interpretation * model * arguments)
+
+  val print : Proof.context -> model -> typ -> interpretation -> (int -> bool) -> term
+  val print_model : Proof.context -> model -> (int -> bool) -> string
+
+(* ------------------------------------------------------------------------- *)
+(* Interface                                                                 *)
+(* ------------------------------------------------------------------------- *)
+
+  val set_default_param  : (string * string) -> theory -> theory
+  val get_default_param  : Proof.context -> string -> string option
+  val get_default_params : Proof.context -> (string * string) list
+  val actual_params      : Proof.context -> (string * string) list -> params
+
+  val find_model :
+    Proof.context -> params -> term list -> term -> bool -> string
+
+  (* tries to find a model for a formula: *)
+  val satisfy_term :
+    Proof.context -> (string * string) list -> term list -> term -> string
+  (* tries to find a model that refutes a formula: *)
+  val refute_term :
+    Proof.context -> (string * string) list -> term list -> term -> string
+  val refute_goal :
+    Proof.context -> (string * string) list -> thm -> int -> string
+
+  val setup : theory -> theory
+
+(* ------------------------------------------------------------------------- *)
+(* Additional functions used by Nitpick (to be factored out)                 *)
+(* ------------------------------------------------------------------------- *)
+
+  val get_classdef : theory -> string -> (string * term) option
+  val norm_rhs : term -> term
+  val get_def : theory -> string * typ -> (string * term) option
+  val get_typedef : theory -> typ -> (string * term) option
+  val is_IDT_constructor : theory -> string * typ -> bool
+  val is_IDT_recursor : theory -> string * typ -> bool
+  val is_const_of_class: theory -> string * typ -> bool
+  val string_of_typ : typ -> string
+end;
+
+structure Refute : REFUTE =
+struct
+
+open Prop_Logic;
+
+(* We use 'REFUTE' only for internal error conditions that should    *)
+(* never occur in the first place (i.e. errors caused by bugs in our *)
+(* code).  Otherwise (e.g. to indicate invalid input data) we use    *)
+(* 'error'.                                                          *)
+exception REFUTE of string * string;  (* ("in function", "cause") *)
+
+(* should be raised by an interpreter when more variables would be *)
+(* required than allowed by 'maxvars'                              *)
+exception MAXVARS_EXCEEDED;
+
+
+(* ------------------------------------------------------------------------- *)
+(* TREES                                                                     *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* tree: implements an arbitrarily (but finitely) branching tree as a list   *)
+(*       of (lists of ...) elements                                          *)
+(* ------------------------------------------------------------------------- *)
+
+datatype 'a tree =
+    Leaf of 'a
+  | Node of ('a tree) list;
+
+(* ('a -> 'b) -> 'a tree -> 'b tree *)
+
+fun tree_map f tr =
+  case tr of
+    Leaf x  => Leaf (f x)
+  | Node xs => Node (map (tree_map f) xs);
+
+(* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
+
+fun tree_foldl f =
+  let
+    fun itl (e, Leaf x)  = f(e,x)
+      | itl (e, Node xs) = Library.foldl (tree_foldl f) (e,xs)
+  in
+    itl
+  end;
+
+(* 'a tree * 'b tree -> ('a * 'b) tree *)
+
+fun tree_pair (t1, t2) =
+  case t1 of
+    Leaf x =>
+      (case t2 of
+          Leaf y => Leaf (x,y)
+        | Node _ => raise REFUTE ("tree_pair",
+            "trees are of different height (second tree is higher)"))
+  | Node xs =>
+      (case t2 of
+          (* '~~' will raise an exception if the number of branches in   *)
+          (* both trees is different at the current node                 *)
+          Node ys => Node (map tree_pair (xs ~~ ys))
+        | Leaf _  => raise REFUTE ("tree_pair",
+            "trees are of different height (first tree is higher)"));
+
+(* ------------------------------------------------------------------------- *)
+(* params: parameters that control the translation into a propositional      *)
+(*         formula/model generation                                          *)
+(*                                                                           *)
+(* The following parameters are supported (and required (!), except for      *)
+(* "sizes" and "expect"):                                                    *)
+(*                                                                           *)
+(* Name          Type    Description                                         *)
+(*                                                                           *)
+(* "sizes"       (string * int) list                                         *)
+(*                       Size of ground types (e.g. 'a=2), or depth of IDTs. *)
+(* "minsize"     int     If >0, minimal size of each ground type/IDT depth.  *)
+(* "maxsize"     int     If >0, maximal size of each ground type/IDT depth.  *)
+(* "maxvars"     int     If >0, use at most 'maxvars' Boolean variables      *)
+(*                       when transforming the term into a propositional     *)
+(*                       formula.                                            *)
+(* "maxtime"     int     If >0, terminate after at most 'maxtime' seconds.   *)
+(* "satsolver"   string  SAT solver to be used.                              *)
+(* "no_assms"    bool    If "true", assumptions in structured proofs are     *)
+(*                       not considered.                                     *)
+(* "expect"      string  Expected result ("genuine", "potential", "none", or *)
+(*                       "unknown").                                         *)
+(* ------------------------------------------------------------------------- *)
+
+type params =
+  {
+    sizes    : (string * int) list,
+    minsize  : int,
+    maxsize  : int,
+    maxvars  : int,
+    maxtime  : int,
+    satsolver: string,
+    no_assms : bool,
+    expect   : string
+  };
+
+(* ------------------------------------------------------------------------- *)
+(* interpretation: a term's interpretation is given by a variable of type    *)
+(*                 'interpretation'                                          *)
+(* ------------------------------------------------------------------------- *)
+
+type interpretation =
+  prop_formula list tree;
+
+(* ------------------------------------------------------------------------- *)
+(* model: a model specifies the size of types and the interpretation of      *)
+(*        terms                                                              *)
+(* ------------------------------------------------------------------------- *)
+
+type model =
+  (typ * int) list * (term * interpretation) list;
+
+(* ------------------------------------------------------------------------- *)
+(* arguments: additional arguments required during interpretation of terms   *)
+(* ------------------------------------------------------------------------- *)
+
+type arguments =
+  {
+    (* just passed unchanged from 'params': *)
+    maxvars   : int,
+    (* whether to use 'make_equality' or 'make_def_equality': *)
+    def_eq    : bool,
+    (* the following may change during the translation: *)
+    next_idx  : int,
+    bounds    : interpretation list,
+    wellformed: prop_formula
+  };
+
+structure Data = Theory_Data
+(
+  type T =
+    {interpreters: (string * (Proof.context -> model -> arguments -> term ->
+      (interpretation * model * arguments) option)) list,
+     printers: (string * (Proof.context -> model -> typ -> interpretation ->
+      (int -> bool) -> term option)) list,
+     parameters: string Symtab.table};
+  val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
+  val extend = I;
+  fun merge
+    ({interpreters = in1, printers = pr1, parameters = pa1},
+     {interpreters = in2, printers = pr2, parameters = pa2}) : T =
+    {interpreters = AList.merge (op =) (K true) (in1, in2),
+     printers = AList.merge (op =) (K true) (pr1, pr2),
+     parameters = Symtab.merge (op =) (pa1, pa2)};
+);
+
+val get_data = Data.get o Proof_Context.theory_of;
+
+
+(* ------------------------------------------------------------------------- *)
+(* interpret: interprets the term 't' using a suitable interpreter; returns  *)
+(*            the interpretation and a (possibly extended) model that keeps  *)
+(*            track of the interpretation of subterms                        *)
+(* ------------------------------------------------------------------------- *)
+
+fun interpret ctxt model args t =
+  case get_first (fn (_, f) => f ctxt model args t)
+      (#interpreters (get_data ctxt)) of
+    NONE => raise REFUTE ("interpret",
+      "no interpreter for term " ^ quote (Syntax.string_of_term ctxt t))
+  | SOME x => x;
+
+(* ------------------------------------------------------------------------- *)
+(* print: converts the interpretation 'intr', which must denote a term of    *)
+(*        type 'T', into a term using a suitable printer                     *)
+(* ------------------------------------------------------------------------- *)
+
+fun print ctxt model T intr assignment =
+  case get_first (fn (_, f) => f ctxt model T intr assignment)
+      (#printers (get_data ctxt)) of
+    NONE => raise REFUTE ("print",
+      "no printer for type " ^ quote (Syntax.string_of_typ ctxt T))
+  | SOME x => x;
+
+(* ------------------------------------------------------------------------- *)
+(* print_model: turns the model into a string, using a fixed interpretation  *)
+(*              (given by an assignment for Boolean variables) and suitable  *)
+(*              printers                                                     *)
+(* ------------------------------------------------------------------------- *)
+
+fun print_model ctxt model assignment =
+  let
+    val (typs, terms) = model
+    val typs_msg =
+      if null typs then
+        "empty universe (no type variables in term)\n"
+      else
+        "Size of types: " ^ commas (map (fn (T, i) =>
+          Syntax.string_of_typ ctxt T ^ ": " ^ string_of_int i) typs) ^ "\n"
+    val show_consts_msg =
+      if not (Config.get ctxt show_consts) andalso Library.exists (is_Const o fst) terms then
+        "enable \"show_consts\" to show the interpretation of constants\n"
+      else
+        ""
+    val terms_msg =
+      if null terms then
+        "empty interpretation (no free variables in term)\n"
+      else
+        cat_lines (map_filter (fn (t, intr) =>
+          (* print constants only if 'show_consts' is true *)
+          if Config.get ctxt show_consts orelse not (is_Const t) then
+            SOME (Syntax.string_of_term ctxt t ^ ": " ^
+              Syntax.string_of_term ctxt
+                (print ctxt model (Term.type_of t) intr assignment))
+          else
+            NONE) terms) ^ "\n"
+  in
+    typs_msg ^ show_consts_msg ^ terms_msg
+  end;
+
+
+(* ------------------------------------------------------------------------- *)
+(* PARAMETER MANAGEMENT                                                      *)
+(* ------------------------------------------------------------------------- *)
+
+fun add_interpreter name f = Data.map (fn {interpreters, printers, parameters} =>
+  case AList.lookup (op =) interpreters name of
+    NONE => {interpreters = (name, f) :: interpreters,
+      printers = printers, parameters = parameters}
+  | SOME _ => error ("Interpreter " ^ name ^ " already declared"));
+
+fun add_printer name f = Data.map (fn {interpreters, printers, parameters} =>
+  case AList.lookup (op =) printers name of
+    NONE => {interpreters = interpreters,
+      printers = (name, f) :: printers, parameters = parameters}
+  | SOME _ => error ("Printer " ^ name ^ " already declared"));
+
+(* ------------------------------------------------------------------------- *)
+(* set_default_param: stores the '(name, value)' pair in Data's              *)
+(*                    parameter table                                        *)
+(* ------------------------------------------------------------------------- *)
+
+fun set_default_param (name, value) = Data.map
+  (fn {interpreters, printers, parameters} =>
+    {interpreters = interpreters, printers = printers,
+      parameters = Symtab.update (name, value) parameters});
+
+(* ------------------------------------------------------------------------- *)
+(* get_default_param: retrieves the value associated with 'name' from        *)
+(*                    Data's parameter table                                 *)
+(* ------------------------------------------------------------------------- *)
+
+val get_default_param = Symtab.lookup o #parameters o get_data;
+
+(* ------------------------------------------------------------------------- *)
+(* get_default_params: returns a list of all '(name, value)' pairs that are  *)
+(*                     stored in Data's parameter table                      *)
+(* ------------------------------------------------------------------------- *)
+
+val get_default_params = Symtab.dest o #parameters o get_data;
+
+(* ------------------------------------------------------------------------- *)
+(* actual_params: takes a (possibly empty) list 'params' of parameters that  *)
+(*      override the default parameters currently specified, and             *)
+(*      returns a record that can be passed to 'find_model'.                 *)
+(* ------------------------------------------------------------------------- *)
+
+fun actual_params ctxt override =
+  let
+    (* (string * string) list * string -> bool *)
+    fun read_bool (parms, name) =
+      case AList.lookup (op =) parms name of
+        SOME "true" => true
+      | SOME "false" => false
+      | SOME s => error ("parameter " ^ quote name ^
+          " (value is " ^ quote s ^ ") must be \"true\" or \"false\"")
+      | NONE   => error ("parameter " ^ quote name ^
+          " must be assigned a value")
+    (* (string * string) list * string -> int *)
+    fun read_int (parms, name) =
+      case AList.lookup (op =) parms name of
+        SOME s =>
+          (case Int.fromString s of
+            SOME i => i
+          | NONE   => error ("parameter " ^ quote name ^
+            " (value is " ^ quote s ^ ") must be an integer value"))
+      | NONE => error ("parameter " ^ quote name ^
+          " must be assigned a value")
+    (* (string * string) list * string -> string *)
+    fun read_string (parms, name) =
+      case AList.lookup (op =) parms name of
+        SOME s => s
+      | NONE => error ("parameter " ^ quote name ^
+        " must be assigned a value")
+    (* 'override' first, defaults last: *)
+    (* (string * string) list *)
+    val allparams = override @ get_default_params ctxt
+    (* int *)
+    val minsize = read_int (allparams, "minsize")
+    val maxsize = read_int (allparams, "maxsize")
+    val maxvars = read_int (allparams, "maxvars")
+    val maxtime = read_int (allparams, "maxtime")
+    (* string *)
+    val satsolver = read_string (allparams, "satsolver")
+    val no_assms = read_bool (allparams, "no_assms")
+    val expect = the_default "" (AList.lookup (op =) allparams "expect")
+    (* all remaining parameters of the form "string=int" are collected in *)
+    (* 'sizes'                                                            *)
+    (* TODO: it is currently not possible to specify a size for a type    *)
+    (*       whose name is one of the other parameters (e.g. 'maxvars')   *)
+    (* (string * int) list *)
+    val sizes = map_filter
+      (fn (name, value) => Option.map (pair name) (Int.fromString value))
+      (filter (fn (name, _) => name<>"minsize" andalso name<>"maxsize"
+        andalso name<>"maxvars" andalso name<>"maxtime"
+        andalso name<>"satsolver" andalso name<>"no_assms") allparams)
+  in
+    {sizes=sizes, minsize=minsize, maxsize=maxsize, maxvars=maxvars,
+      maxtime=maxtime, satsolver=satsolver, no_assms=no_assms, expect=expect}
+  end;
+
+
+(* ------------------------------------------------------------------------- *)
+(* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL       *)
+(* ------------------------------------------------------------------------- *)
+
+val typ_of_dtyp = ATP_Util.typ_of_dtyp
+
+(* ------------------------------------------------------------------------- *)
+(* close_form: universal closure over schematic variables in 't'             *)
+(* ------------------------------------------------------------------------- *)
+
+(* Term.term -> Term.term *)
+
+fun close_form t =
+  let
+    val vars = sort_wrt (fst o fst) (Term.add_vars t [])
+  in
+    fold (fn ((x, i), T) => fn t' =>
+      Logic.all_const T $ Abs (x, T, abstract_over (Var ((x, i), T), t'))) vars t
+  end;
+
+val monomorphic_term = ATP_Util.monomorphic_term
+val specialize_type = ATP_Util.specialize_type
+
+(* ------------------------------------------------------------------------- *)
+(* is_const_of_class: returns 'true' iff 'Const (s, T)' is a constant that   *)
+(*                    denotes membership to an axiomatic type class          *)
+(* ------------------------------------------------------------------------- *)
+
+fun is_const_of_class thy (s, _) =
+  let
+    val class_const_names = map Logic.const_of_class (Sign.all_classes thy)
+  in
+    (* I'm not quite sure if checking the name 's' is sufficient, *)
+    (* or if we should also check the type 'T'.                   *)
+    member (op =) class_const_names s
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* is_IDT_constructor: returns 'true' iff 'Const (s, T)' is the constructor  *)
+(*                     of an inductive datatype in 'thy'                     *)
+(* ------------------------------------------------------------------------- *)
+
+fun is_IDT_constructor thy (s, T) =
+  (case body_type T of
+    Type (s', _) =>
+      (case Datatype.get_constrs thy s' of
+        SOME constrs =>
+          List.exists (fn (cname, cty) =>
+            cname = s andalso Sign.typ_instance thy (T, cty)) constrs
+      | NONE => false)
+  | _  => false);
+
+(* ------------------------------------------------------------------------- *)
+(* is_IDT_recursor: returns 'true' iff 'Const (s, T)' is the recursion       *)
+(*                  operator of an inductive datatype in 'thy'               *)
+(* ------------------------------------------------------------------------- *)
+
+fun is_IDT_recursor thy (s, _) =
+  let
+    val rec_names = Symtab.fold (append o #rec_names o snd)
+      (Datatype.get_all thy) []
+  in
+    (* I'm not quite sure if checking the name 's' is sufficient, *)
+    (* or if we should also check the type 'T'.                   *)
+    member (op =) rec_names s
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* norm_rhs: maps  f ?t1 ... ?tn == rhs  to  %t1...tn. rhs                   *)
+(* ------------------------------------------------------------------------- *)
+
+fun norm_rhs eqn =
+  let
+    fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
+      | lambda v t = raise TERM ("lambda", [v, t])
+    val (lhs, rhs) = Logic.dest_equals eqn
+    val (_, args) = Term.strip_comb lhs
+  in
+    fold lambda (rev args) rhs
+  end
+
+(* ------------------------------------------------------------------------- *)
+(* get_def: looks up the definition of a constant                            *)
+(* ------------------------------------------------------------------------- *)
+
+fun get_def thy (s, T) =
+  let
+    (* (string * Term.term) list -> (string * Term.term) option *)
+    fun get_def_ax [] = NONE
+      | get_def_ax ((axname, ax) :: axioms) =
+          (let
+            val (lhs, _) = Logic.dest_equals ax  (* equations only *)
+            val c        = Term.head_of lhs
+            val (s', T') = Term.dest_Const c
+          in
+            if s=s' then
+              let
+                val typeSubs = Sign.typ_match thy (T', T) Vartab.empty
+                val ax'      = monomorphic_term typeSubs ax
+                val rhs      = norm_rhs ax'
+              in
+                SOME (axname, rhs)
+              end
+            else
+              get_def_ax axioms
+          end handle ERROR _         => get_def_ax axioms
+                   | TERM _          => get_def_ax axioms
+                   | Type.TYPE_MATCH => get_def_ax axioms)
+  in
+    get_def_ax (Theory.all_axioms_of thy)
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* get_typedef: looks up the definition of a type, as created by "typedef"   *)
+(* ------------------------------------------------------------------------- *)
+
+fun get_typedef thy T =
+  let
+    (* (string * Term.term) list -> (string * Term.term) option *)
+    fun get_typedef_ax [] = NONE
+      | get_typedef_ax ((axname, ax) :: axioms) =
+          (let
+            (* Term.term -> Term.typ option *)
+            fun type_of_type_definition (Const (s', T')) =
+                  if s'= @{const_name type_definition} then
+                    SOME T'
+                  else
+                    NONE
+              | type_of_type_definition (Free _) = NONE
+              | type_of_type_definition (Var _) = NONE
+              | type_of_type_definition (Bound _) = NONE
+              | type_of_type_definition (Abs (_, _, body)) =
+                  type_of_type_definition body
+              | type_of_type_definition (t1 $ t2) =
+                  (case type_of_type_definition t1 of
+                    SOME x => SOME x
+                  | NONE => type_of_type_definition t2)
+          in
+            case type_of_type_definition ax of
+              SOME T' =>
+                let
+                  val T'' = domain_type (domain_type T')
+                  val typeSubs = Sign.typ_match thy (T'', T) Vartab.empty
+                in
+                  SOME (axname, monomorphic_term typeSubs ax)
+                end
+            | NONE => get_typedef_ax axioms
+          end handle ERROR _         => get_typedef_ax axioms
+                   | TERM _          => get_typedef_ax axioms
+                   | Type.TYPE_MATCH => get_typedef_ax axioms)
+  in
+    get_typedef_ax (Theory.all_axioms_of thy)
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* get_classdef: looks up the defining axiom for an axiomatic type class, as *)
+(*               created by the "axclass" command                            *)
+(* ------------------------------------------------------------------------- *)
+
+fun get_classdef thy class =
+  let
+    val axname = class ^ "_class_def"
+  in
+    Option.map (pair axname)
+      (AList.lookup (op =) (Theory.all_axioms_of thy) axname)
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* unfold_defs: unfolds all defined constants in a term 't', beta-eta        *)
+(*              normalizes the result term; certain constants are not        *)
+(*              unfolded (cf. 'collect_axioms' and the various interpreters  *)
+(*              below): if the interpretation respects a definition anyway,  *)
+(*              that definition does not need to be unfolded                 *)
+(* ------------------------------------------------------------------------- *)
+
+(* Note: we could intertwine unfolding of constants and beta-(eta-)       *)
+(*       normalization; this would save some unfolding for terms where    *)
+(*       constants are eliminated by beta-reduction (e.g. 'K c1 c2').  On *)
+(*       the other hand, this would cause additional work for terms where *)
+(*       constants are duplicated by beta-reduction (e.g. 'S c1 c2 c3').  *)
+
+fun unfold_defs thy t =
+  let
+    (* Term.term -> Term.term *)
+    fun unfold_loop t =
+      case t of
+      (* Pure *)
+        Const (@{const_name all}, _) => t
+      | Const (@{const_name "=="}, _) => t
+      | Const (@{const_name "==>"}, _) => t
+      | Const (@{const_name TYPE}, _) => t  (* axiomatic type classes *)
+      (* HOL *)
+      | Const (@{const_name Trueprop}, _) => t
+      | Const (@{const_name Not}, _) => t
+      | (* redundant, since 'True' is also an IDT constructor *)
+        Const (@{const_name True}, _) => t
+      | (* redundant, since 'False' is also an IDT constructor *)
+        Const (@{const_name False}, _) => t
+      | Const (@{const_name undefined}, _) => t
+      | Const (@{const_name The}, _) => t
+      | Const (@{const_name Hilbert_Choice.Eps}, _) => t
+      | Const (@{const_name All}, _) => t
+      | Const (@{const_name Ex}, _) => t
+      | Const (@{const_name HOL.eq}, _) => t
+      | Const (@{const_name HOL.conj}, _) => t
+      | Const (@{const_name HOL.disj}, _) => t
+      | Const (@{const_name HOL.implies}, _) => t
+      (* sets *)
+      | Const (@{const_name Collect}, _) => t
+      | Const (@{const_name Set.member}, _) => t
+      (* other optimizations *)
+      | Const (@{const_name Finite_Set.card}, _) => t
+      | Const (@{const_name Finite_Set.finite}, _) => t
+      | Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
+          Type ("fun", [@{typ nat}, @{typ bool}])])) => t
+      | Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+      | Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+      | Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
+          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
+      | Const (@{const_name List.append}, _) => t
+(* UNSOUND
+      | Const (@{const_name lfp}, _) => t
+      | Const (@{const_name gfp}, _) => t
+*)
+      | Const (@{const_name fst}, _) => t
+      | Const (@{const_name snd}, _) => t
+      (* simply-typed lambda calculus *)
+      | Const (s, T) =>
+          (if is_IDT_constructor thy (s, T)
+            orelse is_IDT_recursor thy (s, T) then
+            t  (* do not unfold IDT constructors/recursors *)
+          (* unfold the constant if there is a defining equation *)
+          else
+            case get_def thy (s, T) of
+              SOME ((*axname*) _, rhs) =>
+              (* Note: if the term to be unfolded (i.e. 'Const (s, T)')  *)
+              (* occurs on the right-hand side of the equation, i.e. in  *)
+              (* 'rhs', we must not use this equation to unfold, because *)
+              (* that would loop.  Here would be the right place to      *)
+              (* check this.  However, getting this really right seems   *)
+              (* difficult because the user may state arbitrary axioms,  *)
+              (* which could interact with overloading to create loops.  *)
+              ((*tracing (" unfolding: " ^ axname);*)
+               unfold_loop rhs)
+            | NONE => t)
+      | Free _ => t
+      | Var _ => t
+      | Bound _ => t
+      | Abs (s, T, body) => Abs (s, T, unfold_loop body)
+      | t1 $ t2 => (unfold_loop t1) $ (unfold_loop t2)
+    val result = Envir.beta_eta_contract (unfold_loop t)
+  in
+    result
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* collect_axioms: collects (monomorphic, universally quantified, unfolded   *)
+(*                 versions of) all HOL axioms that are relevant w.r.t 't'   *)
+(* ------------------------------------------------------------------------- *)
+
+(* Note: to make the collection of axioms more easily extensible, this    *)
+(*       function could be based on user-supplied "axiom collectors",     *)
+(*       similar to 'interpret'/interpreters or 'print'/printers          *)
+
+(* Note: currently we use "inverse" functions to the definitional         *)
+(*       mechanisms provided by Isabelle/HOL, e.g. for "axclass",         *)
+(*       "typedef", "definition".  A more general approach could consider *)
+(*       *every* axiom of the theory and collect it if it has a constant/ *)
+(*       type/typeclass in common with the term 't'.                      *)
+
+(* Which axioms are "relevant" for a particular term/type goes hand in    *)
+(* hand with the interpretation of that term/type by its interpreter (see *)
+(* way below): if the interpretation respects an axiom anyway, the axiom  *)
+(* does not need to be added as a constraint here.                        *)
+
+(* To avoid collecting the same axiom multiple times, we use an           *)
+(* accumulator 'axs' which contains all axioms collected so far.          *)
+
+fun collect_axioms ctxt t =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    val _ = tracing "Adding axioms..."
+    val axioms = Theory.all_axioms_of thy
+    fun collect_this_axiom (axname, ax) axs =
+      let
+        val ax' = unfold_defs thy ax
+      in
+        if member (op aconv) axs ax' then axs
+        else (tracing axname; collect_term_axioms ax' (ax' :: axs))
+      end
+    and collect_sort_axioms T axs =
+      let
+        val sort =
+          (case T of
+            TFree (_, sort) => sort
+          | TVar (_, sort)  => sort
+          | _ => raise REFUTE ("collect_axioms",
+              "type " ^ Syntax.string_of_typ ctxt T ^ " is not a variable"))
+        (* obtain axioms for all superclasses *)
+        val superclasses = sort @ maps (Sign.super_classes thy) sort
+        (* merely an optimization, because 'collect_this_axiom' disallows *)
+        (* duplicate axioms anyway:                                       *)
+        val superclasses = distinct (op =) superclasses
+        val class_axioms = maps (fn class => map (fn ax =>
+          ("<" ^ class ^ ">", Thm.prop_of ax))
+          (#axioms (AxClass.get_info thy class) handle ERROR _ => []))
+          superclasses
+        (* replace the (at most one) schematic type variable in each axiom *)
+        (* by the actual type 'T'                                          *)
+        val monomorphic_class_axioms = map (fn (axname, ax) =>
+          (case Term.add_tvars ax [] of
+            [] => (axname, ax)
+          | [(idx, S)] => (axname, monomorphic_term (Vartab.make [(idx, (S, T))]) ax)
+          | _ =>
+            raise REFUTE ("collect_axioms", "class axiom " ^ axname ^ " (" ^
+              Syntax.string_of_term ctxt ax ^
+              ") contains more than one type variable")))
+          class_axioms
+      in
+        fold collect_this_axiom monomorphic_class_axioms axs
+      end
+    and collect_type_axioms T axs =
+      case T of
+      (* simple types *)
+        Type ("prop", []) => axs
+      | Type ("fun", [T1, T2]) => collect_type_axioms T2 (collect_type_axioms T1 axs)
+      | Type (@{type_name set}, [T1]) => collect_type_axioms T1 axs
+      (* axiomatic type classes *)
+      | Type ("itself", [T1]) => collect_type_axioms T1 axs
+      | Type (s, Ts) =>
+        (case Datatype.get_info thy s of
+          SOME _ =>  (* inductive datatype *)
+            (* only collect relevant type axioms for the argument types *)
+            fold collect_type_axioms Ts axs
+        | NONE =>
+          (case get_typedef thy T of
+            SOME (axname, ax) =>
+              collect_this_axiom (axname, ax) axs
+          | NONE =>
+            (* unspecified type, perhaps introduced with "typedecl" *)
+            (* at least collect relevant type axioms for the argument types *)
+            fold collect_type_axioms Ts axs))
+      (* axiomatic type classes *)
+      | TFree _ => collect_sort_axioms T axs
+      (* axiomatic type classes *)
+      | TVar _ => collect_sort_axioms T axs
+    and collect_term_axioms t axs =
+      case t of
+      (* Pure *)
+        Const (@{const_name all}, _) => axs
+      | Const (@{const_name "=="}, _) => axs
+      | Const (@{const_name "==>"}, _) => axs
+      (* axiomatic type classes *)
+      | Const (@{const_name TYPE}, T) => collect_type_axioms T axs
+      (* HOL *)
+      | Const (@{const_name Trueprop}, _) => axs
+      | Const (@{const_name Not}, _) => axs
+      (* redundant, since 'True' is also an IDT constructor *)
+      | Const (@{const_name True}, _) => axs
+      (* redundant, since 'False' is also an IDT constructor *)
+      | Const (@{const_name False}, _) => axs
+      | Const (@{const_name undefined}, T) => collect_type_axioms T axs
+      | Const (@{const_name The}, T) =>
+          let
+            val ax = specialize_type thy (@{const_name The}, T)
+              (the (AList.lookup (op =) axioms "HOL.the_eq_trivial"))
+          in
+            collect_this_axiom ("HOL.the_eq_trivial", ax) axs
+          end
+      | Const (@{const_name Hilbert_Choice.Eps}, T) =>
+          let
+            val ax = specialize_type thy (@{const_name Hilbert_Choice.Eps}, T)
+              (the (AList.lookup (op =) axioms "Hilbert_Choice.someI"))
+          in
+            collect_this_axiom ("Hilbert_Choice.someI", ax) axs
+          end
+      | Const (@{const_name All}, T) => collect_type_axioms T axs
+      | Const (@{const_name Ex}, T) => collect_type_axioms T axs
+      | Const (@{const_name HOL.eq}, T) => collect_type_axioms T axs
+      | Const (@{const_name HOL.conj}, _) => axs
+      | Const (@{const_name HOL.disj}, _) => axs
+      | Const (@{const_name HOL.implies}, _) => axs
+      (* sets *)
+      | Const (@{const_name Collect}, T) => collect_type_axioms T axs
+      | Const (@{const_name Set.member}, T) => collect_type_axioms T axs
+      (* other optimizations *)
+      | Const (@{const_name Finite_Set.card}, T) => collect_type_axioms T axs
+      | Const (@{const_name Finite_Set.finite}, T) =>
+        collect_type_axioms T axs
+      | Const (@{const_name Orderings.less}, T as Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ bool}])])) =>
+          collect_type_axioms T axs
+      | Const (@{const_name Groups.plus}, T as Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+          collect_type_axioms T axs
+      | Const (@{const_name Groups.minus}, T as Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+          collect_type_axioms T axs
+      | Const (@{const_name Groups.times}, T as Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+          collect_type_axioms T axs
+      | Const (@{const_name List.append}, T) => collect_type_axioms T axs
+(* UNSOUND
+      | Const (@{const_name lfp}, T) => collect_type_axioms T axs
+      | Const (@{const_name gfp}, T) => collect_type_axioms T axs
+*)
+      | Const (@{const_name fst}, T) => collect_type_axioms T axs
+      | Const (@{const_name snd}, T) => collect_type_axioms T axs
+      (* simply-typed lambda calculus *)
+      | Const (s, T) =>
+          if is_const_of_class thy (s, T) then
+            (* axiomatic type classes: add "OFCLASS(?'a::c, c_class)" *)
+            (* and the class definition                               *)
+            let
+              val class = Logic.class_of_const s
+              val of_class = Logic.mk_of_class (TVar (("'a", 0), [class]), class)
+              val ax_in = SOME (specialize_type thy (s, T) of_class)
+                (* type match may fail due to sort constraints *)
+                handle Type.TYPE_MATCH => NONE
+              val ax_1 = Option.map (fn ax => (Syntax.string_of_term ctxt ax, ax)) ax_in
+              val ax_2 = Option.map (apsnd (specialize_type thy (s, T))) (get_classdef thy class)
+            in
+              collect_type_axioms T (fold collect_this_axiom (map_filter I [ax_1, ax_2]) axs)
+            end
+          else if is_IDT_constructor thy (s, T)
+            orelse is_IDT_recursor thy (s, T)
+          then
+            (* only collect relevant type axioms *)
+            collect_type_axioms T axs
+          else
+            (* other constants should have been unfolded, with some *)
+            (* exceptions: e.g. Abs_xxx/Rep_xxx functions for       *)
+            (* typedefs, or type-class related constants            *)
+            (* only collect relevant type axioms *)
+            collect_type_axioms T axs
+      | Free (_, T) => collect_type_axioms T axs
+      | Var (_, T) => collect_type_axioms T axs
+      | Bound _ => axs
+      | Abs (_, T, body) => collect_term_axioms body (collect_type_axioms T axs)
+      | t1 $ t2 => collect_term_axioms t2 (collect_term_axioms t1 axs)
+    val result = map close_form (collect_term_axioms t [])
+    val _ = tracing " ...done."
