merged
authorhaftmann
Fri, 19 Feb 2010 16:52:30 +0100
changeset 35269 5d7f22e0f956
parent 35268 04673275441a (current diff)
parent 35229 d4ec25836a78 (diff)
child 35270 5deccc3159d0
merged
--- a/src/HOL/IsaMakefile	Fri Feb 19 16:52:00 2010 +0100
+++ b/src/HOL/IsaMakefile	Fri Feb 19 16:52:30 2010 +0100
@@ -52,6 +52,7 @@
   HOL-Nominal-Examples \
   HOL-Number_Theory \
   HOL-Old_Number_Theory \
+  HOL-Quotient_Examples \
   HOL-Probability \
   HOL-Prolog \
   HOL-Proofs-Extraction \
@@ -265,6 +266,7 @@
   Presburger.thy \
   Predicate_Compile.thy \
   Quickcheck.thy \
+  Quotient.thy \
   Random.thy \
   Random_Sequence.thy \
   Recdef.thy \
@@ -307,6 +309,11 @@
   Tools/Qelim/generated_cooper.ML \
   Tools/Qelim/presburger.ML \
   Tools/Qelim/qelim.ML \
+  Tools/Quotient/quotient_def.ML \
+  Tools/Quotient/quotient_info.ML \
+  Tools/Quotient/quotient_tacs.ML \
+  Tools/Quotient/quotient_term.ML \
+  Tools/Quotient/quotient_typ.ML \
   Tools/recdef.ML \
   Tools/res_atp.ML \
   Tools/res_axioms.ML \
@@ -407,7 +414,10 @@
   Library/Diagonalize.thy Library/RBT.thy Library/Univ_Poly.thy		\
   Library/Poly_Deriv.thy Library/Polynomial.thy Library/Preorder.thy	\
   Library/Product_plus.thy Library/Product_Vector.thy Library/Tree.thy	\
-  Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML		\
+  Library/Enum.thy Library/Float.thy Library/Quotient_List.thy          \
+  Library/Quotient_Option.thy Library/Quotient_Product.thy              \
+  Library/Quotient_Sum.thy Library/Quotient_Syntax.thy                  \
+  $(SRC)/Tools/float.ML                                                 \
   $(SRC)/HOL/Tools/float_arith.ML Library/positivstellensatz.ML		\
   Library/reify_data.ML Library/reflection.ML Library/LaTeXsugar.thy	\
   Library/OptionalSugar.thy Library/SML_Quickcheck.thy
@@ -1273,6 +1283,15 @@
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Mutabelle
 
 
+## HOL-Quotient_Examples
+
+HOL-Quotient_Examples: HOL $(LOG)/HOL-Quotient_Examples.gz
+
+$(LOG)/HOL-Quotient_Examples.gz: $(OUT)/HOL	      			\
+  Quotient_Examples/LarryInt.thy Quotient_Examples/LarryDatatype.thy
+	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Quotient_Examples
+
+
 ## clean
 
 clean:
--- a/src/HOL/Library/Library.thy	Fri Feb 19 16:52:00 2010 +0100
+++ b/src/HOL/Library/Library.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -45,6 +45,11 @@
   Preorder
   Product_Vector
   Quicksort
+  Quotient_List
+  Quotient_Option
+  Quotient_Product
+  Quotient_Sum
+  Quotient_Syntax
   Quotient_Type
   Ramsey
   Reflection
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quotient_List.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,232 @@
+(*  Title:      Quotient_List.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_List
+imports Main Quotient_Syntax
+begin
+
+section {* Quotient infrastructure for the list type. *}
+
+fun
+  list_rel
+where
+  "list_rel R [] [] = True"
+| "list_rel R (x#xs) [] = False"
+| "list_rel R [] (x#xs) = False"
+| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
+
+declare [[map list = (map, list_rel)]]
+
+lemma split_list_all:
+  shows "(\<forall>x. P x) \<longleftrightarrow> P [] \<and> (\<forall>x xs. P (x#xs))"
+  apply(auto)
+  apply(case_tac x)
+  apply(simp_all)
+  done
+
+lemma map_id[id_simps]:
+  shows "map id = id"
+  apply(simp add: expand_fun_eq)
+  apply(rule allI)
+  apply(induct_tac x)
+  apply(simp_all)
+  done
+
+
+lemma list_rel_reflp:
+  shows "equivp R \<Longrightarrow> list_rel R xs xs"
+  apply(induct xs)
+  apply(simp_all add: equivp_reflp)
+  done
+
+lemma list_rel_symp:
+  assumes a: "equivp R"
+  shows "list_rel R xs ys \<Longrightarrow> list_rel R ys xs"
+  apply(induct xs ys rule: list_induct2')
+  apply(simp_all)
+  apply(rule equivp_symp[OF a])
+  apply(simp)
+  done
+
+lemma list_rel_transp:
+  assumes a: "equivp R"
+  shows "list_rel R xs1 xs2 \<Longrightarrow> list_rel R xs2 xs3 \<Longrightarrow> list_rel R xs1 xs3"
+  apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2')
+  apply(simp_all)
+  apply(case_tac xs3)
+  apply(simp_all)
+  apply(rule equivp_transp[OF a])
+  apply(auto)
+  done
+
+lemma list_equivp[quot_equiv]:
+  assumes a: "equivp R"
+  shows "equivp (list_rel R)"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(subst split_list_all)
+  apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a])
+  apply(blast intro: list_rel_symp[OF a])
+  apply(blast intro: list_rel_transp[OF a])
+  done
+
+lemma list_rel_rel:
+  assumes q: "Quotient R Abs Rep"
+  shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
+  apply(induct r s rule: list_induct2')
+  apply(simp_all)
+  using Quotient_rel[OF q]
+  apply(metis)
+  done
+
+lemma list_quotient[quot_thm]:
+  assumes q: "Quotient R Abs Rep"
+  shows "Quotient (list_rel R) (map Abs) (map Rep)"
+  unfolding Quotient_def
+  apply(subst split_list_all)
+  apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id)
+  apply(rule conjI)
+  apply(rule allI)
+  apply(induct_tac a)
+  apply(simp)
+  apply(simp)
+  apply(simp add: Quotient_rep_reflp[OF q])
+  apply(rule allI)+
+  apply(rule list_rel_rel[OF q])
+  done
+
+
+lemma cons_prs_aux:
+  assumes q: "Quotient R Abs Rep"
+  shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
+  by (induct t) (simp_all add: Quotient_abs_rep[OF q])
+
+lemma cons_prs[quot_preserve]:
+  assumes q: "Quotient R Abs Rep"
+  shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
+  by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q])
+     (simp)
+
+lemma cons_rsp[quot_respect]:
+  assumes q: "Quotient R Abs Rep"
+  shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)"
+  by (auto)
+
+lemma nil_prs[quot_preserve]:
+  assumes q: "Quotient R Abs Rep"
+  shows "map Abs [] = []"
+  by simp
+
+lemma nil_rsp[quot_respect]:
+  assumes q: "Quotient R Abs Rep"
+  shows "list_rel R [] []"
+  by simp
+
+lemma map_prs_aux:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
+  by (induct l)
+     (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
+
+
+lemma map_prs[quot_preserve]:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
+  by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b])
+     (simp)
+
+
+lemma map_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
+  apply(simp)
+  apply(rule allI)+
+  apply(rule impI)
+  apply(rule allI)+
+  apply (induct_tac xa ya rule: list_induct2')
+  apply simp_all
+  done
+
+lemma foldr_prs_aux:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
+  by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
+
+lemma foldr_prs[quot_preserve]:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
+  by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b])
+     (simp)
+
+lemma foldl_prs_aux:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
+  by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
+
+
+lemma foldl_prs[quot_preserve]:
+  assumes a: "Quotient R1 abs1 rep1"
+  and     b: "Quotient R2 abs2 rep2"
+  shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
+  by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b])
+     (simp)
+
+lemma list_rel_empty:
+  shows "list_rel R [] b \<Longrightarrow> length b = 0"
+  by (induct b) (simp_all)
+
+lemma list_rel_len:
+  shows "list_rel R a b \<Longrightarrow> length a = length b"
+  apply (induct a arbitrary: b)
+  apply (simp add: list_rel_empty)
+  apply (case_tac b)
+  apply simp_all
+  done
+
+(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
+lemma foldl_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
+  apply(auto)
+  apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
+  apply simp
+  apply (rule_tac x="xa" in spec)
+  apply (rule_tac x="ya" in spec)
+  apply (rule_tac xs="xb" and ys="yb" in list_induct2)
+  apply (rule list_rel_len)
+  apply (simp_all)
+  done
+
+lemma foldr_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"
+  apply auto
+  apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")
+  apply simp
+  apply (rule_tac xs="xa" and ys="ya" in list_induct2)
+  apply (rule list_rel_len)
+  apply (simp_all)
+  done
+
+lemma list_rel_eq[id_simps]:
+  shows "(list_rel (op =)) = (op =)"
+  unfolding expand_fun_eq
+  apply(rule allI)+
+  apply(induct_tac x xa rule: list_induct2')
+  apply(simp_all)
+  done
+
+lemma list_rel_refl:
+  assumes a: "\<And>x y. R x y = (R x = R y)"
+  shows "list_rel R x x"
+  by (induct x) (auto simp add: a)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quotient_Option.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,80 @@
+(*  Title:      Quotient_Option.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_Option
+imports Main Quotient_Syntax
+begin
+
+section {* Quotient infrastructure for the option type. *}
+
+fun
+  option_rel
+where
+  "option_rel R None None = True"
+| "option_rel R (Some x) None = False"
+| "option_rel R None (Some x) = False"
+| "option_rel R (Some x) (Some y) = R x y"
+
+declare [[map option = (Option.map, option_rel)]]
+
+text {* should probably be in Option.thy *}
+lemma split_option_all:
+  shows "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>a. P (Some a))"
+  apply(auto)
+  apply(case_tac x)
+  apply(simp_all)
+  done
+
+lemma option_quotient[quot_thm]:
+  assumes q: "Quotient R Abs Rep"
+  shows "Quotient (option_rel R) (Option.map Abs) (Option.map Rep)"
+  unfolding Quotient_def
+  apply(simp add: split_option_all)
+  apply(simp add: Quotient_abs_rep[OF q] Quotient_rel_rep[OF q])
+  using q
+  unfolding Quotient_def
+  apply(blast)
+  done
+
+lemma option_equivp[quot_equiv]:
+  assumes a: "equivp R"
+  shows "equivp (option_rel R)"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(simp_all add: split_option_all)
+  apply(blast intro: equivp_reflp[OF a])
+  apply(blast intro: equivp_symp[OF a])
+  apply(blast intro: equivp_transp[OF a])
+  done
+
+lemma option_None_rsp[quot_respect]:
+  assumes q: "Quotient R Abs Rep"
+  shows "option_rel R None None"
+  by simp
+
+lemma option_Some_rsp[quot_respect]:
+  assumes q: "Quotient R Abs Rep"
+  shows "(R ===> option_rel R) Some Some"
+  by simp
+
+lemma option_None_prs[quot_preserve]:
+  assumes q: "Quotient R Abs Rep"
+  shows "Option.map Abs None = None"
+  by simp
+
+lemma option_Some_prs[quot_preserve]:
+  assumes q: "Quotient R Abs Rep"
+  shows "(Rep ---> Option.map Abs) Some = Some"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q])
+  done
+
+lemma option_map_id[id_simps]:
+  shows "Option.map id = id"
+  by (simp add: expand_fun_eq split_option_all)
+
+lemma option_rel_eq[id_simps]:
+  shows "option_rel (op =) = (op =)"
+  by (simp add: expand_fun_eq split_option_all)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quotient_Product.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,104 @@
+(*  Title:      Quotient_Product.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_Product
+imports Main Quotient_Syntax
+begin
+
+section {* Quotient infrastructure for the product type. *}
+
+fun
+  prod_rel
+where
+  "prod_rel R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)"
+
+declare [[map * = (prod_fun, prod_rel)]]
+
+
+lemma prod_equivp[quot_equiv]:
+  assumes a: "equivp R1"
+  assumes b: "equivp R2"
+  shows "equivp (prod_rel R1 R2)"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(simp_all add: split_paired_all)
+  apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
+  apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
+  apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
+  done
+
+lemma prod_quotient[quot_thm]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)"
+  unfolding Quotient_def
+  apply(simp add: split_paired_all)
+  apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
+  apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
+  using q1 q2
+  unfolding Quotient_def
+  apply(blast)
+  done
+
+lemma Pair_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
+  by simp
+
+lemma Pair_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+  done
+
+lemma fst_rsp[quot_respect]:
+  assumes "Quotient R1 Abs1 Rep1"
+  assumes "Quotient R2 Abs2 Rep2"
+  shows "(prod_rel R1 R2 ===> R1) fst fst"
+  by simp
+
+lemma fst_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q1])
+  done
+
+lemma snd_rsp[quot_respect]:
+  assumes "Quotient R1 Abs1 Rep1"
+  assumes "Quotient R2 Abs2 Rep2"
+  shows "(prod_rel R1 R2 ===> R2) snd snd"
+  by simp
+
+lemma snd_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q2])
+  done
+
+lemma split_rsp[quot_respect]:
+  shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split"
+  by auto
+
+lemma split_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
+  by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+
+lemma prod_fun_id[id_simps]:
+  shows "prod_fun id id = id"
+  by (simp add: prod_fun_def)
+
+lemma prod_rel_eq[id_simps]:
+  shows "prod_rel (op =) (op =) = (op =)"
+  by (simp add: expand_fun_eq)
+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quotient_Sum.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,96 @@
+(*  Title:      Quotient_Sum.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_Sum
+imports Main Quotient_Syntax
+begin
+
+section {* Quotient infrastructure for the sum type. *}
+
+fun
+  sum_rel
+where
+  "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
+| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
+| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
+| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
+
+fun
+  sum_map
+where
+  "sum_map f1 f2 (Inl a) = Inl (f1 a)"
+| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
+
+declare [[map "+" = (sum_map, sum_rel)]]
+
+
+text {* should probably be in Sum_Type.thy *}
+lemma split_sum_all:
+  shows "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))"
+  apply(auto)
+  apply(case_tac x)
+  apply(simp_all)
+  done
+
+lemma sum_equivp[quot_equiv]:
+  assumes a: "equivp R1"
+  assumes b: "equivp R2"
+  shows "equivp (sum_rel R1 R2)"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(simp_all add: split_sum_all)
+  apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
+  apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
+  apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
+  done
+
+lemma sum_quotient[quot_thm]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
+  unfolding Quotient_def
+  apply(simp add: split_sum_all)
+  apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
+  apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
+  using q1 q2
+  unfolding Quotient_def
+  apply(blast)+
+  done
+
+lemma sum_Inl_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(R1 ===> sum_rel R1 R2) Inl Inl"
+  by simp
+
+lemma sum_Inr_rsp[quot_respect]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(R2 ===> sum_rel R1 R2) Inr Inr"
+  by simp
+
+lemma sum_Inl_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q1])
+  done
+
+lemma sum_Inr_prs[quot_preserve]:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  assumes q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
+  apply(simp add: expand_fun_eq)
+  apply(simp add: Quotient_abs_rep[OF q2])
+  done
+
+lemma sum_map_id[id_simps]:
+  shows "sum_map id id = id"
+  by (simp add: expand_fun_eq split_sum_all)
+
+lemma sum_rel_eq[id_simps]:
+  shows "sum_rel (op =) (op =) = (op =)"
+  by (simp add: expand_fun_eq split_sum_all)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quotient_Syntax.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,18 @@
+(*  Title:      Quotient_Syntax.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+
+header {* Pretty syntax for Quotient operations *}
+
+(*<*)
+theory Quotient_Syntax
+imports Main
+begin
+
+notation
+  rel_conj (infixr "OOO" 75) and
+  fun_map (infixr "--->" 55) and
+  fun_rel (infixr "===>" 55)
+
+end
+(*>*)
--- a/src/HOL/Main.thy	Fri Feb 19 16:52:00 2010 +0100
+++ b/src/HOL/Main.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -1,7 +1,7 @@
 header {* Main HOL *}
 
 theory Main
-imports Plain Predicate_Compile Nitpick
+imports Plain Predicate_Compile Nitpick Quotient
 begin
 
 text {*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,797 @@
+(*  Title:      Quotient.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+
+theory Quotient
+imports Plain ATP_Linkup
+uses
+  ("~~/src/HOL/Tools/Quotient/quotient_info.ML")
+  ("~~/src/HOL/Tools/Quotient/quotient_typ.ML")
+  ("~~/src/HOL/Tools/Quotient/quotient_def.ML")
+  ("~~/src/HOL/Tools/Quotient/quotient_term.ML")
+  ("~~/src/HOL/Tools/Quotient/quotient_tacs.ML")
+begin
+
+
+text {*
+  Basic definition for equivalence relations
+  that are represented by predicates.
