the separate FOL and ZF logics manual, with new material on datatypes and
inductive definitions
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/FOL-eg.txt Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,245 @@
+(**** FOL examples ****)
+
+Pretty.setmargin 72; (*existing macros just allow this margin*)
+print_depth 0;
+
+(*** Intuitionistic examples ***)
+
+context IFOL.thy;
+
+(*Quantifier example from Logic&Computation*)
+Goal "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
+by (resolve_tac [impI] 1);
+by (resolve_tac [allI] 1);
+by (resolve_tac [exI] 1);
+by (eresolve_tac [exE] 1);
+choplev 2;
+by (eresolve_tac [exE] 1);
+by (resolve_tac [exI] 1);
+by (eresolve_tac [allE] 1);
+by (assume_tac 1);
+
+
+(*Example of Dyckhoff's method*)
+Goalw [not_def] "~ ~ ((P-->Q) | (Q-->P))";
+by (resolve_tac [impI] 1);
+by (eresolve_tac [disj_impE] 1);
+by (eresolve_tac [imp_impE] 1);
+by (eresolve_tac [imp_impE] 1);
+by (REPEAT (eresolve_tac [FalseE] 2));
+by (assume_tac 1);
+
+
+
+
+
+(*** Classical examples ***)
+
+context FOL.thy;
+
+Goal "EX y. ALL x. P(y)-->P(x)";
+by (resolve_tac [exCI] 1);
+by (resolve_tac [allI] 1);
+by (resolve_tac [impI] 1);
+by (eresolve_tac [allE] 1);
+prth (allI RSN (2,swap));
+by (eresolve_tac [it] 1);
+by (resolve_tac [impI] 1);
+by (eresolve_tac [notE] 1);
+by (assume_tac 1);
+Goal "EX y. ALL x. P(y)-->P(x)";
+by (Blast_tac 1);
+
+
+
+- Goal "EX y. ALL x. P(y)-->P(x)";
+Level 0
+EX y. ALL x. P(y) --> P(x)
+ 1. EX y. ALL x. P(y) --> P(x)
+- by (resolve_tac [exCI] 1);
+Level 1
+EX y. ALL x. P(y) --> P(x)
+ 1. ALL y. ~(ALL x. P(y) --> P(x)) ==> ALL x. P(?a) --> P(x)
+- by (resolve_tac [allI] 1);
+Level 2
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x. ALL y. ~(ALL x. P(y) --> P(x)) ==> P(?a) --> P(x)
+- by (resolve_tac [impI] 1);
+Level 3
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x. [| ALL y. ~(ALL x. P(y) --> P(x)); P(?a) |] ==> P(x)
+- by (eresolve_tac [allE] 1);
+Level 4
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x. [| P(?a); ~(ALL xa. P(?y3(x)) --> P(xa)) |] ==> P(x)
+- prth (allI RSN (2,swap));
+[| ~(ALL x. ?P1(x)); !!x. ~?Q ==> ?P1(x) |] ==> ?Q
+- by (eresolve_tac [it] 1);
+Level 5
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x xa. [| P(?a); ~P(x) |] ==> P(?y3(x)) --> P(xa)
+- by (resolve_tac [impI] 1);
+Level 6
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x xa. [| P(?a); ~P(x); P(?y3(x)) |] ==> P(xa)
+- by (eresolve_tac [notE] 1);
+Level 7
+EX y. ALL x. P(y) --> P(x)
+ 1. !!x xa. [| P(?a); P(?y3(x)) |] ==> P(x)
+- by (assume_tac 1);
+Level 8
+EX y. ALL x. P(y) --> P(x)
+No subgoals!
+- Goal "EX y. ALL x. P(y)-->P(x)";
+Level 0
+EX y. ALL x. P(y) --> P(x)
+ 1. EX y. ALL x. P(y) --> P(x)
+- by (best_tac FOL_dup_cs 1);
+Level 1
+EX y. ALL x. P(y) --> P(x)
+No subgoals!
+
+
+(**** finally, the example FOL/ex/if.ML ****)
+
+> val prems = goalw if_thy [if_def]
+# "[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)";
+Level 0
+if(P,Q,R)
+ 1. P & Q | ~P & R
+> by (Classical.fast_tac (FOL_cs addIs prems) 1);
+Level 1
+if(P,Q,R)
+No subgoals!