+  in
+    result
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* ground_types: collects all ground types in a term (including argument     *)
+(*               types of other types), suppressing duplicates.  Does not    *)
+(*               return function types, set types, non-recursive IDTs, or    *)
+(*               'propT'.  For IDTs, also the argument types of constructors *)
+(*               and all mutually recursive IDTs are considered.             *)
+(* ------------------------------------------------------------------------- *)
+
+fun ground_types ctxt t =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    fun collect_types T acc =
+      (case T of
+        Type ("fun", [T1, T2]) => collect_types T1 (collect_types T2 acc)
+      | Type ("prop", []) => acc
+      | Type (@{type_name set}, [T1]) => collect_types T1 acc
+      | Type (s, Ts) =>
+          (case Datatype.get_info thy s of
+            SOME info =>  (* inductive datatype *)
+              let
+                val index = #index info
+                val descr = #descr info
+                val (_, typs, _) = the (AList.lookup (op =) descr index)
+                val typ_assoc = typs ~~ Ts
+                (* sanity check: every element in 'dtyps' must be a *)
+                (* 'DtTFree'                                        *)
+                val _ = if Library.exists (fn d =>
+                  case d of Datatype.DtTFree _ => false | _ => true) typs then
+                  raise REFUTE ("ground_types", "datatype argument (for type "
+                    ^ Syntax.string_of_typ ctxt T ^ ") is not a variable")
+                else ()
+                (* required for mutually recursive datatypes; those need to   *)
+                (* be added even if they are an instance of an otherwise non- *)
+                (* recursive datatype                                         *)
+                fun collect_dtyp d acc =
+                  let
+                    val dT = typ_of_dtyp descr typ_assoc d
+                  in
+                    case d of
+                      Datatype.DtTFree _ =>
+                      collect_types dT acc
+                    | Datatype.DtType (_, ds) =>
+                      collect_types dT (fold_rev collect_dtyp ds acc)
+                    | Datatype.DtRec i =>
+                      if member (op =) acc dT then
+                        acc  (* prevent infinite recursion *)
+                      else
+                        let
+                          val (_, dtyps, dconstrs) = the (AList.lookup (op =) descr i)
+                          (* if the current type is a recursive IDT (i.e. a depth *)
+                          (* is required), add it to 'acc'                        *)
+                          val acc_dT = if Library.exists (fn (_, ds) =>
+                            Library.exists Datatype_Aux.is_rec_type ds) dconstrs then
+                              insert (op =) dT acc
+                            else acc
+                          (* collect argument types *)
+                          val acc_dtyps = fold_rev collect_dtyp dtyps acc_dT
+                          (* collect constructor types *)
+                          val acc_dconstrs = fold_rev collect_dtyp (maps snd dconstrs) acc_dtyps
+                        in
+                          acc_dconstrs
+                        end
+                  end
+              in
+                (* argument types 'Ts' could be added here, but they are also *)
+                (* added by 'collect_dtyp' automatically                      *)
+                collect_dtyp (Datatype.DtRec index) acc
+              end
+          | NONE =>
+            (* not an inductive datatype, e.g. defined via "typedef" or *)
+            (* "typedecl"                                               *)
+            insert (op =) T (fold collect_types Ts acc))
+      | TFree _ => insert (op =) T acc
+      | TVar _ => insert (op =) T acc)
+  in
+    fold_types collect_types t []
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* string_of_typ: (rather naive) conversion from types to strings, used to   *)
+(*                look up the size of a type in 'sizes'.  Parameterized      *)
+(*                types with different parameters (e.g. "'a list" vs. "bool  *)
+(*                list") are identified.                                     *)
+(* ------------------------------------------------------------------------- *)
+
+(* Term.typ -> string *)
+
+fun string_of_typ (Type (s, _))     = s
+  | string_of_typ (TFree (s, _))    = s
+  | string_of_typ (TVar ((s,_), _)) = s;
+
+(* ------------------------------------------------------------------------- *)
+(* first_universe: returns the "first" (i.e. smallest) universe by assigning *)
+(*                 'minsize' to every type for which no size is specified in *)
+(*                 'sizes'                                                   *)
+(* ------------------------------------------------------------------------- *)
+
+(* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
+
+fun first_universe xs sizes minsize =
+  let
+    fun size_of_typ T =
+      case AList.lookup (op =) sizes (string_of_typ T) of
+        SOME n => n
+      | NONE => minsize
+  in
+    map (fn T => (T, size_of_typ T)) xs
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* next_universe: enumerates all universes (i.e. assignments of sizes to     *)
+(*                types), where the minimal size of a type is given by       *)
+(*                'minsize', the maximal size is given by 'maxsize', and a   *)
+(*                type may have a fixed size given in 'sizes'                *)
+(* ------------------------------------------------------------------------- *)
+
+(* (Term.typ * int) list -> (string * int) list -> int -> int ->
+  (Term.typ * int) list option *)
+
+fun next_universe xs sizes minsize maxsize =
+  let
+    (* creates the "first" list of length 'len', where the sum of all list *)
+    (* elements is 'sum', and the length of the list is 'len'              *)
+    (* int -> int -> int -> int list option *)
+    fun make_first _ 0 sum =
+          if sum = 0 then
+            SOME []
+          else
+            NONE
+      | make_first max len sum =
+          if sum <= max orelse max < 0 then
+            Option.map (fn xs' => sum :: xs') (make_first max (len-1) 0)
+          else
+            Option.map (fn xs' => max :: xs') (make_first max (len-1) (sum-max))
+    (* enumerates all int lists with a fixed length, where 0<=x<='max' for *)
+    (* all list elements x (unless 'max'<0)                                *)
+    (* int -> int -> int -> int list -> int list option *)
+    fun next _ _ _ [] =
+          NONE
+      | next max len sum [x] =
+          (* we've reached the last list element, so there's no shift possible *)
+          make_first max (len+1) (sum+x+1)  (* increment 'sum' by 1 *)
+      | next max len sum (x1::x2::xs) =
+          if x1>0 andalso (x2<max orelse max<0) then
+            (* we can shift *)
+            SOME (the (make_first max (len+1) (sum+x1-1)) @ (x2+1) :: xs)
+          else
+            (* continue search *)
+            next max (len+1) (sum+x1) (x2::xs)
+    (* only consider those types for which the size is not fixed *)
+    val mutables = filter_out (AList.defined (op =) sizes o string_of_typ o fst) xs
+    (* subtract 'minsize' from every size (will be added again at the end) *)
+    val diffs = map (fn (_, n) => n-minsize) mutables
+  in
+    case next (maxsize-minsize) 0 0 diffs of
+      SOME diffs' =>
+        (* merge with those types for which the size is fixed *)
+        SOME (fst (fold_map (fn (T, _) => fn ds =>
+          case AList.lookup (op =) sizes (string_of_typ T) of
+          (* return the fixed size *)
+            SOME n => ((T, n), ds)
+          (* consume the head of 'ds', add 'minsize' *)
+          | NONE   => ((T, minsize + hd ds), tl ds))
+          xs diffs'))
+    | NONE => NONE
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* toTrue: converts the interpretation of a Boolean value to a propositional *)
+(*         formula that is true iff the interpretation denotes "true"        *)
+(* ------------------------------------------------------------------------- *)
+
+(* interpretation -> prop_formula *)
+
+fun toTrue (Leaf [fm, _]) = fm
+  | toTrue _ = raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
+
+(* ------------------------------------------------------------------------- *)
+(* toFalse: converts the interpretation of a Boolean value to a              *)
+(*          propositional formula that is true iff the interpretation        *)
+(*          denotes "false"                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+(* interpretation -> prop_formula *)
+
+fun toFalse (Leaf [_, fm]) = fm
+  | toFalse _ = raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
+
+(* ------------------------------------------------------------------------- *)
+(* find_model: repeatedly calls 'interpret' with appropriate parameters,     *)
+(*             applies a SAT solver, and (in case a model is found) displays *)
+(*             the model to the user by calling 'print_model'                *)
+(* {...}     : parameters that control the translation/model generation      *)
+(* assm_ts   : assumptions to be considered unless "no_assms" is specified   *)
+(* t         : term to be translated into a propositional formula            *)
+(* negate    : if true, find a model that makes 't' false (rather than true) *)
+(* ------------------------------------------------------------------------- *)
+
+fun find_model ctxt
+    {sizes, minsize, maxsize, maxvars, maxtime, satsolver, no_assms, expect}
+    assm_ts t negate =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    (* string -> string *)
+    fun check_expect outcome_code =
+      if expect = "" orelse outcome_code = expect then outcome_code
+      else error ("Unexpected outcome: " ^ quote outcome_code ^ ".")
+    (* unit -> string *)
+    fun wrapper () =
+      let
+        val timer = Timer.startRealTimer ()
+        val t =
+          if no_assms then t
+          else if negate then Logic.list_implies (assm_ts, t)
+          else Logic.mk_conjunction_list (t :: assm_ts)
+        val u = unfold_defs thy t
+        val _ = tracing ("Unfolded term: " ^ Syntax.string_of_term ctxt u)
+        val axioms = collect_axioms ctxt u
+        (* Term.typ list *)
+        val types = fold (union (op =) o ground_types ctxt) (u :: axioms) []
+        val _ = tracing ("Ground types: "
+          ^ (if null types then "none."
+             else commas (map (Syntax.string_of_typ ctxt) types)))
+        (* we can only consider fragments of recursive IDTs, so we issue a  *)
+        (* warning if the formula contains a recursive IDT                  *)
+        (* TODO: no warning needed for /positive/ occurrences of IDTs       *)
+        val maybe_spurious = Library.exists (fn
+            Type (s, _) =>
+              (case Datatype.get_info thy s of
+                SOME info =>  (* inductive datatype *)
+                  let
+                    val index           = #index info
+                    val descr           = #descr info
+                    val (_, _, constrs) = the (AList.lookup (op =) descr index)
+                  in
+                    (* recursive datatype? *)
+                    Library.exists (fn (_, ds) =>
+                      Library.exists Datatype_Aux.is_rec_type ds) constrs
+                  end
+              | NONE => false)
+          | _ => false) types
+        val _ =
+          if maybe_spurious then
+            warning ("Term contains a recursive datatype; "
+              ^ "countermodel(s) may be spurious!")
+          else
+            ()
+        (* (Term.typ * int) list -> string *)
+        fun find_model_loop universe =
+          let
+            val msecs_spent = Time.toMilliseconds (Timer.checkRealTimer timer)
+            val _ = maxtime = 0 orelse msecs_spent < 1000 * maxtime
+                    orelse raise TimeLimit.TimeOut
+            val init_model = (universe, [])
+            val init_args  = {maxvars = maxvars, def_eq = false, next_idx = 1,
+              bounds = [], wellformed = True}
+            val _ = tracing ("Translating term (sizes: "
+              ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
+            (* translate 'u' and all axioms *)
+            val (intrs, (model, args)) = fold_map (fn t' => fn (m, a) =>
+              let
+                val (i, m', a') = interpret ctxt m a t'
+              in
+                (* set 'def_eq' to 'true' *)
+                (i, (m', {maxvars = #maxvars a', def_eq = true,
+                  next_idx = #next_idx a', bounds = #bounds a',
+                  wellformed = #wellformed a'}))
+              end) (u :: axioms) (init_model, init_args)
+            (* make 'u' either true or false, and make all axioms true, and *)
+            (* add the well-formedness side condition                       *)
+            val fm_u = (if negate then toFalse else toTrue) (hd intrs)
+            val fm_ax = Prop_Logic.all (map toTrue (tl intrs))
+            val fm = Prop_Logic.all [#wellformed args, fm_ax, fm_u]
+            val _ =
+              (if satsolver = "dpll" orelse satsolver = "enumerate" then
+                warning ("Using SAT solver " ^ quote satsolver ^
+                         "; for better performance, consider installing an \
+                         \external solver.")
+               else ());
+            val solver =
+              SatSolver.invoke_solver satsolver
+              handle Option.Option =>
+                     error ("Unknown SAT solver: " ^ quote satsolver ^
+                            ". Available solvers: " ^
+                            commas (map (quote o fst) (!SatSolver.solvers)) ^ ".")
+          in
+            Output.urgent_message "Invoking SAT solver...";
+            (case solver fm of
+              SatSolver.SATISFIABLE assignment =>
+                (Output.urgent_message ("Model found:\n" ^ print_model ctxt model
+                  (fn i => case assignment i of SOME b => b | NONE => true));
+                 if maybe_spurious then "potential" else "genuine")
+            | SatSolver.UNSATISFIABLE _ =>
+                (Output.urgent_message "No model exists.";
+                case next_universe universe sizes minsize maxsize of
+                  SOME universe' => find_model_loop universe'
+                | NONE => (Output.urgent_message
+                    "Search terminated, no larger universe within the given limits.";
+                    "none"))
+            | SatSolver.UNKNOWN =>
+                (Output.urgent_message "No model found.";
+                case next_universe universe sizes minsize maxsize of
+                  SOME universe' => find_model_loop universe'
+                | NONE => (Output.urgent_message
+                  "Search terminated, no larger universe within the given limits.";
+                  "unknown"))) handle SatSolver.NOT_CONFIGURED =>
+              (error ("SAT solver " ^ quote satsolver ^ " is not configured.");
+               "unknown")
+          end
+          handle MAXVARS_EXCEEDED =>
+            (Output.urgent_message ("Search terminated, number of Boolean variables ("
+              ^ string_of_int maxvars ^ " allowed) exceeded.");
+              "unknown")
+
+        val outcome_code = find_model_loop (first_universe types sizes minsize)
+      in
+        check_expect outcome_code
+      end
+  in
+    (* some parameter sanity checks *)
+    minsize>=1 orelse
+      error ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
+    maxsize>=1 orelse
+      error ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
+    maxsize>=minsize orelse
+      error ("\"maxsize\" (=" ^ string_of_int maxsize ^
+      ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
+    maxvars>=0 orelse
+      error ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
+    maxtime>=0 orelse
+      error ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
+    (* enter loop with or without time limit *)
+    Output.urgent_message ("Trying to find a model that "
+      ^ (if negate then "refutes" else "satisfies") ^ ": "
+      ^ Syntax.string_of_term ctxt t);
+    if maxtime > 0 then (
+      TimeLimit.timeLimit (Time.fromSeconds maxtime)
+        wrapper ()
+      handle TimeLimit.TimeOut =>
+        (Output.urgent_message ("Search terminated, time limit (" ^
+            string_of_int maxtime
+            ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.");
+         check_expect "unknown")
+    ) else wrapper ()
+  end;
+
+
+(* ------------------------------------------------------------------------- *)
+(* INTERFACE, PART 2: FINDING A MODEL                                        *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* satisfy_term: calls 'find_model' to find a model that satisfies 't'       *)
+(* params      : list of '(name, value)' pairs used to override default      *)
+(*               parameters                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+fun satisfy_term ctxt params assm_ts t =
+  find_model ctxt (actual_params ctxt params) assm_ts t false;
+
+(* ------------------------------------------------------------------------- *)
+(* refute_term: calls 'find_model' to find a model that refutes 't'          *)
+(* params     : list of '(name, value)' pairs used to override default       *)
+(*              parameters                                                   *)
+(* ------------------------------------------------------------------------- *)
+
+fun refute_term ctxt params assm_ts t =
+  let
+    (* disallow schematic type variables, since we cannot properly negate  *)
+    (* terms containing them (their logical meaning is that there EXISTS a *)
+    (* type s.t. ...; to refute such a formula, we would have to show that *)
+    (* for ALL types, not ...)                                             *)
+    val _ = null (Term.add_tvars t []) orelse
+      error "Term to be refuted contains schematic type variables"
+
+    (* existential closure over schematic variables *)
+    val vars = sort_wrt (fst o fst) (Term.add_vars t [])
+    (* Term.term *)
+    val ex_closure = fold (fn ((x, i), T) => fn t' =>
+      HOLogic.exists_const T $
+        Abs (x, T, abstract_over (Var ((x, i), T), t'))) vars t
+    (* Note: If 't' is of type 'propT' (rather than 'boolT'), applying   *)
+    (* 'HOLogic.exists_const' is not type-correct.  However, this is not *)
+    (* really a problem as long as 'find_model' still interprets the     *)
+    (* resulting term correctly, without checking its type.              *)
+
+    (* replace outermost universally quantified variables by Free's:     *)
+    (* refuting a term with Free's is generally faster than refuting a   *)
+    (* term with (nested) quantifiers, because quantifiers are expanded, *)
+    (* while the SAT solver searches for an interpretation for Free's.   *)
+    (* Also we get more information back that way, namely an             *)
+    (* interpretation which includes values for the (formerly)           *)
+    (* quantified variables.                                             *)
+    (* maps  !!x1...xn. !xk...xm. t   to   t  *)
+    fun strip_all_body (Const (@{const_name all}, _) $ Abs (_, _, t)) =
+          strip_all_body t
+      | strip_all_body (Const (@{const_name Trueprop}, _) $ t) =
+          strip_all_body t
+      | strip_all_body (Const (@{const_name All}, _) $ Abs (_, _, t)) =
+          strip_all_body t
+      | strip_all_body t = t
+    (* maps  !!x1...xn. !xk...xm. t   to   [x1, ..., xn, xk, ..., xm]  *)
+    fun strip_all_vars (Const (@{const_name all}, _) $ Abs (a, T, t)) =
+          (a, T) :: strip_all_vars t
+      | strip_all_vars (Const (@{const_name Trueprop}, _) $ t) =
+          strip_all_vars t
+      | strip_all_vars (Const (@{const_name All}, _) $ Abs (a, T, t)) =
+          (a, T) :: strip_all_vars t
+      | strip_all_vars _ = [] : (string * typ) list
+    val strip_t = strip_all_body ex_closure
+    val frees = Term.rename_wrt_term strip_t (strip_all_vars ex_closure)
+    val subst_t = Term.subst_bounds (map Free frees, strip_t)
+  in
+    find_model ctxt (actual_params ctxt params) assm_ts subst_t true
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* refute_goal                                                               *)
+(* ------------------------------------------------------------------------- *)
+
+fun refute_goal ctxt params th i =
+  let
+    val t = th |> prop_of
+  in
+    if Logic.count_prems t = 0 then
+      (Output.urgent_message "No subgoal!"; "none")
+    else
+      let
+        val assms = map term_of (Assumption.all_assms_of ctxt)
+        val (t, frees) = Logic.goal_params t i
+      in
+        refute_term ctxt params assms (subst_bounds (frees, t))
+      end
+  end
+
+
+(* ------------------------------------------------------------------------- *)
+(* INTERPRETERS: Auxiliary Functions                                         *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* make_constants: returns all interpretations for type 'T' that consist of  *)
+(*                 unit vectors with 'True'/'False' only (no Boolean         *)
+(*                 variables)                                                *)
+(* ------------------------------------------------------------------------- *)
+
+fun make_constants ctxt model T =
+  let
+    (* returns a list with all unit vectors of length n *)
+    (* int -> interpretation list *)
+    fun unit_vectors n =
+      let
+        (* returns the k-th unit vector of length n *)
+        (* int * int -> interpretation *)
+        fun unit_vector (k, n) =
+          Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
+        (* int -> interpretation list *)
+        fun unit_vectors_loop k =
+          if k>n then [] else unit_vector (k,n) :: unit_vectors_loop (k+1)
+      in
+        unit_vectors_loop 1
+      end
+    (* returns a list of lists, each one consisting of n (possibly *)
+    (* identical) elements from 'xs'                               *)
+    (* int -> 'a list -> 'a list list *)
+    fun pick_all 1 xs = map single xs
+      | pick_all n xs =
+          let val rec_pick = pick_all (n - 1) xs in
+            maps (fn x => map (cons x) rec_pick) xs
+          end
+    (* returns all constant interpretations that have the same tree *)
+    (* structure as the interpretation argument                     *)
+    (* interpretation -> interpretation list *)
+    fun make_constants_intr (Leaf xs) = unit_vectors (length xs)
+      | make_constants_intr (Node xs) = map Node (pick_all (length xs)
+          (make_constants_intr (hd xs)))
+    (* obtain the interpretation for a variable of type 'T' *)
+    val (i, _, _) = interpret ctxt model {maxvars=0, def_eq=false, next_idx=1,
+      bounds=[], wellformed=True} (Free ("dummy", T))
+  in
+    make_constants_intr i
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* size_of_type: returns the number of elements in a type 'T' (i.e. 'length  *)
+(*               (make_constants T)', but implemented more efficiently)      *)
+(* ------------------------------------------------------------------------- *)
+
+(* returns 0 for an empty ground type or a function type with empty      *)
+(* codomain, but fails for a function type with empty domain --          *)
+(* admissibility of datatype constructor argument types (see "Inductive  *)
+(* datatypes in HOL - lessons learned ...", S. Berghofer, M. Wenzel,     *)
+(* TPHOLs 99) ensures that recursive, possibly empty, datatype fragments *)
+(* never occur as the domain of a function type that is the type of a    *)
+(* constructor argument                                                  *)
+
+fun size_of_type ctxt model T =
+  let
+    (* returns the number of elements that have the same tree structure as a *)
+    (* given interpretation                                                  *)
+    fun size_of_intr (Leaf xs) = length xs
+      | size_of_intr (Node xs) = Integer.pow (length xs) (size_of_intr (hd xs))
+    (* obtain the interpretation for a variable of type 'T' *)
+    val (i, _, _) = interpret ctxt model {maxvars=0, def_eq=false, next_idx=1,
+      bounds=[], wellformed=True} (Free ("dummy", T))
+  in
+    size_of_intr i
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* TT/FF: interpretations that denote "true" or "false", respectively        *)
+(* ------------------------------------------------------------------------- *)
+
+(* interpretation *)
+
+val TT = Leaf [True, False];
+
+val FF = Leaf [False, True];
+
+(* ------------------------------------------------------------------------- *)
+(* make_equality: returns an interpretation that denotes (extensional)       *)
+(*                equality of two interpretations                            *)
+(* - two interpretations are 'equal' iff they are both defined and denote    *)
+(*   the same value                                                          *)
+(* - two interpretations are 'not_equal' iff they are both defined at least  *)
+(*   partially, and a defined part denotes different values                  *)
+(* - a completely undefined interpretation is neither 'equal' nor            *)
+(*   'not_equal' to another interpretation                                   *)
+(* ------------------------------------------------------------------------- *)
+
+(* We could in principle represent '=' on a type T by a particular        *)
+(* interpretation.  However, the size of that interpretation is quadratic *)
+(* in the size of T.  Therefore comparing the interpretations 'i1' and    *)
+(* 'i2' directly is more efficient than constructing the interpretation   *)
+(* for equality on T first, and "applying" this interpretation to 'i1'    *)
+(* and 'i2' in the usual way (cf. 'interpretation_apply') then.           *)
+
+(* interpretation * interpretation -> interpretation *)
+
+fun make_equality (i1, i2) =
+  let
+    (* interpretation * interpretation -> prop_formula *)
+    fun equal (i1, i2) =
+      (case i1 of
+        Leaf xs =>
+          (case i2 of
+            Leaf ys => Prop_Logic.dot_product (xs, ys)  (* defined and equal *)
+          | Node _  => raise REFUTE ("make_equality",
+            "second interpretation is higher"))
+      | Node xs =>
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_equality",
+            "first interpretation is higher")
+          | Node ys => Prop_Logic.all (map equal (xs ~~ ys))))
+    (* interpretation * interpretation -> prop_formula *)
+    fun not_equal (i1, i2) =
+      (case i1 of
+        Leaf xs =>
+          (case i2 of
+            (* defined and not equal *)
+            Leaf ys => Prop_Logic.all ((Prop_Logic.exists xs)
+            :: (Prop_Logic.exists ys)
+            :: (map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))
+          | Node _  => raise REFUTE ("make_equality",
+            "second interpretation is higher"))
+      | Node xs =>
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_equality",
+            "first interpretation is higher")
+          | Node ys => Prop_Logic.exists (map not_equal (xs ~~ ys))))
+  in
+    (* a value may be undefined; therefore 'not_equal' is not just the *)
+    (* negation of 'equal'                                             *)
+    Leaf [equal (i1, i2), not_equal (i1, i2)]
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* make_def_equality: returns an interpretation that denotes (extensional)   *)
+(*                    equality of two interpretations                        *)
+(* This function treats undefined/partially defined interpretations          *)
+(* different from 'make_equality': two undefined interpretations are         *)
+(* considered equal, while a defined interpretation is considered not equal  *)
+(* to an undefined interpretation.                                           *)
+(* ------------------------------------------------------------------------- *)
+
+(* interpretation * interpretation -> interpretation *)
+
+fun make_def_equality (i1, i2) =
+  let
+    (* interpretation * interpretation -> prop_formula *)
+    fun equal (i1, i2) =
+      (case i1 of
+        Leaf xs =>
+          (case i2 of
+            (* defined and equal, or both undefined *)
+            Leaf ys => SOr (Prop_Logic.dot_product (xs, ys),
+            SAnd (Prop_Logic.all (map SNot xs), Prop_Logic.all (map SNot ys)))
+          | Node _  => raise REFUTE ("make_def_equality",
+            "second interpretation is higher"))
+      | Node xs =>
+          (case i2 of
+            Leaf _  => raise REFUTE ("make_def_equality",
+            "first interpretation is higher")
+          | Node ys => Prop_Logic.all (map equal (xs ~~ ys))))
+    (* interpretation *)
+    val eq = equal (i1, i2)
+  in
+    Leaf [eq, SNot eq]
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* interpretation_apply: returns an interpretation that denotes the result   *)
+(*                       of applying the function denoted by 'i1' to the     *)
+(*                       argument denoted by 'i2'                            *)
+(* ------------------------------------------------------------------------- *)
+
+(* interpretation * interpretation -> interpretation *)
+
+fun interpretation_apply (i1, i2) =
+  let
+    (* interpretation * interpretation -> interpretation *)
+    fun interpretation_disjunction (tr1,tr2) =
+      tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys))
+        (tree_pair (tr1,tr2))
+    (* prop_formula * interpretation -> interpretation *)
+    fun prop_formula_times_interpretation (fm,tr) =
+      tree_map (map (fn x => SAnd (fm,x))) tr
+    (* prop_formula list * interpretation list -> interpretation *)
+    fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
+          prop_formula_times_interpretation (fm,tr)
+      | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
+          interpretation_disjunction (prop_formula_times_interpretation (fm,tr),
+            prop_formula_list_dot_product_interpretation_list (fms,trees))
+      | prop_formula_list_dot_product_interpretation_list (_,_) =
+          raise REFUTE ("interpretation_apply", "empty list (in dot product)")
+    (* returns a list of lists, each one consisting of one element from each *)
+    (* element of 'xss'                                                      *)
+    (* 'a list list -> 'a list list *)
+    fun pick_all [xs] = map single xs
+      | pick_all (xs::xss) =
+          let val rec_pick = pick_all xss in
+            maps (fn x => map (cons x) rec_pick) xs
+          end
+      | pick_all _ = raise REFUTE ("interpretation_apply", "empty list (in pick_all)")
+    (* interpretation -> prop_formula list *)
+    fun interpretation_to_prop_formula_list (Leaf xs) = xs
+      | interpretation_to_prop_formula_list (Node trees) =
+          map Prop_Logic.all (pick_all
+            (map interpretation_to_prop_formula_list trees))
+  in
+    case i1 of
+      Leaf _ =>
+        raise REFUTE ("interpretation_apply", "first interpretation is a leaf")
+    | Node xs =>
+        prop_formula_list_dot_product_interpretation_list
+          (interpretation_to_prop_formula_list i2, xs)
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* eta_expand: eta-expands a term 't' by adding 'i' lambda abstractions      *)
+(* ------------------------------------------------------------------------- *)
+
+(* Term.term -> int -> Term.term *)
+
+fun eta_expand t i =
+  let
+    val Ts = Term.binder_types (Term.fastype_of t)
+    val t' = Term.incr_boundvars i t
+  in
+    fold_rev (fn T => fn term => Abs ("<eta_expand>", T, term))
+      (List.take (Ts, i))
+      (Term.list_comb (t', map Bound (i-1 downto 0)))
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* size_of_dtyp: the size of (an initial fragment of) an inductive data type *)
+(*               is the sum (over its constructors) of the product (over     *)
+(*               their arguments) of the size of the argument types          *)
+(* ------------------------------------------------------------------------- *)
+
+fun size_of_dtyp ctxt typ_sizes descr typ_assoc constructors =
+  Integer.sum (map (fn (_, dtyps) =>
+    Integer.prod (map (size_of_type ctxt (typ_sizes, []) o
+      (typ_of_dtyp descr typ_assoc)) dtyps))
+        constructors);
+
+
+(* ------------------------------------------------------------------------- *)
+(* INTERPRETERS: Actual Interpreters                                         *)
+(* ------------------------------------------------------------------------- *)
+
+(* simply typed lambda calculus: Isabelle's basic term syntax, with type *)
+(* variables, function types, and propT                                  *)
+
+fun stlc_interpreter ctxt model args t =
+  let
+    val (typs, terms) = model
+    val {maxvars, def_eq, next_idx, bounds, wellformed} = args
+    (* Term.typ -> (interpretation * model * arguments) option *)
+    fun interpret_groundterm T =
+      let
+        (* unit -> (interpretation * model * arguments) option *)
+        fun interpret_groundtype () =
+          let
+            (* the model must specify a size for ground types *)
+            val size =
+              if T = Term.propT then 2
+              else the (AList.lookup (op =) typs T)
+            val next = next_idx + size
+            (* check if 'maxvars' is large enough *)
+            val _ = (if next - 1 > maxvars andalso maxvars > 0 then
+              raise MAXVARS_EXCEEDED else ())
+            (* prop_formula list *)
+            val fms  = map BoolVar (next_idx upto (next_idx + size - 1))
+            (* interpretation *)
+            val intr = Leaf fms
+            (* prop_formula list -> prop_formula *)
+            fun one_of_two_false [] = True
+              | one_of_two_false (x::xs) = SAnd (Prop_Logic.all (map (fn x' =>
+                  SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+            (* prop_formula *)
+            val wf = one_of_two_false fms
+          in
+            (* extend the model, increase 'next_idx', add well-formedness *)
+            (* condition                                                  *)
+            SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
+              def_eq = def_eq, next_idx = next, bounds = bounds,
+              wellformed = SAnd (wellformed, wf)})
+          end
+      in
+        case T of
+          Type ("fun", [T1, T2]) =>
+            let
+              (* we create 'size_of_type ... T1' different copies of the        *)
+              (* interpretation for 'T2', which are then combined into a single *)
+              (* new interpretation                                             *)
+              (* make fresh copies, with different variable indices *)
+              (* 'idx': next variable index                         *)
+              (* 'n'  : number of copies                            *)
+              (* int -> int -> (int * interpretation list * prop_formula *)
+              fun make_copies idx 0 = (idx, [], True)
+                | make_copies idx n =
+                    let
+                      val (copy, _, new_args) = interpret ctxt (typs, [])
+                        {maxvars = maxvars, def_eq = false, next_idx = idx,
+                        bounds = [], wellformed = True} (Free ("dummy", T2))
+                      val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
+                    in
+                      (idx', copy :: copies, SAnd (#wellformed new_args, wf'))
+                    end
+              val (next, copies, wf) = make_copies next_idx
+                (size_of_type ctxt model T1)
+              (* combine copies into a single interpretation *)
+              val intr = Node copies
+            in
+              (* extend the model, increase 'next_idx', add well-formedness *)
+              (* condition                                                  *)
+              SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
+                def_eq = def_eq, next_idx = next, bounds = bounds,
+                wellformed = SAnd (wellformed, wf)})
+            end
+        | Type _  => interpret_groundtype ()
+        | TFree _ => interpret_groundtype ()
+        | TVar  _ => interpret_groundtype ()
+      end
+  in
+    case AList.lookup (op =) terms t of
+      SOME intr =>
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
+    | NONE =>
+        (case t of
+          Const (_, T) => interpret_groundterm T
+        | Free (_, T) => interpret_groundterm T
+        | Var (_, T) => interpret_groundterm T
+        | Bound i => SOME (nth (#bounds args) i, model, args)
+        | Abs (_, T, body) =>
+            let
+              (* create all constants of type 'T' *)
+              val constants = make_constants ctxt model T
+              (* interpret the 'body' separately for each constant *)
+              val (bodies, (model', args')) = fold_map
+                (fn c => fn (m, a) =>
+                  let
+                    (* add 'c' to 'bounds' *)
+                    val (i', m', a') = interpret ctxt m {maxvars = #maxvars a,
+                      def_eq = #def_eq a, next_idx = #next_idx a,
+                      bounds = (c :: #bounds a), wellformed = #wellformed a} body
+                  in
+                    (* keep the new model m' and 'next_idx' and 'wellformed', *)
+                    (* but use old 'bounds'                                   *)
+                    (i', (m', {maxvars = maxvars, def_eq = def_eq,
+                      next_idx = #next_idx a', bounds = bounds,
+                      wellformed = #wellformed a'}))
+                  end)
+                constants (model, args)
+            in
+              SOME (Node bodies, model', args')
+            end
+        | t1 $ t2 =>
+            let
+              (* interpret 't1' and 't2' separately *)
+              val (intr1, model1, args1) = interpret ctxt model args t1
+              val (intr2, model2, args2) = interpret ctxt model1 args1 t2
+            in
+              SOME (interpretation_apply (intr1, intr2), model2, args2)
+            end)
+  end;
+
+fun Pure_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name all}, _) $ t1 =>
+      let
+        val (i, m, a) = interpret ctxt model args t1
+      in
+        case i of
+          Node xs =>
+            (* 3-valued logic *)
+            let
+              val fmTrue  = Prop_Logic.all (map toTrue xs)
+              val fmFalse = Prop_Logic.exists (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
+        | _ =>
+          raise REFUTE ("Pure_interpreter",
+            "\"all\" is followed by a non-function")
+      end
+  | Const (@{const_name all}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name "=="}, _) $ t1 $ t2 =>
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+      in
+        (* we use either 'make_def_equality' or 'make_equality' *)
+        SOME ((if #def_eq args then make_def_equality else make_equality)
+          (i1, i2), m2, a2)
+      end
+  | Const (@{const_name "=="}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name "=="}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+  | Const (@{const_name "==>"}, _) $ t1 $ t2 =>
+      (* 3-valued logic *)
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+        val fmTrue = Prop_Logic.SOr (toFalse i1, toTrue i2)
+        val fmFalse = Prop_Logic.SAnd (toTrue i1, toFalse i2)
+      in
+        SOME (Leaf [fmTrue, fmFalse], m2, a2)
+      end
+  | Const (@{const_name "==>"}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name "==>"}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+  | _ => NONE;
+
+fun HOLogic_interpreter ctxt model args t =
+(* Providing interpretations directly is more efficient than unfolding the *)
+(* logical constants.  In HOL however, logical constants can themselves be *)
+(* arguments.  They are then translated using eta-expansion.               *)
+  case t of
+    Const (@{const_name Trueprop}, _) =>
+      SOME (Node [TT, FF], model, args)
+  | Const (@{const_name Not}, _) =>
+      SOME (Node [FF, TT], model, args)
+  (* redundant, since 'True' is also an IDT constructor *)
+  | Const (@{const_name True}, _) =>
+      SOME (TT, model, args)
+  (* redundant, since 'False' is also an IDT constructor *)
+  | Const (@{const_name False}, _) =>
+      SOME (FF, model, args)
+  | Const (@{const_name All}, _) $ t1 =>  (* similar to "all" (Pure) *)
+      let
+        val (i, m, a) = interpret ctxt model args t1
+      in
+        case i of
+          Node xs =>
+            (* 3-valued logic *)
+            let
+              val fmTrue = Prop_Logic.all (map toTrue xs)
+              val fmFalse = Prop_Logic.exists (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
+        | _ =>
+          raise REFUTE ("HOLogic_interpreter",
+            "\"All\" is followed by a non-function")
+      end
+  | Const (@{const_name All}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name Ex}, _) $ t1 =>
+      let
+        val (i, m, a) = interpret ctxt model args t1
+      in
+        case i of
+          Node xs =>
+            (* 3-valued logic *)
+            let
+              val fmTrue = Prop_Logic.exists (map toTrue xs)
+              val fmFalse = Prop_Logic.all (map toFalse xs)
+            in
+              SOME (Leaf [fmTrue, fmFalse], m, a)
+            end
+        | _ =>
+          raise REFUTE ("HOLogic_interpreter",
+            "\"Ex\" is followed by a non-function")
+      end
+  | Const (@{const_name Ex}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>  (* similar to "==" (Pure) *)
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+      in
+        SOME (make_equality (i1, i2), m2, a2)
+      end
+  | Const (@{const_name HOL.eq}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name HOL.eq}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+  | Const (@{const_name HOL.conj}, _) $ t1 $ t2 =>
+      (* 3-valued logic *)
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+        val fmTrue = Prop_Logic.SAnd (toTrue i1, toTrue i2)
+        val fmFalse = Prop_Logic.SOr (toFalse i1, toFalse i2)
+      in
+        SOME (Leaf [fmTrue, fmFalse], m2, a2)
+      end
+  | Const (@{const_name HOL.conj}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name HOL.conj}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+      (* this would make "undef" propagate, even for formulae like *)