+*}
+
+definition
+  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
+
+definition
+  "reflp E \<equiv> \<forall>x. E x x"
+
+definition
+  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
+
+definition
+  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
+
+lemma equivp_reflp_symp_transp:
+  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
+  unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
+  by blast
+
+lemma equivp_reflp:
+  shows "equivp E \<Longrightarrow> E x x"
+  by (simp only: equivp_reflp_symp_transp reflp_def)
+
+lemma equivp_symp:
+  shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
+  by (metis equivp_reflp_symp_transp symp_def)
+
+lemma equivp_transp:
+  shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
+  by (metis equivp_reflp_symp_transp transp_def)
+
+lemma equivpI:
+  assumes "reflp R" "symp R" "transp R"
+  shows "equivp R"
+  using assms by (simp add: equivp_reflp_symp_transp)
+
+lemma identity_equivp:
+  shows "equivp (op =)"
+  unfolding equivp_def
+  by auto
+
+text {* Partial equivalences: not yet used anywhere *}
+
+definition
+  "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
+
+lemma equivp_implies_part_equivp:
+  assumes a: "equivp E"
+  shows "part_equivp E"
+  using a
+  unfolding equivp_def part_equivp_def
+  by auto
+
+text {* Composition of Relations *}
+
+abbreviation
+  rel_conj (infixr "OOO" 75)
+where
+  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
+
+lemma eq_comp_r:
+  shows "((op =) OOO R) = R"
+  by (auto simp add: expand_fun_eq)
+
+section {* Respects predicate *}
+
+definition
+  Respects
+where
+  "Respects R x \<equiv> R x x"
+
+lemma in_respects:
+  shows "(x \<in> Respects R) = R x x"
+  unfolding mem_def Respects_def
+  by simp
+
+section {* Function map and function relation *}
+
+definition
+  fun_map (infixr "--->" 55)
+where
+[simp]: "fun_map f g h x = g (h (f x))"
+
+definition
+  fun_rel (infixr "===>" 55)
+where
+[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
+
+
+lemma fun_map_id:
+  shows "(id ---> id) = id"
+  by (simp add: expand_fun_eq id_def)
+
+lemma fun_rel_eq:
+  shows "((op =) ===> (op =)) = (op =)"
+  by (simp add: expand_fun_eq)
+
+lemma fun_rel_id:
+  assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
+  shows "(R1 ===> R2) f g"
+  using a by simp
+
+lemma fun_rel_id_asm:
+  assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
+  shows "A \<longrightarrow> (R1 ===> R2) f g"
+  using a by auto
+
+
+section {* Quotient Predicate *}
+
+definition
+  "Quotient E Abs Rep \<equiv>
+     (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
+     (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
+
+lemma Quotient_abs_rep:
+  assumes a: "Quotient E Abs Rep"
+  shows "Abs (Rep a) = a"
+  using a
+  unfolding Quotient_def
+  by simp
+
+lemma Quotient_rep_reflp:
+  assumes a: "Quotient E Abs Rep"
+  shows "E (Rep a) (Rep a)"
+  using a
+  unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel:
+  assumes a: "Quotient E Abs Rep"
+  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
+  using a
+  unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel_rep:
+  assumes a: "Quotient R Abs Rep"
+  shows "R (Rep a) (Rep b) = (a = b)"
+  using a
+  unfolding Quotient_def
+  by metis
+
+lemma Quotient_rep_abs:
+  assumes a: "Quotient R Abs Rep"
+  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
+  using a unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel_abs:
+  assumes a: "Quotient E Abs Rep"
+  shows "E r s \<Longrightarrow> Abs r = Abs s"
+  using a unfolding Quotient_def
+  by blast
+
+lemma Quotient_symp:
+  assumes a: "Quotient E Abs Rep"
+  shows "symp E"
+  using a unfolding Quotient_def symp_def
+  by metis
+
+lemma Quotient_transp:
+  assumes a: "Quotient E Abs Rep"
+  shows "transp E"
+  using a unfolding Quotient_def transp_def
+  by metis
+
+lemma identity_quotient:
+  shows "Quotient (op =) id id"
+  unfolding Quotient_def id_def
+  by blast
+
+lemma fun_quotient:
+  assumes q1: "Quotient R1 abs1 rep1"
+  and     q2: "Quotient R2 abs2 rep2"
+  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+proof -
+  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
+    using q1 q2
+    unfolding Quotient_def
+    unfolding expand_fun_eq
+    by simp
+  moreover
+  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
+    using q1 q2
+    unfolding Quotient_def
+    by (simp (no_asm)) (metis)
+  moreover
+  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
+        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
+    unfolding expand_fun_eq
+    apply(auto)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    done
+  ultimately
+  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+    unfolding Quotient_def by blast
+qed
+
+lemma abs_o_rep:
+  assumes a: "Quotient R Abs Rep"
+  shows "Abs o Rep = id"
+  unfolding expand_fun_eq
+  by (simp add: Quotient_abs_rep[OF a])
+
+lemma equals_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R xa xb" "R ya yb"
+  shows "R xa ya = R xb yb"
+  using a Quotient_symp[OF q] Quotient_transp[OF q]
+  unfolding symp_def transp_def
+  by blast
+
+lemma lambda_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
+  unfolding expand_fun_eq
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+  by simp
+
+lemma lambda_prs1:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
+  unfolding expand_fun_eq
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+  by simp
+
+lemma rep_abs_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R x1 x2"
+  shows "R x1 (Rep (Abs x2))"
+  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+  by metis
+
+lemma rep_abs_rsp_left:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R x1 x2"
+  shows "R (Rep (Abs x1)) x2"
+  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+  by metis
+
+text{*
+  In the following theorem R1 can be instantiated with anything,
+  but we know some of the types of the Rep and Abs functions;
+  so by solving Quotient assumptions we can get a unique R1 that
+  will be provable; which is why we need to use apply_rsp and
+  not the primed version *}
+
+lemma apply_rsp:
+  fixes f g::"'a \<Rightarrow> 'c"
+  assumes q: "Quotient R1 Abs1 Rep1"
+  and     a: "(R1 ===> R2) f g" "R1 x y"
+  shows "R2 (f x) (g y)"
+  using a by simp
+
+lemma apply_rsp':
+  assumes a: "(R1 ===> R2) f g" "R1 x y"
+  shows "R2 (f x) (g y)"
+  using a by simp
+
+section {* lemmas for regularisation of ball and bex *}
+
+lemma ball_reg_eqv:
+  fixes P :: "'a \<Rightarrow> bool"
+  assumes a: "equivp R"
+  shows "Ball (Respects R) P = (All P)"
+  using a
+  unfolding equivp_def
+  by (auto simp add: in_respects)
+
+lemma bex_reg_eqv:
+  fixes P :: "'a \<Rightarrow> bool"
+  assumes a: "equivp R"
+  shows "Bex (Respects R) P = (Ex P)"
+  using a
+  unfolding equivp_def
+  by (auto simp add: in_respects)
+
+lemma ball_reg_right:
+  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
+  shows "All P \<longrightarrow> Ball R Q"
+  using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma bex_reg_left:
+  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
+  shows "Bex R Q \<longrightarrow> Ex P"
+  using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma ball_reg_left:
+  assumes a: "equivp R"
+  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
+  using a by (metis equivp_reflp in_respects)
+
+lemma bex_reg_right:
+  assumes a: "equivp R"
+  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
+  using a by (metis equivp_reflp in_respects)
+
+lemma ball_reg_eqv_range:
+  fixes P::"'a \<Rightarrow> bool"
+  and x::"'a"
+  assumes a: "equivp R2"
+  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
+  apply(rule iffI)
+  apply(rule allI)
+  apply(drule_tac x="\<lambda>y. f x" in bspec)
+  apply(simp add: in_respects)
+  apply(rule impI)
+  using a equivp_reflp_symp_transp[of "R2"]
+  apply(simp add: reflp_def)
+  apply(simp)
+  apply(simp)
+  done
+
+lemma bex_reg_eqv_range:
+  assumes a: "equivp R2"
+  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
+  apply(auto)
+  apply(rule_tac x="\<lambda>y. f x" in bexI)
+  apply(simp)
+  apply(simp add: Respects_def in_respects)
+  apply(rule impI)
+  using a equivp_reflp_symp_transp[of "R2"]
+  apply(simp add: reflp_def)
+  done
+
+(* Next four lemmas are unused *)
+lemma all_reg:
+  assumes a: "!x :: 'a. (P x --> Q x)"
+  and     b: "All P"
+  shows "All Q"
+  using a b by (metis)
+
+lemma ex_reg:
+  assumes a: "!x :: 'a. (P x --> Q x)"
+  and     b: "Ex P"
+  shows "Ex Q"
+  using a b by metis
+
+lemma ball_reg:
+  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+  and     b: "Ball R P"
+  shows "Ball R Q"
+  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma bex_reg:
+  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+  and     b: "Bex R P"
+  shows "Bex R Q"
+  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+
+lemma ball_all_comm:
+  assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
+  shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
+  using assms by auto
+
+lemma bex_ex_comm:
+  assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
+  shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
+  using assms by auto
+
+section {* Bounded abstraction *}
+
+definition
+  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+where
+  "x \<in> p \<Longrightarrow> Babs p m x = m x"
+
+lemma babs_rsp:
+  assumes q: "Quotient R1 Abs1 Rep1"
+  and     a: "(R1 ===> R2) f g"
+  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
+  apply (auto simp add: Babs_def in_respects)
+  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+  using a apply (simp add: Babs_def)
+  apply (simp add: in_respects)
+  using Quotient_rel[OF q]
+  by metis
+
+lemma babs_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
+  apply (rule ext)
+  apply (simp)
+  apply (subgoal_tac "Rep1 x \<in> Respects R1")
+  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+  apply (simp add: in_respects Quotient_rel_rep[OF q1])
+  done
+
+lemma babs_simp:
+  assumes q: "Quotient R1 Abs Rep"
+  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
+  apply(rule iffI)
+  apply(simp_all only: babs_rsp[OF q])
+  apply(auto simp add: Babs_def)
+  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+  apply(metis Babs_def)
+  apply (simp add: in_respects)
+  using Quotient_rel[OF q]
+  by metis
+
+(* If a user proves that a particular functional relation
+   is an equivalence this may be useful in regularising *)
+lemma babs_reg_eqv:
+  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
+  by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
+
+
+(* 3 lemmas needed for proving repabs_inj *)
+lemma ball_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "Ball (Respects R) f = Ball (Respects R) g"
+  using a by (simp add: Ball_def in_respects)
+
+lemma bex_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "(Bex (Respects R) f = Bex (Respects R) g)"
+  using a by (simp add: Bex_def in_respects)
+
+lemma bex1_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
+  using a
+  by (simp add: Ex1_def in_respects) auto
+
+(* 2 lemmas needed for cleaning of quantifiers *)
+lemma all_prs:
+  assumes a: "Quotient R absf repf"
+  shows "Ball (Respects R) ((absf ---> id) f) = All f"
+  using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
+  by metis
+
+lemma ex_prs:
+  assumes a: "Quotient R absf repf"
+  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
+  using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
+  by metis
+
+section {* Bex1_rel quantifier *}
+
+definition
+  Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+where
+  "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
+
+lemma bex1_rel_aux:
+  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
+  unfolding Bex1_rel_def
+  apply (erule conjE)+
+  apply (erule bexE)
+  apply rule
+  apply (rule_tac x="xa" in bexI)
+  apply metis
+  apply metis
+  apply rule+
+  apply (erule_tac x="xaa" in ballE)
+  prefer 2
+  apply (metis)
+  apply (erule_tac x="ya" in ballE)
+  prefer 2
+  apply (metis)
+  apply (metis in_respects)
+  done
+
+lemma bex1_rel_aux2:
+  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
+  unfolding Bex1_rel_def
+  apply (erule conjE)+
+  apply (erule bexE)
+  apply rule
+  apply (rule_tac x="xa" in bexI)
+  apply metis
+  apply metis
+  apply rule+
+  apply (erule_tac x="xaa" in ballE)
+  prefer 2
+  apply (metis)
+  apply (erule_tac x="ya" in ballE)
+  prefer 2
+  apply (metis)
+  apply (metis in_respects)
+  done
+
+lemma bex1_rel_rsp:
+  assumes a: "Quotient R absf repf"
+  shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
+  apply simp
+  apply clarify
+  apply rule
+  apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
+  apply (erule bex1_rel_aux2)
+  apply assumption
+  done
+
+
+lemma ex1_prs:
+  assumes a: "Quotient R absf repf"
+  shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
+apply simp
+apply (subst Bex1_rel_def)
+apply (subst Bex_def)
+apply (subst Ex1_def)
+apply simp
+apply rule
+ apply (erule conjE)+
+ apply (erule_tac exE)
+ apply (erule conjE)
+ apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
+  apply (rule_tac x="absf x" in exI)
+  apply (simp)
+  apply rule+
+  using a unfolding Quotient_def
+  apply metis
+ apply rule+
+ apply (erule_tac x="x" in ballE)
+  apply (erule_tac x="y" in ballE)
+   apply simp
+  apply (simp add: in_respects)
+ apply (simp add: in_respects)
+apply (erule_tac exE)
+ apply rule
+ apply (rule_tac x="repf x" in exI)
+ apply (simp only: in_respects)
+  apply rule
+ apply (metis Quotient_rel_rep[OF a])
+using a unfolding Quotient_def apply (simp)
+apply rule+
+using a unfolding Quotient_def in_respects
+apply metis
+done
+
+lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
+  apply (simp add: Ex1_def Bex1_rel_def in_respects)
+  apply clarify
+  apply auto
+  apply (rule bexI)
+  apply assumption
+  apply (simp add: in_respects)
+  apply (simp add: in_respects)
+  apply auto
+  done
+
+section {* Various respects and preserve lemmas *}
+
+lemma quot_rel_rsp:
+  assumes a: "Quotient R Abs Rep"
+  shows "(R ===> R ===> op =) R R"
+  apply(rule fun_rel_id)+
+  apply(rule equals_rsp[OF a])
+  apply(assumption)+
+  done
+
+lemma o_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     q3: "Quotient R3 Abs3 Rep3"
+  shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
+  unfolding o_def expand_fun_eq by simp
+
+lemma o_rsp:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     q3: "Quotient R3 Abs3 Rep3"
+  and     a1: "(R2 ===> R3) f1 f2"
+  and     a2: "(R1 ===> R2) g1 g2"
+  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
+  using a1 a2 unfolding o_def expand_fun_eq
+  by (auto)
+
+lemma cond_prs:
+  assumes a: "Quotient R absf repf"
+  shows "absf (if a then repf b else repf c) = (if a then b else c)"
+  using a unfolding Quotient_def by auto
+
+lemma if_prs:
+  assumes q: "Quotient R Abs Rep"
+  shows "Abs (If a (Rep b) (Rep c)) = If a b c"
+  using Quotient_abs_rep[OF q] by auto
+
+(* q not used *)
+lemma if_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
+  shows "R (If a1 b1 c1) (If a2 b2 c2)"
+  using a by auto
+
+lemma let_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
+
+lemma let_rsp:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     a1: "(R1 ===> R2) f g"
+  and     a2: "R1 x y"
+  shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
+  using apply_rsp[OF q1 a1] a2 by auto
+
+locale quot_type =
+  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
+  and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
+  assumes equivp: "equivp R"
+  and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
+  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
+  and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
+  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
+begin
+
+definition
+  abs::"'a \<Rightarrow> 'b"
+where
+  "abs x \<equiv> Abs (R x)"
+
+definition
+  rep::"'b \<Rightarrow> 'a"
+where
+  "rep a = Eps (Rep a)"
+
+lemma homeier_lem9:
+  shows "R (Eps (R x)) = R x"
+proof -
+  have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
+  then have "R x (Eps (R x))" by (rule someI)
+  then show "R (Eps (R x)) = R x"
+    using equivp unfolding equivp_def by simp
+qed
+
+theorem homeier_thm10:
+  shows "abs (rep a) = a"
+  unfolding abs_def rep_def
+proof -
+  from rep_prop
+  obtain x where eq: "Rep a = R x" by auto
+  have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
+  also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
+  also have "\<dots> = Abs (Rep a)" using eq by simp
+  also have "\<dots> = a" using rep_inverse by simp
+  finally
+  show "Abs (R (Eps (Rep a))) = a" by simp
+qed
+
+lemma homeier_lem7:
+  shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
+proof -
+  have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
+  also have "\<dots> = ?LHS" by (simp add: abs_inverse)
+  finally show "?LHS = ?RHS" by simp
+qed
+
+theorem homeier_thm11:
+  shows "R r r' = (abs r = abs r')"
+  unfolding abs_def
+  by (simp only: equivp[simplified equivp_def] homeier_lem7)
+
+lemma rep_refl:
+  shows "R (rep a) (rep a)"
+  unfolding rep_def
+  by (simp add: equivp[simplified equivp_def])
+
+
+lemma rep_abs_rsp:
+  shows "R f (rep (abs g)) = R f g"
+  and   "R (rep (abs g)) f = R g f"
+  by (simp_all add: homeier_thm10 homeier_thm11)
+
+lemma Quotient:
+  shows "Quotient R abs rep"
+  unfolding Quotient_def
+  apply(simp add: homeier_thm10)
+  apply(simp add: rep_refl)
+  apply(subst homeier_thm11[symmetric])
+  apply(simp add: equivp[simplified equivp_def])
+  done
+
+end
+
+section {* ML setup *}
+
+text {* Auxiliary data for the quotient package *}
+
+use "~~/src/HOL/Tools/Quotient/quotient_info.ML"
+
+declare [[map "fun" = (fun_map, fun_rel)]]
+
+lemmas [quot_thm] = fun_quotient
+lemmas [quot_respect] = quot_rel_rsp
+lemmas [quot_equiv] = identity_equivp
+
+
+text {* Lemmas about simplifying id's. *}
+lemmas [id_simps] =
+  id_def[symmetric]
+  fun_map_id
+  id_apply
+  id_o
+  o_id
+  eq_comp_r
+
+text {* Translation functions for the lifting process. *}
+use "~~/src/HOL/Tools/Quotient/quotient_term.ML"
+
+
+text {* Definitions of the quotient types. *}
+use "~~/src/HOL/Tools/Quotient/quotient_typ.ML"
+
+
+text {* Definitions for quotient constants. *}
+use "~~/src/HOL/Tools/Quotient/quotient_def.ML"
+
+
+text {*
+  An auxiliary constant for recording some information
+  about the lifted theorem in a tactic.