+> val ifI = result();
+
+
+> val major::prems = goalw if_thy [if_def]
+# "[| if(P,Q,R); [| P; Q |] ==> S; [| ~P; R |] ==> S |] ==> S";
+Level 0
+S
+ 1. S
+> by (cut_facts_tac [major] 1);
+Level 1
+S
+ 1. P & Q | ~P & R ==> S
+> by (Classical.fast_tac (FOL_cs addIs prems) 1);
+Level 2
+S
+No subgoals!
+> val ifE = result();
+
+> goal if_thy "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))";
+Level 0
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+> by (resolve_tac [iffI] 1);
+Level 1
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. if(P,if(Q,A,B),if(Q,C,D)) ==> if(Q,if(P,A,C),if(P,B,D))
+ 2. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
+> by (eresolve_tac [ifE] 1);
+Level 2
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. [| P; if(Q,A,B) |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 2. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 3. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
+> by (eresolve_tac [ifE] 1);
+Level 3
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. [| P; Q; A |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 2. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 3. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 4. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
+> by (resolve_tac [ifI] 1);
+Level 4
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. [| P; Q; A; Q |] ==> if(P,A,C)
+ 2. [| P; Q; A; ~Q |] ==> if(P,B,D)
+ 3. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 4. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 5. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
+> by (resolve_tac [ifI] 1);
+Level 5
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. [| P; Q; A; Q; P |] ==> A
+ 2. [| P; Q; A; Q; ~P |] ==> C
+ 3. [| P; Q; A; ~Q |] ==> if(P,B,D)
+ 4. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 5. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
+ 6. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))
+
+> choplev 0;
+Level 0
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+ 1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+> val if_cs = FOL_cs addSIs [ifI] addSEs[ifE];
+> by (Classical.fast_tac if_cs 1);
+Level 1
+if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
+No subgoals!
+> val if_commute = result();
+
+> goal if_thy "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))";
+Level 0
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+ 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+> by (Classical.fast_tac if_cs 1);
+Level 1
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+No subgoals!
+> val nested_ifs = result();
+
+
+> choplev 0;
+Level 0
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+ 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+> by (rewrite_goals_tac [if_def]);
+Level 1
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+ 1. (P & Q | ~P & R) & A | ~(P & Q | ~P & R) & B <->
+ P & (Q & A | ~Q & B) | ~P & (R & A | ~R & B)
+> by (Classical.fast_tac FOL_cs 1);
+Level 2
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
+No subgoals!
+
+
+> goal if_thy "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))";
+Level 0
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+ 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+> by (REPEAT (Classical.step_tac if_cs 1));
+Level 1
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+ 1. [| A; ~P; R; ~P; R |] ==> B
+ 2. [| B; ~P; ~R; ~P; ~R |] ==> A
+ 3. [| ~P; R; B; ~P; R |] ==> A
+ 4. [| ~P; ~R; A; ~B; ~P |] ==> R
+
+> choplev 0;
+Level 0
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+ 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+> by (rewrite_goals_tac [if_def]);
+Level 1
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+ 1. (P & Q | ~P & R) & A | ~(P & Q | ~P & R) & B <->
+ P & (Q & A | ~Q & B) | ~P & (R & B | ~R & A)
+> by (Classical.fast_tac FOL_cs 1);
+by: tactic failed
+Exception- ERROR raised
+Exception failure raised
+
+> by (REPEAT (Classical.step_tac FOL_cs 1));
+Level 2
+if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
+ 1. [| A; ~P; R; ~P; R; ~False |] ==> B
+ 2. [| A; ~P; R; R; ~False; ~B; ~B |] ==> Q
+ 3. [| B; ~P; ~R; ~P; ~A |] ==> R
+ 4. [| B; ~P; ~R; ~Q; ~A |] ==> R
+ 5. [| B; ~R; ~P; ~A; ~R; Q; ~False |] ==> A
+ 6. [| ~P; R; B; ~P; R; ~False |] ==> A
+ 7. [| ~P; ~R; A; ~B; ~R |] ==> P
+ 8. [| ~P; ~R; A; ~B; ~R |] ==> Q
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/FOL.tex Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,936 @@
+%% $Id$
+\chapter{First-Order Logic}
+\index{first-order logic|(}
+
+Isabelle implements Gentzen's natural deduction systems {\sc nj} and {\sc
+ nk}. Intuitionistic first-order logic is defined first, as theory
+\thydx{IFOL}. Classical logic, theory \thydx{FOL}, is
+obtained by adding the double negation rule. Basic proof procedures are
+provided. The intuitionistic prover works with derived rules to simplify
+implications in the assumptions. Classical~\texttt{FOL} employs Isabelle's
+classical reasoner, which simulates a sequent calculus.