+      (* "False & undef":                                          *)
+      (* SOME (Node [Node [TT, FF], Node [FF, FF]], model, args) *)
+  | Const (@{const_name HOL.disj}, _) $ t1 $ t2 =>
+      (* 3-valued logic *)
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+        val fmTrue = Prop_Logic.SOr (toTrue i1, toTrue i2)
+        val fmFalse = Prop_Logic.SAnd (toFalse i1, toFalse i2)
+      in
+        SOME (Leaf [fmTrue, fmFalse], m2, a2)
+      end
+  | Const (@{const_name HOL.disj}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name HOL.disj}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+      (* this would make "undef" propagate, even for formulae like *)
+      (* "True | undef":                                           *)
+      (* SOME (Node [Node [TT, TT], Node [TT, FF]], model, args) *)
+  | Const (@{const_name HOL.implies}, _) $ t1 $ t2 =>  (* similar to "==>" (Pure) *)
+      (* 3-valued logic *)
+      let
+        val (i1, m1, a1) = interpret ctxt model args t1
+        val (i2, m2, a2) = interpret ctxt m1 a1 t2
+        val fmTrue = Prop_Logic.SOr (toFalse i1, toTrue i2)
+        val fmFalse = Prop_Logic.SAnd (toTrue i1, toFalse i2)
+      in
+        SOME (Leaf [fmTrue, fmFalse], m2, a2)
+      end
+  | Const (@{const_name HOL.implies}, _) $ _ =>
+      SOME (interpret ctxt model args (eta_expand t 1))
+  | Const (@{const_name HOL.implies}, _) =>
+      SOME (interpret ctxt model args (eta_expand t 2))
+      (* this would make "undef" propagate, even for formulae like *)
+      (* "False --> undef":                                        *)
+      (* SOME (Node [Node [TT, FF], Node [TT, TT]], model, args) *)
+  | _ => NONE;
+
+(* interprets variables and constants whose type is an IDT (this is        *)
+(* relatively easy and merely requires us to compute the size of the IDT); *)
+(* constructors of IDTs however are properly interpreted by                *)
+(* 'IDT_constructor_interpreter'                                           *)
+
+fun IDT_interpreter ctxt model args t =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    val (typs, terms) = model
+    (* Term.typ -> (interpretation * model * arguments) option *)
+    fun interpret_term (Type (s, Ts)) =
+          (case Datatype.get_info thy s of
+            SOME info =>  (* inductive datatype *)
+              let
+                (* int option -- only recursive IDTs have an associated depth *)
+                val depth = AList.lookup (op =) typs (Type (s, Ts))
+                (* sanity check: depth must be at least 0 *)
+                val _ =
+                  (case depth of SOME n =>
+                    if n < 0 then
+                      raise REFUTE ("IDT_interpreter", "negative depth")
+                    else ()
+                  | _ => ())
+              in
+                (* termination condition to avoid infinite recursion *)
+                if depth = (SOME 0) then
+                  (* return a leaf of size 0 *)
+                  SOME (Leaf [], model, args)
+                else
+                  let
+                    val index               = #index info
+                    val descr               = #descr info
+                    val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                    val typ_assoc           = dtyps ~~ Ts
+                    (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                    val _ =
+                      if Library.exists (fn d =>
+                        case d of Datatype.DtTFree _ => false | _ => true) dtyps
+                      then
+                        raise REFUTE ("IDT_interpreter",
+                          "datatype argument (for type "
+                          ^ Syntax.string_of_typ ctxt (Type (s, Ts))
+                          ^ ") is not a variable")
+                      else ()
+                    (* if the model specifies a depth for the current type, *)
+                    (* decrement it to avoid infinite recursion             *)
+                    val typs' = case depth of NONE => typs | SOME n =>
+                      AList.update (op =) (Type (s, Ts), n-1) typs
+                    (* recursively compute the size of the datatype *)
+                    val size     = size_of_dtyp ctxt typs' descr typ_assoc constrs
+                    val next_idx = #next_idx args
+                    val next     = next_idx+size
+                    (* check if 'maxvars' is large enough *)
+                    val _        = (if next-1 > #maxvars args andalso
+                      #maxvars args > 0 then raise MAXVARS_EXCEEDED else ())
+                    (* prop_formula list *)
+                    val fms      = map BoolVar (next_idx upto (next_idx+size-1))
+                    (* interpretation *)
+                    val intr     = Leaf fms
+                    (* prop_formula list -> prop_formula *)
+                    fun one_of_two_false [] = True
+                      | one_of_two_false (x::xs) = SAnd (Prop_Logic.all (map (fn x' =>
+                          SOr (SNot x, SNot x')) xs), one_of_two_false xs)
+                    (* prop_formula *)
+                    val wf = one_of_two_false fms
+                  in
+                    (* extend the model, increase 'next_idx', add well-formedness *)
+                    (* condition                                                  *)
+                    SOME (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args,
+                      def_eq = #def_eq args, next_idx = next, bounds = #bounds args,
+                      wellformed = SAnd (#wellformed args, wf)})
+                  end
+              end
+          | NONE =>  (* not an inductive datatype *)
+              NONE)
+      | interpret_term _ =  (* a (free or schematic) type variable *)
+          NONE
+  in
+    case AList.lookup (op =) terms t of
+      SOME intr =>
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
+    | NONE =>
+        (case t of
+          Free (_, T) => interpret_term T
+        | Var (_, T) => interpret_term T
+        | Const (_, T) => interpret_term T
+        | _ => NONE)
+  end;
+
+(* This function imposes an order on the elements of a datatype fragment  *)
+(* as follows: C_i x_1 ... x_n < C_j y_1 ... y_m iff i < j or             *)
+(* (x_1, ..., x_n) < (y_1, ..., y_m).  With this order, a constructor is  *)
+(* a function C_i that maps some argument indices x_1, ..., x_n to the    *)
+(* datatype element given by index C_i x_1 ... x_n.  The idea remains the *)
+(* same for recursive datatypes, although the computation of indices gets *)
+(* a little tricky.                                                       *)
+
+fun IDT_constructor_interpreter ctxt model args t =
+  let
+    val thy = Proof_Context.theory_of ctxt
+    (* returns a list of canonical representations for terms of the type 'T' *)
+    (* It would be nice if we could just use 'print' for this, but 'print'   *)
+    (* for IDTs calls 'IDT_constructor_interpreter' again, and this could    *)
+    (* lead to infinite recursion when we have (mutually) recursive IDTs.    *)
+    (* (Term.typ * int) list -> Term.typ -> Term.term list *)
+    fun canonical_terms typs T =
+          (case T of
+            Type ("fun", [T1, T2]) =>
+            (* 'T2' might contain a recursive IDT, so we cannot use 'print' (at *)
+            (* least not for 'T2'                                               *)
+            let
+              (* returns a list of lists, each one consisting of n (possibly *)
+              (* identical) elements from 'xs'                               *)
+              (* int -> 'a list -> 'a list list *)
+              fun pick_all 1 xs = map single xs
+                | pick_all n xs =
+                    let val rec_pick = pick_all (n-1) xs in
+                      maps (fn x => map (cons x) rec_pick) xs
+                    end
+              (* ["x1", ..., "xn"] *)
+              val terms1 = canonical_terms typs T1
+              (* ["y1", ..., "ym"] *)
+              val terms2 = canonical_terms typs T2
+              (* [[("x1", "y1"), ..., ("xn", "y1")], ..., *)
+              (*   [("x1", "ym"), ..., ("xn", "ym")]]     *)
+              val functions = map (curry (op ~~) terms1)
+                (pick_all (length terms1) terms2)
+              (* [["(x1, y1)", ..., "(xn, y1)"], ..., *)
+              (*   ["(x1, ym)", ..., "(xn, ym)"]]     *)
+              val pairss = map (map HOLogic.mk_prod) functions
+              (* Term.typ *)
+              val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
+              val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
+              (* Term.term *)
+              val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
+              val HOLogic_insert    =
+                Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
+            in
+              (* functions as graphs, i.e. as a (HOL) set of pairs "(x, y)" *)
+              map (fn ps => fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) ps
+                HOLogic_empty_set) pairss
+            end
+      | Type (s, Ts) =>
+          (case Datatype.get_info thy s of
+            SOME info =>
+              (case AList.lookup (op =) typs T of
+                SOME 0 =>
+                  (* termination condition to avoid infinite recursion *)
+                  []  (* at depth 0, every IDT is empty *)
+              | _ =>
+                let
+                  val index = #index info
+                  val descr = #descr info
+                  val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                  val typ_assoc = dtyps ~~ Ts
+                  (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                  val _ =
+                    if Library.exists (fn d =>
+                      case d of Datatype.DtTFree _ => false | _ => true) dtyps
+                    then
+                      raise REFUTE ("IDT_constructor_interpreter",
+                        "datatype argument (for type "
+                        ^ Syntax.string_of_typ ctxt T
+                        ^ ") is not a variable")
+                    else ()
+                  (* decrement depth for the IDT 'T' *)
+                  val typs' =
+                    (case AList.lookup (op =) typs T of NONE => typs
+                    | SOME n => AList.update (op =) (T, n-1) typs)
+                  fun constructor_terms terms [] = terms
+                    | constructor_terms terms (d::ds) =
+                        let
+                          val dT = typ_of_dtyp descr typ_assoc d
+                          val d_terms = canonical_terms typs' dT
+                        in
+                          (* C_i x_1 ... x_n < C_i y_1 ... y_n if *)
+                          (* (x_1, ..., x_n) < (y_1, ..., y_n)    *)
+                          constructor_terms
+                            (map_product (curry op $) terms d_terms) ds
+                        end
+                in
+                  (* C_i ... < C_j ... if i < j *)
+                  maps (fn (cname, ctyps) =>
+                    let
+                      val cTerm = Const (cname,
+                        map (typ_of_dtyp descr typ_assoc) ctyps ---> T)
+                    in
+                      constructor_terms [cTerm] ctyps
+                    end) constrs
+                end)
+          | NONE =>
+              (* not an inductive datatype; in this case the argument types in *)
+              (* 'Ts' may not be IDTs either, so 'print' should be safe        *)
+              map (fn intr => print ctxt (typs, []) T intr (K false))
+                (make_constants ctxt (typs, []) T))
+      | _ =>  (* TFree ..., TVar ... *)
+          map (fn intr => print ctxt (typs, []) T intr (K false))
+            (make_constants ctxt (typs, []) T))
+    val (typs, terms) = model
+  in
+    case AList.lookup (op =) terms t of
+      SOME intr =>
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
+    | NONE =>
+        (case t of
+          Const (s, T) =>
+            (case body_type T of
+              Type (s', Ts') =>
+                (case Datatype.get_info thy s' of
+                  SOME info =>  (* body type is an inductive datatype *)
+                    let
+                      val index               = #index info
+                      val descr               = #descr info
+                      val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+                      val typ_assoc           = dtyps ~~ Ts'
+                      (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+                      val _ = if Library.exists (fn d =>
+                          case d of Datatype.DtTFree _ => false | _ => true) dtyps
+                        then
+                          raise REFUTE ("IDT_constructor_interpreter",
+                            "datatype argument (for type "
+                            ^ Syntax.string_of_typ ctxt (Type (s', Ts'))
+                            ^ ") is not a variable")
+                        else ()
+                      (* split the constructors into those occuring before/after *)
+                      (* 'Const (s, T)'                                          *)
+                      val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
+                        not (cname = s andalso Sign.typ_instance thy (T,
+                          map (typ_of_dtyp descr typ_assoc) ctypes
+                            ---> Type (s', Ts')))) constrs
+                    in
+                      case constrs2 of
+                        [] =>
+                          (* 'Const (s, T)' is not a constructor of this datatype *)
+                          NONE
+                      | (_, ctypes)::_ =>
+                          let
+                            (* int option -- only /recursive/ IDTs have an associated *)
+                            (*               depth                                    *)
+                            val depth = AList.lookup (op =) typs (Type (s', Ts'))
+                            (* this should never happen: at depth 0, this IDT fragment *)
+                            (* is definitely empty, and in this case we don't need to  *)
+                            (* interpret its constructors                              *)
+                            val _ = (case depth of SOME 0 =>
+                                raise REFUTE ("IDT_constructor_interpreter",
+                                  "depth is 0")
+                              | _ => ())
+                            val typs' = (case depth of NONE => typs | SOME n =>
+                              AList.update (op =) (Type (s', Ts'), n-1) typs)
+                            (* elements of the datatype come before elements generated *)
+                            (* by 'Const (s, T)' iff they are generated by a           *)
+                            (* constructor in constrs1                                 *)
+                            val offset = size_of_dtyp ctxt typs' descr typ_assoc constrs1
+                            (* compute the total (current) size of the datatype *)
+                            val total = offset +
+                              size_of_dtyp ctxt typs' descr typ_assoc constrs2
+                            (* sanity check *)
+                            val _ = if total <> size_of_type ctxt (typs, [])
+                              (Type (s', Ts')) then
+                                raise REFUTE ("IDT_constructor_interpreter",
+                                  "total is not equal to current size")
+                              else ()
+                            (* returns an interpretation where everything is mapped to *)
+                            (* an "undefined" element of the datatype                  *)
+                            fun make_undef [] = Leaf (replicate total False)
+                              | make_undef (d::ds) =
+                                  let
+                                    (* compute the current size of the type 'd' *)
+                                    val dT   = typ_of_dtyp descr typ_assoc d
+                                    val size = size_of_type ctxt (typs, []) dT
+                                  in
+                                    Node (replicate size (make_undef ds))
+                                  end
+                            (* returns the interpretation for a constructor *)
+                            fun make_constr [] offset =
+                                  if offset < total then
+                                    (Leaf (replicate offset False @ True ::
+                                      (replicate (total - offset - 1) False)), offset + 1)
+                                  else
+                                    raise REFUTE ("IDT_constructor_interpreter",
+                                      "offset >= total")
+                              | make_constr (d::ds) offset =
+                                  let
+                                    (* Term.typ *)
+                                    val dT = typ_of_dtyp descr typ_assoc d
+                                    (* compute canonical term representations for all   *)
+                                    (* elements of the type 'd' (with the reduced depth *)
+                                    (* for the IDT)                                     *)
+                                    val terms' = canonical_terms typs' dT
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms' <> size_of_type ctxt (typs', []) dT
+                                      then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "length of terms' is not equal to old size")
+                                      else ()
+                                    (* compute canonical term representations for all   *)
+                                    (* elements of the type 'd' (with the current depth *)
+                                    (* for the IDT)                                     *)
+                                    val terms = canonical_terms typs dT
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms <> size_of_type ctxt (typs, []) dT
+                                      then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "length of terms is not equal to current size")
+                                      else ()
+                                    (* sanity check *)
+                                    val _ =
+                                      if length terms < length terms' then
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "current size is less than old size")
+                                      else ()
+                                    (* sanity check: every element of terms' must also be *)
+                                    (*               present in terms                     *)
+                                    val _ =
+                                      if forall (member (op =) terms) terms' then ()
+                                      else
+                                        raise REFUTE ("IDT_constructor_interpreter",
+                                          "element has disappeared")
+                                    (* sanity check: the order on elements of terms' is    *)
+                                    (*               the same in terms, for those elements *)
+                                    val _ =
+                                      let
+                                        fun search (x::xs) (y::ys) =
+                                              if x = y then search xs ys else search (x::xs) ys
+                                          | search (_::_) [] =
+                                              raise REFUTE ("IDT_constructor_interpreter",
+                                                "element order not preserved")
+                                          | search [] _ = ()
+                                      in search terms' terms end
+                                    (* int * interpretation list *)
+                                    val (intrs, new_offset) =
+                                      fold_map (fn t_elem => fn off =>
+                                        (* if 't_elem' existed at the previous depth,    *)
+                                        (* proceed recursively, otherwise map the entire *)
+                                        (* subtree to "undefined"                        *)
+                                        if member (op =) terms' t_elem then
+                                          make_constr ds off
+                                        else
+                                          (make_undef ds, off))
+                                      terms offset
+                                  in
+                                    (Node intrs, new_offset)
+                                  end
+                          in
+                            SOME (fst (make_constr ctypes offset), model, args)
+                          end
+                    end
+                | NONE =>  (* body type is not an inductive datatype *)
+                    NONE)
+            | _ =>  (* body type is a (free or schematic) type variable *)
+              NONE)
+        | _ =>  (* term is not a constant *)
+          NONE)
+  end;
+
+(* Difficult code ahead.  Make sure you understand the                *)
+(* 'IDT_constructor_interpreter' and the order in which it enumerates *)
+(* elements of an IDT before you try to understand this function.     *)
+
+fun IDT_recursion_interpreter ctxt model args t =
+  let
+    val thy = Proof_Context.theory_of ctxt
+  in
+    (* careful: here we descend arbitrarily deep into 't', possibly before *)
+    (* any other interpreter for atomic terms has had a chance to look at  *)
+    (* 't'                                                                 *)
+    case strip_comb t of
+      (Const (s, T), params) =>
+        (* iterate over all datatypes in 'thy' *)
+        Symtab.fold (fn (_, info) => fn result =>
+          case result of
+            SOME _ =>
+              result  (* just keep 'result' *)
+          | NONE =>
+              if member (op =) (#rec_names info) s then
+                (* we do have a recursion operator of one of the (mutually *)
+                (* recursive) datatypes given by 'info'                    *)
+                let
+                  (* number of all constructors, including those of different  *)
+                  (* (mutually recursive) datatypes within the same descriptor *)
+                  val mconstrs_count =
+                    Integer.sum (map (fn (_, (_, _, cs)) => length cs) (#descr info))
+                in
+                  if mconstrs_count < length params then
+                    (* too many actual parameters; for now we'll use the *)
+                    (* 'stlc_interpreter' to strip off one application   *)
+                    NONE
+                  else if mconstrs_count > length params then
+                    (* too few actual parameters; we use eta expansion          *)
+                    (* Note that the resulting expansion of lambda abstractions *)
+                    (* by the 'stlc_interpreter' may be rather slow (depending  *)
+                    (* on the argument types and the size of the IDT, of        *)
+                    (* course).                                                 *)
+                    SOME (interpret ctxt model args (eta_expand t
+                      (mconstrs_count - length params)))
+                  else  (* mconstrs_count = length params *)
+                    let
+                      (* interpret each parameter separately *)
+                      val (p_intrs, (model', args')) = fold_map (fn p => fn (m, a) =>
+                        let
+                          val (i, m', a') = interpret ctxt m a p
+                        in
+                          (i, (m', a'))
+                        end) params (model, args)
+                      val (typs, _) = model'
+                      (* 'index' is /not/ necessarily the index of the IDT that *)
+                      (* the recursion operator is associated with, but merely  *)
+                      (* the index of some mutually recursive IDT               *)
+                      val index         = #index info
+                      val descr         = #descr info
+                      val (_, dtyps, _) = the (AList.lookup (op =) descr index)
+                      (* sanity check: we assume that the order of constructors *)
+                      (*               in 'descr' is the same as the order of   *)
+                      (*               corresponding parameters, otherwise the  *)
+                      (*               association code below won't match the   *)
+                      (*               right constructors/parameters; we also   *)
+                      (*               assume that the order of recursion       *)
+                      (*               operators in '#rec_names info' is the    *)
+                      (*               same as the order of corresponding       *)
+                      (*               datatypes in 'descr'                     *)
+                      val _ = if map fst descr <> (0 upto (length descr - 1)) then
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "order of constructors and corresponding parameters/" ^
+                              "recursion operators and corresponding datatypes " ^
+                              "different?")
+                        else ()
+                      (* sanity check: every element in 'dtyps' must be a *)
+                      (*               'DtTFree'                          *)
+                      val _ =
+                        if Library.exists (fn d =>
+                          case d of Datatype.DtTFree _ => false
+                                  | _ => true) dtyps
+                        then
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "datatype argument is not a variable")
+                        else ()
+                      (* the type of a recursion operator is *)
+                      (* [T1, ..., Tn, IDT] ---> Tresult     *)
+                      val IDT = nth (binder_types T) mconstrs_count
+                      (* by our assumption on the order of recursion operators *)
+                      (* and datatypes, this is the index of the datatype      *)
+                      (* corresponding to the given recursion operator         *)
+                      val idt_index = find_index (fn s' => s' = s) (#rec_names info)
+                      (* mutually recursive types must have the same type   *)
+                      (* parameters, unless the mutual recursion comes from *)
+                      (* indirect recursion                                 *)
+                      fun rec_typ_assoc acc [] = acc
+                        | rec_typ_assoc acc ((d, T)::xs) =
+                            (case AList.lookup op= acc d of
+                              NONE =>
+                                (case d of
+                                  Datatype.DtTFree _ =>
+                                  (* add the association, proceed *)
+                                  rec_typ_assoc ((d, T)::acc) xs
+                                | Datatype.DtType (s, ds) =>
+                                    let
+                                      val (s', Ts) = dest_Type T
+                                    in
+                                      if s=s' then
+                                        rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
+                                      else
+                                        raise REFUTE ("IDT_recursion_interpreter",
+                                          "DtType/Type mismatch")
+                                    end
+                                | Datatype.DtRec i =>
+                                    let
+                                      val (_, ds, _) = the (AList.lookup (op =) descr i)
+                                      val (_, Ts)    = dest_Type T
+                                    in
+                                      rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
+                                    end)
+                            | SOME T' =>
+                                if T=T' then
+                                  (* ignore the association since it's already *)
+                                  (* present, proceed                          *)
+                                  rec_typ_assoc acc xs
+                                else
+                                  raise REFUTE ("IDT_recursion_interpreter",
+                                    "different type associations for the same dtyp"))
+                      val typ_assoc = filter
+                        (fn (Datatype.DtTFree _, _) => true | (_, _) => false)
+                        (rec_typ_assoc []
+                          (#2 (the (AList.lookup (op =) descr idt_index)) ~~ (snd o dest_Type) IDT))
+                      (* sanity check: typ_assoc must associate types to the   *)
+                      (*               elements of 'dtyps' (and only to those) *)
+                      val _ =
+                        if not (eq_set (op =) (dtyps, map fst typ_assoc))
+                        then
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "type association has extra/missing elements")
+                        else ()
+                      (* interpret each constructor in the descriptor (including *)
+                      (* those of mutually recursive datatypes)                  *)
+                      (* (int * interpretation list) list *)
+                      val mc_intrs = map (fn (idx, (_, _, cs)) =>
+                        let
+                          val c_return_typ = typ_of_dtyp descr typ_assoc
+                            (Datatype.DtRec idx)
+                        in
+                          (idx, map (fn (cname, cargs) =>
+                            (#1 o interpret ctxt (typs, []) {maxvars=0,
+                              def_eq=false, next_idx=1, bounds=[],
+                              wellformed=True}) (Const (cname, map (typ_of_dtyp
+                              descr typ_assoc) cargs ---> c_return_typ))) cs)
+                        end) descr
+                      (* associate constructors with corresponding parameters *)
+                      (* (int * (interpretation * interpretation) list) list *)
+                      val (mc_p_intrs, p_intrs') = fold_map
+                        (fn (idx, c_intrs) => fn p_intrs' =>
+                          let
+                            val len = length c_intrs
+                          in
+                            ((idx, c_intrs ~~ List.take (p_intrs', len)),
+                              List.drop (p_intrs', len))
+                          end) mc_intrs p_intrs
+                      (* sanity check: no 'p_intr' may be left afterwards *)
+                      val _ =
+                        if p_intrs' <> [] then
+                          raise REFUTE ("IDT_recursion_interpreter",
+                            "more parameter than constructor interpretations")
+                        else ()
+                      (* The recursion operator, applied to 'mconstrs_count'     *)
+                      (* arguments, is a function that maps every element of the *)
+                      (* inductive datatype to an element of some result type.   *)
+                      (* Recursion operators for mutually recursive IDTs are     *)
+                      (* translated simultaneously.                              *)
+                      (* Since the order on datatype elements is given by an     *)
+                      (* order on constructors (and then by the order on         *)
+                      (* argument tuples), we can simply copy corresponding      *)
+                      (* subtrees from 'p_intrs', in the order in which they are *)
+                      (* given.                                                  *)
+                      (* interpretation * interpretation -> interpretation list *)
+                      fun ci_pi (Leaf xs, pi) =
+                            (* if the constructor does not match the arguments to a *)
+                            (* defined element of the IDT, the corresponding value  *)
+                            (* of the parameter must be ignored                     *)
+                            if List.exists (equal True) xs then [pi] else []
+                        | ci_pi (Node xs, Node ys) = maps ci_pi (xs ~~ ys)
+                        | ci_pi (Node _, Leaf _) =
+                            raise REFUTE ("IDT_recursion_interpreter",
+                              "constructor takes more arguments than the " ^
+                                "associated parameter")
+                      (* (int * interpretation list) list *)
+                      val rec_operators = map (fn (idx, c_p_intrs) =>
+                        (idx, maps ci_pi c_p_intrs)) mc_p_intrs
+                      (* sanity check: every recursion operator must provide as  *)
+                      (*               many values as the corresponding datatype *)
+                      (*               has elements                              *)
+                      val _ = map (fn (idx, intrs) =>
+                        let
+                          val T = typ_of_dtyp descr typ_assoc
+                            (Datatype.DtRec idx)
+                        in
+                          if length intrs <> size_of_type ctxt (typs, []) T then
+                            raise REFUTE ("IDT_recursion_interpreter",
+                              "wrong number of interpretations for rec. operator")
+                          else ()
+                        end) rec_operators
+                      (* For non-recursive datatypes, we are pretty much done at *)
+                      (* this point.  For recursive datatypes however, we still  *)
+                      (* need to apply the interpretations in 'rec_operators' to *)
+                      (* (recursively obtained) interpretations for recursive    *)
+                      (* constructor arguments.  To do so more efficiently, we   *)
+                      (* copy 'rec_operators' into arrays first.  Each Boolean   *)
+                      (* indicates whether the recursive arguments have been     *)
+                      (* considered already.                                     *)
+                      (* (int * (bool * interpretation) Array.array) list *)
+                      val REC_OPERATORS = map (fn (idx, intrs) =>
+                        (idx, Array.fromList (map (pair false) intrs)))
+                        rec_operators
+                      (* takes an interpretation, and if some leaf of this     *)
+                      (* interpretation is the 'elem'-th element of the type,  *)
+                      (* the indices of the arguments leading to this leaf are *)
+                      (* returned                                              *)
+                      (* interpretation -> int -> int list option *)
+                      fun get_args (Leaf xs) elem =
+                            if find_index (fn x => x = True) xs = elem then
+                              SOME []
+                            else
+                              NONE
+                        | get_args (Node xs) elem =
+                            let
+                              (* interpretation list * int -> int list option *)
+                              fun search ([], _) =
+                                NONE
+                                | search (x::xs, n) =
+                                (case get_args x elem of
+                                  SOME result => SOME (n::result)
+                                | NONE        => search (xs, n+1))
+                            in
+                              search (xs, 0)
+                            end
+                      (* returns the index of the constructor and indices for *)
+                      (* its arguments that generate the 'elem'-th element of *)
+                      (* the datatype given by 'idx'                          *)
+                      (* int -> int -> int * int list *)
+                      fun get_cargs idx elem =
+                        let
+                          (* int * interpretation list -> int * int list *)
+                          fun get_cargs_rec (_, []) =
+                                raise REFUTE ("IDT_recursion_interpreter",
+                                  "no matching constructor found for datatype element")
+                            | get_cargs_rec (n, x::xs) =
+                                (case get_args x elem of
+                                  SOME args => (n, args)
+                                | NONE => get_cargs_rec (n+1, xs))
+                        in
+                          get_cargs_rec (0, the (AList.lookup (op =) mc_intrs idx))
+                        end
+                      (* computes one entry in 'REC_OPERATORS', and recursively *)
+                      (* all entries needed for it, where 'idx' gives the       *)
+                      (* datatype and 'elem' the element of it                  *)
+                      (* int -> int -> interpretation *)
+                      fun compute_array_entry idx elem =
+                        let
+                          val arr = the (AList.lookup (op =) REC_OPERATORS idx)
+                          val (flag, intr) = Array.sub (arr, elem)
+                        in
+                          if flag then
+                            (* simply return the previously computed result *)
+                            intr
+                          else
+                            (* we have to apply 'intr' to interpretations for all *)
+                            (* recursive arguments                                *)
+                            let
+                              (* int * int list *)
+                              val (c, args) = get_cargs idx elem
+                              (* find the indices of the constructor's /recursive/ *)
+                              (* arguments                                         *)
+                              val (_, _, constrs) = the (AList.lookup (op =) descr idx)
+                              val (_, dtyps) = nth constrs c
+                              val rec_dtyps_args = filter
+                                (Datatype_Aux.is_rec_type o fst) (dtyps ~~ args)
+                              (* map those indices to interpretations *)
+                              val rec_dtyps_intrs = map (fn (dtyp, arg) =>
+                                let
+                                  val dT = typ_of_dtyp descr typ_assoc dtyp
+                                  val consts = make_constants ctxt (typs, []) dT
+                                  val arg_i = nth consts arg
+                                in
+                                  (dtyp, arg_i)
+                                end) rec_dtyps_args
+                              (* takes the dtyp and interpretation of an element, *)
+                              (* and computes the interpretation for the          *)
+                              (* corresponding recursive argument                 *)
+                              fun rec_intr (Datatype.DtRec i) (Leaf xs) =
+                                    (* recursive argument is "rec_i params elem" *)
+                                    compute_array_entry i (find_index (fn x => x = True) xs)
+                                | rec_intr (Datatype.DtRec _) (Node _) =
+                                    raise REFUTE ("IDT_recursion_interpreter",
+                                      "interpretation for IDT is a node")
+                                | rec_intr (Datatype.DtType ("fun", [_, dt2])) (Node xs) =
+                                    (* recursive argument is something like     *)
+                                    (* "\<lambda>x::dt1. rec_? params (elem x)" *)
+                                    Node (map (rec_intr dt2) xs)
+                                | rec_intr (Datatype.DtType ("fun", [_, _])) (Leaf _) =
+                                    raise REFUTE ("IDT_recursion_interpreter",
+                                      "interpretation for function dtyp is a leaf")
+                                | rec_intr _ _ =
+                                    (* admissibility ensures that every recursive type *)
+                                    (* is of the form 'Dt_1 -> ... -> Dt_k ->          *)
+                                    (* (DtRec i)'                                      *)
+                                    raise REFUTE ("IDT_recursion_interpreter",
+                                      "non-recursive codomain in recursive dtyp")
+                              (* obtain interpretations for recursive arguments *)
+                              (* interpretation list *)
+                              val arg_intrs = map (uncurry rec_intr) rec_dtyps_intrs
+                              (* apply 'intr' to all recursive arguments *)
+                              val result = fold (fn arg_i => fn i =>
+                                interpretation_apply (i, arg_i)) arg_intrs intr
+                              (* update 'REC_OPERATORS' *)
+                              val _ = Array.update (arr, elem, (true, result))
+                            in
+                              result
+                            end
+                        end
+                      val idt_size = Array.length (the (AList.lookup (op =) REC_OPERATORS idt_index))
+                      (* sanity check: the size of 'IDT' should be 'idt_size' *)
+                      val _ =
+                          if idt_size <> size_of_type ctxt (typs, []) IDT then
+                            raise REFUTE ("IDT_recursion_interpreter",
+                              "unexpected size of IDT (wrong type associated?)")