+*}
+definition
+  "Quot_True x \<equiv> True"
+
+lemma
+  shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
+  and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
+  and   QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
+  and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
+  and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
+  by (simp_all add: Quot_True_def ext)
+
+lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
+  by (simp add: Quot_True_def)
+
+
+text {* Tactics for proving the lifted theorems *}
+use "~~/src/HOL/Tools/Quotient/quotient_tacs.ML"
+
+section {* Methods / Interface *}
+
+method_setup lifting =
+  {* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.lift_tac ctxt thms))) *}
+  {* lifts theorems to quotient types *}
+
+method_setup lifting_setup =
+  {* Attrib.thm >> (fn thms => fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.procedure_tac ctxt thms))) *}
+  {* sets up the three goals for the quotient lifting procedure *}
+
+method_setup regularize =
+  {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.regularize_tac ctxt))) *}
+  {* proves the regularization goals from the quotient lifting procedure *}
+
+method_setup injection =
+  {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.all_injection_tac ctxt))) *}
+  {* proves the rep/abs injection goals from the quotient lifting procedure *}
+
+method_setup cleaning =
+  {* Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (Quotient_Tacs.clean_tac ctxt))) *}
+  {* proves the cleaning goals from the quotient lifting procedure *}
+
+attribute_setup quot_lifted =
+  {* Scan.succeed Quotient_Tacs.lifted_attrib *}
+  {* lifts theorems to quotient types *}
+
+no_notation
+  rel_conj (infixr "OOO" 75) and
+  fun_map (infixr "--->" 55) and
+  fun_rel (infixr "===>" 55)
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/LarryDatatype.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,394 @@
+theory LarryDatatype
+imports Main Quotient_Syntax
+begin
+
+subsection{*Defining the Free Algebra*}
+
+datatype
+  freemsg = NONCE  nat
+        | MPAIR  freemsg freemsg
+        | CRYPT  nat freemsg  
+        | DECRYPT  nat freemsg
+
+inductive 
+  msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50)
+where 
+  CD:    "CRYPT K (DECRYPT K X) \<sim> X"
+| DC:    "DECRYPT K (CRYPT K X) \<sim> X"
+| NONCE: "NONCE N \<sim> NONCE N"
+| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
+| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
+| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
+| SYM:   "X \<sim> Y \<Longrightarrow> Y \<sim> X"
+| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
+
+lemmas msgrel.intros[intro]
+
+text{*Proving that it is an equivalence relation*}
+
+lemma msgrel_refl: "X \<sim> X"
+by (induct X, (blast intro: msgrel.intros)+)
+
+theorem equiv_msgrel: "equivp msgrel"
+proof (rule equivpI)
+  show "reflp msgrel" by (simp add: reflp_def msgrel_refl)
+  show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM)
+  show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS)
+qed
+
+subsection{*Some Functions on the Free Algebra*}
+
+subsubsection{*The Set of Nonces*}
+
+fun
+  freenonces :: "freemsg \<Rightarrow> nat set"
+where
+  "freenonces (NONCE N) = {N}"
+| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
+| "freenonces (CRYPT K X) = freenonces X"
+| "freenonces (DECRYPT K X) = freenonces X"
+
+theorem msgrel_imp_eq_freenonces: 
+  assumes a: "U \<sim> V"
+  shows "freenonces U = freenonces V"
+  using a by (induct) (auto) 
+
+subsubsection{*The Left Projection*}
+
+text{*A function to return the left part of the top pair in a message.  It will
+be lifted to the initial algrebra, to serve as an example of that process.*}
+fun
+  freeleft :: "freemsg \<Rightarrow> freemsg"
+where
+  "freeleft (NONCE N) = NONCE N"
+| "freeleft (MPAIR X Y) = X"
+| "freeleft (CRYPT K X) = freeleft X"
+| "freeleft (DECRYPT K X) = freeleft X"
+
+text{*This theorem lets us prove that the left function respects the
+equivalence relation.  It also helps us prove that MPair
+  (the abstract constructor) is injective*}
+lemma msgrel_imp_eqv_freeleft_aux:
+  shows "freeleft U \<sim> freeleft U"
+  by (induct rule: freeleft.induct) (auto)
+
+theorem msgrel_imp_eqv_freeleft:
+  assumes a: "U \<sim> V" 
+  shows "freeleft U \<sim> freeleft V"
+  using a
+  by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux)
+
+subsubsection{*The Right Projection*}
+
+text{*A function to return the right part of the top pair in a message.*}
+fun
+  freeright :: "freemsg \<Rightarrow> freemsg"
+where
+  "freeright (NONCE N) = NONCE N"
+| "freeright (MPAIR X Y) = Y"
+| "freeright (CRYPT K X) = freeright X"
+| "freeright (DECRYPT K X) = freeright X"
+
+text{*This theorem lets us prove that the right function respects the
+equivalence relation.  It also helps us prove that MPair
+  (the abstract constructor) is injective*}
+lemma msgrel_imp_eqv_freeright_aux:
+  shows "freeright U \<sim> freeright U"
+  by (induct rule: freeright.induct) (auto)
+
+theorem msgrel_imp_eqv_freeright:
+  assumes a: "U \<sim> V" 
+  shows "freeright U \<sim> freeright V"
+  using a
+  by (induct) (auto intro: msgrel_imp_eqv_freeright_aux)
+
+subsubsection{*The Discriminator for Constructors*}
+
+text{*A function to distinguish nonces, mpairs and encryptions*}
+fun 
+  freediscrim :: "freemsg \<Rightarrow> int"
+where
+   "freediscrim (NONCE N) = 0"
+ | "freediscrim (MPAIR X Y) = 1"
+ | "freediscrim (CRYPT K X) = freediscrim X + 2"
+ | "freediscrim (DECRYPT K X) = freediscrim X - 2"
+
+text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
+theorem msgrel_imp_eq_freediscrim:
+  assumes a: "U \<sim> V"
+  shows "freediscrim U = freediscrim V"
+  using a by (induct) (auto)
+
+subsection{*The Initial Algebra: A Quotiented Message Type*}
+
+quotient_type msg = freemsg / msgrel
+  by (rule equiv_msgrel)
+
+text{*The abstract message constructors*}
+
+quotient_definition
+  "Nonce :: nat \<Rightarrow> msg"
+is
+  "NONCE"
+
+quotient_definition
+  "MPair :: msg \<Rightarrow> msg \<Rightarrow> msg"
+is
+  "MPAIR"
+
+quotient_definition
+  "Crypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
+is
+  "CRYPT"
+
+quotient_definition
+  "Decrypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
+is
+  "DECRYPT"
+
+lemma [quot_respect]:
+  shows "(op = ===> op \<sim> ===> op \<sim>) CRYPT CRYPT"
+by (auto intro: CRYPT)
+
+lemma [quot_respect]:
+  shows "(op = ===> op \<sim> ===> op \<sim>) DECRYPT DECRYPT"
+by (auto intro: DECRYPT)
+
+text{*Establishing these two equations is the point of the whole exercise*}
+theorem CD_eq [simp]: 
+  shows "Crypt K (Decrypt K X) = X"
+  by (lifting CD)
+
+theorem DC_eq [simp]: 
+  shows "Decrypt K (Crypt K X) = X"
+  by (lifting DC)
+
+subsection{*The Abstract Function to Return the Set of Nonces*}
+
+quotient_definition
+   "nonces:: msg \<Rightarrow> nat set"
+is
+  "freenonces"
+
+text{*Now prove the four equations for @{term nonces}*}
+
+lemma [quot_respect]:
+  shows "(op \<sim> ===> op =) freenonces freenonces"
+  by (simp add: msgrel_imp_eq_freenonces)
+
+lemma [quot_respect]:
+  shows "(op = ===> op \<sim>) NONCE NONCE"
+  by (simp add: NONCE)
+
+lemma nonces_Nonce [simp]: 
+  shows "nonces (Nonce N) = {N}"
+  by (lifting freenonces.simps(1))
+ 
+lemma [quot_respect]:
+  shows " (op \<sim> ===> op \<sim> ===> op \<sim>) MPAIR MPAIR"
+  by (simp add: MPAIR)
+
+lemma nonces_MPair [simp]: 
+  shows "nonces (MPair X Y) = nonces X \<union> nonces Y"
+  by (lifting freenonces.simps(2))
+
+lemma nonces_Crypt [simp]: 
+  shows "nonces (Crypt K X) = nonces X"
+  by (lifting freenonces.simps(3))
+
+lemma nonces_Decrypt [simp]: 
+  shows "nonces (Decrypt K X) = nonces X"
+  by (lifting freenonces.simps(4))
+
+subsection{*The Abstract Function to Return the Left Part*}
+
+quotient_definition
+  "left:: msg \<Rightarrow> msg"
+is
+  "freeleft"
+
+lemma [quot_respect]:
+  shows "(op \<sim> ===> op \<sim>) freeleft freeleft"
+  by (simp add: msgrel_imp_eqv_freeleft)
+
+lemma left_Nonce [simp]: 
+  shows "left (Nonce N) = Nonce N"
+  by (lifting freeleft.simps(1))
+
+lemma left_MPair [simp]: 
+  shows "left (MPair X Y) = X"
+  by (lifting freeleft.simps(2))
+
+lemma left_Crypt [simp]: 
+  shows "left (Crypt K X) = left X"
+  by (lifting freeleft.simps(3))
+
+lemma left_Decrypt [simp]: 
+  shows "left (Decrypt K X) = left X"
+  by (lifting freeleft.simps(4))
+
+subsection{*The Abstract Function to Return the Right Part*}
+
+quotient_definition
+  "right:: msg \<Rightarrow> msg"
+is
+  "freeright"
+
+text{*Now prove the four equations for @{term right}*}
+
+lemma [quot_respect]:
+  shows "(op \<sim> ===> op \<sim>) freeright freeright"
+  by (simp add: msgrel_imp_eqv_freeright)
+
+lemma right_Nonce [simp]: 
+  shows "right (Nonce N) = Nonce N"
+  by (lifting freeright.simps(1))
+
+lemma right_MPair [simp]: 
+  shows "right (MPair X Y) = Y"
+  by (lifting freeright.simps(2))
+
+lemma right_Crypt [simp]: 
+  shows "right (Crypt K X) = right X"
+  by (lifting freeright.simps(3))
+
+lemma right_Decrypt [simp]: 
+  shows "right (Decrypt K X) = right X"
+  by (lifting freeright.simps(4))
+
+subsection{*Injectivity Properties of Some Constructors*}
+
+lemma NONCE_imp_eq: 
+  shows "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
+  by (drule msgrel_imp_eq_freenonces, simp)
+
+text{*Can also be proved using the function @{term nonces}*}
+lemma Nonce_Nonce_eq [iff]: 
+  shows "(Nonce m = Nonce n) = (m = n)"
+proof
+  assume "Nonce m = Nonce n"
+  then show "m = n" by (lifting NONCE_imp_eq)
+next
+  assume "m = n" 
+  then show "Nonce m = Nonce n" by simp
+qed
+
+lemma MPAIR_imp_eqv_left: 
+  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
+  by (drule msgrel_imp_eqv_freeleft) (simp)
+
+lemma MPair_imp_eq_left: 
+  assumes eq: "MPair X Y = MPair X' Y'" 
+  shows "X = X'"
+  using eq by (lifting MPAIR_imp_eqv_left)
+
+lemma MPAIR_imp_eqv_right: 
+  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
+  by (drule msgrel_imp_eqv_freeright) (simp)
+
+lemma MPair_imp_eq_right: 
+  shows "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'"
+  by (lifting  MPAIR_imp_eqv_right)
+
+theorem MPair_MPair_eq [iff]: 
+  shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" 
+  by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)
+
+lemma NONCE_neqv_MPAIR: 
+  shows "\<not>(NONCE m \<sim> MPAIR X Y)"
+  by (auto dest: msgrel_imp_eq_freediscrim)
+
+theorem Nonce_neq_MPair [iff]: 
+  shows "Nonce N \<noteq> MPair X Y"
+  by (lifting NONCE_neqv_MPAIR)
+
+text{*Example suggested by a referee*}
+
+lemma CRYPT_NONCE_neq_NONCE:
+  shows "\<not>(CRYPT K (NONCE M) \<sim> NONCE N)"
+  by (auto dest: msgrel_imp_eq_freediscrim)
+
+theorem Crypt_Nonce_neq_Nonce: 
+  shows "Crypt K (Nonce M) \<noteq> Nonce N"
+  by (lifting CRYPT_NONCE_neq_NONCE)
+
+text{*...and many similar results*}
+lemma CRYPT2_NONCE_neq_NONCE: 
+  shows "\<not>(CRYPT K (CRYPT K' (NONCE M)) \<sim> NONCE N)"
+  by (auto dest: msgrel_imp_eq_freediscrim)  
+
+theorem Crypt2_Nonce_neq_Nonce: 
+  shows "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N"
+  by (lifting CRYPT2_NONCE_neq_NONCE) 
+
+theorem Crypt_Crypt_eq [iff]: 
+  shows "(Crypt K X = Crypt K X') = (X=X')" 
+proof
+  assume "Crypt K X = Crypt K X'"
+  hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp
+  thus "X = X'" by simp
+next
+  assume "X = X'"
+  thus "Crypt K X = Crypt K X'" by simp
+qed
+
+theorem Decrypt_Decrypt_eq [iff]: 
+  shows "(Decrypt K X = Decrypt K X') = (X=X')" 
+proof
+  assume "Decrypt K X = Decrypt K X'"
+  hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp
+  thus "X = X'" by simp
+next
+  assume "X = X'"
+  thus "Decrypt K X = Decrypt K X'" by simp
+qed
+
+lemma msg_induct_aux:
+  shows "\<lbrakk>\<And>N. P (Nonce N);
+          \<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y);
+          \<And>K X. P X \<Longrightarrow> P (Crypt K X);
+          \<And>K X. P X \<Longrightarrow> P (Decrypt K X)\<rbrakk> \<Longrightarrow> P msg"
+  by (lifting freemsg.induct)
+
+lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]:
+  assumes N: "\<And>N. P (Nonce N)"
+      and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)"
+      and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)"
+      and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)"
+  shows "P msg"
+  using N M C D by (rule msg_induct_aux)
+
+subsection{*The Abstract Discriminator*}
+
+text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't
+need this function in order to prove discrimination theorems.*}
+
+quotient_definition
+  "discrim:: msg \<Rightarrow> int"
+is
+  "freediscrim"
+
+text{*Now prove the four equations for @{term discrim}*}
+
+lemma [quot_respect]:
+  shows "(op \<sim> ===> op =) freediscrim freediscrim"
+  by (auto simp add: msgrel_imp_eq_freediscrim)
+
+lemma discrim_Nonce [simp]: 
+  shows "discrim (Nonce N) = 0"
+  by (lifting freediscrim.simps(1))
+
+lemma discrim_MPair [simp]: 
+  shows "discrim (MPair X Y) = 1"
+  by (lifting freediscrim.simps(2))
+
+lemma discrim_Crypt [simp]: 
+  shows "discrim (Crypt K X) = discrim X + 2"
+  by (lifting freediscrim.simps(3))
+
+lemma discrim_Decrypt [simp]: 
+  shows "discrim (Decrypt K X) = discrim X - 2"
+  by (lifting freediscrim.simps(4))
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/LarryInt.thy	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,395 @@
+
+header{*The Integers as Equivalence Classes over Pairs of Natural Numbers*}
+
+theory LarryInt
+imports Main Quotient_Product
+begin
+
+fun
+  intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" 
+where
+  "intrel (x, y) (u, v) = (x + v = u + y)"
+
+quotient_type int = "nat \<times> nat" / intrel
+  by (auto simp add: equivp_def expand_fun_eq)
+
+instantiation int :: "{zero, one, plus, uminus, minus, times, ord}"
+begin
+
+quotient_definition
+  Zero_int_def: "0::int" is "(0::nat, 0::nat)"
+
+quotient_definition
+  One_int_def: "1::int" is "(1::nat, 0::nat)"
+
+definition
+  "add_raw \<equiv> \<lambda>(x, y) (u, v). (x + (u::nat), y + (v::nat))"
+
+quotient_definition
+  "(op +) :: int \<Rightarrow> int \<Rightarrow> int" 
+is
+  "add_raw"
+
+definition
+  "uminus_raw \<equiv> \<lambda>(x::nat, y::nat). (y, x)"
+
+quotient_definition
+  "uminus :: int \<Rightarrow> int" 
+is
+  "uminus_raw"
+
+fun
+  mult_raw::"nat \<times> nat \<Rightarrow> nat \<times> nat \<Rightarrow> nat \<times> nat"
+where
+  "mult_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
+
+quotient_definition
+  "(op *) :: int \<Rightarrow> int \<Rightarrow> int" 
+is
+  "mult_raw"
+
+definition
+  "le_raw \<equiv> \<lambda>(x, y) (u, v). (x+v \<le> u+(y::nat))"
+
+quotient_definition 
+  le_int_def: "(op \<le>) :: int \<Rightarrow> int \<Rightarrow> bool" 
+is
+  "le_raw"
+
+definition
+  less_int_def: "z < (w::int) \<equiv> (z \<le> w & z \<noteq> w)"
+
+definition
+  diff_int_def:  "z - (w::int) \<equiv> z + (-w)"
+
+instance ..