+
+\section{Syntax and rules of inference}
+The logic is many-sorted, using Isabelle's type classes. The class of
+first-order terms is called \cldx{term} and is a subclass of \texttt{logic}.
+No types of individuals are provided, but extensions can define types such
+as \texttt{nat::term} and type constructors such as \texttt{list::(term)term}
+(see the examples directory, \texttt{FOL/ex}). Below, the type variable
+$\alpha$ ranges over class \texttt{term}; the equality symbol and quantifiers
+are polymorphic (many-sorted). The type of formulae is~\tydx{o}, which
+belongs to class~\cldx{logic}. Figure~\ref{fol-syntax} gives the syntax.
+Note that $a$\verb|~=|$b$ is translated to $\neg(a=b)$.
+
+Figure~\ref{fol-rules} shows the inference rules with their~\ML\ names.
+Negation is defined in the usual way for intuitionistic logic; $\neg P$
+abbreviates $P\imp\bot$. The biconditional~($\bimp$) is defined through
+$\conj$ and~$\imp$; introduction and elimination rules are derived for it.
+
+The unique existence quantifier, $\exists!x.P(x)$, is defined in terms
+of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested
+quantifications. For instance, $\exists!x\;y.P(x,y)$ abbreviates
+$\exists!x. \exists!y.P(x,y)$; note that this does not mean that there
+exists a unique pair $(x,y)$ satisfying~$P(x,y)$.
+
+Some intuitionistic derived rules are shown in
+Fig.\ts\ref{fol-int-derived}, again with their \ML\ names. These include
+rules for the defined symbols $\neg$, $\bimp$ and $\exists!$. Natural
+deduction typically involves a combination of forward and backward
+reasoning, particularly with the destruction rules $(\conj E)$,
+$({\imp}E)$, and~$(\forall E)$. Isabelle's backward style handles these
+rules badly, so sequent-style rules are derived to eliminate conjunctions,
+implications, and universal quantifiers. Used with elim-resolution,
+\tdx{allE} eliminates a universal quantifier while \tdx{all_dupE}
+re-inserts the quantified formula for later use. The rules {\tt
+conj_impE}, etc., support the intuitionistic proof procedure
+(see~\S\ref{fol-int-prover}).
+
+See the files \texttt{FOL/IFOL.thy}, \texttt{FOL/IFOL.ML} and
+\texttt{FOL/intprover.ML} for complete listings of the rules and
+derived rules.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{rrr}
+ \it name &\it meta-type & \it description \\
+ \cdx{Trueprop}& $o\To prop$ & coercion to $prop$\\
+ \cdx{Not} & $o\To o$ & negation ($\neg$) \\
+ \cdx{True} & $o$ & tautology ($\top$) \\
+ \cdx{False} & $o$ & absurdity ($\bot$)
+\end{tabular}
+\end{center}
+\subcaption{Constants}
+
+\begin{center}
+\begin{tabular}{llrrr}
+ \it symbol &\it name &\it meta-type & \it priority & \it description \\
+ \sdx{ALL} & \cdx{All} & $(\alpha\To o)\To o$ & 10 &
+ universal quantifier ($\forall$) \\
+ \sdx{EX} & \cdx{Ex} & $(\alpha\To o)\To o$ & 10 &
+ existential quantifier ($\exists$) \\
+ \texttt{EX!} & \cdx{Ex1} & $(\alpha\To o)\To o$ & 10 &
+ unique existence ($\exists!$)
+\end{tabular}
+\index{*"E"X"! symbol}
+\end{center}
+\subcaption{Binders}
+
+\begin{center}
+\index{*"= symbol}
+\index{&@{\tt\&} symbol}
+\index{*"| symbol}
+\index{*"-"-"> symbol}
+\index{*"<"-"> symbol}
+\begin{tabular}{rrrr}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \tt = & $[\alpha,\alpha]\To o$ & Left 50 & equality ($=$) \\
+ \tt \& & $[o,o]\To o$ & Right 35 & conjunction ($\conj$) \\
+ \tt | & $[o,o]\To o$ & Right 30 & disjunction ($\disj$) \\
+ \tt --> & $[o,o]\To o$ & Right 25 & implication ($\imp$) \\