+                          else ()
+                      (* interpretation *)
+                      val rec_op = Node (map_range (compute_array_entry idt_index) idt_size)
+                    in
+                      SOME (rec_op, model', args')
+                    end
+                end
+              else
+                NONE  (* not a recursion operator of this datatype *)
+          ) (Datatype.get_all thy) NONE
+    | _ =>  (* head of term is not a constant *)
+      NONE
+  end;
+
+fun set_interpreter ctxt model args t =
+  let
+    val (typs, terms) = model
+  in
+    case AList.lookup (op =) terms t of
+      SOME intr =>
+        (* return an existing interpretation *)
+        SOME (intr, model, args)
+    | NONE =>
+        (case t of
+          Free (x, Type (@{type_name set}, [T])) =>
+          let
+            val (intr, _, args') =
+              interpret ctxt (typs, []) args (Free (x, T --> HOLogic.boolT))
+          in
+            SOME (intr, (typs, (t, intr)::terms), args')
+          end
+        | Var ((x, i), Type (@{type_name set}, [T])) =>
+          let
+            val (intr, _, args') =
+              interpret ctxt (typs, []) args (Var ((x,i), T --> HOLogic.boolT))
+          in
+            SOME (intr, (typs, (t, intr)::terms), args')
+          end
+        | Const (s, Type (@{type_name set}, [T])) =>
+          let
+            val (intr, _, args') =
+              interpret ctxt (typs, []) args (Const (s, T --> HOLogic.boolT))
+          in
+            SOME (intr, (typs, (t, intr)::terms), args')
+          end
+        (* 'Collect' == identity *)
+        | Const (@{const_name Collect}, _) $ t1 =>
+            SOME (interpret ctxt model args t1)
+        | Const (@{const_name Collect}, _) =>
+            SOME (interpret ctxt model args (eta_expand t 1))
+        (* 'op :' == application *)
+        | Const (@{const_name Set.member}, _) $ t1 $ t2 =>
+            SOME (interpret ctxt model args (t2 $ t1))
+        | Const (@{const_name Set.member}, _) $ _ =>
+            SOME (interpret ctxt model args (eta_expand t 1))
+        | Const (@{const_name Set.member}, _) =>
+            SOME (interpret ctxt model args (eta_expand t 2))
+        | _ => NONE)
+  end;
+
+(* only an optimization: 'card' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
+
+fun Finite_Set_card_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Finite_Set.card},
+        Type ("fun", [Type (@{type_name set}, [T]), @{typ nat}])) =>
+      let
+        (* interpretation -> int *)
+        fun number_of_elements (Node xs) =
+            fold (fn x => fn n =>
+              if x = TT then
+                n + 1
+              else if x = FF then
+                n
+              else
+                raise REFUTE ("Finite_Set_card_interpreter",
+                  "interpretation for set type does not yield a Boolean"))
+              xs 0
+          | number_of_elements (Leaf _) =
+              raise REFUTE ("Finite_Set_card_interpreter",
+                "interpretation for set type is a leaf")
+        val size_of_nat = size_of_type ctxt model (@{typ nat})
+        (* takes an interpretation for a set and returns an interpretation *)
+        (* for a 'nat' denoting the set's cardinality                      *)
+        (* interpretation -> interpretation *)
+        fun card i =
+          let
+            val n = number_of_elements i
+          in
+            if n < size_of_nat then
+              Leaf ((replicate n False) @ True ::
+                (replicate (size_of_nat-n-1) False))
+            else
+              Leaf (replicate size_of_nat False)
+          end
+        val set_constants = make_constants ctxt model (HOLogic.mk_setT T)
+      in
+        SOME (Node (map card set_constants), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'finite' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code    *)
+(* below is more efficient                                                *)
+
+fun Finite_Set_finite_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Finite_Set.finite},
+           Type ("fun", [_, @{typ bool}])) $ _ =>
+        (* we only consider finite models anyway, hence EVERY set is *)
+        (* "finite"                                                  *)
+        SOME (TT, model, args)
+  | Const (@{const_name Finite_Set.finite},
+           Type ("fun", [set_T, @{typ bool}])) =>
+      let
+        val size_of_set = size_of_type ctxt model set_T
+      in
+        (* we only consider finite models anyway, hence EVERY set is *)
+        (* "finite"                                                  *)
+        SOME (Node (replicate size_of_set TT), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'less' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code     *)
+(* below is more efficient                                                 *)
+
+fun Nat_less_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ bool}])])) =>
+      let
+        val size_of_nat = size_of_type ctxt model (@{typ nat})
+        (* the 'n'-th nat is not less than the first 'n' nats, while it *)
+        (* is less than the remaining 'size_of_nat - n' nats            *)
+        (* int -> interpretation *)
+        fun less n = Node ((replicate n FF) @ (replicate (size_of_nat - n) TT))
+      in
+        SOME (Node (map less (1 upto size_of_nat)), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'plus' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code     *)
+(* below is more efficient                                                 *)
+
+fun Nat_plus_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+      let
+        val size_of_nat = size_of_type ctxt model (@{typ nat})
+        (* int -> int -> interpretation *)
+        fun plus m n =
+          let
+            val element = m + n
+          in
+            if element > size_of_nat - 1 then
+              Leaf (replicate size_of_nat False)
+            else
+              Leaf ((replicate element False) @ True ::
+                (replicate (size_of_nat - element - 1) False))
+          end
+      in
+        SOME (Node (map_range (fn m => Node (map_range (plus m) size_of_nat)) size_of_nat),
+          model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'minus' could in principle be interpreted *)
+(* with interpreters available already (using its definition), but the *)
+(* code below is more efficient                                        *)
+
+fun Nat_minus_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+      let
+        val size_of_nat = size_of_type ctxt model (@{typ nat})
+        (* int -> int -> interpretation *)
+        fun minus m n =
+          let
+            val element = Int.max (m-n, 0)
+          in
+            Leaf ((replicate element False) @ True ::
+              (replicate (size_of_nat - element - 1) False))
+          end
+      in
+        SOME (Node (map_range (fn m => Node (map_range (minus m) size_of_nat)) size_of_nat),
+          model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'times' could in principle be interpreted *)
+(* with interpreters available already (using its definition), but the *)
+(* code below is more efficient                                        *)
+
+fun Nat_times_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
+        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
+      let
+        val size_of_nat = size_of_type ctxt model (@{typ nat})
+        (* nat -> nat -> interpretation *)
+        fun mult m n =
+          let
+            val element = m * n
+          in
+            if element > size_of_nat - 1 then
+              Leaf (replicate size_of_nat False)
+            else
+              Leaf ((replicate element False) @ True ::
+                (replicate (size_of_nat - element - 1) False))
+          end
+      in
+        SOME (Node (map_range (fn m => Node (map_range (mult m) size_of_nat)) size_of_nat),
+          model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'append' could in principle be interpreted with *)
+(* interpreters available already (using its definition), but the code   *)
+(* below is more efficient                                               *)
+
+fun List_append_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name List.append}, Type ("fun", [Type ("List.list", [T]), Type ("fun",
+        [Type ("List.list", [_]), Type ("List.list", [_])])])) =>
+      let
+        val size_elem = size_of_type ctxt model T
+        val size_list = size_of_type ctxt model (Type ("List.list", [T]))
+        (* maximal length of lists; 0 if we only consider the empty list *)
+        val list_length =
+          let
+            (* int -> int -> int -> int *)
+            fun list_length_acc len lists total =
+              if lists = total then
+                len
+              else if lists < total then
+                list_length_acc (len+1) (lists*size_elem) (total-lists)
+              else
+                raise REFUTE ("List_append_interpreter",
+                  "size_list not equal to 1 + size_elem + ... + " ^
+                    "size_elem^len, for some len")
+          in
+            list_length_acc 0 1 size_list
+          end
+        val elements = 0 upto (size_list-1)
+        (* FIXME: there should be a nice formula, which computes the same as *)
+        (*        the following, but without all this intermediate tree      *)
+        (*        length/offset stuff                                        *)
+        (* associate each list with its length and offset in a complete tree *)
+        (* of width 'size_elem' and depth 'length_list' (with 'size_list'    *)
+        (* nodes total)                                                      *)
+        (* (int * (int * int)) list *)
+        val (lenoff_lists, _) = fold_map (fn elem => fn (offsets, off) =>
+          (* corresponds to a pre-order traversal of the tree *)
+          let
+            val len = length offsets
+            (* associate the given element with len/off *)
+            val assoc = (elem, (len, off))
+          in
+            if len < list_length then
+              (* go to first child node *)
+              (assoc, (off :: offsets, off * size_elem))
+            else if off mod size_elem < size_elem - 1 then
+              (* go to next sibling node *)
+              (assoc, (offsets, off + 1))
+            else
+              (* go back up the stack until we find a level where we can go *)
+              (* to the next sibling node                                   *)
+              let
+                val offsets' = snd (take_prefix
+                  (fn off' => off' mod size_elem = size_elem - 1) offsets)
+              in
+                case offsets' of
+                  [] =>
+                    (* we're at the last node in the tree; the next value *)
+                    (* won't be used anyway                               *)
+                    (assoc, ([], 0))
+                | off'::offs' =>
+                    (* go to next sibling node *)
+                    (assoc, (offs', off' + 1))
+              end
+          end) elements ([], 0)
+        (* we also need the reverse association (from length/offset to *)
+        (* index)                                                      *)
+        val lenoff'_lists = map Library.swap lenoff_lists
+        (* returns the interpretation for "(list no. m) @ (list no. n)" *)
+        (* nat -> nat -> interpretation *)
+        fun append m n =
+          let
+            val (len_m, off_m) = the (AList.lookup (op =) lenoff_lists m)
+            val (len_n, off_n) = the (AList.lookup (op =) lenoff_lists n)
+            val len_elem = len_m + len_n
+            val off_elem = off_m * Integer.pow len_n size_elem + off_n
+          in
+            case AList.lookup op= lenoff'_lists (len_elem, off_elem) of
+              NONE =>
+                (* undefined *)
+                Leaf (replicate size_list False)
+            | SOME element =>
+                Leaf ((replicate element False) @ True ::
+                  (replicate (size_list - element - 1) False))
+          end
+      in
+        SOME (Node (map (fn m => Node (map (append m) elements)) elements),
+          model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'lfp' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
+
+fun lfp_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name lfp}, Type ("fun", [Type ("fun",
+      [Type (@{type_name set}, [T]),
+       Type (@{type_name set}, [_])]),
+       Type (@{type_name set}, [_])])) =>
+      let
+        val size_elem = size_of_type ctxt model T
+        (* the universe (i.e. the set that contains every element) *)
+        val i_univ = Node (replicate size_elem TT)
+        (* all sets with elements from type 'T' *)
+        val i_sets = make_constants ctxt model (HOLogic.mk_setT T)
+        (* all functions that map sets to sets *)
+        val i_funs = make_constants ctxt model (Type ("fun",
+          [HOLogic.mk_setT T, HOLogic.mk_setT T]))
+        (* "lfp(f) == Inter({u. f(u) <= u})" *)
+        (* interpretation * interpretation -> bool *)
+        fun is_subset (Node subs, Node sups) =
+              forall (fn (sub, sup) => (sub = FF) orelse (sup = TT)) (subs ~~ sups)
+          | is_subset (_, _) =
+              raise REFUTE ("lfp_interpreter",
+                "is_subset: interpretation for set is not a node")
+        (* interpretation * interpretation -> interpretation *)
+        fun intersection (Node xs, Node ys) =
+              Node (map (fn (x, y) => if x=TT andalso y=TT then TT else FF)
+                (xs ~~ ys))
+          | intersection (_, _) =
+              raise REFUTE ("lfp_interpreter",
+                "intersection: interpretation for set is not a node")
+        (* interpretation -> interpretaion *)
+        fun lfp (Node resultsets) =
+              fold (fn (set, resultset) => fn acc =>
+                if is_subset (resultset, set) then
+                  intersection (acc, set)
+                else
+                  acc) (i_sets ~~ resultsets) i_univ
+          | lfp _ =
+              raise REFUTE ("lfp_interpreter",
+                "lfp: interpretation for function is not a node")
+      in
+        SOME (Node (map lfp i_funs), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'gfp' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
+
+fun gfp_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name gfp}, Type ("fun", [Type ("fun",
+      [Type (@{type_name set}, [T]),
+       Type (@{type_name set}, [_])]),
+       Type (@{type_name set}, [_])])) =>
+      let
+        val size_elem = size_of_type ctxt model T
+        (* the universe (i.e. the set that contains every element) *)
+        val i_univ = Node (replicate size_elem TT)
+        (* all sets with elements from type 'T' *)
+        val i_sets = make_constants ctxt model (HOLogic.mk_setT T)
+        (* all functions that map sets to sets *)
+        val i_funs = make_constants ctxt model (Type ("fun",
+          [HOLogic.mk_setT T, HOLogic.mk_setT T]))
+        (* "gfp(f) == Union({u. u <= f(u)})" *)
+        (* interpretation * interpretation -> bool *)
+        fun is_subset (Node subs, Node sups) =
+              forall (fn (sub, sup) => (sub = FF) orelse (sup = TT))
+                (subs ~~ sups)
+          | is_subset (_, _) =
+              raise REFUTE ("gfp_interpreter",
+                "is_subset: interpretation for set is not a node")
+        (* interpretation * interpretation -> interpretation *)
+        fun union (Node xs, Node ys) =
+              Node (map (fn (x,y) => if x=TT orelse y=TT then TT else FF)
+                   (xs ~~ ys))
+          | union (_, _) =
+              raise REFUTE ("gfp_interpreter",
+                "union: interpretation for set is not a node")
+        (* interpretation -> interpretaion *)
+        fun gfp (Node resultsets) =
+              fold (fn (set, resultset) => fn acc =>
+                if is_subset (set, resultset) then
+                  union (acc, set)
+                else
+                  acc) (i_sets ~~ resultsets) i_univ
+          | gfp _ =
+              raise REFUTE ("gfp_interpreter",
+                "gfp: interpretation for function is not a node")
+      in
+        SOME (Node (map gfp i_funs), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'fst' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
+
+fun Product_Type_fst_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name fst}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
+      let
+        val constants_T = make_constants ctxt model T
+        val size_U = size_of_type ctxt model U
+      in
+        SOME (Node (maps (replicate size_U) constants_T), model, args)
+      end
+  | _ => NONE;
+
+(* only an optimization: 'snd' could in principle be interpreted with  *)
+(* interpreters available already (using its definition), but the code *)
+(* below is more efficient                                             *)
+
+fun Product_Type_snd_interpreter ctxt model args t =
+  case t of
+    Const (@{const_name snd}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
+      let
+        val size_T = size_of_type ctxt model T
+        val constants_U = make_constants ctxt model U
+      in
+        SOME (Node (flat (replicate size_T constants_U)), model, args)
+      end
+  | _ => NONE;
+
+
+(* ------------------------------------------------------------------------- *)
+(* PRINTERS                                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+fun stlc_printer ctxt model T intr assignment =
+  let
+    (* string -> string *)
+    val strip_leading_quote = perhaps (try (unprefix "'"))
+    (* Term.typ -> string *)
+    fun string_of_typ (Type (s, _)) = s
+      | string_of_typ (TFree (x, _)) = strip_leading_quote x
+      | string_of_typ (TVar ((x,i), _)) =
+          strip_leading_quote x ^ string_of_int i
+    (* interpretation -> int *)
+    fun index_from_interpretation (Leaf xs) =
+          find_index (Prop_Logic.eval assignment) xs
+      | index_from_interpretation _ =
+          raise REFUTE ("stlc_printer",
+            "interpretation for ground type is not a leaf")
+  in
+    case T of
+      Type ("fun", [T1, T2]) =>
+        let
+          (* create all constants of type 'T1' *)
+          val constants = make_constants ctxt model T1
+          (* interpretation list *)
+          val results =
+            (case intr of
+              Node xs => xs
+            | _ => raise REFUTE ("stlc_printer",
+              "interpretation for function type is a leaf"))
+          (* Term.term list *)
+          val pairs = map (fn (arg, result) =>
+            HOLogic.mk_prod
+              (print ctxt model T1 arg assignment,
+               print ctxt model T2 result assignment))
+            (constants ~~ results)
+          (* Term.typ *)
+          val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
+          val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
+          (* Term.term *)
+          val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
+          val HOLogic_insert    =
+            Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
+        in
+          SOME (fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) pairs HOLogic_empty_set)
+        end
+    | Type ("prop", []) =>
+        (case index_from_interpretation intr of
+          ~1 => SOME (HOLogic.mk_Trueprop (Const (@{const_name undefined}, HOLogic.boolT)))
+        | 0  => SOME (HOLogic.mk_Trueprop @{term True})
+        | 1  => SOME (HOLogic.mk_Trueprop @{term False})
+        | _  => raise REFUTE ("stlc_interpreter",
+          "illegal interpretation for a propositional value"))
+    | Type _  =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
+    | TFree _ =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
+    | TVar _  =>
+        if index_from_interpretation intr = (~1) then
+          SOME (Const (@{const_name undefined}, T))
+        else
+          SOME (Const (string_of_typ T ^
+            string_of_int (index_from_interpretation intr), T))
+  end;
+
+fun set_printer ctxt model T intr assignment =
+  (case T of
+    Type (@{type_name set}, [T1]) =>
+    let
+      (* create all constants of type 'T1' *)
+      val constants = make_constants ctxt model T1
+      (* interpretation list *)
+      val results = (case intr of
+          Node xs => xs
+        | _       => raise REFUTE ("set_printer",
+          "interpretation for set type is a leaf"))
+      (* Term.term list *)
+      val elements = List.mapPartial (fn (arg, result) =>
+        case result of
+          Leaf [fmTrue, (* fmFalse *) _] =>
+          if Prop_Logic.eval assignment fmTrue then
+            SOME (print ctxt model T1 arg assignment)
+          else (* if Prop_Logic.eval assignment fmFalse then *)
+            NONE
+        | _ =>
+          raise REFUTE ("set_printer",
+            "illegal interpretation for a Boolean value"))
+        (constants ~~ results)
+      (* Term.typ *)
+      val HOLogic_setT1     = HOLogic.mk_setT T1
+      (* Term.term *)
+      val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT1)
+      val HOLogic_insert    =
+        Const (@{const_name insert}, T1 --> HOLogic_setT1 --> HOLogic_setT1)
+    in
+      SOME (Library.foldl (fn (acc, elem) => HOLogic_insert $ elem $ acc)
+        (HOLogic_empty_set, elements))
+    end
+  | _ =>
+    NONE);
+
+fun IDT_printer ctxt model T intr assignment =
+  let
+    val thy = Proof_Context.theory_of ctxt
+  in
+    (case T of
+      Type (s, Ts) =>
+        (case Datatype.get_info thy s of
+          SOME info =>  (* inductive datatype *)
+            let
+              val (typs, _)           = model
+              val index               = #index info
+              val descr               = #descr info
+              val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
+              val typ_assoc           = dtyps ~~ Ts
+              (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
+              val _ =
+                if Library.exists (fn d =>
+                  case d of Datatype.DtTFree _ => false | _ => true) dtyps
+                then
+                  raise REFUTE ("IDT_printer", "datatype argument (for type " ^
+                    Syntax.string_of_typ ctxt (Type (s, Ts)) ^ ") is not a variable")
+                else ()
+              (* the index of the element in the datatype *)
+              val element =
+                (case intr of
+                  Leaf xs => find_index (Prop_Logic.eval assignment) xs
+                | Node _  => raise REFUTE ("IDT_printer",
+                  "interpretation is not a leaf"))
+            in
+              if element < 0 then
+                SOME (Const (@{const_name undefined}, Type (s, Ts)))
+              else
+                let
+                  (* takes a datatype constructor, and if for some arguments this  *)
+                  (* constructor generates the datatype's element that is given by *)
+                  (* 'element', returns the constructor (as a term) as well as the *)
+                  (* indices of the arguments                                      *)
+                  fun get_constr_args (cname, cargs) =
+                    let
+                      val cTerm      = Const (cname,
+                        map (typ_of_dtyp descr typ_assoc) cargs ---> Type (s, Ts))
+                      val (iC, _, _) = interpret ctxt (typs, []) {maxvars=0,
+                        def_eq=false, next_idx=1, bounds=[], wellformed=True} cTerm
+                      (* interpretation -> int list option *)
+                      fun get_args (Leaf xs) =
+                            if find_index (fn x => x = True) xs = element then
+                              SOME []
+                            else
+                              NONE
+                        | get_args (Node xs) =
+                            let
+                              (* interpretation * int -> int list option *)
+                              fun search ([], _) =
+                                NONE
+                                | search (x::xs, n) =
+                                (case get_args x of
+                                  SOME result => SOME (n::result)
+                                | NONE        => search (xs, n+1))
+                            in
+                              search (xs, 0)
+                            end
+                    in
+                      Option.map (fn args => (cTerm, cargs, args)) (get_args iC)
+                    end
+                  val (cTerm, cargs, args) =
+                    (* we could speed things up by computing the correct          *)
+                    (* constructor directly (rather than testing all              *)
+                    (* constructors), based on the order in which constructors    *)
+                    (* generate elements of datatypes; the current implementation *)
+                    (* of 'IDT_printer' however is independent of the internals   *)
+                    (* of 'IDT_constructor_interpreter'                           *)
+                    (case get_first get_constr_args constrs of
+                      SOME x => x
+                    | NONE   => raise REFUTE ("IDT_printer",
+                      "no matching constructor found for element " ^
+                      string_of_int element))
+                  val argsTerms = map (fn (d, n) =>
+                    let
+                      val dT = typ_of_dtyp descr typ_assoc d
+                      (* we only need the n-th element of this list, so there   *)
+                      (* might be a more efficient implementation that does not *)
+                      (* generate all constants                                 *)
+                      val consts = make_constants ctxt (typs, []) dT
+                    in
+                      print ctxt (typs, []) dT (nth consts n) assignment
+                    end) (cargs ~~ args)
+                in
+                  SOME (list_comb (cTerm, argsTerms))
+                end
+            end
+        | NONE =>  (* not an inductive datatype *)
+            NONE)
+    | _ =>  (* a (free or schematic) type variable *)
+        NONE)
+  end;
+
+
+(* ------------------------------------------------------------------------- *)
+(* use 'setup Refute.setup' in an Isabelle theory to initialize the 'Refute' *)
+(* structure                                                                 *)
+(* ------------------------------------------------------------------------- *)
+
+(* ------------------------------------------------------------------------- *)
+(* Note: the interpreters and printers are used in reverse order; however,   *)
+(*       an interpreter that can handle non-atomic terms ends up being       *)
+(*       applied before the 'stlc_interpreter' breaks the term apart into    *)
+(*       subterms that are then passed to other interpreters!                *)
+(* ------------------------------------------------------------------------- *)
+
+val setup =
+   add_interpreter "stlc"    stlc_interpreter #>
+   add_interpreter "Pure"    Pure_interpreter #>
+   add_interpreter "HOLogic" HOLogic_interpreter #>
+   add_interpreter "set"     set_interpreter #>
+   add_interpreter "IDT"             IDT_interpreter #>
+   add_interpreter "IDT_constructor" IDT_constructor_interpreter #>
+   add_interpreter "IDT_recursion"   IDT_recursion_interpreter #>
+   add_interpreter "Finite_Set.card"    Finite_Set_card_interpreter #>
+   add_interpreter "Finite_Set.finite"  Finite_Set_finite_interpreter #>
+   add_interpreter "Nat_Orderings.less" Nat_less_interpreter #>
+   add_interpreter "Nat_HOL.plus"       Nat_plus_interpreter #>
+   add_interpreter "Nat_HOL.minus"      Nat_minus_interpreter #>
+   add_interpreter "Nat_HOL.times"      Nat_times_interpreter #>
+   add_interpreter "List.append" List_append_interpreter #>
+(* UNSOUND
+   add_interpreter "lfp" lfp_interpreter #>
+   add_interpreter "gfp" gfp_interpreter #>
+*)
+   add_interpreter "Product_Type.fst" Product_Type_fst_interpreter #>
+   add_interpreter "Product_Type.snd" Product_Type_snd_interpreter #>
+   add_printer "stlc" stlc_printer #>
+   add_printer "set" set_printer #>
+   add_printer "IDT"  IDT_printer;
+
+
+
+(** outer syntax commands 'refute' and 'refute_params' **)
+
+(* argument parsing *)
+
+(*optional list of arguments of the form [name1=value1, name2=value2, ...]*)
+
+val scan_parm = Parse.name -- (Scan.optional (@{keyword "="} |-- Parse.name) "true")
+val scan_parms = Scan.optional (@{keyword "["} |-- Parse.list scan_parm --| @{keyword "]"}) [];
+
+
+(* 'refute' command *)
+
+val _ =
+  Outer_Syntax.improper_command @{command_spec "refute"}
+    "try to find a model that refutes a given subgoal"
+    (scan_parms -- Scan.optional Parse.nat 1 >>
+      (fn (parms, i) =>
+        Toplevel.keep (fn state =>
+          let
+            val ctxt = Toplevel.context_of state;
+            val {goal = st, ...} = Proof.raw_goal (Toplevel.proof_of state);
+          in refute_goal ctxt parms st i; () end)));
+
+
+(* 'refute_params' command *)
+
+val _ =
+  Outer_Syntax.command @{command_spec "refute_params"}
+    "show/store default parameters for the 'refute' command"
+    (scan_parms >> (fn parms =>
+      Toplevel.theory (fn thy =>
+        let
+          val thy' = fold set_default_param parms thy;
+          val output =
+            (case get_default_params (Proof_Context.init_global thy') of
+              [] => "none"
+            | new_defaults => cat_lines (map (fn (x, y) => x ^ "=" ^ y) new_defaults));
+          val _ = writeln ("Default parameters for 'refute':\n" ^ output);
+        in thy' end)));
+
+end;
+
--- a/src/HOL/ROOT	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/ROOT	Wed Oct 31 11:23:21 2012 +0100
@@ -49,6 +49,7 @@
     (* Code_Prolog  FIXME cf. 76965c356d2a *)
     Code_Real_Approx_By_Float
     Target_Numeral
+    Refute
   theories [condition = ISABELLE_FULL_TEST]
     Sum_of_Squares_Remote
   files "document/root.bib" "document/root.tex"
@@ -422,6 +423,7 @@
     Chinese
     Serbian
     "~~/src/HOL/Library/FinFun_Syntax"
+    "~~/src/HOL/Library/Refute"
   theories
     Iff_Oracle
     Coercion_Examples
--- a/src/HOL/Refute.thy	Wed Oct 31 11:23:21 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,113 +0,0 @@
-(*  Title:      HOL/Refute.thy
-    Author:     Tjark Weber
-    Copyright   2003-2007
-
-Basic setup and documentation for the 'refute' (and 'refute_params') command.
-*)
-
-header {* Refute *}
-
-theory Refute
-imports Hilbert_Choice List Sledgehammer
-keywords "refute" :: diag and "refute_params" :: thy_decl
-begin
-
-ML_file "Tools/refute.ML"
-setup Refute.setup
-
-refute_params
- [itself = 1,
-  minsize = 1,
-  maxsize = 8,
-  maxvars = 10000,
-  maxtime = 60,
-  satsolver = auto,
-  no_assms = false]
-
-text {*
-\small
-\begin{verbatim}
-(* ------------------------------------------------------------------------- *)
-(* REFUTE                                                                    *)
-(*                                                                           *)
-(* We use a SAT solver to search for a (finite) model that refutes a given   *)
-(* HOL formula.                                                              *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* NOTE                                                                      *)
-(*                                                                           *)
-(* I strongly recommend that you install a stand-alone SAT solver if you     *)
-(* want to use 'refute'.  For details see 'HOL/Tools/sat_solver.ML'.  If you *)
-(* have installed (a supported version of) zChaff, simply set 'ZCHAFF_HOME'  *)
-(* in 'etc/settings'.                                                        *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* USAGE                                                                     *)
-(*                                                                           *)
-(* See the file 'HOL/ex/Refute_Examples.thy' for examples.  The supported    *)
-(* parameters are explained below.                                           *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* CURRENT LIMITATIONS                                                       *)
-(*                                                                           *)
-(* 'refute' currently accepts formulas of higher-order predicate logic (with *)
-(* equality), including free/bound/schematic variables, lambda abstractions, *)
-(* sets and set membership, "arbitrary", "The", "Eps", records and           *)
-(* inductively defined sets.  Constants are unfolded automatically, and sort *)
-(* axioms are added as well.  Other, user-asserted axioms however are        *)
-(* ignored.  Inductive datatypes and recursive functions are supported, but  *)
-(* may lead to spurious countermodels.                                       *)
-(*                                                                           *)
-(* The (space) complexity of the algorithm is non-elementary.                *)
-(*                                                                           *)
-(* Schematic type variables are not supported.                               *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* PARAMETERS                                                                *)
-(*                                                                           *)
-(* The following global parameters are currently supported (and required,    *)
-(* except for "expect"):                                                     *)
-(*                                                                           *)
-(* Name          Type    Description                                         *)
-(*                                                                           *)
-(* "minsize"     int     Only search for models with size at least           *)
-(*                       'minsize'.                                          *)
-(* "maxsize"     int     If >0, only search for models with size at most     *)
-(*                       'maxsize'.                                          *)
-(* "maxvars"     int     If >0, use at most 'maxvars' boolean variables      *)
-(*                       when transforming the term into a propositional     *)
-(*                       formula.                                            *)
-(* "maxtime"     int     If >0, terminate after at most 'maxtime' seconds.   *)
-(*                       This value is ignored under some ML compilers.      *)
-(* "satsolver"   string  Name of the SAT solver to be used.                  *)
-(* "no_assms"    bool    If "true", assumptions in structured proofs are     *)
-(*                       not considered.                                     *)
-(* "expect"      string  Expected result ("genuine", "potential", "none", or *)
-(*                       "unknown").                                         *)
-(*                                                                           *)
-(* The size of particular types can be specified in the form type=size       *)
-(* (where 'type' is a string, and 'size' is an int).  Examples:              *)
-(* "'a"=1                                                                    *)
-(* "List.list"=2                                                             *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* FILES                                                                     *)
-(*                                                                           *)
-(* HOL/Tools/prop_logic.ML     Propositional logic                           *)
-(* HOL/Tools/sat_solver.ML     SAT solvers                                   *)
-(* HOL/Tools/refute.ML         Translation HOL -> propositional logic and    *)
-(*                             Boolean assignment -> HOL model               *)
-(* HOL/Refute.thy              This file: loads the ML files, basic setup,   *)
-(*                             documentation                                 *)
-(* HOL/SAT.thy                 Sets default parameters                       *)
-(* HOL/ex/Refute_Examples.thy  Examples                                      *)
-(* ------------------------------------------------------------------------- *)
-\end{verbatim}
-*}
-
-end
--- a/src/HOL/SAT.thy	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/SAT.thy	Wed Oct 31 11:23:21 2012 +0100
@@ -8,7 +8,7 @@
 header {* Reconstructing external resolution proofs for propositional logic *}
 
 theory SAT
-imports Refute
+imports Hilbert_Choice List Sledgehammer
 begin
 
 ML_file "Tools/sat_funcs.ML"
--- a/src/HOL/TPTP/ATP_Problem_Import.thy	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/TPTP/ATP_Problem_Import.thy	Wed Oct 31 11:23:21 2012 +0100
@@ -5,7 +5,10 @@
 header {* ATP Problem Importer *}
 
 theory ATP_Problem_Import
-imports Complex_Main TPTP_Interpret
+imports
+  Complex_Main
+  TPTP_Interpret
+  "~~/src/HOL/Library/Refute"
 begin
 
 ML_file "sledgehammer_tactics.ML"
--- a/src/HOL/TPTP/atp_problem_import.ML	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/TPTP/atp_problem_import.ML	Wed Oct 31 11:23:21 2012 +0100
@@ -72,7 +72,7 @@
     val thy = Proof_Context.theory_of ctxt
     val (defs, pseudo_defs) =
       defs |> map (ATP_Util.abs_extensionalize_term ctxt
-                   #> aptrueprop (open_form I))
+                   #> aptrueprop (hol_open_form I))
            |> List.partition (ATP_Util.is_legitimate_tptp_def
                               o perhaps (try HOLogic.dest_Trueprop)
                               o ATP_Util.unextensionalize_def)
--- a/src/HOL/Tools/Nitpick/nitpick_hol.ML	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_hol.ML	Wed Oct 31 11:23:21 2012 +0100
@@ -1311,10 +1311,10 @@
     |> map snd
   end
 
-(* Ideally we would check against "Complex_Main", not "Refute", but any theory
-   will do as long as it contains all the "axioms" and "axiomatization"
+(* Ideally we would check against "Complex_Main", not "Hilbert_Choice", but any
+   theory will do as long as it contains all the "axioms" and "axiomatization"
    commands. *)
-fun is_built_in_theory thy = Theory.subthy (thy, @{theory Refute})
+fun is_built_in_theory thy = Theory.subthy (thy, @{theory Hilbert_Choice})
 
 fun all_nondefs_of ctxt subst =
   ctxt |> Spec_Rules.get
--- a/src/HOL/Tools/Nitpick/nitpick_isar.ML	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_isar.ML	Wed Oct 31 11:23:21 2012 +0100
@@ -351,8 +351,6 @@
                    commas (map (quote o Syntax.string_of_term ctxt) ts)) ^
                 " (" ^ quote loc ^ "): " ^
                 commas (map (Syntax.string_of_typ ctxt) Ts) ^ ".")