+
+end
+
+subsection{*Construction of the Integers*}
+
+lemma zminus_zminus_raw:
+  "uminus_raw (uminus_raw z) = z"
+  by (cases z) (simp add: uminus_raw_def)
+
+lemma [quot_respect]:
+  shows "(intrel ===> intrel) uminus_raw uminus_raw"
+  by (simp add: uminus_raw_def)
+  
+lemma zminus_zminus:
+  fixes z::"int"
+  shows "- (- z) = z"
+  by(lifting zminus_zminus_raw)
+
+lemma zminus_0_raw:
+  shows "uminus_raw (0, 0) = (0, 0::nat)"
+  by (simp add: uminus_raw_def)
+
+lemma zminus_0: 
+  shows "- 0 = (0::int)"
+  by (lifting zminus_0_raw)
+
+subsection{*Integer Addition*}
+
+lemma zminus_zadd_distrib_raw:
+  shows "uminus_raw (add_raw z w) = add_raw (uminus_raw z) (uminus_raw w)"
+by (cases z, cases w)
+   (auto simp add: add_raw_def uminus_raw_def)
+
+lemma [quot_respect]:
+  shows "(intrel ===> intrel ===> intrel) add_raw add_raw"
+by (simp add: add_raw_def)
+
+lemma zminus_zadd_distrib: 
+  fixes z w::"int"
+  shows "- (z + w) = (- z) + (- w)"
+  by(lifting zminus_zadd_distrib_raw)
+
+lemma zadd_commute_raw:
+  shows "add_raw z w = add_raw w z"
+by (cases z, cases w)
+   (simp add: add_raw_def)
+
+lemma zadd_commute:
+  fixes z w::"int"
+  shows "(z::int) + w = w + z"
+  by (lifting zadd_commute_raw)
+
+lemma zadd_assoc_raw:
+  shows "add_raw (add_raw z1 z2) z3 = add_raw z1 (add_raw z2 z3)"
+  by (cases z1, cases z2, cases z3) (simp add: add_raw_def)
+
+lemma zadd_assoc: 
+  fixes z1 z2 z3::"int"
+  shows "(z1 + z2) + z3 = z1 + (z2 + z3)"
+  by (lifting zadd_assoc_raw)
+
+lemma zadd_0_raw:
+  shows "add_raw (0, 0) z = z"
+  by (simp add: add_raw_def)
+
+
+text {*also for the instance declaration int :: plus_ac0*}
+lemma zadd_0: 
+  fixes z::"int"
+  shows "0 + z = z"
+  by (lifting zadd_0_raw)
+
+lemma zadd_zminus_inverse_raw:
+  shows "intrel (add_raw (uminus_raw z) z) (0, 0)"
+  by (cases z) (simp add: add_raw_def uminus_raw_def)
+
+lemma zadd_zminus_inverse2: 
+  fixes z::"int"
+  shows "(- z) + z = 0"
+  by (lifting zadd_zminus_inverse_raw)
+
+subsection{*Integer Multiplication*}
+
+lemma zmult_zminus_raw:
+  shows "mult_raw (uminus_raw z) w = uminus_raw (mult_raw z w)"
+apply(cases z, cases w)
+apply(simp add: uminus_raw_def)
+done
+
+lemma mult_raw_fst:
+  assumes a: "intrel x z"
+  shows "intrel (mult_raw x y) (mult_raw z y)"
+using a
+apply(cases x, cases y, cases z)
+apply(auto simp add: mult_raw.simps intrel.simps)
+apply(rename_tac u v w x y z)
+apply(subgoal_tac "u*w + z*w = y*w + v*w  &  u*x + z*x = y*x + v*x")
+apply(simp add: mult_ac)
+apply(simp add: add_mult_distrib [symmetric])
+done
+
+lemma mult_raw_snd:
+  assumes a: "intrel x z"
+  shows "intrel (mult_raw y x) (mult_raw y z)"
+using a
+apply(cases x, cases y, cases z)
+apply(auto simp add: mult_raw.simps intrel.simps)
+apply(rename_tac u v w x y z)
+apply(subgoal_tac "u*w + z*w = y*w + v*w  &  u*x + z*x = y*x + v*x")
+apply(simp add: mult_ac)
+apply(simp add: add_mult_distrib [symmetric])
+done
+
+lemma [quot_respect]:
+  shows "(intrel ===> intrel ===> intrel) mult_raw mult_raw"
+apply(simp only: fun_rel_def)
+apply(rule allI | rule impI)+
+apply(rule equivp_transp[OF int_equivp])
+apply(rule mult_raw_fst)
+apply(assumption)
+apply(rule mult_raw_snd)
+apply(assumption)
+done
+
+lemma zmult_zminus: 
+  fixes z w::"int"
+  shows "(- z) * w = - (z * w)"
+  by (lifting zmult_zminus_raw)
+
+lemma zmult_commute_raw: 
+  shows "mult_raw z w = mult_raw w z"
+apply(cases z, cases w)
+apply(simp add: add_ac mult_ac)
+done
+
+lemma zmult_commute: 
+  fixes z w::"int"
+  shows "z * w = w * z"
+  by (lifting zmult_commute_raw)
+
+lemma zmult_assoc_raw:
+  shows "mult_raw (mult_raw z1 z2) z3 = mult_raw z1 (mult_raw z2 z3)"
+apply(cases z1, cases z2, cases z3)
+apply(simp add: add_mult_distrib2 mult_ac)
+done
+
+lemma zmult_assoc: 
+  fixes z1 z2 z3::"int"
+  shows "(z1 * z2) * z3 = z1 * (z2 * z3)"
+  by (lifting zmult_assoc_raw)
+
+lemma zadd_mult_distrib_raw:
+  shows "mult_raw (add_raw z1 z2) w = add_raw (mult_raw z1 w) (mult_raw z2 w)"
+apply(cases z1, cases z2, cases w)
+apply(simp add: add_mult_distrib2 mult_ac add_raw_def)
+done
+
+lemma zadd_zmult_distrib: 
+  fixes z1 z2 w::"int"
+  shows "(z1 + z2) * w = (z1 * w) + (z2 * w)"
+  by(lifting zadd_mult_distrib_raw)
+
+lemma zadd_zmult_distrib2: 
+  fixes w z1 z2::"int"
+  shows "w * (z1 + z2) = (w * z1) + (w * z2)"
+  by (simp add: zmult_commute [of w] zadd_zmult_distrib)
+
+lemma zdiff_zmult_distrib: 
+  fixes w z1 z2::"int"
+  shows "(z1 - z2) * w = (z1 * w) - (z2 * w)"
+  by (simp add: diff_int_def zadd_zmult_distrib zmult_zminus)
+
+lemma zdiff_zmult_distrib2: 
+  fixes w z1 z2::"int"
+  shows "w * (z1 - z2) = (w * z1) - (w * z2)"
+  by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
+
+lemmas int_distrib =
+  zadd_zmult_distrib zadd_zmult_distrib2
+  zdiff_zmult_distrib zdiff_zmult_distrib2
+
+lemma zmult_1_raw:
+  shows "mult_raw (1, 0) z = z"
+  by (cases z) (auto)
+
+lemma zmult_1:
+  fixes z::"int"
+  shows "1 * z = z"
+  by (lifting zmult_1_raw)
+
+lemma zmult_1_right: 
+  fixes z::"int"
+  shows "z * 1 = z"
+  by (rule trans [OF zmult_commute zmult_1])
+
+lemma zero_not_one:
+  shows "\<not>(intrel (0, 0) (1::nat, 0::nat))"
+  by auto
+
+text{*The Integers Form A Ring*}
+instance int :: comm_ring_1
+proof
+  fix i j k :: int
+  show "(i + j) + k = i + (j + k)" by (simp add: zadd_assoc)
+  show "i + j = j + i" by (simp add: zadd_commute)
+  show "0 + i = i" by (rule zadd_0)
+  show "- i + i = 0" by (rule zadd_zminus_inverse2)
+  show "i - j = i + (-j)" by (simp add: diff_int_def)
+  show "(i * j) * k = i * (j * k)" by (rule zmult_assoc)
+  show "i * j = j * i" by (rule zmult_commute)
+  show "1 * i = i" by (rule zmult_1) 
+  show "(i + j) * k = i * k + j * k" by (simp add: int_distrib)
+  show "0 \<noteq> (1::int)" by (lifting zero_not_one)
+qed
+
+
+subsection{*The @{text "\<le>"} Ordering*}
+
+lemma zle_refl_raw:
+  shows "le_raw w w"
+  by (cases w) (simp add: le_raw_def)
+
+lemma [quot_respect]:
+  shows "(intrel ===> intrel ===> op =) le_raw le_raw"
+  by (auto) (simp_all add: le_raw_def)
+
+lemma zle_refl: 
+  fixes w::"int"
+  shows "w \<le> w"
+  by (lifting zle_refl_raw)
+
+
+lemma zle_trans_raw:
+  shows "\<lbrakk>le_raw i j; le_raw j k\<rbrakk> \<Longrightarrow> le_raw i k"
+apply(cases i, cases j, cases k)
+apply(auto simp add: le_raw_def)
+done
+
+lemma zle_trans: 
+  fixes i j k::"int"
+  shows "\<lbrakk>i \<le> j; j \<le> k\<rbrakk> \<Longrightarrow> i \<le> k"
+  by (lifting zle_trans_raw)
+
+lemma zle_anti_sym_raw:
+  shows "\<lbrakk>le_raw z w; le_raw w z\<rbrakk> \<Longrightarrow> intrel z w"
+apply(cases z, cases w)
+apply(auto iff: le_raw_def)
+done
+
+lemma zle_anti_sym: 
+  fixes z w::"int"
+  shows "\<lbrakk>z \<le> w; w \<le> z\<rbrakk> \<Longrightarrow> z = w"
+  by (lifting zle_anti_sym_raw)
+
+
+(* Axiom 'order_less_le' of class 'order': *)
+lemma zless_le: 
+  fixes w z::"int"
+  shows "(w < z) = (w \<le> z & w \<noteq> z)"
+  by (simp add: less_int_def)
+
+instance int :: order
+apply (default)
+apply(auto simp add: zless_le zle_anti_sym)[1]
+apply(rule zle_refl)
+apply(erule zle_trans, assumption)
+apply(erule zle_anti_sym, assumption)
+done
+
+(* Axiom 'linorder_linear' of class 'linorder': *)
+
+lemma zle_linear_raw:
+  shows "le_raw z w \<or> le_raw w z"
+apply(cases w, cases z)
+apply(auto iff: le_raw_def)
+done
+
+lemma zle_linear: 
+  fixes z w::"int"
+  shows "z \<le> w \<or> w \<le> z"
+  by (lifting zle_linear_raw)
+
+instance int :: linorder
+apply(default)
+apply(rule zle_linear)
+done
+
+lemma zadd_left_mono_raw:
+  shows "le_raw i j \<Longrightarrow> le_raw (add_raw k i) (add_raw k j)"
+apply(cases k)
+apply(auto simp add: add_raw_def le_raw_def)
+done
+
+lemma zadd_left_mono: 
+  fixes i j::"int"
+  shows "i \<le> j \<Longrightarrow> k + i \<le> k + j"
+  by (lifting zadd_left_mono_raw)
+
+
+subsection{*Magnitide of an Integer, as a Natural Number: @{term nat}*}
+
+definition
+  "nat_raw \<equiv> \<lambda>(x, y).x - (y::nat)"
+
+quotient_definition
+  "nat2::int \<Rightarrow> nat"
+is
+  "nat_raw"
+
+abbreviation
+  "less_raw x y \<equiv> (le_raw x y \<and> \<not>(intrel x y))"
+
+lemma nat_le_eq_zle_raw:
+  shows "less_raw (0, 0) w \<or> le_raw (0, 0) z \<Longrightarrow> (nat_raw w \<le> nat_raw z) = (le_raw w z)"
+  apply (cases w)
+  apply (cases z)
+  apply (simp add: nat_raw_def le_raw_def)
+  by auto
+
+lemma [quot_respect]:
+  shows "(intrel ===> op =) nat_raw nat_raw"
+  by (auto iff: nat_raw_def)
+
+lemma nat_le_eq_zle: 
+  fixes w z::"int"
+  shows "0 < w \<or> 0 \<le> z \<Longrightarrow> (nat2 w \<le> nat2 z) = (w\<le>z)"
+  unfolding less_int_def
+  by (lifting nat_le_eq_zle_raw)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/ROOT.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,8 @@
+(*  Title:      HOL/Quotient_Examples/ROOT.ML
+    Author:     Cezary Kaliszyk and Christian Urban
+
+Testing the quotient package.
+*)
+
+use_thys ["LarryInt", "LarryDatatype"];
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quotient/quotient_def.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,110 @@
+(*  Title:      quotient_def.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Definitions for constants on quotient types.
+
+*)
+
+signature QUOTIENT_DEF =
+sig
+  val quotient_def: (binding option * mixfix) * (Attrib.binding * (term * term)) ->
+    local_theory -> (term * thm) * local_theory
+
+  val quotdef_cmd: (binding option * mixfix) * (Attrib.binding * (string * string)) ->
+    local_theory -> (term * thm) * local_theory
+
+  val quotient_lift_const: string * term -> local_theory -> (term * thm) * local_theory
+end;
+
+structure Quotient_Def: QUOTIENT_DEF =
+struct
+
+open Quotient_Info;
+open Quotient_Term;
+
+(** Interface and Syntax Setup **)
+
+(* The ML-interface for a quotient definition takes
+   as argument:
+
+    - an optional binding and mixfix annotation
+    - attributes
+    - the new constant as term
+    - the rhs of the definition as term
+
+   It returns the defined constant and its definition
+   theorem; stores the data in the qconsts data slot.
+
+   Restriction: At the moment the right-hand side of the
+   definition must be a constant. Similarly the left-hand 
+   side must be a constant.
+*)
+fun error_msg bind str = 
+let 
+  val name = Binding.name_of bind
+  val pos = Position.str_of (Binding.pos_of bind)
+in
+  error ("Head of quotient_definition " ^ 
+    (quote str) ^ " differs from declaration " ^ name ^ pos)
+end
+
+fun quotient_def ((optbind, mx), (attr, (lhs, rhs))) lthy =
+let
+  val (lhs_str, lhs_ty) = dest_Free lhs handle TERM _ => error "Constant already defined."
+  val _ = if null (strip_abs_vars rhs) then () else error "The definiens cannot be an abstraction"
+  
+  fun sanity_test NONE _ = true
+    | sanity_test (SOME bind) str =
+        if Name.of_binding bind = str then true
+        else error_msg bind str
+
+  val _ = sanity_test optbind lhs_str
+
+  val qconst_bname = Binding.name lhs_str
+  val absrep_trm = absrep_fun AbsF lthy (fastype_of rhs, lhs_ty) $ rhs
+  val prop = Logic.mk_equals (lhs, Syntax.check_term lthy absrep_trm)
+  val (_, prop') = LocalDefs.cert_def lthy prop
+  val (_, newrhs) = Primitive_Defs.abs_def prop'
+
+  val ((trm, (_ , thm)), lthy') = Local_Theory.define ((qconst_bname, mx), (attr, newrhs)) lthy
+
+  (* data storage *)
+  fun qcinfo phi = transform_qconsts phi {qconst = trm, rconst = rhs, def = thm}
+  fun trans_name phi = (fst o dest_Const o #qconst) (qcinfo phi)
+  val lthy'' = Local_Theory.declaration true
+                 (fn phi => qconsts_update_gen (trans_name phi) (qcinfo phi)) lthy'
+in
+  ((trm, thm), lthy'')
+end
+
+fun quotdef_cmd (decl, (attr, (lhs_str, rhs_str))) lthy =
+let
+  val lhs = Syntax.read_term lthy lhs_str
+  val rhs = Syntax.read_term lthy rhs_str
+  val lthy' = Variable.declare_term lhs lthy
+  val lthy'' = Variable.declare_term rhs lthy'
+in
+  quotient_def (decl, (attr, (lhs, rhs))) lthy''
+end
+
+fun quotient_lift_const (b, t) ctxt =
+  quotient_def ((NONE, NoSyn), (Attrib.empty_binding,
+    (Quotient_Term.quotient_lift_const (b, t) ctxt, t))) ctxt
+
+local
+  structure P = OuterParse;
+in
+
+val quotdef_decl = (P.binding >> SOME) -- P.opt_mixfix' --| P.$$$ "where"
+
+val quotdef_parser =
+  Scan.optional quotdef_decl (NONE, NoSyn) -- 
+    P.!!! (SpecParse.opt_thm_name ":" -- (P.term --| P.$$$ "is" -- P.term))
+end
+
+val _ =
+  OuterSyntax.local_theory "quotient_definition"
+    "definition for constants over the quotient type"
+      OuterKeyword.thy_decl (quotdef_parser >> (snd oo quotdef_cmd))
+
+end; (* structure *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quotient/quotient_info.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,289 @@
+(*  Title:      quotient_info.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Data slots for the quotient package.
+
+*)
+
+
+signature QUOTIENT_INFO =
+sig
+  exception NotFound
+
+  type maps_info = {mapfun: string, relmap: string}
+  val maps_defined: theory -> string -> bool
+  val maps_lookup: theory -> string -> maps_info     (* raises NotFound *)
+  val maps_update_thy: string -> maps_info -> theory -> theory
+  val maps_update: string -> maps_info -> Proof.context -> Proof.context
+  val print_mapsinfo: Proof.context -> unit
+
+  type quotdata_info = {qtyp: typ, rtyp: typ, equiv_rel: term, equiv_thm: thm}
+  val transform_quotdata: morphism -> quotdata_info -> quotdata_info
+  val quotdata_lookup_raw: theory -> string -> quotdata_info option
+  val quotdata_lookup: theory -> string -> quotdata_info     (* raises NotFound *)
+  val quotdata_update_thy: string -> quotdata_info -> theory -> theory
+  val quotdata_update_gen: string -> quotdata_info -> Context.generic -> Context.generic
+  val quotdata_dest: Proof.context -> quotdata_info list
+  val print_quotinfo: Proof.context -> unit
+
+  type qconsts_info = {qconst: term, rconst: term, def: thm}
+  val transform_qconsts: morphism -> qconsts_info -> qconsts_info
+  val qconsts_lookup: theory -> term -> qconsts_info     (* raises NotFound *)
+  val qconsts_update_thy: string -> qconsts_info -> theory -> theory
+  val qconsts_update_gen: string -> qconsts_info -> Context.generic -> Context.generic
+  val qconsts_dest: Proof.context -> qconsts_info list
+  val print_qconstinfo: Proof.context -> unit
+
+  val equiv_rules_get: Proof.context -> thm list
+  val equiv_rules_add: attribute
+  val rsp_rules_get: Proof.context -> thm list
+  val prs_rules_get: Proof.context -> thm list
+  val id_simps_get: Proof.context -> thm list
+  val quotient_rules_get: Proof.context -> thm list
+  val quotient_rules_add: attribute
+end;
+
+
+structure Quotient_Info: QUOTIENT_INFO =
+struct
+
+exception NotFound
+
+
+(** data containers **)
+
+(* info about map- and rel-functions for a type *)
+type maps_info = {mapfun: string, relmap: string}
+
+structure MapsData = Theory_Data
+  (type T = maps_info Symtab.table
+   val empty = Symtab.empty
+   val extend = I
+   val merge = Symtab.merge (K true))
+
+fun maps_defined thy s =
+  Symtab.defined (MapsData.get thy) s
+
+fun maps_lookup thy s =
+  case (Symtab.lookup (MapsData.get thy) s) of
+    SOME map_fun => map_fun
+  | NONE => raise NotFound
+
+fun maps_update_thy k minfo = MapsData.map (Symtab.update (k, minfo))
+fun maps_update k minfo = ProofContext.theory (maps_update_thy k minfo)
+
+fun maps_attribute_aux s minfo = Thm.declaration_attribute
+  (fn _ => Context.mapping (maps_update_thy s minfo) (maps_update s minfo))
+
+(* attribute to be used in declare statements *)
+fun maps_attribute (ctxt, (tystr, (mapstr, relstr))) =
+let
+  val thy = ProofContext.theory_of ctxt
+  val tyname = Sign.intern_type thy tystr
+  val mapname = Sign.intern_const thy mapstr
+  val relname = Sign.intern_const thy relstr
+
+  fun sanity_check s = (Const (s, dummyT) |> Syntax.check_term ctxt; ())
+  val _ = List.app sanity_check [mapname, relname]
+in
+  maps_attribute_aux tyname {mapfun = mapname, relmap = relname}
+end
+
+val maps_attr_parser =
+  Args.context -- Scan.lift
+    ((Args.name --| OuterParse.$$$ "=") --
+      (OuterParse.$$$ "(" |-- Args.name --| OuterParse.$$$ "," --
+        Args.name --| OuterParse.$$$ ")"))
+
+val _ = Context.>> (Context.map_theory
+  (Attrib.setup @{binding "map"} (maps_attr_parser >> maps_attribute)
+    "declaration of map information"))
+
+fun print_mapsinfo ctxt =
+let
+  fun prt_map (ty_name, {mapfun, relmap}) =
+    Pretty.block (Library.separate (Pretty.brk 2)
+      (map Pretty.str
+        ["type:", ty_name,
+        "map:", mapfun,
+        "relation map:", relmap]))
+in
+  MapsData.get (ProofContext.theory_of ctxt)
+  |> Symtab.dest
+  |> map (prt_map)
+  |> Pretty.big_list "maps for type constructors:"
+  |> Pretty.writeln
+end
+
+
+(* info about quotient types *)
+type quotdata_info = {qtyp: typ, rtyp: typ, equiv_rel: term, equiv_thm: thm}
+
+structure QuotData = Theory_Data
+  (type T = quotdata_info Symtab.table
+   val empty = Symtab.empty
+   val extend = I
+   val merge = Symtab.merge (K true))
+
+fun transform_quotdata phi {qtyp, rtyp, equiv_rel, equiv_thm} =
+  {qtyp = Morphism.typ phi qtyp,
+   rtyp = Morphism.typ phi rtyp,
+   equiv_rel = Morphism.term phi equiv_rel,
+   equiv_thm = Morphism.thm phi equiv_thm}
+
+fun quotdata_lookup_raw thy str = Symtab.lookup (QuotData.get thy) str
+
+fun quotdata_lookup thy str =
+  case Symtab.lookup (QuotData.get thy) str of
+    SOME qinfo => qinfo
+  | NONE => raise NotFound
+
+fun quotdata_update_thy str qinfo = QuotData.map (Symtab.update (str, qinfo))
+fun quotdata_update_gen str qinfo = Context.mapping (quotdata_update_thy str qinfo) I
+
+fun quotdata_dest lthy =
+  map snd (Symtab.dest (QuotData.get (ProofContext.theory_of lthy)))
+
+fun print_quotinfo ctxt =
+let
+  fun prt_quot {qtyp, rtyp, equiv_rel, equiv_thm} =
+    Pretty.block (Library.separate (Pretty.brk 2)
+     [Pretty.str "quotient type:",
+      Syntax.pretty_typ ctxt qtyp,
+      Pretty.str "raw type:",
+      Syntax.pretty_typ ctxt rtyp,
+      Pretty.str "relation:",
+      Syntax.pretty_term ctxt equiv_rel,
+      Pretty.str "equiv. thm:",
+      Syntax.pretty_term ctxt (prop_of equiv_thm)])
+in
+  QuotData.get (ProofContext.theory_of ctxt)
+  |> Symtab.dest
+  |> map (prt_quot o snd)
+  |> Pretty.big_list "quotients:"
+  |> Pretty.writeln
+end
+
+
+(* info about quotient constants *)
+type qconsts_info = {qconst: term, rconst: term, def: thm}
+
+fun qconsts_info_eq (x : qconsts_info, y : qconsts_info) = #qconst x = #qconst y
+
+(* We need to be able to lookup instances of lifted constants,
+   for example given "nat fset" we need to find "'a fset";
+   but overloaded constants share the same name *)
+structure QConstsData = Theory_Data
+  (type T = (qconsts_info list) Symtab.table
+   val empty = Symtab.empty
+   val extend = I
+   val merge = Symtab.merge_list qconsts_info_eq)
+
+fun transform_qconsts phi {qconst, rconst, def} =
+  {qconst = Morphism.term phi qconst,
+   rconst = Morphism.term phi rconst,
+   def = Morphism.thm phi def}
+
+fun qconsts_update_thy name qcinfo = QConstsData.map (Symtab.cons_list (name, qcinfo))
+fun qconsts_update_gen name qcinfo = Context.mapping (qconsts_update_thy name qcinfo) I
+
+fun qconsts_dest lthy =
+  flat (map snd (Symtab.dest (QConstsData.get (ProofContext.theory_of lthy))))
+
+fun qconsts_lookup thy t =
+  let
+    val (name, qty) = dest_Const t
+    fun matches x =
+      let
+        val (name', qty') = dest_Const (#qconst x);
+      in
+        name = name' andalso Sign.typ_instance thy (qty, qty')
+      end
+  in
+    case Symtab.lookup (QConstsData.get thy) name of
+      NONE => raise NotFound
+    | SOME l =>
+      (case (find_first matches l) of
+        SOME x => x
+      | NONE => raise NotFound)
+  end
+
+fun print_qconstinfo ctxt =
+let
+  fun prt_qconst {qconst, rconst, def} =
+    Pretty.block (separate (Pretty.brk 1)
+     [Syntax.pretty_term ctxt qconst,
+      Pretty.str ":=",
+      Syntax.pretty_term ctxt rconst,
+      Pretty.str "as",
+      Syntax.pretty_term ctxt (prop_of def)])
+in
+  QConstsData.get (ProofContext.theory_of ctxt)
+  |> Symtab.dest
+  |> map snd
+  |> flat
+  |> map prt_qconst
+  |> Pretty.big_list "quotient constants:"
+  |> Pretty.writeln
+end
+
+(* equivalence relation theorems *)
+structure EquivRules = Named_Thms
+  (val name = "quot_equiv"
+   val description = "Equivalence relation theorems.")
+
+val equiv_rules_get = EquivRules.get
+val equiv_rules_add = EquivRules.add
+
+(* respectfulness theorems *)
+structure RspRules = Named_Thms
+  (val name = "quot_respect"
+   val description = "Respectfulness theorems.")
+
+val rsp_rules_get = RspRules.get
+
+(* preservation theorems *)
+structure PrsRules = Named_Thms
+  (val name = "quot_preserve"
+   val description = "Preservation theorems.")
+
+val prs_rules_get = PrsRules.get
+
+(* id simplification theorems *)
+structure IdSimps = Named_Thms
+  (val name = "id_simps"
+   val description = "Identity simp rules for maps.")
+
+val id_simps_get = IdSimps.get
+
+(* quotient theorems *)
+structure QuotientRules = Named_Thms
+  (val name = "quot_thm"
+   val description = "Quotient theorems.")
+
+val quotient_rules_get = QuotientRules.get
+val quotient_rules_add = QuotientRules.add
+
+(* setup of the theorem lists *)
+
+val _ = Context.>> (Context.map_theory
+  (EquivRules.setup #>
+   RspRules.setup #>
+   PrsRules.setup #>
+   IdSimps.setup #>
+   QuotientRules.setup))
+
+(* setup of the printing commands *)
+
+fun improper_command (pp_fn, cmd_name, descr_str) =
+  OuterSyntax.improper_command cmd_name descr_str
+    OuterKeyword.diag (Scan.succeed (Toplevel.keep (pp_fn o Toplevel.context_of)))
+
+val _ = map improper_command
+  [(print_mapsinfo, "print_maps", "prints out all map functions"),
+   (print_quotinfo, "print_quotients", "prints out all quotients"),
+   (print_qconstinfo, "print_quotconsts", "prints out all quotient constants")]
+
+
+end; (* structure *)
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quotient/quotient_tacs.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,665 @@
+(*  Title:      quotient_tacs.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Tactics for solving goal arising from lifting
+    theorems to quotient types.
+*)
+
+signature QUOTIENT_TACS =
+sig
+  val regularize_tac: Proof.context -> int -> tactic
+  val injection_tac: Proof.context -> int -> tactic
+  val all_injection_tac: Proof.context -> int -> tactic
+  val clean_tac: Proof.context -> int -> tactic
+  val procedure_tac: Proof.context -> thm -> int -> tactic
+  val lift_tac: Proof.context -> thm list -> int -> tactic
+  val quotient_tac: Proof.context -> int -> tactic
+  val quot_true_tac: Proof.context -> (term -> term) -> int -> tactic
+  val lifted_attrib: attribute
+end;
+
+structure Quotient_Tacs: QUOTIENT_TACS =
+struct
+
+open Quotient_Info;
+open Quotient_Term;
+
+
+(** various helper fuctions **)
+
+(* Since HOL_basic_ss is too "big" for us, we *)
+(* need to set up our own minimal simpset.    *)
+fun mk_minimal_ss ctxt =
+  Simplifier.context ctxt empty_ss
+    setsubgoaler asm_simp_tac
+    setmksimps (mksimps [])
+
+(* composition of two theorems, used in maps *)
+fun OF1 thm1 thm2 = thm2 RS thm1
+
+(* prints a warning, if the subgoal is not solved *)
+fun WARN (tac, msg) i st =
+ case Seq.pull (SOLVED' tac i st) of
+     NONE    => (warning msg; Seq.single st)
+   | seqcell => Seq.make (fn () => seqcell)
+
+fun RANGE_WARN tacs = RANGE (map WARN tacs)
+
+fun atomize_thm thm =
+let
+  val thm' = Thm.freezeT (forall_intr_vars thm) (* FIXME/TODO: is this proper Isar-technology? *)
+  val thm'' = ObjectLogic.atomize (cprop_of thm')
+in
+  @{thm equal_elim_rule1} OF [thm'', thm']
+end
+
+
+
+(*** Regularize Tactic ***)
+
+(** solvers for equivp and quotient assumptions **)
+
+fun equiv_tac ctxt =
+  REPEAT_ALL_NEW (resolve_tac (equiv_rules_get ctxt))
+
+fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
+val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac
+
+fun quotient_tac ctxt =
+  (REPEAT_ALL_NEW (FIRST'
+    [rtac @{thm identity_quotient},
+     resolve_tac (quotient_rules_get ctxt)]))
+
+fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
+val quotient_solver =
+  Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
+
+fun solve_quotient_assm ctxt thm =
+  case Seq.pull (quotient_tac ctxt 1 thm) of
+    SOME (t, _) => t
+  | _ => error "Solve_quotient_assm failed. Possibly a quotient theorem is missing."
+
+
+fun prep_trm thy (x, (T, t)) =
+  (cterm_of thy (Var (x, T)), cterm_of thy t)
+
+fun prep_ty thy (x, (S, ty)) =
+  (ctyp_of thy (TVar (x, S)), ctyp_of thy ty)
+
+fun get_match_inst thy pat trm =
+let
+  val univ = Unify.matchers thy [(pat, trm)]
+  val SOME (env, _) = Seq.pull univ             (* raises BIND, if no unifier *)
+  val tenv = Vartab.dest (Envir.term_env env)
+  val tyenv = Vartab.dest (Envir.type_env env)
+in
+  (map (prep_ty thy) tyenv, map (prep_trm thy) tenv)
+end
+
+(* Calculates the instantiations for the lemmas:
+
+      ball_reg_eqv_range and bex_reg_eqv_range
+
+   Since the left-hand-side contains a non-pattern '?P (f ?x)'
+   we rely on unification/instantiation to check whether the
+   theorem applies and return NONE if it doesn't.
+*)
+fun calculate_inst ctxt ball_bex_thm redex R1 R2 =
+let
+  val thy = ProofContext.theory_of ctxt
+  fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm))
+  val ty_inst = map (SOME o ctyp_of thy) [domain_type (fastype_of R2)]
+  val trm_inst = map (SOME o cterm_of thy) [R2, R1]
+in
+  case try (Drule.instantiate' ty_inst trm_inst) ball_bex_thm of
+    NONE => NONE
+  | SOME thm' =>
+      (case try (get_match_inst thy (get_lhs thm')) redex of
+        NONE => NONE
+      | SOME inst2 => try (Drule.instantiate inst2) thm')
+end
+
+fun ball_bex_range_simproc ss redex =
+let
+  val ctxt = Simplifier.the_context ss
+in
+  case redex of
+    (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $
+      (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
+        calculate_inst ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2
+
+  | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $
+      (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
+        calculate_inst ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2
+
+  | _ => NONE
+end
+
+(* Regularize works as follows:
+
+  0. preliminary simplification step according to
+     ball_reg_eqv bex_reg_eqv babs_reg_eqv ball_reg_eqv_range bex_reg_eqv_range
+
+  1. eliminating simple Ball/Bex instances (ball_reg_right bex_reg_left)
+
+  2. monos
+
+  3. commutation rules for ball and bex (ball_all_comm bex_ex_comm)
+
+  4. then rel-equalities, which need to be instantiated with 'eq_imp_rel'
+     to avoid loops
+
+  5. then simplification like 0
+
+  finally jump back to 1
+*)
+
+fun regularize_tac ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val ball_pat = @{term "Ball (Respects (R1 ===> R2)) P"}
+  val bex_pat  = @{term "Bex (Respects (R1 ===> R2)) P"}
+  val simproc = Simplifier.simproc_i thy "" [ball_pat, bex_pat] (K (ball_bex_range_simproc))
+  val simpset = (mk_minimal_ss ctxt)
+                       addsimps @{thms ball_reg_eqv bex_reg_eqv babs_reg_eqv babs_simp}
+                       addsimprocs [simproc]
+                       addSolver equiv_solver addSolver quotient_solver
+  val eq_imp_rel = @{lemma "equivp R ==> a = b --> R a b" by (simp add: equivp_reflp)}
+  val eq_eqvs = map (OF1 eq_imp_rel) (equiv_rules_get ctxt)
+in
+  simp_tac simpset THEN'
+  REPEAT_ALL_NEW (CHANGED o FIRST'
+    [resolve_tac @{thms ball_reg_right bex_reg_left bex1_bexeq_reg},
+     resolve_tac (Inductive.get_monos ctxt),
+     resolve_tac @{thms ball_all_comm bex_ex_comm},
+     resolve_tac eq_eqvs,
+     simp_tac simpset])
+end
+
+
+
+(*** Injection Tactic ***)
+
+(* Looks for Quot_True assumptions, and in case its parameter
+   is an application, it returns the function and the argument.