-       | Refute.REFUTE (loc, details) =>
-         error ("Unhandled Refute error (" ^ quote loc ^ "): " ^ details ^ ".")
 
 fun pick_nits override_params mode i step state =
   let
--- a/src/HOL/Tools/Nitpick/nitpick_util.ML	Wed Oct 31 11:23:21 2012 +0100
+++ b/src/HOL/Tools/Nitpick/nitpick_util.ML	Wed Oct 31 11:23:21 2012 +0100
@@ -252,14 +252,34 @@
 val nat_T = @{typ nat}
 val int_T = @{typ int}
 
-val simple_string_of_typ = Refute.string_of_typ
-val is_real_constr = Refute.is_IDT_constructor
+fun simple_string_of_typ (Type (s, _))     = s
+  | simple_string_of_typ (TFree (s, _))    = s
+  | simple_string_of_typ (TVar ((s, _), _)) = s
+
+fun is_real_constr thy (s, T) =
+  case body_type T of
+    Type (s', _) =>
+    (case Datatype.get_constrs thy s' of
+       SOME constrs =>
+       List.exists (fn (cname, cty) =>
+         cname = s andalso Sign.typ_instance thy (T, cty)) constrs
+     | NONE => false)
+  | _  => false
+
 val typ_of_dtyp = ATP_Util.typ_of_dtyp
 val varify_type = ATP_Util.varify_type
 val instantiate_type = ATP_Util.instantiate_type
 val varify_and_instantiate_type = ATP_Util.varify_and_instantiate_type
-val is_of_class_const = Refute.is_const_of_class
-val get_class_def = Refute.get_classdef
+
+fun is_of_class_const thy (s, _) =
+  member (op =) (map Logic.const_of_class (Sign.all_classes thy)) s
+
+fun get_class_def thy class =
+  let val axname = class ^ "_class_def" in
+    Option.map (pair axname)
+      (AList.lookup (op =) (Theory.all_axioms_of thy) axname)
+  end;
+
 val monomorphic_term = ATP_Util.monomorphic_term
 val specialize_type = ATP_Util.specialize_type
 val eta_expand = ATP_Util.eta_expand
--- a/src/HOL/Tools/refute.ML	Wed Oct 31 11:23:21 2012 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3229 +0,0 @@
-(*  Title:      HOL/Tools/refute.ML
-    Author:     Tjark Weber, TU Muenchen
-
-Finite model generation for HOL formulas, using a SAT solver.
-*)
-
-(* ------------------------------------------------------------------------- *)
-(* Declares the 'REFUTE' signature as well as a structure 'Refute'.          *)
-(* Documentation is available in the Isabelle/Isar theory 'HOL/Refute.thy'.  *)
-(* ------------------------------------------------------------------------- *)
-
-signature REFUTE =
-sig
-
-  exception REFUTE of string * string
-
-(* ------------------------------------------------------------------------- *)
-(* Model/interpretation related code (translation HOL -> propositional logic *)
-(* ------------------------------------------------------------------------- *)
-
-  type params
-  type interpretation
-  type model
-  type arguments
-
-  exception MAXVARS_EXCEEDED
-
-  val add_interpreter : string -> (Proof.context -> model -> arguments -> term ->
-    (interpretation * model * arguments) option) -> theory -> theory
-  val add_printer : string -> (Proof.context -> model -> typ ->
-    interpretation -> (int -> bool) -> term option) -> theory -> theory
-
-  val interpret : Proof.context -> model -> arguments -> term ->
-    (interpretation * model * arguments)
-
-  val print : Proof.context -> model -> typ -> interpretation -> (int -> bool) -> term
-  val print_model : Proof.context -> model -> (int -> bool) -> string
-
-(* ------------------------------------------------------------------------- *)
-(* Interface                                                                 *)
-(* ------------------------------------------------------------------------- *)
-
-  val set_default_param  : (string * string) -> theory -> theory
-  val get_default_param  : Proof.context -> string -> string option
-  val get_default_params : Proof.context -> (string * string) list
-  val actual_params      : Proof.context -> (string * string) list -> params
-
-  val find_model :
-    Proof.context -> params -> term list -> term -> bool -> string
-
-  (* tries to find a model for a formula: *)
-  val satisfy_term :
-    Proof.context -> (string * string) list -> term list -> term -> string
-  (* tries to find a model that refutes a formula: *)
-  val refute_term :
-    Proof.context -> (string * string) list -> term list -> term -> string
-  val refute_goal :
-    Proof.context -> (string * string) list -> thm -> int -> string
-
-  val setup : theory -> theory
-
-(* ------------------------------------------------------------------------- *)
-(* Additional functions used by Nitpick (to be factored out)                 *)
-(* ------------------------------------------------------------------------- *)
-
-  val get_classdef : theory -> string -> (string * term) option
-  val norm_rhs : term -> term
-  val get_def : theory -> string * typ -> (string * term) option
-  val get_typedef : theory -> typ -> (string * term) option
-  val is_IDT_constructor : theory -> string * typ -> bool
-  val is_IDT_recursor : theory -> string * typ -> bool
-  val is_const_of_class: theory -> string * typ -> bool
-  val string_of_typ : typ -> string
-end;
-
-structure Refute : REFUTE =
-struct
-
-open Prop_Logic;
-
-(* We use 'REFUTE' only for internal error conditions that should    *)
-(* never occur in the first place (i.e. errors caused by bugs in our *)
-(* code).  Otherwise (e.g. to indicate invalid input data) we use    *)
-(* 'error'.                                                          *)
-exception REFUTE of string * string;  (* ("in function", "cause") *)
-
-(* should be raised by an interpreter when more variables would be *)
-(* required than allowed by 'maxvars'                              *)
-exception MAXVARS_EXCEEDED;
-
-
-(* ------------------------------------------------------------------------- *)
-(* TREES                                                                     *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* tree: implements an arbitrarily (but finitely) branching tree as a list   *)
-(*       of (lists of ...) elements                                          *)
-(* ------------------------------------------------------------------------- *)
-
-datatype 'a tree =
-    Leaf of 'a
-  | Node of ('a tree) list;
-
-(* ('a -> 'b) -> 'a tree -> 'b tree *)
-
-fun tree_map f tr =
-  case tr of
-    Leaf x  => Leaf (f x)
-  | Node xs => Node (map (tree_map f) xs);
-
-(* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
-
-fun tree_foldl f =
-  let
-    fun itl (e, Leaf x)  = f(e,x)
-      | itl (e, Node xs) = Library.foldl (tree_foldl f) (e,xs)
-  in
-    itl
-  end;
-
-(* 'a tree * 'b tree -> ('a * 'b) tree *)
-
-fun tree_pair (t1, t2) =
-  case t1 of
-    Leaf x =>
-      (case t2 of
-          Leaf y => Leaf (x,y)
-        | Node _ => raise REFUTE ("tree_pair",
-            "trees are of different height (second tree is higher)"))
-  | Node xs =>
-      (case t2 of
-          (* '~~' will raise an exception if the number of branches in   *)
-          (* both trees is different at the current node                 *)
-          Node ys => Node (map tree_pair (xs ~~ ys))
-        | Leaf _  => raise REFUTE ("tree_pair",
-            "trees are of different height (first tree is higher)"));
-
-(* ------------------------------------------------------------------------- *)
-(* params: parameters that control the translation into a propositional      *)
-(*         formula/model generation                                          *)
-(*                                                                           *)
-(* The following parameters are supported (and required (!), except for      *)
-(* "sizes" and "expect"):                                                    *)
-(*                                                                           *)
-(* Name          Type    Description                                         *)
-(*                                                                           *)
-(* "sizes"       (string * int) list                                         *)
-(*                       Size of ground types (e.g. 'a=2), or depth of IDTs. *)
-(* "minsize"     int     If >0, minimal size of each ground type/IDT depth.  *)
-(* "maxsize"     int     If >0, maximal size of each ground type/IDT depth.  *)
-(* "maxvars"     int     If >0, use at most 'maxvars' Boolean variables      *)
-(*                       when transforming the term into a propositional     *)
-(*                       formula.                                            *)
-(* "maxtime"     int     If >0, terminate after at most 'maxtime' seconds.   *)
-(* "satsolver"   string  SAT solver to be used.                              *)
-(* "no_assms"    bool    If "true", assumptions in structured proofs are     *)
-(*                       not considered.                                     *)
-(* "expect"      string  Expected result ("genuine", "potential", "none", or *)
-(*                       "unknown").                                         *)
-(* ------------------------------------------------------------------------- *)
-
-type params =
-  {
-    sizes    : (string * int) list,
-    minsize  : int,
-    maxsize  : int,
-    maxvars  : int,
-    maxtime  : int,
-    satsolver: string,
-    no_assms : bool,
-    expect   : string
-  };
-
-(* ------------------------------------------------------------------------- *)
-(* interpretation: a term's interpretation is given by a variable of type    *)
-(*                 'interpretation'                                          *)
-(* ------------------------------------------------------------------------- *)
-
-type interpretation =
-  prop_formula list tree;
-
-(* ------------------------------------------------------------------------- *)
-(* model: a model specifies the size of types and the interpretation of      *)
-(*        terms                                                              *)
-(* ------------------------------------------------------------------------- *)
-
-type model =
-  (typ * int) list * (term * interpretation) list;
-
-(* ------------------------------------------------------------------------- *)
-(* arguments: additional arguments required during interpretation of terms   *)
-(* ------------------------------------------------------------------------- *)
-
-type arguments =
-  {
-    (* just passed unchanged from 'params': *)
-    maxvars   : int,
-    (* whether to use 'make_equality' or 'make_def_equality': *)
-    def_eq    : bool,
-    (* the following may change during the translation: *)
-    next_idx  : int,
-    bounds    : interpretation list,
-    wellformed: prop_formula
-  };
-
-structure Data = Theory_Data
-(
-  type T =
-    {interpreters: (string * (Proof.context -> model -> arguments -> term ->
-      (interpretation * model * arguments) option)) list,
-     printers: (string * (Proof.context -> model -> typ -> interpretation ->
-      (int -> bool) -> term option)) list,
-     parameters: string Symtab.table};
-  val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
-  val extend = I;
-  fun merge
-    ({interpreters = in1, printers = pr1, parameters = pa1},
-     {interpreters = in2, printers = pr2, parameters = pa2}) : T =
-    {interpreters = AList.merge (op =) (K true) (in1, in2),
-     printers = AList.merge (op =) (K true) (pr1, pr2),
-     parameters = Symtab.merge (op =) (pa1, pa2)};
-);
-
-val get_data = Data.get o Proof_Context.theory_of;
-
-
-(* ------------------------------------------------------------------------- *)
-(* interpret: interprets the term 't' using a suitable interpreter; returns  *)
-(*            the interpretation and a (possibly extended) model that keeps  *)
-(*            track of the interpretation of subterms                        *)
-(* ------------------------------------------------------------------------- *)
-
-fun interpret ctxt model args t =
-  case get_first (fn (_, f) => f ctxt model args t)
-      (#interpreters (get_data ctxt)) of
-    NONE => raise REFUTE ("interpret",
-      "no interpreter for term " ^ quote (Syntax.string_of_term ctxt t))
-  | SOME x => x;
-
-(* ------------------------------------------------------------------------- *)
-(* print: converts the interpretation 'intr', which must denote a term of    *)
-(*        type 'T', into a term using a suitable printer                     *)
-(* ------------------------------------------------------------------------- *)
-
-fun print ctxt model T intr assignment =
-  case get_first (fn (_, f) => f ctxt model T intr assignment)
-      (#printers (get_data ctxt)) of
-    NONE => raise REFUTE ("print",
-      "no printer for type " ^ quote (Syntax.string_of_typ ctxt T))
-  | SOME x => x;
-
-(* ------------------------------------------------------------------------- *)
-(* print_model: turns the model into a string, using a fixed interpretation  *)
-(*              (given by an assignment for Boolean variables) and suitable  *)
-(*              printers                                                     *)
-(* ------------------------------------------------------------------------- *)
-
-fun print_model ctxt model assignment =
-  let
-    val (typs, terms) = model
-    val typs_msg =
-      if null typs then
-        "empty universe (no type variables in term)\n"
-      else
-        "Size of types: " ^ commas (map (fn (T, i) =>
-          Syntax.string_of_typ ctxt T ^ ": " ^ string_of_int i) typs) ^ "\n"
-    val show_consts_msg =
-      if not (Config.get ctxt show_consts) andalso Library.exists (is_Const o fst) terms then
-        "enable \"show_consts\" to show the interpretation of constants\n"
-      else
-        ""
-    val terms_msg =
-      if null terms then
-        "empty interpretation (no free variables in term)\n"
-      else
-        cat_lines (map_filter (fn (t, intr) =>
-          (* print constants only if 'show_consts' is true *)
-          if Config.get ctxt show_consts orelse not (is_Const t) then
-            SOME (Syntax.string_of_term ctxt t ^ ": " ^
-              Syntax.string_of_term ctxt
-                (print ctxt model (Term.type_of t) intr assignment))
-          else
-            NONE) terms) ^ "\n"
-  in
-    typs_msg ^ show_consts_msg ^ terms_msg
-  end;
-
-
-(* ------------------------------------------------------------------------- *)
-(* PARAMETER MANAGEMENT                                                      *)
-(* ------------------------------------------------------------------------- *)
-
-fun add_interpreter name f = Data.map (fn {interpreters, printers, parameters} =>
-  case AList.lookup (op =) interpreters name of
-    NONE => {interpreters = (name, f) :: interpreters,
-      printers = printers, parameters = parameters}
-  | SOME _ => error ("Interpreter " ^ name ^ " already declared"));
-
-fun add_printer name f = Data.map (fn {interpreters, printers, parameters} =>
-  case AList.lookup (op =) printers name of
-    NONE => {interpreters = interpreters,
-      printers = (name, f) :: printers, parameters = parameters}
-  | SOME _ => error ("Printer " ^ name ^ " already declared"));
-
-(* ------------------------------------------------------------------------- *)
-(* set_default_param: stores the '(name, value)' pair in Data's              *)
-(*                    parameter table                                        *)
-(* ------------------------------------------------------------------------- *)
-
-fun set_default_param (name, value) = Data.map
-  (fn {interpreters, printers, parameters} =>
-    {interpreters = interpreters, printers = printers,
-      parameters = Symtab.update (name, value) parameters});
-
-(* ------------------------------------------------------------------------- *)
-(* get_default_param: retrieves the value associated with 'name' from        *)
-(*                    Data's parameter table                                 *)
-(* ------------------------------------------------------------------------- *)
-
-val get_default_param = Symtab.lookup o #parameters o get_data;
-
-(* ------------------------------------------------------------------------- *)
-(* get_default_params: returns a list of all '(name, value)' pairs that are  *)
-(*                     stored in Data's parameter table                      *)
-(* ------------------------------------------------------------------------- *)
-
-val get_default_params = Symtab.dest o #parameters o get_data;
-
-(* ------------------------------------------------------------------------- *)
-(* actual_params: takes a (possibly empty) list 'params' of parameters that  *)
-(*      override the default parameters currently specified, and             *)
-(*      returns a record that can be passed to 'find_model'.                 *)
-(* ------------------------------------------------------------------------- *)
-
-fun actual_params ctxt override =
-  let
-    (* (string * string) list * string -> bool *)
-    fun read_bool (parms, name) =
-      case AList.lookup (op =) parms name of
-        SOME "true" => true
-      | SOME "false" => false
-      | SOME s => error ("parameter " ^ quote name ^
-          " (value is " ^ quote s ^ ") must be \"true\" or \"false\"")
-      | NONE   => error ("parameter " ^ quote name ^
-          " must be assigned a value")
-    (* (string * string) list * string -> int *)
-    fun read_int (parms, name) =
-      case AList.lookup (op =) parms name of
-        SOME s =>
-          (case Int.fromString s of
-            SOME i => i
-          | NONE   => error ("parameter " ^ quote name ^
-            " (value is " ^ quote s ^ ") must be an integer value"))
-      | NONE => error ("parameter " ^ quote name ^
-          " must be assigned a value")
-    (* (string * string) list * string -> string *)
-    fun read_string (parms, name) =
-      case AList.lookup (op =) parms name of
-        SOME s => s
-      | NONE => error ("parameter " ^ quote name ^
-        " must be assigned a value")
-    (* 'override' first, defaults last: *)
-    (* (string * string) list *)
-    val allparams = override @ get_default_params ctxt
-    (* int *)
-    val minsize = read_int (allparams, "minsize")
-    val maxsize = read_int (allparams, "maxsize")
-    val maxvars = read_int (allparams, "maxvars")
-    val maxtime = read_int (allparams, "maxtime")
-    (* string *)
-    val satsolver = read_string (allparams, "satsolver")
-    val no_assms = read_bool (allparams, "no_assms")
-    val expect = the_default "" (AList.lookup (op =) allparams "expect")
-    (* all remaining parameters of the form "string=int" are collected in *)
-    (* 'sizes'                                                            *)
-    (* TODO: it is currently not possible to specify a size for a type    *)
-    (*       whose name is one of the other parameters (e.g. 'maxvars')   *)
-    (* (string * int) list *)
-    val sizes = map_filter
-      (fn (name, value) => Option.map (pair name) (Int.fromString value))
-      (filter (fn (name, _) => name<>"minsize" andalso name<>"maxsize"
-        andalso name<>"maxvars" andalso name<>"maxtime"
-        andalso name<>"satsolver" andalso name<>"no_assms") allparams)
-  in
-    {sizes=sizes, minsize=minsize, maxsize=maxsize, maxvars=maxvars,
-      maxtime=maxtime, satsolver=satsolver, no_assms=no_assms, expect=expect}
-  end;
-
-
-(* ------------------------------------------------------------------------- *)
-(* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL       *)
-(* ------------------------------------------------------------------------- *)
-
-val typ_of_dtyp = ATP_Util.typ_of_dtyp
-
-(* ------------------------------------------------------------------------- *)
-(* close_form: universal closure over schematic variables in 't'             *)
-(* ------------------------------------------------------------------------- *)
-
-(* Term.term -> Term.term *)
-
-fun close_form t =
-  let
-    val vars = sort_wrt (fst o fst) (Term.add_vars t [])
-  in
-    fold (fn ((x, i), T) => fn t' =>
-      Logic.all_const T $ Abs (x, T, abstract_over (Var ((x, i), T), t'))) vars t
-  end;
-
-val monomorphic_term = ATP_Util.monomorphic_term
-val specialize_type = ATP_Util.specialize_type
-
-(* ------------------------------------------------------------------------- *)
-(* is_const_of_class: returns 'true' iff 'Const (s, T)' is a constant that   *)
-(*                    denotes membership to an axiomatic type class          *)
-(* ------------------------------------------------------------------------- *)
-
-fun is_const_of_class thy (s, _) =
-  let
-    val class_const_names = map Logic.const_of_class (Sign.all_classes thy)
-  in
-    (* I'm not quite sure if checking the name 's' is sufficient, *)
-    (* or if we should also check the type 'T'.                   *)
-    member (op =) class_const_names s
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* is_IDT_constructor: returns 'true' iff 'Const (s, T)' is the constructor  *)
-(*                     of an inductive datatype in 'thy'                     *)
-(* ------------------------------------------------------------------------- *)
-
-fun is_IDT_constructor thy (s, T) =
-  (case body_type T of
-    Type (s', _) =>
-      (case Datatype.get_constrs thy s' of
-        SOME constrs =>
-          List.exists (fn (cname, cty) =>
-            cname = s andalso Sign.typ_instance thy (T, cty)) constrs
-      | NONE => false)
-  | _  => false);
-
-(* ------------------------------------------------------------------------- *)
-(* is_IDT_recursor: returns 'true' iff 'Const (s, T)' is the recursion       *)
-(*                  operator of an inductive datatype in 'thy'               *)
-(* ------------------------------------------------------------------------- *)
-
-fun is_IDT_recursor thy (s, _) =
-  let
-    val rec_names = Symtab.fold (append o #rec_names o snd)
-      (Datatype.get_all thy) []
-  in
-    (* I'm not quite sure if checking the name 's' is sufficient, *)
-    (* or if we should also check the type 'T'.                   *)
-    member (op =) rec_names s
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* norm_rhs: maps  f ?t1 ... ?tn == rhs  to  %t1...tn. rhs                   *)
-(* ------------------------------------------------------------------------- *)
-
-fun norm_rhs eqn =
-  let
-    fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
-      | lambda v t = raise TERM ("lambda", [v, t])
-    val (lhs, rhs) = Logic.dest_equals eqn
-    val (_, args) = Term.strip_comb lhs
-  in
-    fold lambda (rev args) rhs
-  end
-
-(* ------------------------------------------------------------------------- *)
-(* get_def: looks up the definition of a constant                            *)
-(* ------------------------------------------------------------------------- *)
-
-fun get_def thy (s, T) =
-  let
-    (* (string * Term.term) list -> (string * Term.term) option *)
-    fun get_def_ax [] = NONE
-      | get_def_ax ((axname, ax) :: axioms) =
-          (let
-            val (lhs, _) = Logic.dest_equals ax  (* equations only *)
-            val c        = Term.head_of lhs
-            val (s', T') = Term.dest_Const c
-          in
-            if s=s' then
-              let
-                val typeSubs = Sign.typ_match thy (T', T) Vartab.empty
-                val ax'      = monomorphic_term typeSubs ax
-                val rhs      = norm_rhs ax'
-              in
-                SOME (axname, rhs)
-              end
-            else
-              get_def_ax axioms
-          end handle ERROR _         => get_def_ax axioms
-                   | TERM _          => get_def_ax axioms
-                   | Type.TYPE_MATCH => get_def_ax axioms)
-  in
-    get_def_ax (Theory.all_axioms_of thy)
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* get_typedef: looks up the definition of a type, as created by "typedef"   *)
-(* ------------------------------------------------------------------------- *)
-
-fun get_typedef thy T =
-  let
-    (* (string * Term.term) list -> (string * Term.term) option *)
-    fun get_typedef_ax [] = NONE
-      | get_typedef_ax ((axname, ax) :: axioms) =
-          (let
-            (* Term.term -> Term.typ option *)
-            fun type_of_type_definition (Const (s', T')) =
-                  if s'= @{const_name type_definition} then
-                    SOME T'
-                  else
-                    NONE
-              | type_of_type_definition (Free _) = NONE
-              | type_of_type_definition (Var _) = NONE
-              | type_of_type_definition (Bound _) = NONE
-              | type_of_type_definition (Abs (_, _, body)) =
-                  type_of_type_definition body
-              | type_of_type_definition (t1 $ t2) =
-                  (case type_of_type_definition t1 of
-                    SOME x => SOME x
-                  | NONE => type_of_type_definition t2)
-          in
-            case type_of_type_definition ax of
-              SOME T' =>
-                let
-                  val T'' = domain_type (domain_type T')
-                  val typeSubs = Sign.typ_match thy (T'', T) Vartab.empty
-                in
-                  SOME (axname, monomorphic_term typeSubs ax)
-                end
-            | NONE => get_typedef_ax axioms
-          end handle ERROR _         => get_typedef_ax axioms
-                   | TERM _          => get_typedef_ax axioms
-                   | Type.TYPE_MATCH => get_typedef_ax axioms)
-  in
-    get_typedef_ax (Theory.all_axioms_of thy)
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* get_classdef: looks up the defining axiom for an axiomatic type class, as *)
-(*               created by the "axclass" command                            *)
-(* ------------------------------------------------------------------------- *)
-
-fun get_classdef thy class =
-  let
-    val axname = class ^ "_class_def"
-  in
-    Option.map (pair axname)
-      (AList.lookup (op =) (Theory.all_axioms_of thy) axname)
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* unfold_defs: unfolds all defined constants in a term 't', beta-eta        *)
-(*              normalizes the result term; certain constants are not        *)
-(*              unfolded (cf. 'collect_axioms' and the various interpreters  *)
-(*              below): if the interpretation respects a definition anyway,  *)
-(*              that definition does not need to be unfolded                 *)
-(* ------------------------------------------------------------------------- *)
-
-(* Note: we could intertwine unfolding of constants and beta-(eta-)       *)
-(*       normalization; this would save some unfolding for terms where    *)
-(*       constants are eliminated by beta-reduction (e.g. 'K c1 c2').  On *)
-(*       the other hand, this would cause additional work for terms where *)
-(*       constants are duplicated by beta-reduction (e.g. 'S c1 c2 c3').  *)
-
-fun unfold_defs thy t =
-  let
-    (* Term.term -> Term.term *)
-    fun unfold_loop t =
-      case t of
-      (* Pure *)
-        Const (@{const_name all}, _) => t
-      | Const (@{const_name "=="}, _) => t
-      | Const (@{const_name "==>"}, _) => t
-      | Const (@{const_name TYPE}, _) => t  (* axiomatic type classes *)
-      (* HOL *)
-      | Const (@{const_name Trueprop}, _) => t
-      | Const (@{const_name Not}, _) => t
-      | (* redundant, since 'True' is also an IDT constructor *)
-        Const (@{const_name True}, _) => t
-      | (* redundant, since 'False' is also an IDT constructor *)
-        Const (@{const_name False}, _) => t
-      | Const (@{const_name undefined}, _) => t
-      | Const (@{const_name The}, _) => t
-      | Const (@{const_name Hilbert_Choice.Eps}, _) => t
-      | Const (@{const_name All}, _) => t
-      | Const (@{const_name Ex}, _) => t
-      | Const (@{const_name HOL.eq}, _) => t
-      | Const (@{const_name HOL.conj}, _) => t
-      | Const (@{const_name HOL.disj}, _) => t
-      | Const (@{const_name HOL.implies}, _) => t
-      (* sets *)
-      | Const (@{const_name Collect}, _) => t
-      | Const (@{const_name Set.member}, _) => t
-      (* other optimizations *)
-      | Const (@{const_name Finite_Set.card}, _) => t
-      | Const (@{const_name Finite_Set.finite}, _) => t
-      | Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
-          Type ("fun", [@{typ nat}, @{typ bool}])])) => t
-      | Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
-          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
-      | Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
-          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
-      | Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
-          Type ("fun", [@{typ nat}, @{typ nat}])])) => t
-      | Const (@{const_name List.append}, _) => t
-(* UNSOUND
-      | Const (@{const_name lfp}, _) => t
-      | Const (@{const_name gfp}, _) => t
-*)
-      | Const (@{const_name fst}, _) => t
-      | Const (@{const_name snd}, _) => t
-      (* simply-typed lambda calculus *)
-      | Const (s, T) =>
-          (if is_IDT_constructor thy (s, T)
-            orelse is_IDT_recursor thy (s, T) then
-            t  (* do not unfold IDT constructors/recursors *)
-          (* unfold the constant if there is a defining equation *)
-          else
-            case get_def thy (s, T) of
-              SOME ((*axname*) _, rhs) =>
-              (* Note: if the term to be unfolded (i.e. 'Const (s, T)')  *)
-              (* occurs on the right-hand side of the equation, i.e. in  *)
-              (* 'rhs', we must not use this equation to unfold, because *)
-              (* that would loop.  Here would be the right place to      *)
-              (* check this.  However, getting this really right seems   *)
-              (* difficult because the user may state arbitrary axioms,  *)
-              (* which could interact with overloading to create loops.  *)
-              ((*tracing (" unfolding: " ^ axname);*)
-               unfold_loop rhs)
-            | NONE => t)
-      | Free _ => t
-      | Var _ => t
-      | Bound _ => t
-      | Abs (s, T, body) => Abs (s, T, unfold_loop body)
-      | t1 $ t2 => (unfold_loop t1) $ (unfold_loop t2)
-    val result = Envir.beta_eta_contract (unfold_loop t)
-  in
-    result
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* collect_axioms: collects (monomorphic, universally quantified, unfolded   *)
-(*                 versions of) all HOL axioms that are relevant w.r.t 't'   *)
-(* ------------------------------------------------------------------------- *)
-
-(* Note: to make the collection of axioms more easily extensible, this    *)
-(*       function could be based on user-supplied "axiom collectors",     *)
-(*       similar to 'interpret'/interpreters or 'print'/printers          *)
-
-(* Note: currently we use "inverse" functions to the definitional         *)
-(*       mechanisms provided by Isabelle/HOL, e.g. for "axclass",         *)
-(*       "typedef", "definition".  A more general approach could consider *)
-(*       *every* axiom of the theory and collect it if it has a constant/ *)
-(*       type/typeclass in common with the term 't'.                      *)
-
-(* Which axioms are "relevant" for a particular term/type goes hand in    *)
-(* hand with the interpretation of that term/type by its interpreter (see *)
-(* way below): if the interpretation respects an axiom anyway, the axiom  *)
-(* does not need to be added as a constraint here.                        *)
-
-(* To avoid collecting the same axiom multiple times, we use an           *)
-(* accumulator 'axs' which contains all axioms collected so far.          *)
-
-fun collect_axioms ctxt t =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    val _ = tracing "Adding axioms..."
-    val axioms = Theory.all_axioms_of thy
-    fun collect_this_axiom (axname, ax) axs =
-      let
-        val ax' = unfold_defs thy ax
-      in
-        if member (op aconv) axs ax' then axs
-        else (tracing axname; collect_term_axioms ax' (ax' :: axs))
-      end
-    and collect_sort_axioms T axs =
-      let
-        val sort =
-          (case T of
-            TFree (_, sort) => sort
-          | TVar (_, sort)  => sort
-          | _ => raise REFUTE ("collect_axioms",
-              "type " ^ Syntax.string_of_typ ctxt T ^ " is not a variable"))
-        (* obtain axioms for all superclasses *)
-        val superclasses = sort @ maps (Sign.super_classes thy) sort
-        (* merely an optimization, because 'collect_this_axiom' disallows *)
-        (* duplicate axioms anyway:                                       *)
-        val superclasses = distinct (op =) superclasses
-        val class_axioms = maps (fn class => map (fn ax =>
-          ("<" ^ class ^ ">", Thm.prop_of ax))
-          (#axioms (AxClass.get_info thy class) handle ERROR _ => []))
-          superclasses
-        (* replace the (at most one) schematic type variable in each axiom *)
-        (* by the actual type 'T'                                          *)
-        val monomorphic_class_axioms = map (fn (axname, ax) =>
-          (case Term.add_tvars ax [] of
-            [] => (axname, ax)
-          | [(idx, S)] => (axname, monomorphic_term (Vartab.make [(idx, (S, T))]) ax)
-          | _ =>
-            raise REFUTE ("collect_axioms", "class axiom " ^ axname ^ " (" ^
-              Syntax.string_of_term ctxt ax ^
-              ") contains more than one type variable")))
-          class_axioms
-      in
-        fold collect_this_axiom monomorphic_class_axioms axs
-      end
-    and collect_type_axioms T axs =
-      case T of
-      (* simple types *)
-        Type ("prop", []) => axs
-      | Type ("fun", [T1, T2]) => collect_type_axioms T2 (collect_type_axioms T1 axs)
-      | Type (@{type_name set}, [T1]) => collect_type_axioms T1 axs
-      (* axiomatic type classes *)
-      | Type ("itself", [T1]) => collect_type_axioms T1 axs
-      | Type (s, Ts) =>
-        (case Datatype.get_info thy s of
-          SOME _ =>  (* inductive datatype *)
-            (* only collect relevant type axioms for the argument types *)
-            fold collect_type_axioms Ts axs
-        | NONE =>
-          (case get_typedef thy T of
-            SOME (axname, ax) =>
-              collect_this_axiom (axname, ax) axs
-          | NONE =>
-            (* unspecified type, perhaps introduced with "typedecl" *)
-            (* at least collect relevant type axioms for the argument types *)
-            fold collect_type_axioms Ts axs))
-      (* axiomatic type classes *)
-      | TFree _ => collect_sort_axioms T axs
-      (* axiomatic type classes *)
-      | TVar _ => collect_sort_axioms T axs
-    and collect_term_axioms t axs =
-      case t of
-      (* Pure *)
-        Const (@{const_name all}, _) => axs
-      | Const (@{const_name "=="}, _) => axs
-      | Const (@{const_name "==>"}, _) => axs
-      (* axiomatic type classes *)
-      | Const (@{const_name TYPE}, T) => collect_type_axioms T axs
-      (* HOL *)
-      | Const (@{const_name Trueprop}, _) => axs
-      | Const (@{const_name Not}, _) => axs
-      (* redundant, since 'True' is also an IDT constructor *)
-      | Const (@{const_name True}, _) => axs
-      (* redundant, since 'False' is also an IDT constructor *)
-      | Const (@{const_name False}, _) => axs
-      | Const (@{const_name undefined}, T) => collect_type_axioms T axs
-      | Const (@{const_name The}, T) =>
-          let
-            val ax = specialize_type thy (@{const_name The}, T)
-              (the (AList.lookup (op =) axioms "HOL.the_eq_trivial"))
-          in
-            collect_this_axiom ("HOL.the_eq_trivial", ax) axs
-          end
-      | Const (@{const_name Hilbert_Choice.Eps}, T) =>
-          let
-            val ax = specialize_type thy (@{const_name Hilbert_Choice.Eps}, T)
-              (the (AList.lookup (op =) axioms "Hilbert_Choice.someI"))
-          in
-            collect_this_axiom ("Hilbert_Choice.someI", ax) axs
-          end
-      | Const (@{const_name All}, T) => collect_type_axioms T axs
-      | Const (@{const_name Ex}, T) => collect_type_axioms T axs
-      | Const (@{const_name HOL.eq}, T) => collect_type_axioms T axs
-      | Const (@{const_name HOL.conj}, _) => axs
-      | Const (@{const_name HOL.disj}, _) => axs
-      | Const (@{const_name HOL.implies}, _) => axs
-      (* sets *)
-      | Const (@{const_name Collect}, T) => collect_type_axioms T axs
-      | Const (@{const_name Set.member}, T) => collect_type_axioms T axs
-      (* other optimizations *)
-      | Const (@{const_name Finite_Set.card}, T) => collect_type_axioms T axs
-      | Const (@{const_name Finite_Set.finite}, T) =>
-        collect_type_axioms T axs
-      | Const (@{const_name Orderings.less}, T as Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ bool}])])) =>
-          collect_type_axioms T axs
-      | Const (@{const_name Groups.plus}, T as Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-          collect_type_axioms T axs
-      | Const (@{const_name Groups.minus}, T as Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-          collect_type_axioms T axs
-      | Const (@{const_name Groups.times}, T as Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-          collect_type_axioms T axs
-      | Const (@{const_name List.append}, T) => collect_type_axioms T axs
-(* UNSOUND
-      | Const (@{const_name lfp}, T) => collect_type_axioms T axs
-      | Const (@{const_name gfp}, T) => collect_type_axioms T axs
-*)
-      | Const (@{const_name fst}, T) => collect_type_axioms T axs
-      | Const (@{const_name snd}, T) => collect_type_axioms T axs
-      (* simply-typed lambda calculus *)
-      | Const (s, T) =>
-          if is_const_of_class thy (s, T) then
-            (* axiomatic type classes: add "OFCLASS(?'a::c, c_class)" *)
-            (* and the class definition                               *)
-            let
-              val class = Logic.class_of_const s
-              val of_class = Logic.mk_of_class (TVar (("'a", 0), [class]), class)
-              val ax_in = SOME (specialize_type thy (s, T) of_class)
-                (* type match may fail due to sort constraints *)
-                handle Type.TYPE_MATCH => NONE
-              val ax_1 = Option.map (fn ax => (Syntax.string_of_term ctxt ax, ax)) ax_in
-              val ax_2 = Option.map (apsnd (specialize_type thy (s, T))) (get_classdef thy class)
-            in
-              collect_type_axioms T (fold collect_this_axiom (map_filter I [ax_1, ax_2]) axs)
-            end
-          else if is_IDT_constructor thy (s, T)
-            orelse is_IDT_recursor thy (s, T)
-          then
-            (* only collect relevant type axioms *)
-            collect_type_axioms T axs
-          else
-            (* other constants should have been unfolded, with some *)
-            (* exceptions: e.g. Abs_xxx/Rep_xxx functions for       *)
-            (* typedefs, or type-class related constants            *)
-            (* only collect relevant type axioms *)
-            collect_type_axioms T axs
-      | Free (_, T) => collect_type_axioms T axs
-      | Var (_, T) => collect_type_axioms T axs
-      | Bound _ => axs
-      | Abs (_, T, body) => collect_term_axioms body (collect_type_axioms T axs)
-      | t1 $ t2 => collect_term_axioms t2 (collect_term_axioms t1 axs)
-    val result = map close_form (collect_term_axioms t [])
-    val _ = tracing " ...done."