+*)
+fun find_qt_asm asms =
+let
+  fun find_fun trm =
+    case trm of
+      (Const(@{const_name Trueprop}, _) $ (Const (@{const_name Quot_True}, _) $ _)) => true
+    | _ => false
+in
+ case find_first find_fun asms of
+   SOME (_ $ (_ $ (f $ a))) => SOME (f, a)
+ | _ => NONE
+end
+
+fun quot_true_simple_conv ctxt fnctn ctrm =
+  case (term_of ctrm) of
+    (Const (@{const_name Quot_True}, _) $ x) =>
+    let
+      val fx = fnctn x;
+      val thy = ProofContext.theory_of ctxt;
+      val cx = cterm_of thy x;
+      val cfx = cterm_of thy fx;
+      val cxt = ctyp_of thy (fastype_of x);
+      val cfxt = ctyp_of thy (fastype_of fx);
+      val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QT_imp}
+    in
+      Conv.rewr_conv thm ctrm
+    end
+
+fun quot_true_conv ctxt fnctn ctrm =
+  case (term_of ctrm) of
+    (Const (@{const_name Quot_True}, _) $ _) =>
+      quot_true_simple_conv ctxt fnctn ctrm
+  | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
+  | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
+  | _ => Conv.all_conv ctrm
+
+fun quot_true_tac ctxt fnctn =
+   CONVERSION
+    ((Conv.params_conv ~1 (fn ctxt =>
+       (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt)
+
+fun dest_comb (f $ a) = (f, a)
+fun dest_bcomb ((_ $ l) $ r) = (l, r)
+
+fun unlam t =
+  case t of
+    (Abs a) => snd (Term.dest_abs a)
+  | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0)))
+
+fun dest_fun_type (Type("fun", [T, S])) = (T, S)
+  | dest_fun_type _ = error "dest_fun_type"
+
+val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
+
+(* We apply apply_rsp only in case if the type needs lifting.
+   This is the case if the type of the data in the Quot_True
+   assumption is different from the corresponding type in the goal.
+*)
+val apply_rsp_tac =
+  Subgoal.FOCUS (fn {concl, asms, context,...} =>
+  let
+    val bare_concl = HOLogic.dest_Trueprop (term_of concl)
+    val qt_asm = find_qt_asm (map term_of asms)
+  in
+    case (bare_concl, qt_asm) of
+      (R2 $ (f $ x) $ (g $ y), SOME (qt_fun, qt_arg)) =>
+         if fastype_of qt_fun = fastype_of f
+         then no_tac
+         else
+           let
+             val ty_x = fastype_of x
+             val ty_b = fastype_of qt_arg
+             val ty_f = range_type (fastype_of f)
+             val thy = ProofContext.theory_of context
+             val ty_inst = map (SOME o (ctyp_of thy)) [ty_x, ty_b, ty_f]
+             val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y];
+             val inst_thm = Drule.instantiate' ty_inst
+               ([NONE, NONE, NONE] @ t_inst) @{thm apply_rsp}
+           in
+             (rtac inst_thm THEN' quotient_tac context) 1
+           end
+    | _ => no_tac
+  end)
+
+(* Instantiates and applies 'equals_rsp'. Since the theorem is
+   complex we rely on instantiation to tell us if it applies
+*)
+fun equals_rsp_tac R ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+in
+  case try (cterm_of thy) R of (* There can be loose bounds in R *)
+    SOME ctm =>
+      let
+        val ty = domain_type (fastype_of R)
+      in
+        case try (Drule.instantiate' [SOME (ctyp_of thy ty)]
+          [SOME (cterm_of thy R)]) @{thm equals_rsp} of
+          SOME thm => rtac thm THEN' quotient_tac ctxt
+        | NONE => K no_tac
+      end
+  | _ => K no_tac
+end
+
+fun rep_abs_rsp_tac ctxt =
+  SUBGOAL (fn (goal, i) =>
+    case (try bare_concl goal) of
+      SOME (rel $ _ $ (rep $ (abs $ _))) =>
+        let
+          val thy = ProofContext.theory_of ctxt;
+          val (ty_a, ty_b) = dest_fun_type (fastype_of abs);
+          val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b];
+        in
+          case try (map (SOME o (cterm_of thy))) [rel, abs, rep] of
+            SOME t_inst =>
+              (case try (Drule.instantiate' ty_inst t_inst) @{thm rep_abs_rsp} of
+                SOME inst_thm => (rtac inst_thm THEN' quotient_tac ctxt) i
+              | NONE => no_tac)
+          | NONE => no_tac
+        end
+    | _ => no_tac)
+
+
+
+(* Injection means to prove that the regularised theorem implies
+   the abs/rep injected one.
+
+   The deterministic part:
+    - remove lambdas from both sides
+    - prove Ball/Bex/Babs equalities using ball_rsp, bex_rsp, babs_rsp
+    - prove Ball/Bex relations unfolding fun_rel_id
+    - reflexivity of equality
+    - prove equality of relations using equals_rsp
+    - use user-supplied RSP theorems
+    - solve 'relation of relations' goals using quot_rel_rsp
+    - remove rep_abs from the right side
+      (Lambdas under respects may have left us some assumptions)
+
+   Then in order:
+    - split applications of lifted type (apply_rsp)
+    - split applications of non-lifted type (cong_tac)
+    - apply extentionality
+    - assumption
+    - reflexivity of the relation
+*)
+fun injection_match_tac ctxt = SUBGOAL (fn (goal, i) =>
+(case (bare_concl goal) of
+    (* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *)
+  (Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _)
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+    (* (op =) (Ball...) (Ball...) ----> (op =) (...) (...) *)
+| (Const (@{const_name "op ="},_) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
+      => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all}
+
+    (* (R1 ===> op =) (Ball...) (Ball...) ----> [|R1 x y|] ==> (Ball...x) = (Ball...y) *)
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+    (* (op =) (Bex...) (Bex...) ----> (op =) (...) (...) *)
+| Const (@{const_name "op ="},_) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex}
+
+    (* (R1 ===> op =) (Bex...) (Bex...) ----> [|R1 x y|] ==> (Bex...x) = (Bex...y) *)
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _)
+      => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam
+
+| (Const (@{const_name fun_rel}, _) $ _ $ _) $
+    (Const(@{const_name Bex1_rel},_) $ _) $ (Const(@{const_name Bex1_rel},_) $ _)
+      => rtac @{thm bex1_rel_rsp} THEN' quotient_tac ctxt
+
+| (_ $
+    (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $
+    (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _))
+      => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt]
+
+| Const (@{const_name "op ="},_) $ (R $ _ $ _) $ (_ $ _ $ _) =>
+   (rtac @{thm refl} ORELSE'
+    (equals_rsp_tac R ctxt THEN' RANGE [
+       quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)]))
+
+    (* reflexivity of operators arising from Cong_tac *)
+| Const (@{const_name "op ="},_) $ _ $ _ => rtac @{thm refl}
+
+   (* respectfulness of constants; in particular of a simple relation *)
+| _ $ (Const _) $ (Const _)  (* fun_rel, list_rel, etc but not equality *)
+    => resolve_tac (rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt
+
+    (* R (...) (Rep (Abs ...)) ----> R (...) (...) *)
+    (* observe fun_map *)
+| _ $ _ $ _
+    => (rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt)
+       ORELSE' rep_abs_rsp_tac ctxt
+
+| _ => K no_tac
+) i)
+
+fun injection_step_tac ctxt rel_refl =
+ FIRST' [
+    injection_match_tac ctxt,
+
+    (* R (t $ ...) (t' $ ...) ----> apply_rsp   provided type of t needs lifting *)
+    apply_rsp_tac ctxt THEN'
+                 RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
+
+    (* (op =) (t $ ...) (t' $ ...) ----> Cong   provided type of t does not need lifting *)
+    (* merge with previous tactic *)
+    Cong_Tac.cong_tac @{thm cong} THEN'
+                 RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
+
+    (* (op =) (%x...) (%y...) ----> (op =) (...) (...) *)
+    rtac @{thm ext} THEN' quot_true_tac ctxt unlam,
+
+    (* resolving with R x y assumptions *)
+    atac,
+
+    (* reflexivity of the basic relations *)
+    (* R ... ... *)
+    resolve_tac rel_refl]
+
+fun injection_tac ctxt =
+let
+  val rel_refl = map (OF1 @{thm equivp_reflp}) (equiv_rules_get ctxt)
+in
+  injection_step_tac ctxt rel_refl
+end
+
+fun all_injection_tac ctxt =
+  REPEAT_ALL_NEW (injection_tac ctxt)
+
+
+
+(*** Cleaning of the Theorem ***)
+
+(* expands all fun_maps, except in front of the (bound) variables listed in xs *)
+fun fun_map_simple_conv xs ctrm =
+  case (term_of ctrm) of
+    ((Const (@{const_name "fun_map"}, _) $ _ $ _) $ h $ _) =>
+        if member (op=) xs h
+        then Conv.all_conv ctrm
+        else Conv.rewr_conv @{thm fun_map_def[THEN eq_reflection]} ctrm
+  | _ => Conv.all_conv ctrm
+
+fun fun_map_conv xs ctxt ctrm =
+  case (term_of ctrm) of
+      _ $ _ => (Conv.comb_conv (fun_map_conv xs ctxt) then_conv
+                fun_map_simple_conv xs) ctrm
+    | Abs _ => Conv.abs_conv (fn (x, ctxt) => fun_map_conv ((term_of x)::xs) ctxt) ctxt ctrm
+    | _ => Conv.all_conv ctrm
+
+fun fun_map_tac ctxt = CONVERSION (fun_map_conv [] ctxt)
+
+(* custom matching functions *)
+fun mk_abs u i t =
+  if incr_boundvars i u aconv t then Bound i else
+  case t of
+    t1 $ t2 => mk_abs u i t1 $ mk_abs u i t2
+  | Abs (s, T, t') => Abs (s, T, mk_abs u (i + 1) t')
+  | Bound j => if i = j then error "make_inst" else t
+  | _ => t
+
+fun make_inst lhs t =
+let
+  val _ $ (Abs (_, _, (_ $ ((f as Var (_, Type ("fun", [T, _]))) $ u)))) = lhs;
+  val _ $ (Abs (_, _, (_ $ g))) = t;
+in
+  (f, Abs ("x", T, mk_abs u 0 g))
+end
+
+fun make_inst_id lhs t =
+let
+  val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs;
+  val _ $ (Abs (_, _, g)) = t;
+in
+  (f, Abs ("x", T, mk_abs u 0 g))
+end
+
+(* Simplifies a redex using the 'lambda_prs' theorem.
+   First instantiates the types and known subterms.
+   Then solves the quotient assumptions to get Rep2 and Abs1
+   Finally instantiates the function f using make_inst
+   If Rep2 is an identity then the pattern is simpler and
+   make_inst_id is used
+*)
+fun lambda_prs_simple_conv ctxt ctrm =
+  case (term_of ctrm) of
+    (Const (@{const_name fun_map}, _) $ r1 $ a2) $ (Abs _) =>
+      let
+        val thy = ProofContext.theory_of ctxt
+        val (ty_b, ty_a) = dest_fun_type (fastype_of r1)
+        val (ty_c, ty_d) = dest_fun_type (fastype_of a2)
+        val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d]
+        val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
+        val thm1 = Drule.instantiate' tyinst tinst @{thm lambda_prs[THEN eq_reflection]}
+        val thm2 = solve_quotient_assm ctxt (solve_quotient_assm ctxt thm1)
+        val thm3 = MetaSimplifier.rewrite_rule @{thms id_apply[THEN eq_reflection]} thm2
+        val (insp, inst) =
+          if ty_c = ty_d
+          then make_inst_id (term_of (Thm.lhs_of thm3)) (term_of ctrm)
+          else make_inst (term_of (Thm.lhs_of thm3)) (term_of ctrm)
+        val thm4 = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) thm3
+      in
+        Conv.rewr_conv thm4 ctrm
+      end
+  | _ => Conv.all_conv ctrm
+
+fun lambda_prs_conv ctxt = More_Conv.top_conv lambda_prs_simple_conv ctxt
+fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
+
+
+(* Cleaning consists of:
+
+  1. unfolding of ---> in front of everything, except
+     bound variables (this prevents lambda_prs from
+     becoming stuck)
+
+  2. simplification with lambda_prs
+
+  3. simplification with:
+
+      - Quotient_abs_rep Quotient_rel_rep
+        babs_prs all_prs ex_prs ex1_prs
+
+      - id_simps and preservation lemmas and
+
+      - symmetric versions of the definitions
+        (that is definitions of quotient constants
+         are folded)
+
+  4. test for refl
+*)
+fun clean_tac lthy =
+let
+  val defs = map (symmetric o #def) (qconsts_dest lthy)
+  val prs = prs_rules_get lthy
+  val ids = id_simps_get lthy
+  val thms = @{thms Quotient_abs_rep Quotient_rel_rep babs_prs all_prs ex_prs ex1_prs} @ ids @ prs @ defs
+
+  val ss = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
+in
+  EVERY' [fun_map_tac lthy,
+          lambda_prs_tac lthy,
+          simp_tac ss,
+          TRY o rtac refl]
+end
+
+
+
+(** Tactic for Generalising Free Variables in a Goal **)
+
+fun inst_spec ctrm =
+   Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
+
+fun inst_spec_tac ctrms =
+  EVERY' (map (dtac o inst_spec) ctrms)
+
+fun all_list xs trm =
+  fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm
+
+fun apply_under_Trueprop f =
+  HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop
+
+fun gen_frees_tac ctxt =
+  SUBGOAL (fn (concl, i) =>
+    let
+      val thy = ProofContext.theory_of ctxt
+      val vrs = Term.add_frees concl []
+      val cvrs = map (cterm_of thy o Free) vrs
+      val concl' = apply_under_Trueprop (all_list vrs) concl
+      val goal = Logic.mk_implies (concl', concl)
+      val rule = Goal.prove ctxt [] [] goal
+        (K (EVERY1 [inst_spec_tac (rev cvrs), atac]))
+    in
+      rtac rule i
+    end)
+
+
+(** The General Shape of the Lifting Procedure **)
+
+(* - A is the original raw theorem
+   - B is the regularized theorem
+   - C is the rep/abs injected version of B
+   - D is the lifted theorem
+
+   - 1st prem is the regularization step
+   - 2nd prem is the rep/abs injection step
+   - 3rd prem is the cleaning part
+
+   the Quot_True premise in 2nd records the lifted theorem
+*)
+val lifting_procedure_thm =
+  @{lemma  "[|A;
+              A --> B;
+              Quot_True D ==> B = C;
+              C = D|] ==> D"
+      by (simp add: Quot_True_def)}
+
+fun lift_match_error ctxt msg rtrm qtrm =
+let
+  val rtrm_str = Syntax.string_of_term ctxt rtrm
+  val qtrm_str = Syntax.string_of_term ctxt qtrm
+  val msg = cat_lines [enclose "[" "]" msg, "The quotient theorem", qtrm_str,
+    "", "does not match with original theorem", rtrm_str]
+in
+  error msg
+end
+
+fun procedure_inst ctxt rtrm qtrm =
+let
+  val thy = ProofContext.theory_of ctxt
+  val rtrm' = HOLogic.dest_Trueprop rtrm
+  val qtrm' = HOLogic.dest_Trueprop qtrm
+  val reg_goal = regularize_trm_chk ctxt (rtrm', qtrm')
+    handle (LIFT_MATCH msg) => lift_match_error ctxt msg rtrm qtrm
+  val inj_goal = inj_repabs_trm_chk ctxt (reg_goal, qtrm')
+    handle (LIFT_MATCH msg) => lift_match_error ctxt msg rtrm qtrm
+in
+  Drule.instantiate' []
+    [SOME (cterm_of thy rtrm'),
+     SOME (cterm_of thy reg_goal),
+     NONE,
+     SOME (cterm_of thy inj_goal)] lifting_procedure_thm
+end
+
+(* the tactic leaves three subgoals to be proved *)
+fun procedure_tac ctxt rthm =
+  ObjectLogic.full_atomize_tac
+  THEN' gen_frees_tac ctxt
+  THEN' SUBGOAL (fn (goal, i) =>
+    let
+      val rthm' = atomize_thm rthm
+      val rule = procedure_inst ctxt (prop_of rthm') goal
+    in
+      (rtac rule THEN' rtac rthm') i
+    end)
+
+
+(* Automatic Proofs *)
+
+val msg1 = "The regularize proof failed."
+val msg2 = cat_lines ["The injection proof failed.",
+                      "This is probably due to missing respects lemmas.",
+                      "Try invoking the injection method manually to see",
+                      "which lemmas are missing."]
+val msg3 = "The cleaning proof failed."
+
+fun lift_tac ctxt rthms =
+let
+  fun mk_tac rthm =
+    procedure_tac ctxt rthm
+    THEN' RANGE_WARN
+      [(regularize_tac ctxt, msg1),
+       (all_injection_tac ctxt, msg2),
+       (clean_tac ctxt, msg3)]
+in
+  simp_tac (mk_minimal_ss ctxt) (* unfolding multiple &&& *)
+  THEN' RANGE (map mk_tac rthms)
+end
+
+(* An Attribute which automatically constructs the qthm *)
+fun lifted_attrib_aux context thm =
+let
+  val ctxt = Context.proof_of context
+  val ((_, [thm']), ctxt') = Variable.import false [thm] ctxt
+  val goal = (quotient_lift_all ctxt' o prop_of) thm'
+in
+  Goal.prove ctxt' [] [] goal (K (lift_tac ctxt' [thm] 1))
+  |> singleton (ProofContext.export ctxt' ctxt)
+end;
+
+val lifted_attrib = Thm.rule_attribute lifted_attrib_aux
+
+end; (* structure *)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quotient/quotient_term.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,786 @@
+(*  Title:      quotient_term.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Constructs terms corresponding to goals from
+    lifting theorems to quotient types.