-  in
-    result
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* ground_types: collects all ground types in a term (including argument     *)
-(*               types of other types), suppressing duplicates.  Does not    *)
-(*               return function types, set types, non-recursive IDTs, or    *)
-(*               'propT'.  For IDTs, also the argument types of constructors *)
-(*               and all mutually recursive IDTs are considered.             *)
-(* ------------------------------------------------------------------------- *)
-
-fun ground_types ctxt t =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    fun collect_types T acc =
-      (case T of
-        Type ("fun", [T1, T2]) => collect_types T1 (collect_types T2 acc)
-      | Type ("prop", []) => acc
-      | Type (@{type_name set}, [T1]) => collect_types T1 acc
-      | Type (s, Ts) =>
-          (case Datatype.get_info thy s of
-            SOME info =>  (* inductive datatype *)
-              let
-                val index = #index info
-                val descr = #descr info
-                val (_, typs, _) = the (AList.lookup (op =) descr index)
-                val typ_assoc = typs ~~ Ts
-                (* sanity check: every element in 'dtyps' must be a *)
-                (* 'DtTFree'                                        *)
-                val _ = if Library.exists (fn d =>
-                  case d of Datatype.DtTFree _ => false | _ => true) typs then
-                  raise REFUTE ("ground_types", "datatype argument (for type "
-                    ^ Syntax.string_of_typ ctxt T ^ ") is not a variable")
-                else ()
-                (* required for mutually recursive datatypes; those need to   *)
-                (* be added even if they are an instance of an otherwise non- *)
-                (* recursive datatype                                         *)
-                fun collect_dtyp d acc =
-                  let
-                    val dT = typ_of_dtyp descr typ_assoc d
-                  in
-                    case d of
-                      Datatype.DtTFree _ =>
-                      collect_types dT acc
-                    | Datatype.DtType (_, ds) =>
-                      collect_types dT (fold_rev collect_dtyp ds acc)
-                    | Datatype.DtRec i =>
-                      if member (op =) acc dT then
-                        acc  (* prevent infinite recursion *)
-                      else
-                        let
-                          val (_, dtyps, dconstrs) = the (AList.lookup (op =) descr i)
-                          (* if the current type is a recursive IDT (i.e. a depth *)
-                          (* is required), add it to 'acc'                        *)
-                          val acc_dT = if Library.exists (fn (_, ds) =>
-                            Library.exists Datatype_Aux.is_rec_type ds) dconstrs then
-                              insert (op =) dT acc
-                            else acc
-                          (* collect argument types *)
-                          val acc_dtyps = fold_rev collect_dtyp dtyps acc_dT
-                          (* collect constructor types *)
-                          val acc_dconstrs = fold_rev collect_dtyp (maps snd dconstrs) acc_dtyps
-                        in
-                          acc_dconstrs
-                        end
-                  end
-              in
-                (* argument types 'Ts' could be added here, but they are also *)
-                (* added by 'collect_dtyp' automatically                      *)
-                collect_dtyp (Datatype.DtRec index) acc
-              end
-          | NONE =>
-            (* not an inductive datatype, e.g. defined via "typedef" or *)
-            (* "typedecl"                                               *)
-            insert (op =) T (fold collect_types Ts acc))
-      | TFree _ => insert (op =) T acc
-      | TVar _ => insert (op =) T acc)
-  in
-    fold_types collect_types t []
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* string_of_typ: (rather naive) conversion from types to strings, used to   *)
-(*                look up the size of a type in 'sizes'.  Parameterized      *)
-(*                types with different parameters (e.g. "'a list" vs. "bool  *)
-(*                list") are identified.                                     *)
-(* ------------------------------------------------------------------------- *)
-
-(* Term.typ -> string *)
-
-fun string_of_typ (Type (s, _))     = s
-  | string_of_typ (TFree (s, _))    = s
-  | string_of_typ (TVar ((s,_), _)) = s;
-
-(* ------------------------------------------------------------------------- *)
-(* first_universe: returns the "first" (i.e. smallest) universe by assigning *)
-(*                 'minsize' to every type for which no size is specified in *)
-(*                 'sizes'                                                   *)
-(* ------------------------------------------------------------------------- *)
-
-(* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
-
-fun first_universe xs sizes minsize =
-  let
-    fun size_of_typ T =
-      case AList.lookup (op =) sizes (string_of_typ T) of
-        SOME n => n
-      | NONE => minsize
-  in
-    map (fn T => (T, size_of_typ T)) xs
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* next_universe: enumerates all universes (i.e. assignments of sizes to     *)
-(*                types), where the minimal size of a type is given by       *)
-(*                'minsize', the maximal size is given by 'maxsize', and a   *)
-(*                type may have a fixed size given in 'sizes'                *)
-(* ------------------------------------------------------------------------- *)
-
-(* (Term.typ * int) list -> (string * int) list -> int -> int ->
-  (Term.typ * int) list option *)
-
-fun next_universe xs sizes minsize maxsize =
-  let
-    (* creates the "first" list of length 'len', where the sum of all list *)
-    (* elements is 'sum', and the length of the list is 'len'              *)
-    (* int -> int -> int -> int list option *)
-    fun make_first _ 0 sum =
-          if sum = 0 then
-            SOME []
-          else
-            NONE
-      | make_first max len sum =
-          if sum <= max orelse max < 0 then
-            Option.map (fn xs' => sum :: xs') (make_first max (len-1) 0)
-          else
-            Option.map (fn xs' => max :: xs') (make_first max (len-1) (sum-max))
-    (* enumerates all int lists with a fixed length, where 0<=x<='max' for *)
-    (* all list elements x (unless 'max'<0)                                *)
-    (* int -> int -> int -> int list -> int list option *)
-    fun next _ _ _ [] =
-          NONE
-      | next max len sum [x] =
-          (* we've reached the last list element, so there's no shift possible *)
-          make_first max (len+1) (sum+x+1)  (* increment 'sum' by 1 *)
-      | next max len sum (x1::x2::xs) =
-          if x1>0 andalso (x2<max orelse max<0) then
-            (* we can shift *)
-            SOME (the (make_first max (len+1) (sum+x1-1)) @ (x2+1) :: xs)
-          else
-            (* continue search *)
-            next max (len+1) (sum+x1) (x2::xs)
-    (* only consider those types for which the size is not fixed *)
-    val mutables = filter_out (AList.defined (op =) sizes o string_of_typ o fst) xs
-    (* subtract 'minsize' from every size (will be added again at the end) *)
-    val diffs = map (fn (_, n) => n-minsize) mutables
-  in
-    case next (maxsize-minsize) 0 0 diffs of
-      SOME diffs' =>
-        (* merge with those types for which the size is fixed *)
-        SOME (fst (fold_map (fn (T, _) => fn ds =>
-          case AList.lookup (op =) sizes (string_of_typ T) of
-          (* return the fixed size *)
-            SOME n => ((T, n), ds)
-          (* consume the head of 'ds', add 'minsize' *)
-          | NONE   => ((T, minsize + hd ds), tl ds))
-          xs diffs'))
-    | NONE => NONE
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* toTrue: converts the interpretation of a Boolean value to a propositional *)
-(*         formula that is true iff the interpretation denotes "true"        *)
-(* ------------------------------------------------------------------------- *)
-
-(* interpretation -> prop_formula *)
-
-fun toTrue (Leaf [fm, _]) = fm
-  | toTrue _ = raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
-
-(* ------------------------------------------------------------------------- *)
-(* toFalse: converts the interpretation of a Boolean value to a              *)
-(*          propositional formula that is true iff the interpretation        *)
-(*          denotes "false"                                                  *)
-(* ------------------------------------------------------------------------- *)
-
-(* interpretation -> prop_formula *)
-
-fun toFalse (Leaf [_, fm]) = fm
-  | toFalse _ = raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
-
-(* ------------------------------------------------------------------------- *)
-(* find_model: repeatedly calls 'interpret' with appropriate parameters,     *)
-(*             applies a SAT solver, and (in case a model is found) displays *)
-(*             the model to the user by calling 'print_model'                *)
-(* {...}     : parameters that control the translation/model generation      *)
-(* assm_ts   : assumptions to be considered unless "no_assms" is specified   *)
-(* t         : term to be translated into a propositional formula            *)
-(* negate    : if true, find a model that makes 't' false (rather than true) *)
-(* ------------------------------------------------------------------------- *)
-
-fun find_model ctxt
-    {sizes, minsize, maxsize, maxvars, maxtime, satsolver, no_assms, expect}
-    assm_ts t negate =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    (* string -> string *)
-    fun check_expect outcome_code =
-      if expect = "" orelse outcome_code = expect then outcome_code
-      else error ("Unexpected outcome: " ^ quote outcome_code ^ ".")
-    (* unit -> string *)
-    fun wrapper () =
-      let
-        val timer = Timer.startRealTimer ()
-        val t =
-          if no_assms then t
-          else if negate then Logic.list_implies (assm_ts, t)
-          else Logic.mk_conjunction_list (t :: assm_ts)
-        val u = unfold_defs thy t
-        val _ = tracing ("Unfolded term: " ^ Syntax.string_of_term ctxt u)
-        val axioms = collect_axioms ctxt u
-        (* Term.typ list *)
-        val types = fold (union (op =) o ground_types ctxt) (u :: axioms) []
-        val _ = tracing ("Ground types: "
-          ^ (if null types then "none."
-             else commas (map (Syntax.string_of_typ ctxt) types)))
-        (* we can only consider fragments of recursive IDTs, so we issue a  *)
-        (* warning if the formula contains a recursive IDT                  *)
-        (* TODO: no warning needed for /positive/ occurrences of IDTs       *)
-        val maybe_spurious = Library.exists (fn
-            Type (s, _) =>
-              (case Datatype.get_info thy s of
-                SOME info =>  (* inductive datatype *)
-                  let
-                    val index           = #index info
-                    val descr           = #descr info
-                    val (_, _, constrs) = the (AList.lookup (op =) descr index)
-                  in
-                    (* recursive datatype? *)
-                    Library.exists (fn (_, ds) =>
-                      Library.exists Datatype_Aux.is_rec_type ds) constrs
-                  end
-              | NONE => false)
-          | _ => false) types
-        val _ =
-          if maybe_spurious then
-            warning ("Term contains a recursive datatype; "
-              ^ "countermodel(s) may be spurious!")
-          else
-            ()
-        (* (Term.typ * int) list -> string *)
-        fun find_model_loop universe =
-          let
-            val msecs_spent = Time.toMilliseconds (Timer.checkRealTimer timer)
-            val _ = maxtime = 0 orelse msecs_spent < 1000 * maxtime
-                    orelse raise TimeLimit.TimeOut
-            val init_model = (universe, [])
-            val init_args  = {maxvars = maxvars, def_eq = false, next_idx = 1,
-              bounds = [], wellformed = True}
-            val _ = tracing ("Translating term (sizes: "
-              ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
-            (* translate 'u' and all axioms *)
-            val (intrs, (model, args)) = fold_map (fn t' => fn (m, a) =>
-              let
-                val (i, m', a') = interpret ctxt m a t'
-              in
-                (* set 'def_eq' to 'true' *)
-                (i, (m', {maxvars = #maxvars a', def_eq = true,
-                  next_idx = #next_idx a', bounds = #bounds a',
-                  wellformed = #wellformed a'}))
-              end) (u :: axioms) (init_model, init_args)
-            (* make 'u' either true or false, and make all axioms true, and *)
-            (* add the well-formedness side condition                       *)
-            val fm_u = (if negate then toFalse else toTrue) (hd intrs)
-            val fm_ax = Prop_Logic.all (map toTrue (tl intrs))
-            val fm = Prop_Logic.all [#wellformed args, fm_ax, fm_u]
-            val _ =
-              (if satsolver = "dpll" orelse satsolver = "enumerate" then
-                warning ("Using SAT solver " ^ quote satsolver ^
-                         "; for better performance, consider installing an \
-                         \external solver.")
-               else ());
-            val solver =
-              SatSolver.invoke_solver satsolver
-              handle Option.Option =>
-                     error ("Unknown SAT solver: " ^ quote satsolver ^
-                            ". Available solvers: " ^
-                            commas (map (quote o fst) (!SatSolver.solvers)) ^ ".")
-          in
-            Output.urgent_message "Invoking SAT solver...";
-            (case solver fm of
-              SatSolver.SATISFIABLE assignment =>
-                (Output.urgent_message ("Model found:\n" ^ print_model ctxt model
-                  (fn i => case assignment i of SOME b => b | NONE => true));
-                 if maybe_spurious then "potential" else "genuine")
-            | SatSolver.UNSATISFIABLE _ =>
-                (Output.urgent_message "No model exists.";
-                case next_universe universe sizes minsize maxsize of
-                  SOME universe' => find_model_loop universe'
-                | NONE => (Output.urgent_message
-                    "Search terminated, no larger universe within the given limits.";
-                    "none"))
-            | SatSolver.UNKNOWN =>
-                (Output.urgent_message "No model found.";
-                case next_universe universe sizes minsize maxsize of
-                  SOME universe' => find_model_loop universe'
-                | NONE => (Output.urgent_message
-                  "Search terminated, no larger universe within the given limits.";
-                  "unknown"))) handle SatSolver.NOT_CONFIGURED =>
-              (error ("SAT solver " ^ quote satsolver ^ " is not configured.");
-               "unknown")
-          end
-          handle MAXVARS_EXCEEDED =>
-            (Output.urgent_message ("Search terminated, number of Boolean variables ("
-              ^ string_of_int maxvars ^ " allowed) exceeded.");
-              "unknown")
-
-        val outcome_code = find_model_loop (first_universe types sizes minsize)
-      in
-        check_expect outcome_code
-      end
-  in
-    (* some parameter sanity checks *)
-    minsize>=1 orelse
-      error ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
-    maxsize>=1 orelse
-      error ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
-    maxsize>=minsize orelse
-      error ("\"maxsize\" (=" ^ string_of_int maxsize ^
-      ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
-    maxvars>=0 orelse
-      error ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
-    maxtime>=0 orelse
-      error ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
-    (* enter loop with or without time limit *)
-    Output.urgent_message ("Trying to find a model that "
-      ^ (if negate then "refutes" else "satisfies") ^ ": "
-      ^ Syntax.string_of_term ctxt t);
-    if maxtime > 0 then (
-      TimeLimit.timeLimit (Time.fromSeconds maxtime)
-        wrapper ()
-      handle TimeLimit.TimeOut =>
-        (Output.urgent_message ("Search terminated, time limit (" ^
-            string_of_int maxtime
-            ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.");
-         check_expect "unknown")
-    ) else wrapper ()
-  end;
-
-
-(* ------------------------------------------------------------------------- *)
-(* INTERFACE, PART 2: FINDING A MODEL                                        *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* satisfy_term: calls 'find_model' to find a model that satisfies 't'       *)
-(* params      : list of '(name, value)' pairs used to override default      *)
-(*               parameters                                                  *)
-(* ------------------------------------------------------------------------- *)
-
-fun satisfy_term ctxt params assm_ts t =
-  find_model ctxt (actual_params ctxt params) assm_ts t false;
-
-(* ------------------------------------------------------------------------- *)
-(* refute_term: calls 'find_model' to find a model that refutes 't'          *)
-(* params     : list of '(name, value)' pairs used to override default       *)
-(*              parameters                                                   *)
-(* ------------------------------------------------------------------------- *)
-
-fun refute_term ctxt params assm_ts t =
-  let
-    (* disallow schematic type variables, since we cannot properly negate  *)
-    (* terms containing them (their logical meaning is that there EXISTS a *)
-    (* type s.t. ...; to refute such a formula, we would have to show that *)
-    (* for ALL types, not ...)                                             *)
-    val _ = null (Term.add_tvars t []) orelse
-      error "Term to be refuted contains schematic type variables"
-
-    (* existential closure over schematic variables *)
-    val vars = sort_wrt (fst o fst) (Term.add_vars t [])
-    (* Term.term *)
-    val ex_closure = fold (fn ((x, i), T) => fn t' =>
-      HOLogic.exists_const T $
-        Abs (x, T, abstract_over (Var ((x, i), T), t'))) vars t
-    (* Note: If 't' is of type 'propT' (rather than 'boolT'), applying   *)
-    (* 'HOLogic.exists_const' is not type-correct.  However, this is not *)
-    (* really a problem as long as 'find_model' still interprets the     *)
-    (* resulting term correctly, without checking its type.              *)
-
-    (* replace outermost universally quantified variables by Free's:     *)
-    (* refuting a term with Free's is generally faster than refuting a   *)
-    (* term with (nested) quantifiers, because quantifiers are expanded, *)
-    (* while the SAT solver searches for an interpretation for Free's.   *)
-    (* Also we get more information back that way, namely an             *)
-    (* interpretation which includes values for the (formerly)           *)
-    (* quantified variables.                                             *)
-    (* maps  !!x1...xn. !xk...xm. t   to   t  *)
-    fun strip_all_body (Const (@{const_name all}, _) $ Abs (_, _, t)) =
-          strip_all_body t
-      | strip_all_body (Const (@{const_name Trueprop}, _) $ t) =
-          strip_all_body t
-      | strip_all_body (Const (@{const_name All}, _) $ Abs (_, _, t)) =
-          strip_all_body t
-      | strip_all_body t = t
-    (* maps  !!x1...xn. !xk...xm. t   to   [x1, ..., xn, xk, ..., xm]  *)
-    fun strip_all_vars (Const (@{const_name all}, _) $ Abs (a, T, t)) =
-          (a, T) :: strip_all_vars t
-      | strip_all_vars (Const (@{const_name Trueprop}, _) $ t) =
-          strip_all_vars t
-      | strip_all_vars (Const (@{const_name All}, _) $ Abs (a, T, t)) =
-          (a, T) :: strip_all_vars t
-      | strip_all_vars _ = [] : (string * typ) list
-    val strip_t = strip_all_body ex_closure
-    val frees = Term.rename_wrt_term strip_t (strip_all_vars ex_closure)
-    val subst_t = Term.subst_bounds (map Free frees, strip_t)
-  in
-    find_model ctxt (actual_params ctxt params) assm_ts subst_t true
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* refute_goal                                                               *)
-(* ------------------------------------------------------------------------- *)
-
-fun refute_goal ctxt params th i =
-  let
-    val t = th |> prop_of
-  in
-    if Logic.count_prems t = 0 then
-      (Output.urgent_message "No subgoal!"; "none")
-    else
-      let
-        val assms = map term_of (Assumption.all_assms_of ctxt)
-        val (t, frees) = Logic.goal_params t i
-      in
-        refute_term ctxt params assms (subst_bounds (frees, t))
-      end
-  end
-
-
-(* ------------------------------------------------------------------------- *)
-(* INTERPRETERS: Auxiliary Functions                                         *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* make_constants: returns all interpretations for type 'T' that consist of  *)
-(*                 unit vectors with 'True'/'False' only (no Boolean         *)
-(*                 variables)                                                *)
-(* ------------------------------------------------------------------------- *)
-
-fun make_constants ctxt model T =
-  let
-    (* returns a list with all unit vectors of length n *)
-    (* int -> interpretation list *)
-    fun unit_vectors n =
-      let
-        (* returns the k-th unit vector of length n *)
-        (* int * int -> interpretation *)
-        fun unit_vector (k, n) =
-          Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
-        (* int -> interpretation list *)
-        fun unit_vectors_loop k =
-          if k>n then [] else unit_vector (k,n) :: unit_vectors_loop (k+1)
-      in
-        unit_vectors_loop 1
-      end
-    (* returns a list of lists, each one consisting of n (possibly *)
-    (* identical) elements from 'xs'                               *)
-    (* int -> 'a list -> 'a list list *)
-    fun pick_all 1 xs = map single xs
-      | pick_all n xs =
-          let val rec_pick = pick_all (n - 1) xs in
-            maps (fn x => map (cons x) rec_pick) xs
-          end
-    (* returns all constant interpretations that have the same tree *)
-    (* structure as the interpretation argument                     *)
-    (* interpretation -> interpretation list *)
-    fun make_constants_intr (Leaf xs) = unit_vectors (length xs)
-      | make_constants_intr (Node xs) = map Node (pick_all (length xs)
-          (make_constants_intr (hd xs)))
-    (* obtain the interpretation for a variable of type 'T' *)
-    val (i, _, _) = interpret ctxt model {maxvars=0, def_eq=false, next_idx=1,
-      bounds=[], wellformed=True} (Free ("dummy", T))
-  in
-    make_constants_intr i
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* size_of_type: returns the number of elements in a type 'T' (i.e. 'length  *)
-(*               (make_constants T)', but implemented more efficiently)      *)
-(* ------------------------------------------------------------------------- *)
-
-(* returns 0 for an empty ground type or a function type with empty      *)
-(* codomain, but fails for a function type with empty domain --          *)
-(* admissibility of datatype constructor argument types (see "Inductive  *)
-(* datatypes in HOL - lessons learned ...", S. Berghofer, M. Wenzel,     *)
-(* TPHOLs 99) ensures that recursive, possibly empty, datatype fragments *)
-(* never occur as the domain of a function type that is the type of a    *)
-(* constructor argument                                                  *)
-
-fun size_of_type ctxt model T =
-  let
-    (* returns the number of elements that have the same tree structure as a *)
-    (* given interpretation                                                  *)
-    fun size_of_intr (Leaf xs) = length xs
-      | size_of_intr (Node xs) = Integer.pow (length xs) (size_of_intr (hd xs))
-    (* obtain the interpretation for a variable of type 'T' *)
-    val (i, _, _) = interpret ctxt model {maxvars=0, def_eq=false, next_idx=1,
-      bounds=[], wellformed=True} (Free ("dummy", T))
-  in
-    size_of_intr i
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* TT/FF: interpretations that denote "true" or "false", respectively        *)
-(* ------------------------------------------------------------------------- *)
-
-(* interpretation *)
-
-val TT = Leaf [True, False];
-
-val FF = Leaf [False, True];
-
-(* ------------------------------------------------------------------------- *)
-(* make_equality: returns an interpretation that denotes (extensional)       *)
-(*                equality of two interpretations                            *)
-(* - two interpretations are 'equal' iff they are both defined and denote    *)
-(*   the same value                                                          *)
-(* - two interpretations are 'not_equal' iff they are both defined at least  *)
-(*   partially, and a defined part denotes different values                  *)
-(* - a completely undefined interpretation is neither 'equal' nor            *)
-(*   'not_equal' to another interpretation                                   *)
-(* ------------------------------------------------------------------------- *)
-
-(* We could in principle represent '=' on a type T by a particular        *)
-(* interpretation.  However, the size of that interpretation is quadratic *)
-(* in the size of T.  Therefore comparing the interpretations 'i1' and    *)
-(* 'i2' directly is more efficient than constructing the interpretation   *)
-(* for equality on T first, and "applying" this interpretation to 'i1'    *)
-(* and 'i2' in the usual way (cf. 'interpretation_apply') then.           *)
-
-(* interpretation * interpretation -> interpretation *)
-
-fun make_equality (i1, i2) =
-  let
-    (* interpretation * interpretation -> prop_formula *)
-    fun equal (i1, i2) =
-      (case i1 of
-        Leaf xs =>
-          (case i2 of
-            Leaf ys => Prop_Logic.dot_product (xs, ys)  (* defined and equal *)
-          | Node _  => raise REFUTE ("make_equality",
-            "second interpretation is higher"))
-      | Node xs =>
-          (case i2 of
-            Leaf _  => raise REFUTE ("make_equality",
-            "first interpretation is higher")
-          | Node ys => Prop_Logic.all (map equal (xs ~~ ys))))
-    (* interpretation * interpretation -> prop_formula *)
-    fun not_equal (i1, i2) =
-      (case i1 of
-        Leaf xs =>
-          (case i2 of
-            (* defined and not equal *)
-            Leaf ys => Prop_Logic.all ((Prop_Logic.exists xs)
-            :: (Prop_Logic.exists ys)
-            :: (map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))
-          | Node _  => raise REFUTE ("make_equality",
-            "second interpretation is higher"))
-      | Node xs =>
-          (case i2 of
-            Leaf _  => raise REFUTE ("make_equality",
-            "first interpretation is higher")
-          | Node ys => Prop_Logic.exists (map not_equal (xs ~~ ys))))
-  in
-    (* a value may be undefined; therefore 'not_equal' is not just the *)
-    (* negation of 'equal'                                             *)
-    Leaf [equal (i1, i2), not_equal (i1, i2)]
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* make_def_equality: returns an interpretation that denotes (extensional)   *)
-(*                    equality of two interpretations                        *)
-(* This function treats undefined/partially defined interpretations          *)
-(* different from 'make_equality': two undefined interpretations are         *)
-(* considered equal, while a defined interpretation is considered not equal  *)
-(* to an undefined interpretation.                                           *)
-(* ------------------------------------------------------------------------- *)
-
-(* interpretation * interpretation -> interpretation *)
-
-fun make_def_equality (i1, i2) =
-  let
-    (* interpretation * interpretation -> prop_formula *)
-    fun equal (i1, i2) =
-      (case i1 of
-        Leaf xs =>
-          (case i2 of
-            (* defined and equal, or both undefined *)
-            Leaf ys => SOr (Prop_Logic.dot_product (xs, ys),
-            SAnd (Prop_Logic.all (map SNot xs), Prop_Logic.all (map SNot ys)))
-          | Node _  => raise REFUTE ("make_def_equality",
-            "second interpretation is higher"))
-      | Node xs =>
-          (case i2 of
-            Leaf _  => raise REFUTE ("make_def_equality",
-            "first interpretation is higher")
-          | Node ys => Prop_Logic.all (map equal (xs ~~ ys))))
-    (* interpretation *)
-    val eq = equal (i1, i2)
-  in
-    Leaf [eq, SNot eq]
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* interpretation_apply: returns an interpretation that denotes the result   *)
-(*                       of applying the function denoted by 'i1' to the     *)
-(*                       argument denoted by 'i2'                            *)
-(* ------------------------------------------------------------------------- *)
-
-(* interpretation * interpretation -> interpretation *)
-
-fun interpretation_apply (i1, i2) =
-  let
-    (* interpretation * interpretation -> interpretation *)
-    fun interpretation_disjunction (tr1,tr2) =
-      tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys))
-        (tree_pair (tr1,tr2))
-    (* prop_formula * interpretation -> interpretation *)
-    fun prop_formula_times_interpretation (fm,tr) =
-      tree_map (map (fn x => SAnd (fm,x))) tr
-    (* prop_formula list * interpretation list -> interpretation *)
-    fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
-          prop_formula_times_interpretation (fm,tr)
-      | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
-          interpretation_disjunction (prop_formula_times_interpretation (fm,tr),
-            prop_formula_list_dot_product_interpretation_list (fms,trees))
-      | prop_formula_list_dot_product_interpretation_list (_,_) =
-          raise REFUTE ("interpretation_apply", "empty list (in dot product)")
-    (* returns a list of lists, each one consisting of one element from each *)
-    (* element of 'xss'                                                      *)
-    (* 'a list list -> 'a list list *)
-    fun pick_all [xs] = map single xs
-      | pick_all (xs::xss) =
-          let val rec_pick = pick_all xss in
-            maps (fn x => map (cons x) rec_pick) xs
-          end
-      | pick_all _ = raise REFUTE ("interpretation_apply", "empty list (in pick_all)")
-    (* interpretation -> prop_formula list *)
-    fun interpretation_to_prop_formula_list (Leaf xs) = xs
-      | interpretation_to_prop_formula_list (Node trees) =
-          map Prop_Logic.all (pick_all
-            (map interpretation_to_prop_formula_list trees))
-  in
-    case i1 of
-      Leaf _ =>
-        raise REFUTE ("interpretation_apply", "first interpretation is a leaf")
-    | Node xs =>
-        prop_formula_list_dot_product_interpretation_list
-          (interpretation_to_prop_formula_list i2, xs)
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* eta_expand: eta-expands a term 't' by adding 'i' lambda abstractions      *)
-(* ------------------------------------------------------------------------- *)
-
-(* Term.term -> int -> Term.term *)
-
-fun eta_expand t i =
-  let
-    val Ts = Term.binder_types (Term.fastype_of t)
-    val t' = Term.incr_boundvars i t
-  in
-    fold_rev (fn T => fn term => Abs ("<eta_expand>", T, term))
-      (List.take (Ts, i))
-      (Term.list_comb (t', map Bound (i-1 downto 0)))
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* size_of_dtyp: the size of (an initial fragment of) an inductive data type *)
-(*               is the sum (over its constructors) of the product (over     *)
-(*               their arguments) of the size of the argument types          *)
-(* ------------------------------------------------------------------------- *)
-
-fun size_of_dtyp ctxt typ_sizes descr typ_assoc constructors =
-  Integer.sum (map (fn (_, dtyps) =>
-    Integer.prod (map (size_of_type ctxt (typ_sizes, []) o
-      (typ_of_dtyp descr typ_assoc)) dtyps))
-        constructors);
-
-
-(* ------------------------------------------------------------------------- *)
-(* INTERPRETERS: Actual Interpreters                                         *)
-(* ------------------------------------------------------------------------- *)
-
-(* simply typed lambda calculus: Isabelle's basic term syntax, with type *)
-(* variables, function types, and propT                                  *)
-
-fun stlc_interpreter ctxt model args t =
-  let
-    val (typs, terms) = model
-    val {maxvars, def_eq, next_idx, bounds, wellformed} = args
-    (* Term.typ -> (interpretation * model * arguments) option *)
-    fun interpret_groundterm T =
-      let
-        (* unit -> (interpretation * model * arguments) option *)
-        fun interpret_groundtype () =
-          let
-            (* the model must specify a size for ground types *)
-            val size =
-              if T = Term.propT then 2
-              else the (AList.lookup (op =) typs T)
-            val next = next_idx + size
-            (* check if 'maxvars' is large enough *)
-            val _ = (if next - 1 > maxvars andalso maxvars > 0 then
-              raise MAXVARS_EXCEEDED else ())
-            (* prop_formula list *)
-            val fms  = map BoolVar (next_idx upto (next_idx + size - 1))
-            (* interpretation *)
-            val intr = Leaf fms
-            (* prop_formula list -> prop_formula *)
-            fun one_of_two_false [] = True
-              | one_of_two_false (x::xs) = SAnd (Prop_Logic.all (map (fn x' =>
-                  SOr (SNot x, SNot x')) xs), one_of_two_false xs)
-            (* prop_formula *)
-            val wf = one_of_two_false fms
-          in
-            (* extend the model, increase 'next_idx', add well-formedness *)
-            (* condition                                                  *)
-            SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