+*)
+
+signature QUOTIENT_TERM =
+sig
+  exception LIFT_MATCH of string
+
+  datatype flag = AbsF | RepF
+
+  val absrep_fun: flag -> Proof.context -> typ * typ -> term
+  val absrep_fun_chk: flag -> Proof.context -> typ * typ -> term
+
+  (* Allows Nitpick to represent quotient types as single elements from raw type *)
+  val absrep_const_chk: flag -> Proof.context -> string -> term
+
+  val equiv_relation: Proof.context -> typ * typ -> term
+  val equiv_relation_chk: Proof.context -> typ * typ -> term
+
+  val regularize_trm: Proof.context -> term * term -> term
+  val regularize_trm_chk: Proof.context -> term * term -> term
+
+  val inj_repabs_trm: Proof.context -> term * term -> term
+  val inj_repabs_trm_chk: Proof.context -> term * term -> term
+
+  val quotient_lift_const: string * term -> local_theory -> term
+  val quotient_lift_all: Proof.context -> term -> term
+end;
+
+structure Quotient_Term: QUOTIENT_TERM =
+struct
+
+open Quotient_Info;
+
+exception LIFT_MATCH of string
+
+
+
+(*** Aggregate Rep/Abs Function ***)
+
+
+(* The flag RepF is for types in negative position; AbsF is for types
+   in positive position. Because of this, function types need to be
+   treated specially, since there the polarity changes.
+*)
+
+datatype flag = AbsF | RepF
+
+fun negF AbsF = RepF
+  | negF RepF = AbsF
+
+fun is_identity (Const (@{const_name "id"}, _)) = true
+  | is_identity _ = false
+
+fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
+
+fun mk_fun_compose flag (trm1, trm2) =
+  case flag of
+    AbsF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
+  | RepF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
+
+fun get_mapfun ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("No map function for type " ^ quote s ^ " found.")
+  val mapfun = #mapfun (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  Const (mapfun, dummyT)
+end
+
+(* makes a Free out of a TVar *)
+fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)
+
+(* produces an aggregate map function for the
+   rty-part of a quotient definition; abstracts
+   over all variables listed in vs (these variables
+   correspond to the type variables in rty)
+
+   for example for: (?'a list * ?'b)
+   it produces:     %a b. prod_map (map a) b
+*)
+fun mk_mapfun ctxt vs rty =
+let
+  val vs' = map (mk_Free) vs
+
+  fun mk_mapfun_aux rty =
+    case rty of
+      TVar _ => mk_Free rty
+    | Type (_, []) => mk_identity rty
+    | Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
+    | _ => raise LIFT_MATCH "mk_mapfun (default)"
+in
+  fold_rev Term.lambda vs' (mk_mapfun_aux rty)
+end
+
+(* looks up the (varified) rty and qty for
+   a quotient definition
+*)
+fun get_rty_qty ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("No quotient type " ^ quote s ^ " found.")
+  val qdata = (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  (#rtyp qdata, #qtyp qdata)
+end
+
+(* takes two type-environments and looks
+   up in both of them the variable v, which
+   must be listed in the environment
+*)
+fun double_lookup rtyenv qtyenv v =
+let
+  val v' = fst (dest_TVar v)
+in
+  (snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
+end
+
+(* matches a type pattern with a type *)
+fun match ctxt err ty_pat ty =
+let
+  val thy = ProofContext.theory_of ctxt
+in
+  Sign.typ_match thy (ty_pat, ty) Vartab.empty
+  handle MATCH_TYPE => err ctxt ty_pat ty
+end
+
+(* produces the rep or abs constant for a qty *)
+fun absrep_const flag ctxt qty_str =
+let
+  val thy = ProofContext.theory_of ctxt
+  val qty_name = Long_Name.base_name qty_str
+in
+  case flag of
+    AbsF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
+  | RepF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
+end
+
+(* Lets Nitpick represent elements of quotient types as elements of the raw type *)
+fun absrep_const_chk flag ctxt qty_str =
+  Syntax.check_term ctxt (absrep_const flag ctxt qty_str)
+
+fun absrep_match_err ctxt ty_pat ty =
+let
+  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
+  val ty_str = Syntax.string_of_typ ctxt ty
+in
+  raise LIFT_MATCH (space_implode " "
+    ["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
+end
+
+
+(** generation of an aggregate absrep function **)
+
+(* - In case of equal types we just return the identity.
+
+   - In case of TFrees we also return the identity.
+
+   - In case of function types we recurse taking
+     the polarity change into account.
+
+   - If the type constructors are equal, we recurse for the
+     arguments and build the appropriate map function.
+
+   - If the type constructors are unequal, there must be an
+     instance of quotient types:
+
+       - we first look up the corresponding rty_pat and qty_pat
+         from the quotient definition; the arguments of qty_pat
+         must be some distinct TVars
+       - we then match the rty_pat with rty and qty_pat with qty;
+         if matching fails the types do not correspond -> error
+       - the matching produces two environments; we look up the
+         assignments for the qty_pat variables and recurse on the
+         assignments
+       - we prefix the aggregate map function for the rty_pat,
+         which is an abstraction over all type variables
+       - finally we compose the result with the appropriate
+         absrep function in case at least one argument produced
+         a non-identity function /
+         otherwise we just return the appropriate absrep
+         function
+
+     The composition is necessary for types like
+
+        ('a list) list / ('a foo) foo
+
+     The matching is necessary for types like
+
+        ('a * 'a) list / 'a bar
+
+     The test is necessary in order to eliminate superfluous
+     identity maps.
+*)
+
+fun absrep_fun flag ctxt (rty, qty) =
+  if rty = qty
+  then mk_identity rty
+  else
+    case (rty, qty) of
+      (Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
+        let
+          val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
+          val arg2 = absrep_fun flag ctxt (ty2, ty2')
+        in
+          list_comb (get_mapfun ctxt "fun", [arg1, arg2])
+        end
+    | (Type (s, tys), Type (s', tys')) =>
+        if s = s'
+        then
+           let
+             val args = map (absrep_fun flag ctxt) (tys ~~ tys')
+           in
+             list_comb (get_mapfun ctxt s, args)
+           end
+        else
+           let
+             val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
+             val rtyenv = match ctxt absrep_match_err rty_pat rty
+             val qtyenv = match ctxt absrep_match_err qty_pat qty
+             val args_aux = map (double_lookup rtyenv qtyenv) vs
+             val args = map (absrep_fun flag ctxt) args_aux
+             val map_fun = mk_mapfun ctxt vs rty_pat
+             val result = list_comb (map_fun, args)
+           in
+             if forall is_identity args
+             then absrep_const flag ctxt s'
+             else mk_fun_compose flag (absrep_const flag ctxt s', result)
+           end
+    | (TFree x, TFree x') =>
+        if x = x'
+        then mk_identity rty
+        else raise (LIFT_MATCH "absrep_fun (frees)")
+    | (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
+    | _ => raise (LIFT_MATCH "absrep_fun (default)")
+
+fun absrep_fun_chk flag ctxt (rty, qty) =
+  absrep_fun flag ctxt (rty, qty)
+  |> Syntax.check_term ctxt
+
+
+
+
+(*** Aggregate Equivalence Relation ***)
+
+
+(* works very similar to the absrep generation,
+   except there is no need for polarities
+*)
+
+(* instantiates TVars so that the term is of type ty *)
+fun force_typ ctxt trm ty =
+let
+  val thy = ProofContext.theory_of ctxt
+  val trm_ty = fastype_of trm
+  val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
+in
+  map_types (Envir.subst_type ty_inst) trm
+end
+
+fun is_eq (Const (@{const_name "op ="}, _)) = true
+  | is_eq _ = false
+
+fun mk_rel_compose (trm1, trm2) =
+  Const (@{const_name "rel_conj"}, dummyT) $ trm1 $ trm2
+
+fun get_relmap ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("get_relmap (no relation map function found for type " ^ s ^ ")")
+  val relmap = #relmap (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
+in
+  Const (relmap, dummyT)
+end
+
+fun mk_relmap ctxt vs rty =
+let
+  val vs' = map (mk_Free) vs
+
+  fun mk_relmap_aux rty =
+    case rty of
+      TVar _ => mk_Free rty
+    | Type (_, []) => HOLogic.eq_const rty
+    | Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
+    | _ => raise LIFT_MATCH ("mk_relmap (default)")
+in
+  fold_rev Term.lambda vs' (mk_relmap_aux rty)
+end
+
+fun get_equiv_rel ctxt s =
+let
+  val thy = ProofContext.theory_of ctxt
+  val exn = LIFT_MATCH ("get_quotdata (no quotient found for type " ^ s ^ ")")
+in
+  #equiv_rel (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
+end
+
+fun equiv_match_err ctxt ty_pat ty =
+let
+  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
+  val ty_str = Syntax.string_of_typ ctxt ty
+in
+  raise LIFT_MATCH (space_implode " "
+    ["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
+end
+
+(* builds the aggregate equivalence relation
+   that will be the argument of Respects
+*)
+fun equiv_relation ctxt (rty, qty) =
+  if rty = qty
+  then HOLogic.eq_const rty
+  else
+    case (rty, qty) of
+      (Type (s, tys), Type (s', tys')) =>
+       if s = s'
+       then
+         let
+           val args = map (equiv_relation ctxt) (tys ~~ tys')
+         in
+           list_comb (get_relmap ctxt s, args)
+         end
+       else
+         let
+           val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
+           val rtyenv = match ctxt equiv_match_err rty_pat rty
+           val qtyenv = match ctxt equiv_match_err qty_pat qty
+           val args_aux = map (double_lookup rtyenv qtyenv) vs
+           val args = map (equiv_relation ctxt) args_aux
+           val rel_map = mk_relmap ctxt vs rty_pat
+           val result = list_comb (rel_map, args)
+           val eqv_rel = get_equiv_rel ctxt s'
+           val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
+         in
+           if forall is_eq args
+           then eqv_rel'
+           else mk_rel_compose (result, eqv_rel')
+         end
+      | _ => HOLogic.eq_const rty
+
+fun equiv_relation_chk ctxt (rty, qty) =
+  equiv_relation ctxt (rty, qty)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Regularization ***)
+
+(* Regularizing an rtrm means:
+
+ - Quantifiers over types that need lifting are replaced
+   by bounded quantifiers, for example:
+
+      All P  ----> All (Respects R) P
+
+   where the aggregate relation R is given by the rty and qty;
+
+ - Abstractions over types that need lifting are replaced
+   by bounded abstractions, for example:
+
+      %x. P  ----> Ball (Respects R) %x. P
+
+ - Equalities over types that need lifting are replaced by
+   corresponding equivalence relations, for example:
+
+      A = B  ----> R A B
+
+   or
+
+      A = B  ----> (R ===> R) A B
+
+   for more complicated types of A and B
+
+
+ The regularize_trm accepts raw theorems in which equalities
+ and quantifiers match exactly the ones in the lifted theorem
+ but also accepts partially regularized terms.
+
+ This means that the raw theorems can have:
+   Ball (Respects R),  Bex (Respects R), Bex1_rel (Respects R), Babs, R
+ in the places where:
+   All, Ex, Ex1, %, (op =)
+ is required the lifted theorem.
+
+*)
+
+val mk_babs = Const (@{const_name Babs}, dummyT)
+val mk_ball = Const (@{const_name Ball}, dummyT)
+val mk_bex  = Const (@{const_name Bex}, dummyT)
+val mk_bex1_rel = Const (@{const_name Bex1_rel}, dummyT)
+val mk_resp = Const (@{const_name Respects}, dummyT)
+
+(* - applies f to the subterm of an abstraction,
+     otherwise to the given term,
+   - used by regularize, therefore abstracted
+     variables do not have to be treated specially
+*)
+fun apply_subt f (trm1, trm2) =
+  case (trm1, trm2) of
+    (Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
+  | _ => f (trm1, trm2)
+
+fun term_mismatch str ctxt t1 t2 =
+let
+  val t1_str = Syntax.string_of_term ctxt t1
+  val t2_str = Syntax.string_of_term ctxt t2
+  val t1_ty_str = Syntax.string_of_typ ctxt (fastype_of t1)
+  val t2_ty_str = Syntax.string_of_typ ctxt (fastype_of t2)
+in
+  raise LIFT_MATCH (cat_lines [str, t1_str ^ "::" ^ t1_ty_str, t2_str ^ "::" ^ t2_ty_str])
+end
+
+(* the major type of All and Ex quantifiers *)
+fun qnt_typ ty = domain_type (domain_type ty)
+
+(* Checks that two types match, for example:
+     rty -> rty   matches   qty -> qty *)
+fun matches_typ thy rT qT =
+  if rT = qT then true else
+  case (rT, qT) of
+    (Type (rs, rtys), Type (qs, qtys)) =>
+      if rs = qs then
+        if length rtys <> length qtys then false else
+        forall (fn x => x = true) (map2 (matches_typ thy) rtys qtys)
+      else
+        (case Quotient_Info.quotdata_lookup_raw thy qs of
+          SOME quotinfo => Sign.typ_instance thy (rT, #rtyp quotinfo)
+        | NONE => false)
+  | _ => false
+
+
+(* produces a regularized version of rtrm
+
+   - the result might contain dummyTs
+
+   - for regularisation we do not need any
+     special treatment of bound variables
+*)
+fun regularize_trm ctxt (rtrm, qtrm) =
+  case (rtrm, qtrm) of
+    (Abs (x, ty, t), Abs (_, ty', t')) =>
+       let
+         val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
+       in
+         if ty = ty' then subtrm
+         else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
+       end
+  | (Const (@{const_name "Babs"}, T) $ resrel $ (t as (Abs (_, ty, _))), t' as (Abs (_, ty', _))) =>
+       let
+         val subtrm = regularize_trm ctxt (t, t')
+         val needres = mk_resp $ equiv_relation_chk ctxt (ty, ty')
+       in
+         if resrel <> needres
+         then term_mismatch "regularize (Babs)" ctxt resrel needres
+         else mk_babs $ resrel $ subtrm
+       end
+
+  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
+         else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
+         else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ex1"}, ty) $ (Abs (_, _,
+      (Const (@{const_name "op &"}, _) $ (Const (@{const_name "op :"}, _) $ _ $
+        (Const (@{const_name "Respects"}, _) $ resrel)) $ (t $ _)))),
+     Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val t_ = incr_boundvars (~1) t
+         val subtrm = apply_subt (regularize_trm ctxt) (t_, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex1)" ctxt resrel needrel
+         else mk_bex1_rel $ resrel $ subtrm
+       end
+
+  | (Const (@{const_name "Ex1"}, ty) $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+       in
+         if ty = ty' then Const (@{const_name "Ex1"}, ty) $ subtrm
+         else mk_bex1_rel $ (equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
+       end
+
+  | (Const (@{const_name "Ball"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
+     Const (@{const_name "All"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Ball)" ctxt resrel needrel
+         else mk_ball $ (mk_resp $ resrel) $ subtrm
+       end
+
+  | (Const (@{const_name "Bex"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
+     Const (@{const_name "Ex"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex)" ctxt resrel needrel
+         else mk_bex $ (mk_resp $ resrel) $ subtrm
+       end
+
+  | (Const (@{const_name "Bex1_rel"}, ty) $ resrel $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
+       let
+         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
+         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
+       in
+         if resrel <> needrel
+         then term_mismatch "regularize (Bex1_res)" ctxt resrel needrel
+         else mk_bex1_rel $ resrel $ subtrm
+       end
+
+  | (* equalities need to be replaced by appropriate equivalence relations *)
+    (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
+         if ty = ty' then rtrm
+         else equiv_relation ctxt (domain_type ty, domain_type ty')
+
+  | (* in this case we just check whether the given equivalence relation is correct *)
+    (rel, Const (@{const_name "op ="}, ty')) =>
+       let
+         val rel_ty = fastype_of rel
+         val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
+       in
+         if rel' aconv rel then rtrm
+         else term_mismatch "regularise (relation mismatch)" ctxt rel rel'
+       end
+
+  | (_, Const _) =>
+       let
+         val thy = ProofContext.theory_of ctxt
+         fun same_const (Const (s, T)) (Const (s', T')) = (s = s') andalso matches_typ thy T T'
+           | same_const _ _ = false
+       in
+         if same_const rtrm qtrm then rtrm
+         else
+           let
+             val rtrm' = #rconst (qconsts_lookup thy qtrm)
+               handle Quotient_Info.NotFound => term_mismatch "regularize(constant notfound)" ctxt rtrm qtrm
+           in
+             if Pattern.matches thy (rtrm', rtrm)
+             then rtrm else term_mismatch "regularize(constant mismatch)" ctxt rtrm qtrm
+           end
+       end
+
+  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, Abs(v1', ty', s1))),
+     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , Abs(v2', _  , s2)))) =>
+       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, Abs (v1', ty', regularize_trm ctxt (s1, s2)))
+
+  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, s1)),
+     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , s2))) =>
+       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, regularize_trm ctxt (s1, s2))
+
+  | (t1 $ t2, t1' $ t2') =>
+       regularize_trm ctxt (t1, t1') $ regularize_trm ctxt (t2, t2')
+
+  | (Bound i, Bound i') =>
+       if i = i' then rtrm
+       else raise (LIFT_MATCH "regularize (bounds mismatch)")
+
+  | _ =>
+       let
+         val rtrm_str = Syntax.string_of_term ctxt rtrm
+         val qtrm_str = Syntax.string_of_term ctxt qtrm
+       in
+         raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
+       end
+
+fun regularize_trm_chk ctxt (rtrm, qtrm) =
+  regularize_trm ctxt (rtrm, qtrm)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Rep/Abs Injection ***)
+
+(*
+Injection of Rep/Abs means:
+
+  For abstractions:
+
+  * If the type of the abstraction needs lifting, then we add Rep/Abs
+    around the abstraction; otherwise we leave it unchanged.