-              def_eq = def_eq, next_idx = next, bounds = bounds,
-              wellformed = SAnd (wellformed, wf)})
-          end
-      in
-        case T of
-          Type ("fun", [T1, T2]) =>
-            let
-              (* we create 'size_of_type ... T1' different copies of the        *)
-              (* interpretation for 'T2', which are then combined into a single *)
-              (* new interpretation                                             *)
-              (* make fresh copies, with different variable indices *)
-              (* 'idx': next variable index                         *)
-              (* 'n'  : number of copies                            *)
-              (* int -> int -> (int * interpretation list * prop_formula *)
-              fun make_copies idx 0 = (idx, [], True)
-                | make_copies idx n =
-                    let
-                      val (copy, _, new_args) = interpret ctxt (typs, [])
-                        {maxvars = maxvars, def_eq = false, next_idx = idx,
-                        bounds = [], wellformed = True} (Free ("dummy", T2))
-                      val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
-                    in
-                      (idx', copy :: copies, SAnd (#wellformed new_args, wf'))
-                    end
-              val (next, copies, wf) = make_copies next_idx
-                (size_of_type ctxt model T1)
-              (* combine copies into a single interpretation *)
-              val intr = Node copies
-            in
-              (* extend the model, increase 'next_idx', add well-formedness *)
-              (* condition                                                  *)
-              SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
-                def_eq = def_eq, next_idx = next, bounds = bounds,
-                wellformed = SAnd (wellformed, wf)})
-            end
-        | Type _  => interpret_groundtype ()
-        | TFree _ => interpret_groundtype ()
-        | TVar  _ => interpret_groundtype ()
-      end
-  in
-    case AList.lookup (op =) terms t of
-      SOME intr =>
-        (* return an existing interpretation *)
-        SOME (intr, model, args)
-    | NONE =>
-        (case t of
-          Const (_, T) => interpret_groundterm T
-        | Free (_, T) => interpret_groundterm T
-        | Var (_, T) => interpret_groundterm T
-        | Bound i => SOME (nth (#bounds args) i, model, args)
-        | Abs (_, T, body) =>
-            let
-              (* create all constants of type 'T' *)
-              val constants = make_constants ctxt model T
-              (* interpret the 'body' separately for each constant *)
-              val (bodies, (model', args')) = fold_map
-                (fn c => fn (m, a) =>
-                  let
-                    (* add 'c' to 'bounds' *)
-                    val (i', m', a') = interpret ctxt m {maxvars = #maxvars a,
-                      def_eq = #def_eq a, next_idx = #next_idx a,
-                      bounds = (c :: #bounds a), wellformed = #wellformed a} body
-                  in
-                    (* keep the new model m' and 'next_idx' and 'wellformed', *)
-                    (* but use old 'bounds'                                   *)
-                    (i', (m', {maxvars = maxvars, def_eq = def_eq,
-                      next_idx = #next_idx a', bounds = bounds,
-                      wellformed = #wellformed a'}))
-                  end)
-                constants (model, args)
-            in
-              SOME (Node bodies, model', args')
-            end
-        | t1 $ t2 =>
-            let
-              (* interpret 't1' and 't2' separately *)
-              val (intr1, model1, args1) = interpret ctxt model args t1
-              val (intr2, model2, args2) = interpret ctxt model1 args1 t2
-            in
-              SOME (interpretation_apply (intr1, intr2), model2, args2)
-            end)
-  end;
-
-fun Pure_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name all}, _) $ t1 =>
-      let
-        val (i, m, a) = interpret ctxt model args t1
-      in
-        case i of
-          Node xs =>
-            (* 3-valued logic *)
-            let
-              val fmTrue  = Prop_Logic.all (map toTrue xs)
-              val fmFalse = Prop_Logic.exists (map toFalse xs)
-            in
-              SOME (Leaf [fmTrue, fmFalse], m, a)
-            end
-        | _ =>
-          raise REFUTE ("Pure_interpreter",
-            "\"all\" is followed by a non-function")
-      end
-  | Const (@{const_name all}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name "=="}, _) $ t1 $ t2 =>
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-      in
-        (* we use either 'make_def_equality' or 'make_equality' *)
-        SOME ((if #def_eq args then make_def_equality else make_equality)
-          (i1, i2), m2, a2)
-      end
-  | Const (@{const_name "=="}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name "=="}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-  | Const (@{const_name "==>"}, _) $ t1 $ t2 =>
-      (* 3-valued logic *)
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-        val fmTrue = Prop_Logic.SOr (toFalse i1, toTrue i2)
-        val fmFalse = Prop_Logic.SAnd (toTrue i1, toFalse i2)
-      in
-        SOME (Leaf [fmTrue, fmFalse], m2, a2)
-      end
-  | Const (@{const_name "==>"}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name "==>"}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-  | _ => NONE;
-
-fun HOLogic_interpreter ctxt model args t =
-(* Providing interpretations directly is more efficient than unfolding the *)
-(* logical constants.  In HOL however, logical constants can themselves be *)
-(* arguments.  They are then translated using eta-expansion.               *)
-  case t of
-    Const (@{const_name Trueprop}, _) =>
-      SOME (Node [TT, FF], model, args)
-  | Const (@{const_name Not}, _) =>
-      SOME (Node [FF, TT], model, args)
-  (* redundant, since 'True' is also an IDT constructor *)
-  | Const (@{const_name True}, _) =>
-      SOME (TT, model, args)
-  (* redundant, since 'False' is also an IDT constructor *)
-  | Const (@{const_name False}, _) =>
-      SOME (FF, model, args)
-  | Const (@{const_name All}, _) $ t1 =>  (* similar to "all" (Pure) *)
-      let
-        val (i, m, a) = interpret ctxt model args t1
-      in
-        case i of
-          Node xs =>
-            (* 3-valued logic *)
-            let
-              val fmTrue = Prop_Logic.all (map toTrue xs)
-              val fmFalse = Prop_Logic.exists (map toFalse xs)
-            in
-              SOME (Leaf [fmTrue, fmFalse], m, a)
-            end
-        | _ =>
-          raise REFUTE ("HOLogic_interpreter",
-            "\"All\" is followed by a non-function")
-      end
-  | Const (@{const_name All}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name Ex}, _) $ t1 =>
-      let
-        val (i, m, a) = interpret ctxt model args t1
-      in
-        case i of
-          Node xs =>
-            (* 3-valued logic *)
-            let
-              val fmTrue = Prop_Logic.exists (map toTrue xs)
-              val fmFalse = Prop_Logic.all (map toFalse xs)
-            in
-              SOME (Leaf [fmTrue, fmFalse], m, a)
-            end
-        | _ =>
-          raise REFUTE ("HOLogic_interpreter",
-            "\"Ex\" is followed by a non-function")
-      end
-  | Const (@{const_name Ex}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>  (* similar to "==" (Pure) *)
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-      in
-        SOME (make_equality (i1, i2), m2, a2)
-      end
-  | Const (@{const_name HOL.eq}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name HOL.eq}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-  | Const (@{const_name HOL.conj}, _) $ t1 $ t2 =>
-      (* 3-valued logic *)
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-        val fmTrue = Prop_Logic.SAnd (toTrue i1, toTrue i2)
-        val fmFalse = Prop_Logic.SOr (toFalse i1, toFalse i2)
-      in
-        SOME (Leaf [fmTrue, fmFalse], m2, a2)
-      end
-  | Const (@{const_name HOL.conj}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name HOL.conj}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-      (* this would make "undef" propagate, even for formulae like *)
-      (* "False & undef":                                          *)
-      (* SOME (Node [Node [TT, FF], Node [FF, FF]], model, args) *)
-  | Const (@{const_name HOL.disj}, _) $ t1 $ t2 =>
-      (* 3-valued logic *)
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-        val fmTrue = Prop_Logic.SOr (toTrue i1, toTrue i2)
-        val fmFalse = Prop_Logic.SAnd (toFalse i1, toFalse i2)
-      in
-        SOME (Leaf [fmTrue, fmFalse], m2, a2)
-      end
-  | Const (@{const_name HOL.disj}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name HOL.disj}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-      (* this would make "undef" propagate, even for formulae like *)
-      (* "True | undef":                                           *)
-      (* SOME (Node [Node [TT, TT], Node [TT, FF]], model, args) *)
-  | Const (@{const_name HOL.implies}, _) $ t1 $ t2 =>  (* similar to "==>" (Pure) *)
-      (* 3-valued logic *)
-      let
-        val (i1, m1, a1) = interpret ctxt model args t1
-        val (i2, m2, a2) = interpret ctxt m1 a1 t2
-        val fmTrue = Prop_Logic.SOr (toFalse i1, toTrue i2)
-        val fmFalse = Prop_Logic.SAnd (toTrue i1, toFalse i2)
-      in
-        SOME (Leaf [fmTrue, fmFalse], m2, a2)
-      end
-  | Const (@{const_name HOL.implies}, _) $ _ =>
-      SOME (interpret ctxt model args (eta_expand t 1))
-  | Const (@{const_name HOL.implies}, _) =>
-      SOME (interpret ctxt model args (eta_expand t 2))
-      (* this would make "undef" propagate, even for formulae like *)
-      (* "False --> undef":                                        *)
-      (* SOME (Node [Node [TT, FF], Node [TT, TT]], model, args) *)
-  | _ => NONE;
-
-(* interprets variables and constants whose type is an IDT (this is        *)
-(* relatively easy and merely requires us to compute the size of the IDT); *)
-(* constructors of IDTs however are properly interpreted by                *)
-(* 'IDT_constructor_interpreter'                                           *)
-
-fun IDT_interpreter ctxt model args t =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    val (typs, terms) = model
-    (* Term.typ -> (interpretation * model * arguments) option *)
-    fun interpret_term (Type (s, Ts)) =
-          (case Datatype.get_info thy s of
-            SOME info =>  (* inductive datatype *)
-              let
-                (* int option -- only recursive IDTs have an associated depth *)
-                val depth = AList.lookup (op =) typs (Type (s, Ts))
-                (* sanity check: depth must be at least 0 *)
-                val _ =
-                  (case depth of SOME n =>
-                    if n < 0 then
-                      raise REFUTE ("IDT_interpreter", "negative depth")
-                    else ()
-                  | _ => ())
-              in
-                (* termination condition to avoid infinite recursion *)
-                if depth = (SOME 0) then
-                  (* return a leaf of size 0 *)
-                  SOME (Leaf [], model, args)
-                else
-                  let
-                    val index               = #index info
-                    val descr               = #descr info
-                    val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-                    val typ_assoc           = dtyps ~~ Ts
-                    (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-                    val _ =
-                      if Library.exists (fn d =>
-                        case d of Datatype.DtTFree _ => false | _ => true) dtyps
-                      then
-                        raise REFUTE ("IDT_interpreter",
-                          "datatype argument (for type "
-                          ^ Syntax.string_of_typ ctxt (Type (s, Ts))
-                          ^ ") is not a variable")
-                      else ()
-                    (* if the model specifies a depth for the current type, *)
-                    (* decrement it to avoid infinite recursion             *)
-                    val typs' = case depth of NONE => typs | SOME n =>
-                      AList.update (op =) (Type (s, Ts), n-1) typs
-                    (* recursively compute the size of the datatype *)
-                    val size     = size_of_dtyp ctxt typs' descr typ_assoc constrs
-                    val next_idx = #next_idx args
-                    val next     = next_idx+size
-                    (* check if 'maxvars' is large enough *)
-                    val _        = (if next-1 > #maxvars args andalso
-                      #maxvars args > 0 then raise MAXVARS_EXCEEDED else ())
-                    (* prop_formula list *)
-                    val fms      = map BoolVar (next_idx upto (next_idx+size-1))
-                    (* interpretation *)
-                    val intr     = Leaf fms
-                    (* prop_formula list -> prop_formula *)
-                    fun one_of_two_false [] = True
-                      | one_of_two_false (x::xs) = SAnd (Prop_Logic.all (map (fn x' =>
-                          SOr (SNot x, SNot x')) xs), one_of_two_false xs)
-                    (* prop_formula *)
-                    val wf = one_of_two_false fms
-                  in
-                    (* extend the model, increase 'next_idx', add well-formedness *)
-                    (* condition                                                  *)
-                    SOME (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args,
-                      def_eq = #def_eq args, next_idx = next, bounds = #bounds args,
-                      wellformed = SAnd (#wellformed args, wf)})
-                  end
-              end
-          | NONE =>  (* not an inductive datatype *)
-              NONE)
-      | interpret_term _ =  (* a (free or schematic) type variable *)
-          NONE
-  in
-    case AList.lookup (op =) terms t of
-      SOME intr =>
-        (* return an existing interpretation *)
-        SOME (intr, model, args)
-    | NONE =>
-        (case t of
-          Free (_, T) => interpret_term T
-        | Var (_, T) => interpret_term T
-        | Const (_, T) => interpret_term T
-        | _ => NONE)
-  end;
-
-(* This function imposes an order on the elements of a datatype fragment  *)
-(* as follows: C_i x_1 ... x_n < C_j y_1 ... y_m iff i < j or             *)
-(* (x_1, ..., x_n) < (y_1, ..., y_m).  With this order, a constructor is  *)
-(* a function C_i that maps some argument indices x_1, ..., x_n to the    *)
-(* datatype element given by index C_i x_1 ... x_n.  The idea remains the *)
-(* same for recursive datatypes, although the computation of indices gets *)
-(* a little tricky.                                                       *)
-
-fun IDT_constructor_interpreter ctxt model args t =
-  let
-    val thy = Proof_Context.theory_of ctxt
-    (* returns a list of canonical representations for terms of the type 'T' *)
-    (* It would be nice if we could just use 'print' for this, but 'print'   *)
-    (* for IDTs calls 'IDT_constructor_interpreter' again, and this could    *)
-    (* lead to infinite recursion when we have (mutually) recursive IDTs.    *)
-    (* (Term.typ * int) list -> Term.typ -> Term.term list *)
-    fun canonical_terms typs T =
-          (case T of
-            Type ("fun", [T1, T2]) =>
-            (* 'T2' might contain a recursive IDT, so we cannot use 'print' (at *)
-            (* least not for 'T2'                                               *)
-            let
-              (* returns a list of lists, each one consisting of n (possibly *)
-              (* identical) elements from 'xs'                               *)
-              (* int -> 'a list -> 'a list list *)
-              fun pick_all 1 xs = map single xs
-                | pick_all n xs =
-                    let val rec_pick = pick_all (n-1) xs in
-                      maps (fn x => map (cons x) rec_pick) xs
-                    end
-              (* ["x1", ..., "xn"] *)
-              val terms1 = canonical_terms typs T1
-              (* ["y1", ..., "ym"] *)
-              val terms2 = canonical_terms typs T2
-              (* [[("x1", "y1"), ..., ("xn", "y1")], ..., *)
-              (*   [("x1", "ym"), ..., ("xn", "ym")]]     *)
-              val functions = map (curry (op ~~) terms1)
-                (pick_all (length terms1) terms2)
-              (* [["(x1, y1)", ..., "(xn, y1)"], ..., *)
-              (*   ["(x1, ym)", ..., "(xn, ym)"]]     *)
-              val pairss = map (map HOLogic.mk_prod) functions
-              (* Term.typ *)
-              val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
-              val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
-              (* Term.term *)
-              val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
-              val HOLogic_insert    =
-                Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
-            in
-              (* functions as graphs, i.e. as a (HOL) set of pairs "(x, y)" *)
-              map (fn ps => fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) ps
-                HOLogic_empty_set) pairss
-            end
-      | Type (s, Ts) =>
-          (case Datatype.get_info thy s of
-            SOME info =>
-              (case AList.lookup (op =) typs T of
-                SOME 0 =>
-                  (* termination condition to avoid infinite recursion *)
-                  []  (* at depth 0, every IDT is empty *)
-              | _ =>
-                let
-                  val index = #index info
-                  val descr = #descr info
-                  val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-                  val typ_assoc = dtyps ~~ Ts
-                  (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-                  val _ =
-                    if Library.exists (fn d =>
-                      case d of Datatype.DtTFree _ => false | _ => true) dtyps
-                    then
-                      raise REFUTE ("IDT_constructor_interpreter",
-                        "datatype argument (for type "
-                        ^ Syntax.string_of_typ ctxt T
-                        ^ ") is not a variable")
-                    else ()
-                  (* decrement depth for the IDT 'T' *)
-                  val typs' =
-                    (case AList.lookup (op =) typs T of NONE => typs
-                    | SOME n => AList.update (op =) (T, n-1) typs)
-                  fun constructor_terms terms [] = terms
-                    | constructor_terms terms (d::ds) =
-                        let
-                          val dT = typ_of_dtyp descr typ_assoc d
-                          val d_terms = canonical_terms typs' dT
-                        in
-                          (* C_i x_1 ... x_n < C_i y_1 ... y_n if *)
-                          (* (x_1, ..., x_n) < (y_1, ..., y_n)    *)
-                          constructor_terms
-                            (map_product (curry op $) terms d_terms) ds
-                        end
-                in
-                  (* C_i ... < C_j ... if i < j *)
-                  maps (fn (cname, ctyps) =>
-                    let
-                      val cTerm = Const (cname,
-                        map (typ_of_dtyp descr typ_assoc) ctyps ---> T)
-                    in
-                      constructor_terms [cTerm] ctyps
-                    end) constrs
-                end)
-          | NONE =>
-              (* not an inductive datatype; in this case the argument types in *)
-              (* 'Ts' may not be IDTs either, so 'print' should be safe        *)
-              map (fn intr => print ctxt (typs, []) T intr (K false))
-                (make_constants ctxt (typs, []) T))
-      | _ =>  (* TFree ..., TVar ... *)
-          map (fn intr => print ctxt (typs, []) T intr (K false))
-            (make_constants ctxt (typs, []) T))
-    val (typs, terms) = model
-  in
-    case AList.lookup (op =) terms t of
-      SOME intr =>
-        (* return an existing interpretation *)
-        SOME (intr, model, args)
-    | NONE =>
-        (case t of
-          Const (s, T) =>
-            (case body_type T of
-              Type (s', Ts') =>
-                (case Datatype.get_info thy s' of
-                  SOME info =>  (* body type is an inductive datatype *)
-                    let
-                      val index               = #index info
-                      val descr               = #descr info
-                      val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-                      val typ_assoc           = dtyps ~~ Ts'
-                      (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-                      val _ = if Library.exists (fn d =>
-                          case d of Datatype.DtTFree _ => false | _ => true) dtyps
-                        then
-                          raise REFUTE ("IDT_constructor_interpreter",
-                            "datatype argument (for type "
-                            ^ Syntax.string_of_typ ctxt (Type (s', Ts'))
-                            ^ ") is not a variable")
-                        else ()
-                      (* split the constructors into those occuring before/after *)
-                      (* 'Const (s, T)'                                          *)
-                      val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
-                        not (cname = s andalso Sign.typ_instance thy (T,
-                          map (typ_of_dtyp descr typ_assoc) ctypes
-                            ---> Type (s', Ts')))) constrs
-                    in
-                      case constrs2 of
-                        [] =>
-                          (* 'Const (s, T)' is not a constructor of this datatype *)
-                          NONE
-                      | (_, ctypes)::_ =>
-                          let
-                            (* int option -- only /recursive/ IDTs have an associated *)
-                            (*               depth                                    *)
-                            val depth = AList.lookup (op =) typs (Type (s', Ts'))
-                            (* this should never happen: at depth 0, this IDT fragment *)
-                            (* is definitely empty, and in this case we don't need to  *)
-                            (* interpret its constructors                              *)
-                            val _ = (case depth of SOME 0 =>
-                                raise REFUTE ("IDT_constructor_interpreter",
-                                  "depth is 0")
-                              | _ => ())
-                            val typs' = (case depth of NONE => typs | SOME n =>
-                              AList.update (op =) (Type (s', Ts'), n-1) typs)
-                            (* elements of the datatype come before elements generated *)
-                            (* by 'Const (s, T)' iff they are generated by a           *)
-                            (* constructor in constrs1                                 *)
-                            val offset = size_of_dtyp ctxt typs' descr typ_assoc constrs1
-                            (* compute the total (current) size of the datatype *)
-                            val total = offset +
-                              size_of_dtyp ctxt typs' descr typ_assoc constrs2
-                            (* sanity check *)
-                            val _ = if total <> size_of_type ctxt (typs, [])
-                              (Type (s', Ts')) then
-                                raise REFUTE ("IDT_constructor_interpreter",
-                                  "total is not equal to current size")
-                              else ()
-                            (* returns an interpretation where everything is mapped to *)
-                            (* an "undefined" element of the datatype                  *)
-                            fun make_undef [] = Leaf (replicate total False)
-                              | make_undef (d::ds) =
-                                  let
-                                    (* compute the current size of the type 'd' *)
-                                    val dT   = typ_of_dtyp descr typ_assoc d
-                                    val size = size_of_type ctxt (typs, []) dT
-                                  in
-                                    Node (replicate size (make_undef ds))
-                                  end
-                            (* returns the interpretation for a constructor *)
-                            fun make_constr [] offset =
-                                  if offset < total then
-                                    (Leaf (replicate offset False @ True ::
-                                      (replicate (total - offset - 1) False)), offset + 1)
-                                  else
-                                    raise REFUTE ("IDT_constructor_interpreter",
-                                      "offset >= total")
-                              | make_constr (d::ds) offset =
-                                  let
-                                    (* Term.typ *)
-                                    val dT = typ_of_dtyp descr typ_assoc d
-                                    (* compute canonical term representations for all   *)
-                                    (* elements of the type 'd' (with the reduced depth *)
-                                    (* for the IDT)                                     *)
-                                    val terms' = canonical_terms typs' dT
-                                    (* sanity check *)
-                                    val _ =
-                                      if length terms' <> size_of_type ctxt (typs', []) dT
-                                      then
-                                        raise REFUTE ("IDT_constructor_interpreter",
-                                          "length of terms' is not equal to old size")
-                                      else ()
-                                    (* compute canonical term representations for all   *)
-                                    (* elements of the type 'd' (with the current depth *)
-                                    (* for the IDT)                                     *)
-                                    val terms = canonical_terms typs dT
-                                    (* sanity check *)
-                                    val _ =
-                                      if length terms <> size_of_type ctxt (typs, []) dT
-                                      then
-                                        raise REFUTE ("IDT_constructor_interpreter",
-                                          "length of terms is not equal to current size")
-                                      else ()
-                                    (* sanity check *)
-                                    val _ =
-                                      if length terms < length terms' then
-                                        raise REFUTE ("IDT_constructor_interpreter",
-                                          "current size is less than old size")
-                                      else ()
-                                    (* sanity check: every element of terms' must also be *)
-                                    (*               present in terms                     *)
-                                    val _ =
-                                      if forall (member (op =) terms) terms' then ()
-                                      else
-                                        raise REFUTE ("IDT_constructor_interpreter",
-                                          "element has disappeared")
-                                    (* sanity check: the order on elements of terms' is    *)
-                                    (*               the same in terms, for those elements *)
-                                    val _ =
-                                      let
-                                        fun search (x::xs) (y::ys) =
-                                              if x = y then search xs ys else search (x::xs) ys
-                                          | search (_::_) [] =
-                                              raise REFUTE ("IDT_constructor_interpreter",
-                                                "element order not preserved")
-                                          | search [] _ = ()
-                                      in search terms' terms end
-                                    (* int * interpretation list *)
-                                    val (intrs, new_offset) =
-                                      fold_map (fn t_elem => fn off =>
-                                        (* if 't_elem' existed at the previous depth,    *)
-                                        (* proceed recursively, otherwise map the entire *)
-                                        (* subtree to "undefined"                        *)
-                                        if member (op =) terms' t_elem then
-                                          make_constr ds off
-                                        else
-                                          (make_undef ds, off))
-                                      terms offset
-                                  in
-                                    (Node intrs, new_offset)
-                                  end
-                          in
-                            SOME (fst (make_constr ctypes offset), model, args)
-                          end
-                    end
-                | NONE =>  (* body type is not an inductive datatype *)
-                    NONE)
-            | _ =>  (* body type is a (free or schematic) type variable *)
-              NONE)
-        | _ =>  (* term is not a constant *)
-          NONE)
-  end;
-
-(* Difficult code ahead.  Make sure you understand the                *)
-(* 'IDT_constructor_interpreter' and the order in which it enumerates *)
-(* elements of an IDT before you try to understand this function.     *)
-
-fun IDT_recursion_interpreter ctxt model args t =
-  let
-    val thy = Proof_Context.theory_of ctxt
-  in
-    (* careful: here we descend arbitrarily deep into 't', possibly before *)
-    (* any other interpreter for atomic terms has had a chance to look at  *)
-    (* 't'                                                                 *)
-    case strip_comb t of
-      (Const (s, T), params) =>
-        (* iterate over all datatypes in 'thy' *)
-        Symtab.fold (fn (_, info) => fn result =>
-          case result of
-            SOME _ =>
-              result  (* just keep 'result' *)
-          | NONE =>
-              if member (op =) (#rec_names info) s then
-                (* we do have a recursion operator of one of the (mutually *)
-                (* recursive) datatypes given by 'info'                    *)
-                let
-                  (* number of all constructors, including those of different  *)
-                  (* (mutually recursive) datatypes within the same descriptor *)
-                  val mconstrs_count =
-                    Integer.sum (map (fn (_, (_, _, cs)) => length cs) (#descr info))
-                in
-                  if mconstrs_count < length params then
-                    (* too many actual parameters; for now we'll use the *)
-                    (* 'stlc_interpreter' to strip off one application   *)
-                    NONE
-                  else if mconstrs_count > length params then
-                    (* too few actual parameters; we use eta expansion          *)
-                    (* Note that the resulting expansion of lambda abstractions *)
-                    (* by the 'stlc_interpreter' may be rather slow (depending  *)
-                    (* on the argument types and the size of the IDT, of        *)
-                    (* course).                                                 *)
-                    SOME (interpret ctxt model args (eta_expand t
-                      (mconstrs_count - length params)))
-                  else  (* mconstrs_count = length params *)
-                    let
-                      (* interpret each parameter separately *)
-                      val (p_intrs, (model', args')) = fold_map (fn p => fn (m, a) =>
-                        let
-                          val (i, m', a') = interpret ctxt m a p
-                        in
-                          (i, (m', a'))
-                        end) params (model, args)
-                      val (typs, _) = model'
-                      (* 'index' is /not/ necessarily the index of the IDT that *)
-                      (* the recursion operator is associated with, but merely  *)
-                      (* the index of some mutually recursive IDT               *)
-                      val index         = #index info
-                      val descr         = #descr info
-                      val (_, dtyps, _) = the (AList.lookup (op =) descr index)
-                      (* sanity check: we assume that the order of constructors *)
-                      (*               in 'descr' is the same as the order of   *)
-                      (*               corresponding parameters, otherwise the  *)
-                      (*               association code below won't match the   *)
-                      (*               right constructors/parameters; we also   *)
-                      (*               assume that the order of recursion       *)
-                      (*               operators in '#rec_names info' is the    *)
-                      (*               same as the order of corresponding       *)
-                      (*               datatypes in 'descr'                     *)
-                      val _ = if map fst descr <> (0 upto (length descr - 1)) then
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "order of constructors and corresponding parameters/" ^
-                              "recursion operators and corresponding datatypes " ^
-                              "different?")