+
+  For applications:
+
+  * If the application involves a bounded quantifier, we recurse on
+    the second argument. If the application is a bounded abstraction,
+    we always put an Rep/Abs around it (since bounded abstractions
+    are assumed to always need lifting). Otherwise we recurse on both
+    arguments.
+
+  For constants:
+
+  * If the constant is (op =), we leave it always unchanged.
+    Otherwise the type of the constant needs lifting, we put
+    and Rep/Abs around it.
+
+  For free variables:
+
+  * We put a Rep/Abs around it if the type needs lifting.
+
+  Vars case cannot occur.
+*)
+
+fun mk_repabs ctxt (T, T') trm =
+  absrep_fun RepF ctxt (T, T') $ (absrep_fun AbsF ctxt (T, T') $ trm)
+
+fun inj_repabs_err ctxt msg rtrm qtrm =
+let
+  val rtrm_str = Syntax.string_of_term ctxt rtrm
+  val qtrm_str = Syntax.string_of_term ctxt qtrm
+in
+  raise LIFT_MATCH (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
+end
+
+
+(* bound variables need to be treated properly,
+   as the type of subterms needs to be calculated   *)
+fun inj_repabs_trm ctxt (rtrm, qtrm) =
+ case (rtrm, qtrm) of
+    (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
+       Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
+
+  | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
+       Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
+
+  | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
+      let
+        val rty = fastype_of rtrm
+        val qty = fastype_of qtrm
+      in
+        mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
+      end
+
+  | (Abs (x, T, t), Abs (x', T', t')) =>
+      let
+        val rty = fastype_of rtrm
+        val qty = fastype_of qtrm
+        val (y, s) = Term.dest_abs (x, T, t)
+        val (_, s') = Term.dest_abs (x', T', t')
+        val yvar = Free (y, T)
+        val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
+      in
+        if rty = qty then result
+        else mk_repabs ctxt (rty, qty) result
+      end
+
+  | (t $ s, t' $ s') =>
+       (inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
+
+  | (Free (_, T), Free (_, T')) =>
+        if T = T' then rtrm
+        else mk_repabs ctxt (T, T') rtrm
+
+  | (_, Const (@{const_name "op ="}, _)) => rtrm
+
+  | (_, Const (_, T')) =>
+      let
+        val rty = fastype_of rtrm
+      in
+        if rty = T' then rtrm
+        else mk_repabs ctxt (rty, T') rtrm
+      end
+
+  | _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm
+
+fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
+  inj_repabs_trm ctxt (rtrm, qtrm)
+  |> Syntax.check_term ctxt
+
+
+
+(*** Wrapper for automatically transforming an rthm into a qthm ***)
+
+(* subst_tys takes a list of (rty, qty) substitution pairs
+   and replaces all occurences of rty in the given type
+   by appropriate qty, with substitution *)
+fun subst_ty thy ty (rty, qty) r =
+  if r <> NONE then r else
+  case try (Sign.typ_match thy (rty, ty)) Vartab.empty of
+    SOME inst => SOME (Envir.subst_type inst qty)
+  | NONE => NONE
+fun subst_tys thy substs ty =
+  case fold (subst_ty thy ty) substs NONE of
+    SOME ty => ty
+  | NONE =>
+      (case ty of
+        Type (s, tys) => Type (s, map (subst_tys thy substs) tys)
+      | x => x)
+
+(* subst_trms takes a list of (rtrm, qtrm) substitution pairs
+   and if the given term matches any of the raw terms it
+   returns the appropriate qtrm instantiated. If none of
+   them matched it returns NONE. *)
+fun subst_trm thy t (rtrm, qtrm) s =
+  if s <> NONE then s else
+    case try (Pattern.match thy (rtrm, t)) (Vartab.empty, Vartab.empty) of
+      SOME inst => SOME (Envir.subst_term inst qtrm)
+    | NONE => NONE;
+fun subst_trms thy substs t = fold (subst_trm thy t) substs NONE
+
+(* prepares type and term substitution pairs to be used by above
+   functions that let replace all raw constructs by appropriate
+   lifted counterparts. *)
+fun get_ty_trm_substs ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val quot_infos  = Quotient_Info.quotdata_dest ctxt
+  val const_infos = Quotient_Info.qconsts_dest ctxt
+  val ty_substs = map (fn ri => (#rtyp ri, #qtyp ri)) quot_infos
+  val const_substs = map (fn ci => (#rconst ci, #qconst ci)) const_infos
+  fun rel_eq rel = HOLogic.eq_const (subst_tys thy ty_substs (domain_type (fastype_of rel)))
+  val rel_substs = map (fn ri => (#equiv_rel ri, rel_eq (#equiv_rel ri))) quot_infos
+in
+  (ty_substs, const_substs @ rel_substs)
+end
+
+fun quotient_lift_const (b, t) ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val (ty_substs, _) = get_ty_trm_substs ctxt;
+  val (_, ty) = dest_Const t;
+  val nty = subst_tys thy ty_substs ty;
+in
+  Free(b, nty)
+end
+
+(*
+Takes a term and
+
+* replaces raw constants by the quotient constants
+
+* replaces equivalence relations by equalities
+
+* replaces raw types by the quotient types
+
+*)
+
+fun quotient_lift_all ctxt t =
+let
+  val thy = ProofContext.theory_of ctxt
+  val (ty_substs, substs) = get_ty_trm_substs ctxt
+  fun lift_aux t =
+    case subst_trms thy substs t of
+      SOME x => x
+    | NONE =>
+      (case t of
+        a $ b => lift_aux a $ lift_aux b
+      | Abs(a, ty, s) =>
+          let
+            val (y, s') = Term.dest_abs (a, ty, s)
+            val nty = subst_tys thy ty_substs ty
+          in
+            Abs(y, nty, abstract_over (Free (y, nty), lift_aux s'))
+          end
+      | Free(n, ty) => Free(n, subst_tys thy ty_substs ty)
+      | Var(n, ty) => Var(n, subst_tys thy ty_substs ty)
+      | Bound i => Bound i
+      | Const(s, ty) => Const(s, subst_tys thy ty_substs ty))
+in
+  lift_aux t
+end
+
+
+end; (* structure *)
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Quotient/quotient_typ.ML	Fri Feb 19 16:52:30 2010 +0100
@@ -0,0 +1,309 @@
+(*  Title:      quotient_typ.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+
+    Definition of a quotient type.
+
+*)
+
+signature QUOTIENT_TYPE =
+sig
+  val quotient_type: ((string list * binding * mixfix) * (typ * term)) list
+    -> Proof.context -> Proof.state
+
+  val quotient_type_cmd: ((((string list * binding) * mixfix) * string) * string) list
+    -> Proof.context -> Proof.state
+end;
+
+structure Quotient_Type: QUOTIENT_TYPE =
+struct
+
+open Quotient_Info;
+
+(* wrappers for define, note, Attrib.internal and theorem_i *)
+fun define (name, mx, rhs) lthy =
+let
+  val ((rhs, (_ , thm)), lthy') =
+     Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy
+in
+  ((rhs, thm), lthy')
+end
+
+fun note (name, thm, attrs) lthy =
+let
+  val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy
+in
+  (thm', lthy')
+end
+
+fun intern_attr at = Attrib.internal (K at)
+
+fun theorem after_qed goals ctxt =
+let
+  val goals' = map (rpair []) goals
+  fun after_qed' thms = after_qed (the_single thms)
+in
+  Proof.theorem_i NONE after_qed' [goals'] ctxt
+end
+
+
+
+(*** definition of quotient types ***)
+
+val mem_def1 = @{lemma "y : S ==> S y" by (simp add: mem_def)}
+val mem_def2 = @{lemma "S y ==> y : S" by (simp add: mem_def)}
+
+(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *)
+fun typedef_term rel rty lthy =
+let
+  val [x, c] =
+    [("x", rty), ("c", HOLogic.mk_setT rty)]
+    |> Variable.variant_frees lthy [rel]
+    |> map Free
+in
+  lambda c (HOLogic.exists_const rty $
+     lambda x (HOLogic.mk_eq (c, (rel $ x))))
+end
+
+
+(* makes the new type definitions and proves non-emptyness *)
+fun typedef_make (vs, qty_name, mx, rel, rty) lthy =
+let
+  val typedef_tac =
+     EVERY1 (map rtac [@{thm exI}, mem_def2, @{thm exI}, @{thm refl}])
+in
+  Local_Theory.theory_result
+    (Typedef.add_typedef false NONE
+       (qty_name, vs, mx)
+          (typedef_term rel rty lthy)
+             NONE typedef_tac) lthy
+end
+
+
+(* tactic to prove the quot_type theorem for the new type *)
+fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
+let
+  val rep_thm = #Rep typedef_info RS mem_def1
+  val rep_inv = #Rep_inverse typedef_info
+  val abs_inv = mem_def2 RS #Abs_inverse typedef_info
+  val rep_inj = #Rep_inject typedef_info
+in
+  (rtac @{thm quot_type.intro} THEN' RANGE [
+    rtac equiv_thm,
+    rtac rep_thm,
+    rtac rep_inv,
+    EVERY' (map rtac [abs_inv, @{thm exI}, @{thm refl}]),
+    rtac rep_inj]) 1
+end
+
+
+(* proves the quot_type theorem for the new type *)
+fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
+let
+  val quot_type_const = Const (@{const_name "quot_type"}, dummyT)
+  val goal =
+    HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
+    |> Syntax.check_term lthy
+in
+  Goal.prove lthy [] [] goal
+    (K (typedef_quot_type_tac equiv_thm typedef_info))
+end
+
+(* proves the quotient theorem for the new type *)
+fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
+let
+  val quotient_const = Const (@{const_name "Quotient"}, dummyT)
+  val goal =
+    HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
+    |> Syntax.check_term lthy
+
+  val typedef_quotient_thm_tac =
+    EVERY1 [
+      K (rewrite_goals_tac [abs_def, rep_def]),
+      rtac @{thm quot_type.Quotient},
+      rtac quot_type_thm]
+in
+  Goal.prove lthy [] [] goal
+    (K typedef_quotient_thm_tac)
+end
+
+
+(* main function for constructing a quotient type *)
+fun mk_quotient_type (((vs, qty_name, mx), (rty, rel)), equiv_thm) lthy =
+let
+  (* generates the typedef *)
+  val ((qty_full_name, typedef_info), lthy1) = typedef_make (vs, qty_name, mx, rel, rty) lthy
+
+  (* abs and rep functions from the typedef *)
+  val Abs_ty = #abs_type typedef_info
+  val Rep_ty = #rep_type typedef_info
+  val Abs_name = #Abs_name typedef_info
+  val Rep_name = #Rep_name typedef_info
+  val Abs_const = Const (Abs_name, Rep_ty --> Abs_ty)
+  val Rep_const = Const (Rep_name, Abs_ty --> Rep_ty)
+
+  (* more useful abs and rep definitions *)
+  val abs_const = Const (@{const_name "quot_type.abs"}, dummyT )
+  val rep_const = Const (@{const_name "quot_type.rep"}, dummyT )
+  val abs_trm = Syntax.check_term lthy1 (abs_const $ rel $ Abs_const)
+  val rep_trm = Syntax.check_term lthy1 (rep_const $ Rep_const)
+  val abs_name = Binding.prefix_name "abs_" qty_name
+  val rep_name = Binding.prefix_name "rep_" qty_name
+
+  val ((abs, abs_def), lthy2) = define (abs_name, NoSyn, abs_trm) lthy1
+  val ((rep, rep_def), lthy3) = define (rep_name, NoSyn, rep_trm) lthy2
+
+  (* quot_type theorem *)
+  val quot_thm = typedef_quot_type_thm (rel, Abs_const, Rep_const, equiv_thm, typedef_info) lthy3
+
+  (* quotient theorem *)
+  val quotient_thm = typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_thm) lthy3
+  val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name
+
+  (* name equivalence theorem *)
+  val equiv_thm_name = Binding.suffix_name "_equivp" qty_name
+
+  (* storing the quot-info *)
+  fun qinfo phi = transform_quotdata phi
+    {qtyp = Abs_ty, rtyp = rty, equiv_rel = rel, equiv_thm = equiv_thm}
+  val lthy4 = Local_Theory.declaration true
+    (fn phi => quotdata_update_gen qty_full_name (qinfo phi)) lthy3
+in
+  lthy4
+  |> note (quotient_thm_name, quotient_thm, [intern_attr quotient_rules_add])
+  ||>> note (equiv_thm_name, equiv_thm, [intern_attr equiv_rules_add])
+end
+
+
+(* sanity checks for the quotient type specifications *)
+fun sanity_check ((vs, qty_name, _), (rty, rel)) =
+let
+  val rty_tfreesT = map fst (Term.add_tfreesT rty [])
+  val rel_tfrees = map fst (Term.add_tfrees rel [])
+  val rel_frees = map fst (Term.add_frees rel [])
+  val rel_vars = Term.add_vars rel []
+  val rel_tvars = Term.add_tvars rel []
+  val qty_str = Binding.str_of qty_name ^ ": "
+
+  val illegal_rel_vars =
+    if null rel_vars andalso null rel_tvars then []
+    else [qty_str ^ "illegal schematic variable(s) in the relation."]
+
+  val dup_vs =
+    (case duplicates (op =) vs of
+       [] => []
+     | dups => [qty_str ^ "duplicate type variable(s) on the lhs: " ^ commas_quote dups])
+
+  val extra_rty_tfrees =
+    (case subtract (op =) vs rty_tfreesT of
+       [] => []
+     | extras => [qty_str ^ "extra type variable(s) on the lhs: " ^ commas_quote extras])
+
+  val extra_rel_tfrees =
+    (case subtract (op =) vs rel_tfrees of
+       [] => []
+     | extras => [qty_str ^ "extra type variable(s) in the relation: " ^ commas_quote extras])
+
+  val illegal_rel_frees =
+    (case rel_frees of
+      [] => []
+    | xs => [qty_str ^ "illegal variable(s) in the relation: " ^ commas_quote xs])
+
+  val errs = illegal_rel_vars @ dup_vs @ extra_rty_tfrees @ extra_rel_tfrees @ illegal_rel_frees
+in
+  if null errs then () else error (cat_lines errs)
+end
+
+(* check for existence of map functions *)
+fun map_check ctxt (_, (rty, _)) =
+let
+  val thy = ProofContext.theory_of ctxt
+
+  fun map_check_aux rty warns =
+    case rty of
+      Type (_, []) => warns
+    | Type (s, _) => if maps_defined thy s then warns else s::warns
+    | _ => warns
+
+  val warns = map_check_aux rty []
+in
+  if null warns then ()
+  else warning ("No map function defined for " ^ commas warns ^
+    ". This will cause problems later on.")
+end
+
+
+
+(*** interface and syntax setup ***)
+
+
+(* the ML-interface takes a list of 5-tuples consisting of:
+
+ - the name of the quotient type
+ - its free type variables (first argument)
+ - its mixfix annotation
+ - the type to be quotient
+ - the relation according to which the type is quotient
+
+ it opens a proof-state in which one has to show that the
+ relations are equivalence relations
+*)
+
+fun quotient_type quot_list lthy =
+let
+  (* sanity check *)
+  val _ = List.app sanity_check quot_list
+  val _ = List.app (map_check lthy) quot_list
+
+  fun mk_goal (rty, rel) =
+  let
+    val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool}
+  in
+    HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel)
+  end
+
+  val goals = map (mk_goal o snd) quot_list
+
+  fun after_qed thms lthy =
+    fold_map mk_quotient_type (quot_list ~~ thms) lthy |> snd
+in
+  theorem after_qed goals lthy
+end
+
+fun quotient_type_cmd specs lthy =
+let
+  fun parse_spec ((((vs, qty_name), mx), rty_str), rel_str) lthy =
+  let
+    (* new parsing with proper declaration *)
+    val rty = Syntax.read_typ lthy rty_str
+    val lthy1 = Variable.declare_typ rty lthy
+    val pre_rel = Syntax.parse_term lthy1 rel_str
+    val pre_rel' = Syntax.type_constraint (rty --> rty --> @{typ bool}) pre_rel
+    val rel = Syntax.check_term lthy1 pre_rel'
+    val lthy2 = Variable.declare_term rel lthy1
+
+    (* old parsing *)
+    (* val rty = Syntax.read_typ lthy rty_str
+       val rel = Syntax.read_term lthy rel_str *)
+  in
+    (((vs, qty_name, mx), (rty, rel)), lthy2)
+  end
+
+  val (spec', lthy') = fold_map parse_spec specs lthy
+in
+  quotient_type spec' lthy'
+end
+
+val quotspec_parser =
+    OuterParse.and_list1
+     ((OuterParse.type_args -- OuterParse.binding) --
+        OuterParse.opt_infix -- (OuterParse.$$$ "=" |-- OuterParse.typ) --
+         (OuterParse.$$$ "/" |-- OuterParse.term))
+
+val _ = OuterKeyword.keyword "/"
+
+val _ =
+    OuterSyntax.local_theory_to_proof "quotient_type"
+      "quotient type definitions (require equivalence proofs)"
+         OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd)
+
+end; (* structure *)