-                        else ()
-                      (* sanity check: every element in 'dtyps' must be a *)
-                      (*               'DtTFree'                          *)
-                      val _ =
-                        if Library.exists (fn d =>
-                          case d of Datatype.DtTFree _ => false
-                                  | _ => true) dtyps
-                        then
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "datatype argument is not a variable")
-                        else ()
-                      (* the type of a recursion operator is *)
-                      (* [T1, ..., Tn, IDT] ---> Tresult     *)
-                      val IDT = nth (binder_types T) mconstrs_count
-                      (* by our assumption on the order of recursion operators *)
-                      (* and datatypes, this is the index of the datatype      *)
-                      (* corresponding to the given recursion operator         *)
-                      val idt_index = find_index (fn s' => s' = s) (#rec_names info)
-                      (* mutually recursive types must have the same type   *)
-                      (* parameters, unless the mutual recursion comes from *)
-                      (* indirect recursion                                 *)
-                      fun rec_typ_assoc acc [] = acc
-                        | rec_typ_assoc acc ((d, T)::xs) =
-                            (case AList.lookup op= acc d of
-                              NONE =>
-                                (case d of
-                                  Datatype.DtTFree _ =>
-                                  (* add the association, proceed *)
-                                  rec_typ_assoc ((d, T)::acc) xs
-                                | Datatype.DtType (s, ds) =>
-                                    let
-                                      val (s', Ts) = dest_Type T
-                                    in
-                                      if s=s' then
-                                        rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
-                                      else
-                                        raise REFUTE ("IDT_recursion_interpreter",
-                                          "DtType/Type mismatch")
-                                    end
-                                | Datatype.DtRec i =>
-                                    let
-                                      val (_, ds, _) = the (AList.lookup (op =) descr i)
-                                      val (_, Ts)    = dest_Type T
-                                    in
-                                      rec_typ_assoc ((d, T)::acc) ((ds ~~ Ts) @ xs)
-                                    end)
-                            | SOME T' =>
-                                if T=T' then
-                                  (* ignore the association since it's already *)
-                                  (* present, proceed                          *)
-                                  rec_typ_assoc acc xs
-                                else
-                                  raise REFUTE ("IDT_recursion_interpreter",
-                                    "different type associations for the same dtyp"))
-                      val typ_assoc = filter
-                        (fn (Datatype.DtTFree _, _) => true | (_, _) => false)
-                        (rec_typ_assoc []
-                          (#2 (the (AList.lookup (op =) descr idt_index)) ~~ (snd o dest_Type) IDT))
-                      (* sanity check: typ_assoc must associate types to the   *)
-                      (*               elements of 'dtyps' (and only to those) *)
-                      val _ =
-                        if not (eq_set (op =) (dtyps, map fst typ_assoc))
-                        then
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "type association has extra/missing elements")
-                        else ()
-                      (* interpret each constructor in the descriptor (including *)
-                      (* those of mutually recursive datatypes)                  *)
-                      (* (int * interpretation list) list *)
-                      val mc_intrs = map (fn (idx, (_, _, cs)) =>
-                        let
-                          val c_return_typ = typ_of_dtyp descr typ_assoc
-                            (Datatype.DtRec idx)
-                        in
-                          (idx, map (fn (cname, cargs) =>
-                            (#1 o interpret ctxt (typs, []) {maxvars=0,
-                              def_eq=false, next_idx=1, bounds=[],
-                              wellformed=True}) (Const (cname, map (typ_of_dtyp
-                              descr typ_assoc) cargs ---> c_return_typ))) cs)
-                        end) descr
-                      (* associate constructors with corresponding parameters *)
-                      (* (int * (interpretation * interpretation) list) list *)
-                      val (mc_p_intrs, p_intrs') = fold_map
-                        (fn (idx, c_intrs) => fn p_intrs' =>
-                          let
-                            val len = length c_intrs
-                          in
-                            ((idx, c_intrs ~~ List.take (p_intrs', len)),
-                              List.drop (p_intrs', len))
-                          end) mc_intrs p_intrs
-                      (* sanity check: no 'p_intr' may be left afterwards *)
-                      val _ =
-                        if p_intrs' <> [] then
-                          raise REFUTE ("IDT_recursion_interpreter",
-                            "more parameter than constructor interpretations")
-                        else ()
-                      (* The recursion operator, applied to 'mconstrs_count'     *)
-                      (* arguments, is a function that maps every element of the *)
-                      (* inductive datatype to an element of some result type.   *)
-                      (* Recursion operators for mutually recursive IDTs are     *)
-                      (* translated simultaneously.                              *)
-                      (* Since the order on datatype elements is given by an     *)
-                      (* order on constructors (and then by the order on         *)
-                      (* argument tuples), we can simply copy corresponding      *)
-                      (* subtrees from 'p_intrs', in the order in which they are *)
-                      (* given.                                                  *)
-                      (* interpretation * interpretation -> interpretation list *)
-                      fun ci_pi (Leaf xs, pi) =
-                            (* if the constructor does not match the arguments to a *)
-                            (* defined element of the IDT, the corresponding value  *)
-                            (* of the parameter must be ignored                     *)
-                            if List.exists (equal True) xs then [pi] else []
-                        | ci_pi (Node xs, Node ys) = maps ci_pi (xs ~~ ys)
-                        | ci_pi (Node _, Leaf _) =
-                            raise REFUTE ("IDT_recursion_interpreter",
-                              "constructor takes more arguments than the " ^
-                                "associated parameter")
-                      (* (int * interpretation list) list *)
-                      val rec_operators = map (fn (idx, c_p_intrs) =>
-                        (idx, maps ci_pi c_p_intrs)) mc_p_intrs
-                      (* sanity check: every recursion operator must provide as  *)
-                      (*               many values as the corresponding datatype *)
-                      (*               has elements                              *)
-                      val _ = map (fn (idx, intrs) =>
-                        let
-                          val T = typ_of_dtyp descr typ_assoc
-                            (Datatype.DtRec idx)
-                        in
-                          if length intrs <> size_of_type ctxt (typs, []) T then
-                            raise REFUTE ("IDT_recursion_interpreter",
-                              "wrong number of interpretations for rec. operator")
-                          else ()
-                        end) rec_operators
-                      (* For non-recursive datatypes, we are pretty much done at *)
-                      (* this point.  For recursive datatypes however, we still  *)
-                      (* need to apply the interpretations in 'rec_operators' to *)
-                      (* (recursively obtained) interpretations for recursive    *)
-                      (* constructor arguments.  To do so more efficiently, we   *)
-                      (* copy 'rec_operators' into arrays first.  Each Boolean   *)
-                      (* indicates whether the recursive arguments have been     *)
-                      (* considered already.                                     *)
-                      (* (int * (bool * interpretation) Array.array) list *)
-                      val REC_OPERATORS = map (fn (idx, intrs) =>
-                        (idx, Array.fromList (map (pair false) intrs)))
-                        rec_operators
-                      (* takes an interpretation, and if some leaf of this     *)
-                      (* interpretation is the 'elem'-th element of the type,  *)
-                      (* the indices of the arguments leading to this leaf are *)
-                      (* returned                                              *)
-                      (* interpretation -> int -> int list option *)
-                      fun get_args (Leaf xs) elem =
-                            if find_index (fn x => x = True) xs = elem then
-                              SOME []
-                            else
-                              NONE
-                        | get_args (Node xs) elem =
-                            let
-                              (* interpretation list * int -> int list option *)
-                              fun search ([], _) =
-                                NONE
-                                | search (x::xs, n) =
-                                (case get_args x elem of
-                                  SOME result => SOME (n::result)
-                                | NONE        => search (xs, n+1))
-                            in
-                              search (xs, 0)
-                            end
-                      (* returns the index of the constructor and indices for *)
-                      (* its arguments that generate the 'elem'-th element of *)
-                      (* the datatype given by 'idx'                          *)
-                      (* int -> int -> int * int list *)
-                      fun get_cargs idx elem =
-                        let
-                          (* int * interpretation list -> int * int list *)
-                          fun get_cargs_rec (_, []) =
-                                raise REFUTE ("IDT_recursion_interpreter",
-                                  "no matching constructor found for datatype element")
-                            | get_cargs_rec (n, x::xs) =
-                                (case get_args x elem of
-                                  SOME args => (n, args)
-                                | NONE => get_cargs_rec (n+1, xs))
-                        in
-                          get_cargs_rec (0, the (AList.lookup (op =) mc_intrs idx))
-                        end
-                      (* computes one entry in 'REC_OPERATORS', and recursively *)
-                      (* all entries needed for it, where 'idx' gives the       *)
-                      (* datatype and 'elem' the element of it                  *)
-                      (* int -> int -> interpretation *)
-                      fun compute_array_entry idx elem =
-                        let
-                          val arr = the (AList.lookup (op =) REC_OPERATORS idx)
-                          val (flag, intr) = Array.sub (arr, elem)
-                        in
-                          if flag then
-                            (* simply return the previously computed result *)
-                            intr
-                          else
-                            (* we have to apply 'intr' to interpretations for all *)
-                            (* recursive arguments                                *)
-                            let
-                              (* int * int list *)
-                              val (c, args) = get_cargs idx elem
-                              (* find the indices of the constructor's /recursive/ *)
-                              (* arguments                                         *)
-                              val (_, _, constrs) = the (AList.lookup (op =) descr idx)
-                              val (_, dtyps) = nth constrs c
-                              val rec_dtyps_args = filter
-                                (Datatype_Aux.is_rec_type o fst) (dtyps ~~ args)
-                              (* map those indices to interpretations *)
-                              val rec_dtyps_intrs = map (fn (dtyp, arg) =>
-                                let
-                                  val dT = typ_of_dtyp descr typ_assoc dtyp
-                                  val consts = make_constants ctxt (typs, []) dT
-                                  val arg_i = nth consts arg
-                                in
-                                  (dtyp, arg_i)
-                                end) rec_dtyps_args
-                              (* takes the dtyp and interpretation of an element, *)
-                              (* and computes the interpretation for the          *)
-                              (* corresponding recursive argument                 *)
-                              fun rec_intr (Datatype.DtRec i) (Leaf xs) =
-                                    (* recursive argument is "rec_i params elem" *)
-                                    compute_array_entry i (find_index (fn x => x = True) xs)
-                                | rec_intr (Datatype.DtRec _) (Node _) =
-                                    raise REFUTE ("IDT_recursion_interpreter",
-                                      "interpretation for IDT is a node")
-                                | rec_intr (Datatype.DtType ("fun", [_, dt2])) (Node xs) =
-                                    (* recursive argument is something like     *)
-                                    (* "\<lambda>x::dt1. rec_? params (elem x)" *)
-                                    Node (map (rec_intr dt2) xs)
-                                | rec_intr (Datatype.DtType ("fun", [_, _])) (Leaf _) =
-                                    raise REFUTE ("IDT_recursion_interpreter",
-                                      "interpretation for function dtyp is a leaf")
-                                | rec_intr _ _ =
-                                    (* admissibility ensures that every recursive type *)
-                                    (* is of the form 'Dt_1 -> ... -> Dt_k ->          *)
-                                    (* (DtRec i)'                                      *)
-                                    raise REFUTE ("IDT_recursion_interpreter",
-                                      "non-recursive codomain in recursive dtyp")
-                              (* obtain interpretations for recursive arguments *)
-                              (* interpretation list *)
-                              val arg_intrs = map (uncurry rec_intr) rec_dtyps_intrs
-                              (* apply 'intr' to all recursive arguments *)
-                              val result = fold (fn arg_i => fn i =>
-                                interpretation_apply (i, arg_i)) arg_intrs intr
-                              (* update 'REC_OPERATORS' *)
-                              val _ = Array.update (arr, elem, (true, result))
-                            in
-                              result
-                            end
-                        end
-                      val idt_size = Array.length (the (AList.lookup (op =) REC_OPERATORS idt_index))
-                      (* sanity check: the size of 'IDT' should be 'idt_size' *)
-                      val _ =
-                          if idt_size <> size_of_type ctxt (typs, []) IDT then
-                            raise REFUTE ("IDT_recursion_interpreter",
-                              "unexpected size of IDT (wrong type associated?)")
-                          else ()
-                      (* interpretation *)
-                      val rec_op = Node (map_range (compute_array_entry idt_index) idt_size)
-                    in
-                      SOME (rec_op, model', args')
-                    end
-                end
-              else
-                NONE  (* not a recursion operator of this datatype *)
-          ) (Datatype.get_all thy) NONE
-    | _ =>  (* head of term is not a constant *)
-      NONE
-  end;
-
-fun set_interpreter ctxt model args t =
-  let
-    val (typs, terms) = model
-  in
-    case AList.lookup (op =) terms t of
-      SOME intr =>
-        (* return an existing interpretation *)
-        SOME (intr, model, args)
-    | NONE =>
-        (case t of
-          Free (x, Type (@{type_name set}, [T])) =>
-          let
-            val (intr, _, args') =
-              interpret ctxt (typs, []) args (Free (x, T --> HOLogic.boolT))
-          in
-            SOME (intr, (typs, (t, intr)::terms), args')
-          end
-        | Var ((x, i), Type (@{type_name set}, [T])) =>
-          let
-            val (intr, _, args') =
-              interpret ctxt (typs, []) args (Var ((x,i), T --> HOLogic.boolT))
-          in
-            SOME (intr, (typs, (t, intr)::terms), args')
-          end
-        | Const (s, Type (@{type_name set}, [T])) =>
-          let
-            val (intr, _, args') =
-              interpret ctxt (typs, []) args (Const (s, T --> HOLogic.boolT))
-          in
-            SOME (intr, (typs, (t, intr)::terms), args')
-          end
-        (* 'Collect' == identity *)
-        | Const (@{const_name Collect}, _) $ t1 =>
-            SOME (interpret ctxt model args t1)
-        | Const (@{const_name Collect}, _) =>
-            SOME (interpret ctxt model args (eta_expand t 1))
-        (* 'op :' == application *)
-        | Const (@{const_name Set.member}, _) $ t1 $ t2 =>
-            SOME (interpret ctxt model args (t2 $ t1))
-        | Const (@{const_name Set.member}, _) $ _ =>
-            SOME (interpret ctxt model args (eta_expand t 1))
-        | Const (@{const_name Set.member}, _) =>
-            SOME (interpret ctxt model args (eta_expand t 2))
-        | _ => NONE)
-  end;
-
-(* only an optimization: 'card' could in principle be interpreted with *)
-(* interpreters available already (using its definition), but the code *)
-(* below is more efficient                                             *)
-
-fun Finite_Set_card_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Finite_Set.card},
-        Type ("fun", [Type (@{type_name set}, [T]), @{typ nat}])) =>
-      let
-        (* interpretation -> int *)
-        fun number_of_elements (Node xs) =
-            fold (fn x => fn n =>
-              if x = TT then
-                n + 1
-              else if x = FF then
-                n
-              else
-                raise REFUTE ("Finite_Set_card_interpreter",
-                  "interpretation for set type does not yield a Boolean"))
-              xs 0
-          | number_of_elements (Leaf _) =
-              raise REFUTE ("Finite_Set_card_interpreter",
-                "interpretation for set type is a leaf")
-        val size_of_nat = size_of_type ctxt model (@{typ nat})
-        (* takes an interpretation for a set and returns an interpretation *)
-        (* for a 'nat' denoting the set's cardinality                      *)
-        (* interpretation -> interpretation *)
-        fun card i =
-          let
-            val n = number_of_elements i
-          in
-            if n < size_of_nat then
-              Leaf ((replicate n False) @ True ::
-                (replicate (size_of_nat-n-1) False))
-            else
-              Leaf (replicate size_of_nat False)
-          end
-        val set_constants = make_constants ctxt model (HOLogic.mk_setT T)
-      in
-        SOME (Node (map card set_constants), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'finite' could in principle be interpreted with  *)
-(* interpreters available already (using its definition), but the code    *)
-(* below is more efficient                                                *)
-
-fun Finite_Set_finite_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Finite_Set.finite},
-           Type ("fun", [_, @{typ bool}])) $ _ =>
-        (* we only consider finite models anyway, hence EVERY set is *)
-        (* "finite"                                                  *)
-        SOME (TT, model, args)
-  | Const (@{const_name Finite_Set.finite},
-           Type ("fun", [set_T, @{typ bool}])) =>
-      let
-        val size_of_set = size_of_type ctxt model set_T
-      in
-        (* we only consider finite models anyway, hence EVERY set is *)
-        (* "finite"                                                  *)
-        SOME (Node (replicate size_of_set TT), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'less' could in principle be interpreted with *)
-(* interpreters available already (using its definition), but the code     *)
-(* below is more efficient                                                 *)
-
-fun Nat_less_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Orderings.less}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ bool}])])) =>
-      let
-        val size_of_nat = size_of_type ctxt model (@{typ nat})
-        (* the 'n'-th nat is not less than the first 'n' nats, while it *)
-        (* is less than the remaining 'size_of_nat - n' nats            *)
-        (* int -> interpretation *)
-        fun less n = Node ((replicate n FF) @ (replicate (size_of_nat - n) TT))
-      in
-        SOME (Node (map less (1 upto size_of_nat)), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'plus' could in principle be interpreted with *)
-(* interpreters available already (using its definition), but the code     *)
-(* below is more efficient                                                 *)
-
-fun Nat_plus_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Groups.plus}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-      let
-        val size_of_nat = size_of_type ctxt model (@{typ nat})
-        (* int -> int -> interpretation *)
-        fun plus m n =
-          let
-            val element = m + n
-          in
-            if element > size_of_nat - 1 then
-              Leaf (replicate size_of_nat False)
-            else
-              Leaf ((replicate element False) @ True ::
-                (replicate (size_of_nat - element - 1) False))
-          end
-      in
-        SOME (Node (map_range (fn m => Node (map_range (plus m) size_of_nat)) size_of_nat),
-          model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'minus' could in principle be interpreted *)
-(* with interpreters available already (using its definition), but the *)
-(* code below is more efficient                                        *)
-
-fun Nat_minus_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Groups.minus}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-      let
-        val size_of_nat = size_of_type ctxt model (@{typ nat})
-        (* int -> int -> interpretation *)
-        fun minus m n =
-          let
-            val element = Int.max (m-n, 0)
-          in
-            Leaf ((replicate element False) @ True ::
-              (replicate (size_of_nat - element - 1) False))
-          end
-      in
-        SOME (Node (map_range (fn m => Node (map_range (minus m) size_of_nat)) size_of_nat),
-          model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'times' could in principle be interpreted *)
-(* with interpreters available already (using its definition), but the *)
-(* code below is more efficient                                        *)
-
-fun Nat_times_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name Groups.times}, Type ("fun", [@{typ nat},
-        Type ("fun", [@{typ nat}, @{typ nat}])])) =>
-      let
-        val size_of_nat = size_of_type ctxt model (@{typ nat})
-        (* nat -> nat -> interpretation *)
-        fun mult m n =
-          let
-            val element = m * n
-          in
-            if element > size_of_nat - 1 then
-              Leaf (replicate size_of_nat False)
-            else
-              Leaf ((replicate element False) @ True ::
-                (replicate (size_of_nat - element - 1) False))
-          end
-      in
-        SOME (Node (map_range (fn m => Node (map_range (mult m) size_of_nat)) size_of_nat),
-          model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'append' could in principle be interpreted with *)
-(* interpreters available already (using its definition), but the code   *)
-(* below is more efficient                                               *)
-
-fun List_append_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name List.append}, Type ("fun", [Type ("List.list", [T]), Type ("fun",
-        [Type ("List.list", [_]), Type ("List.list", [_])])])) =>
-      let
-        val size_elem = size_of_type ctxt model T
-        val size_list = size_of_type ctxt model (Type ("List.list", [T]))
-        (* maximal length of lists; 0 if we only consider the empty list *)
-        val list_length =
-          let
-            (* int -> int -> int -> int *)
-            fun list_length_acc len lists total =
-              if lists = total then
-                len
-              else if lists < total then
-                list_length_acc (len+1) (lists*size_elem) (total-lists)
-              else
-                raise REFUTE ("List_append_interpreter",
-                  "size_list not equal to 1 + size_elem + ... + " ^
-                    "size_elem^len, for some len")
-          in
-            list_length_acc 0 1 size_list
-          end
-        val elements = 0 upto (size_list-1)
-        (* FIXME: there should be a nice formula, which computes the same as *)
-        (*        the following, but without all this intermediate tree      *)
-        (*        length/offset stuff                                        *)
-        (* associate each list with its length and offset in a complete tree *)
-        (* of width 'size_elem' and depth 'length_list' (with 'size_list'    *)
-        (* nodes total)                                                      *)
-        (* (int * (int * int)) list *)
-        val (lenoff_lists, _) = fold_map (fn elem => fn (offsets, off) =>
-          (* corresponds to a pre-order traversal of the tree *)
-          let
-            val len = length offsets
-            (* associate the given element with len/off *)
-            val assoc = (elem, (len, off))
-          in
-            if len < list_length then
-              (* go to first child node *)
-              (assoc, (off :: offsets, off * size_elem))
-            else if off mod size_elem < size_elem - 1 then
-              (* go to next sibling node *)
-              (assoc, (offsets, off + 1))
-            else
-              (* go back up the stack until we find a level where we can go *)
-              (* to the next sibling node                                   *)
-              let
-                val offsets' = snd (take_prefix
-                  (fn off' => off' mod size_elem = size_elem - 1) offsets)
-              in
-                case offsets' of
-                  [] =>
-                    (* we're at the last node in the tree; the next value *)
-                    (* won't be used anyway                               *)
-                    (assoc, ([], 0))
-                | off'::offs' =>
-                    (* go to next sibling node *)
-                    (assoc, (offs', off' + 1))
-              end
-          end) elements ([], 0)
-        (* we also need the reverse association (from length/offset to *)
-        (* index)                                                      *)
-        val lenoff'_lists = map Library.swap lenoff_lists
-        (* returns the interpretation for "(list no. m) @ (list no. n)" *)
-        (* nat -> nat -> interpretation *)
-        fun append m n =
-          let
-            val (len_m, off_m) = the (AList.lookup (op =) lenoff_lists m)
-            val (len_n, off_n) = the (AList.lookup (op =) lenoff_lists n)
-            val len_elem = len_m + len_n
-            val off_elem = off_m * Integer.pow len_n size_elem + off_n
-          in
-            case AList.lookup op= lenoff'_lists (len_elem, off_elem) of
-              NONE =>
-                (* undefined *)
-                Leaf (replicate size_list False)
-            | SOME element =>
-                Leaf ((replicate element False) @ True ::
-                  (replicate (size_list - element - 1) False))
-          end
-      in
-        SOME (Node (map (fn m => Node (map (append m) elements)) elements),
-          model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'lfp' could in principle be interpreted with  *)
-(* interpreters available already (using its definition), but the code *)
-(* below is more efficient                                             *)
-
-fun lfp_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name lfp}, Type ("fun", [Type ("fun",
-      [Type (@{type_name set}, [T]),
-       Type (@{type_name set}, [_])]),
-       Type (@{type_name set}, [_])])) =>
-      let
-        val size_elem = size_of_type ctxt model T
-        (* the universe (i.e. the set that contains every element) *)
-        val i_univ = Node (replicate size_elem TT)
-        (* all sets with elements from type 'T' *)
-        val i_sets = make_constants ctxt model (HOLogic.mk_setT T)
-        (* all functions that map sets to sets *)
-        val i_funs = make_constants ctxt model (Type ("fun",
-          [HOLogic.mk_setT T, HOLogic.mk_setT T]))
-        (* "lfp(f) == Inter({u. f(u) <= u})" *)
-        (* interpretation * interpretation -> bool *)
-        fun is_subset (Node subs, Node sups) =
-              forall (fn (sub, sup) => (sub = FF) orelse (sup = TT)) (subs ~~ sups)
-          | is_subset (_, _) =
-              raise REFUTE ("lfp_interpreter",
-                "is_subset: interpretation for set is not a node")
-        (* interpretation * interpretation -> interpretation *)
-        fun intersection (Node xs, Node ys) =
-              Node (map (fn (x, y) => if x=TT andalso y=TT then TT else FF)
-                (xs ~~ ys))
-          | intersection (_, _) =
-              raise REFUTE ("lfp_interpreter",
-                "intersection: interpretation for set is not a node")
-        (* interpretation -> interpretaion *)
-        fun lfp (Node resultsets) =
-              fold (fn (set, resultset) => fn acc =>
-                if is_subset (resultset, set) then
-                  intersection (acc, set)
-                else
-                  acc) (i_sets ~~ resultsets) i_univ
-          | lfp _ =
-              raise REFUTE ("lfp_interpreter",
-                "lfp: interpretation for function is not a node")
-      in
-        SOME (Node (map lfp i_funs), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'gfp' could in principle be interpreted with  *)
-(* interpreters available already (using its definition), but the code *)
-(* below is more efficient                                             *)
-
-fun gfp_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name gfp}, Type ("fun", [Type ("fun",
-      [Type (@{type_name set}, [T]),
-       Type (@{type_name set}, [_])]),
-       Type (@{type_name set}, [_])])) =>
-      let
-        val size_elem = size_of_type ctxt model T
-        (* the universe (i.e. the set that contains every element) *)
-        val i_univ = Node (replicate size_elem TT)
-        (* all sets with elements from type 'T' *)
-        val i_sets = make_constants ctxt model (HOLogic.mk_setT T)
-        (* all functions that map sets to sets *)
-        val i_funs = make_constants ctxt model (Type ("fun",
-          [HOLogic.mk_setT T, HOLogic.mk_setT T]))
-        (* "gfp(f) == Union({u. u <= f(u)})" *)
-        (* interpretation * interpretation -> bool *)
-        fun is_subset (Node subs, Node sups) =
-              forall (fn (sub, sup) => (sub = FF) orelse (sup = TT))
-                (subs ~~ sups)
-          | is_subset (_, _) =
-              raise REFUTE ("gfp_interpreter",
-                "is_subset: interpretation for set is not a node")
-        (* interpretation * interpretation -> interpretation *)
-        fun union (Node xs, Node ys) =
-              Node (map (fn (x,y) => if x=TT orelse y=TT then TT else FF)
-                   (xs ~~ ys))
-          | union (_, _) =
-              raise REFUTE ("gfp_interpreter",
-                "union: interpretation for set is not a node")
-        (* interpretation -> interpretaion *)
-        fun gfp (Node resultsets) =
-              fold (fn (set, resultset) => fn acc =>
-                if is_subset (set, resultset) then
-                  union (acc, set)
-                else
-                  acc) (i_sets ~~ resultsets) i_univ
-          | gfp _ =
-              raise REFUTE ("gfp_interpreter",
-                "gfp: interpretation for function is not a node")
-      in
-        SOME (Node (map gfp i_funs), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'fst' could in principle be interpreted with  *)
-(* interpreters available already (using its definition), but the code *)
-(* below is more efficient                                             *)
-
-fun Product_Type_fst_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name fst}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
-      let
-        val constants_T = make_constants ctxt model T
-        val size_U = size_of_type ctxt model U
-      in
-        SOME (Node (maps (replicate size_U) constants_T), model, args)
-      end
-  | _ => NONE;
-
-(* only an optimization: 'snd' could in principle be interpreted with  *)
-(* interpreters available already (using its definition), but the code *)
-(* below is more efficient                                             *)
-
-fun Product_Type_snd_interpreter ctxt model args t =
-  case t of
-    Const (@{const_name snd}, Type ("fun", [Type (@{type_name Product_Type.prod}, [T, U]), _])) =>
-      let
-        val size_T = size_of_type ctxt model T
-        val constants_U = make_constants ctxt model U
-      in
-        SOME (Node (flat (replicate size_T constants_U)), model, args)
-      end
-  | _ => NONE;
-
-
-(* ------------------------------------------------------------------------- *)
-(* PRINTERS                                                                  *)
-(* ------------------------------------------------------------------------- *)
-
-fun stlc_printer ctxt model T intr assignment =
-  let
-    (* string -> string *)
-    val strip_leading_quote = perhaps (try (unprefix "'"))
-    (* Term.typ -> string *)
-    fun string_of_typ (Type (s, _)) = s
-      | string_of_typ (TFree (x, _)) = strip_leading_quote x
-      | string_of_typ (TVar ((x,i), _)) =
-          strip_leading_quote x ^ string_of_int i
-    (* interpretation -> int *)
-    fun index_from_interpretation (Leaf xs) =
-          find_index (Prop_Logic.eval assignment) xs
-      | index_from_interpretation _ =
-          raise REFUTE ("stlc_printer",
-            "interpretation for ground type is not a leaf")
-  in
-    case T of
-      Type ("fun", [T1, T2]) =>
-        let
-          (* create all constants of type 'T1' *)
-          val constants = make_constants ctxt model T1
-          (* interpretation list *)
-          val results =
-            (case intr of
-              Node xs => xs
-            | _ => raise REFUTE ("stlc_printer",
-              "interpretation for function type is a leaf"))
-          (* Term.term list *)
-          val pairs = map (fn (arg, result) =>
-            HOLogic.mk_prod
-              (print ctxt model T1 arg assignment,
-               print ctxt model T2 result assignment))
-            (constants ~~ results)
-          (* Term.typ *)
-          val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
-          val HOLogic_setT  = HOLogic.mk_setT HOLogic_prodT
-          (* Term.term *)
-          val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT)
-          val HOLogic_insert    =
-            Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
-        in
-          SOME (fold_rev (fn pair => fn acc => HOLogic_insert $ pair $ acc) pairs HOLogic_empty_set)
-        end
-    | Type ("prop", []) =>
-        (case index_from_interpretation intr of
-          ~1 => SOME (HOLogic.mk_Trueprop (Const (@{const_name undefined}, HOLogic.boolT)))
-        | 0  => SOME (HOLogic.mk_Trueprop @{term True})
-        | 1  => SOME (HOLogic.mk_Trueprop @{term False})
-        | _  => raise REFUTE ("stlc_interpreter",
-          "illegal interpretation for a propositional value"))
-    | Type _  =>
-        if index_from_interpretation intr = (~1) then
-          SOME (Const (@{const_name undefined}, T))
-        else
-          SOME (Const (string_of_typ T ^
-            string_of_int (index_from_interpretation intr), T))
-    | TFree _ =>
-        if index_from_interpretation intr = (~1) then
-          SOME (Const (@{const_name undefined}, T))
-        else
-          SOME (Const (string_of_typ T ^
-            string_of_int (index_from_interpretation intr), T))
-    | TVar _  =>
-        if index_from_interpretation intr = (~1) then
-          SOME (Const (@{const_name undefined}, T))
-        else
-          SOME (Const (string_of_typ T ^
-            string_of_int (index_from_interpretation intr), T))
-  end;
-
-fun set_printer ctxt model T intr assignment =
-  (case T of
-    Type (@{type_name set}, [T1]) =>
-    let
-      (* create all constants of type 'T1' *)
-      val constants = make_constants ctxt model T1
-      (* interpretation list *)
-      val results = (case intr of
-          Node xs => xs
-        | _       => raise REFUTE ("set_printer",
-          "interpretation for set type is a leaf"))
-      (* Term.term list *)
-      val elements = List.mapPartial (fn (arg, result) =>
-        case result of
-          Leaf [fmTrue, (* fmFalse *) _] =>
-          if Prop_Logic.eval assignment fmTrue then
-            SOME (print ctxt model T1 arg assignment)
-          else (* if Prop_Logic.eval assignment fmFalse then *)
-            NONE
-        | _ =>
-          raise REFUTE ("set_printer",
-            "illegal interpretation for a Boolean value"))
-        (constants ~~ results)
-      (* Term.typ *)
-      val HOLogic_setT1     = HOLogic.mk_setT T1
-      (* Term.term *)
-      val HOLogic_empty_set = Const (@{const_abbrev Set.empty}, HOLogic_setT1)
-      val HOLogic_insert    =
-        Const (@{const_name insert}, T1 --> HOLogic_setT1 --> HOLogic_setT1)
-    in
-      SOME (Library.foldl (fn (acc, elem) => HOLogic_insert $ elem $ acc)
-        (HOLogic_empty_set, elements))
-    end
-  | _ =>
-    NONE);
-
-fun IDT_printer ctxt model T intr assignment =
-  let
-    val thy = Proof_Context.theory_of ctxt
-  in
-    (case T of
-      Type (s, Ts) =>
-        (case Datatype.get_info thy s of
-          SOME info =>  (* inductive datatype *)
-            let
-              val (typs, _)           = model
-              val index               = #index info
-              val descr               = #descr info
-              val (_, dtyps, constrs) = the (AList.lookup (op =) descr index)
-              val typ_assoc           = dtyps ~~ Ts
-              (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
-              val _ =
-                if Library.exists (fn d =>
-                  case d of Datatype.DtTFree _ => false | _ => true) dtyps
-                then
-                  raise REFUTE ("IDT_printer", "datatype argument (for type " ^
-                    Syntax.string_of_typ ctxt (Type (s, Ts)) ^ ") is not a variable")
-                else ()
-              (* the index of the element in the datatype *)
-              val element =
-                (case intr of
-                  Leaf xs => find_index (Prop_Logic.eval assignment) xs
-                | Node _  => raise REFUTE ("IDT_printer",
-                  "interpretation is not a leaf"))
-            in
-              if element < 0 then
-                SOME (Const (@{const_name undefined}, Type (s, Ts)))
-              else
-                let
-                  (* takes a datatype constructor, and if for some arguments this  *)
-                  (* constructor generates the datatype's element that is given by *)
-                  (* 'element', returns the constructor (as a term) as well as the *)
-                  (* indices of the arguments                                      *)
-                  fun get_constr_args (cname, cargs) =
-                    let
-                      val cTerm      = Const (cname,
-                        map (typ_of_dtyp descr typ_assoc) cargs ---> Type (s, Ts))
-                      val (iC, _, _) = interpret ctxt (typs, []) {maxvars=0,
-                        def_eq=false, next_idx=1, bounds=[], wellformed=True} cTerm
-                      (* interpretation -> int list option *)
-                      fun get_args (Leaf xs) =
-                            if find_index (fn x => x = True) xs = element then
-                              SOME []
-                            else
-                              NONE
-                        | get_args (Node xs) =
-                            let
-                              (* interpretation * int -> int list option *)
-                              fun search ([], _) =
-                                NONE
-                                | search (x::xs, n) =
-                                (case get_args x of
-                                  SOME result => SOME (n::result)
-                                | NONE        => search (xs, n+1))
-                            in
-                              search (xs, 0)
-                            end
-                    in
-                      Option.map (fn args => (cTerm, cargs, args)) (get_args iC)
-                    end
-                  val (cTerm, cargs, args) =
-                    (* we could speed things up by computing the correct          *)
-                    (* constructor directly (rather than testing all              *)
-                    (* constructors), based on the order in which constructors    *)
-                    (* generate elements of datatypes; the current implementation *)
-                    (* of 'IDT_printer' however is independent of the internals   *)
-                    (* of 'IDT_constructor_interpreter'                           *)
-                    (case get_first get_constr_args constrs of
-                      SOME x => x
-                    | NONE   => raise REFUTE ("IDT_printer",
-                      "no matching constructor found for element " ^
-                      string_of_int element))
-                  val argsTerms = map (fn (d, n) =>
-                    let
-                      val dT = typ_of_dtyp descr typ_assoc d
-                      (* we only need the n-th element of this list, so there   *)
-                      (* might be a more efficient implementation that does not *)
-                      (* generate all constants                                 *)
-                      val consts = make_constants ctxt (typs, []) dT
-                    in
-                      print ctxt (typs, []) dT (nth consts n) assignment
-                    end) (cargs ~~ args)
-                in
-                  SOME (list_comb (cTerm, argsTerms))
-                end
-            end
-        | NONE =>  (* not an inductive datatype *)
-            NONE)
-    | _ =>  (* a (free or schematic) type variable *)
-        NONE)
-  end;
-
-
-(* ------------------------------------------------------------------------- *)
-(* use 'setup Refute.setup' in an Isabelle theory to initialize the 'Refute' *)
-(* structure                                                                 *)
-(* ------------------------------------------------------------------------- *)
-
-(* ------------------------------------------------------------------------- *)
-(* Note: the interpreters and printers are used in reverse order; however,   *)
-(*       an interpreter that can handle non-atomic terms ends up being       *)
-(*       applied before the 'stlc_interpreter' breaks the term apart into    *)
-(*       subterms that are then passed to other interpreters!                *)
-(* ------------------------------------------------------------------------- *)
-
-val setup =
-   add_interpreter "stlc"    stlc_interpreter #>
-   add_interpreter "Pure"    Pure_interpreter #>
-   add_interpreter "HOLogic" HOLogic_interpreter #>
-   add_interpreter "set"     set_interpreter #>
-   add_interpreter "IDT"             IDT_interpreter #>
-   add_interpreter "IDT_constructor" IDT_constructor_interpreter #>
-   add_interpreter "IDT_recursion"   IDT_recursion_interpreter #>
-   add_interpreter "Finite_Set.card"    Finite_Set_card_interpreter #>
-   add_interpreter "Finite_Set.finite"  Finite_Set_finite_interpreter #>
-   add_interpreter "Nat_Orderings.less" Nat_less_interpreter #>
-   add_interpreter "Nat_HOL.plus"       Nat_plus_interpreter #>
-   add_interpreter "Nat_HOL.minus"      Nat_minus_interpreter #>
-   add_interpreter "Nat_HOL.times"      Nat_times_interpreter #>
-   add_interpreter "List.append" List_append_interpreter #>
-(* UNSOUND
-   add_interpreter "lfp" lfp_interpreter #>
-   add_interpreter "gfp" gfp_interpreter #>
-*)
-   add_interpreter "Product_Type.fst" Product_Type_fst_interpreter #>
-   add_interpreter "Product_Type.snd" Product_Type_snd_interpreter #>
-   add_printer "stlc" stlc_printer #>
-   add_printer "set" set_printer #>
-   add_printer "IDT"  IDT_printer;
-
-
-
-(** outer syntax commands 'refute' and 'refute_params' **)
-
-(* argument parsing *)
-
-(*optional list of arguments of the form [name1=value1, name2=value2, ...]*)
-
-val scan_parm = Parse.name -- (Scan.optional (@{keyword "="} |-- Parse.name) "true")
-val scan_parms = Scan.optional (@{keyword "["} |-- Parse.list scan_parm --| @{keyword "]"}) [];
-
-
-(* 'refute' command *)
-
-val _ =
-  Outer_Syntax.improper_command @{command_spec "refute"}
-    "try to find a model that refutes a given subgoal"
-    (scan_parms -- Scan.optional Parse.nat 1 >>
-      (fn (parms, i) =>
-        Toplevel.keep (fn state =>
-          let
-            val ctxt = Toplevel.context_of state;
-            val {goal = st, ...} = Proof.raw_goal (Toplevel.proof_of state);
-          in refute_goal ctxt parms st i; () end)));
-
-
-(* 'refute_params' command *)
-
-val _ =
-  Outer_Syntax.command @{command_spec "refute_params"}
-    "show/store default parameters for the 'refute' command"
-    (scan_parms >> (fn parms =>
-      Toplevel.theory (fn thy =>
-        let
-          val thy' = fold set_default_param parms thy;
-          val output =
-            (case get_default_params (Proof_Context.init_global thy') of
-              [] => "none"
-            | new_defaults => cat_lines (map (fn (x, y) => x ^ "=" ^ y) new_defaults));
-          val _ = writeln ("Default parameters for 'refute':\n" ^ output);
-        in thy' end)));
-
-end;
-