+ \tt <-> & $[o,o]\To o$ & Right 25 & biconditional ($\bimp$)
+\end{tabular}
+\end{center}
+\subcaption{Infixes}
+
+\dquotes
+\[\begin{array}{rcl}
+ formula & = & \hbox{expression of type~$o$} \\
+ & | & term " = " term \quad| \quad term " \ttilde= " term \\
+ & | & "\ttilde\ " formula \\
+ & | & formula " \& " formula \\
+ & | & formula " | " formula \\
+ & | & formula " --> " formula \\
+ & | & formula " <-> " formula \\
+ & | & "ALL~" id~id^* " . " formula \\
+ & | & "EX~~" id~id^* " . " formula \\
+ & | & "EX!~" id~id^* " . " formula
+ \end{array}
+\]
+\subcaption{Grammar}
+\caption{Syntax of \texttt{FOL}} \label{fol-syntax}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{refl} a=a
+\tdx{subst} [| a=b; P(a) |] ==> P(b)
+\subcaption{Equality rules}
+
+\tdx{conjI} [| P; Q |] ==> P&Q
+\tdx{conjunct1} P&Q ==> P
+\tdx{conjunct2} P&Q ==> Q
+
+\tdx{disjI1} P ==> P|Q
+\tdx{disjI2} Q ==> P|Q
+\tdx{disjE} [| P|Q; P ==> R; Q ==> R |] ==> R
+
+\tdx{impI} (P ==> Q) ==> P-->Q
+\tdx{mp} [| P-->Q; P |] ==> Q
+
+\tdx{FalseE} False ==> P
+\subcaption{Propositional rules}
+
+\tdx{allI} (!!x. P(x)) ==> (ALL x.P(x))
+\tdx{spec} (ALL x.P(x)) ==> P(x)
+
+\tdx{exI} P(x) ==> (EX x.P(x))
+\tdx{exE} [| EX x.P(x); !!x. P(x) ==> R |] ==> R
+\subcaption{Quantifier rules}
+
+\tdx{True_def} True == False-->False
+\tdx{not_def} ~P == P-->False
+\tdx{iff_def} P<->Q == (P-->Q) & (Q-->P)
+\tdx{ex1_def} EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)
+\subcaption{Definitions}
+\end{ttbox}
+
+\caption{Rules of intuitionistic logic} \label{fol-rules}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{sym} a=b ==> b=a
+\tdx{trans} [| a=b; b=c |] ==> a=c
+\tdx{ssubst} [| b=a; P(a) |] ==> P(b)
+\subcaption{Derived equality rules}
+
+\tdx{TrueI} True
+
+\tdx{notI} (P ==> False) ==> ~P
+\tdx{notE} [| ~P; P |] ==> R
+
+\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P<->Q
+\tdx{iffE} [| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R
+\tdx{iffD1} [| P <-> Q; P |] ==> Q
+\tdx{iffD2} [| P <-> Q; Q |] ==> P
+
+\tdx{ex1I} [| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)
+\tdx{ex1E} [| EX! x.P(x); !!x.[| P(x); ALL y. P(y) --> y=x |] ==> R
+ |] ==> R
+\subcaption{Derived rules for \(\top\), \(\neg\), \(\bimp\) and \(\exists!\)}
+
+\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R
+\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R
+\tdx{allE} [| ALL x.P(x); P(x) ==> R |] ==> R
+\tdx{all_dupE} [| ALL x.P(x); [| P(x); ALL x.P(x) |] ==> R |] ==> R
+\subcaption{Sequent-style elimination rules}
+
+\tdx{conj_impE} [| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R
+\tdx{disj_impE} [| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R
+\tdx{imp_impE} [| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R
+\tdx{not_impE} [| ~P --> S; P ==> False; S ==> R |] ==> R
+\tdx{iff_impE} [| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P;
+ S ==> R |] ==> R
+\tdx{all_impE} [| (ALL x.P(x))-->S; !!x.P(x); S ==> R |] ==> R
+\tdx{ex_impE} [| (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R
+\end{ttbox}
+\subcaption{Intuitionistic simplification of implication}
+\caption{Derived rules for intuitionistic logic} \label{fol-int-derived}
+\end{figure}
+
+
+\section{Generic packages}
+\FOL{} instantiates most of Isabelle's generic packages.
+\begin{itemize}
+\item
+It instantiates the simplifier. Both equality ($=$) and the biconditional
+($\bimp$) may be used for rewriting. Tactics such as \texttt{Asm_simp_tac} and
+\texttt{Full_simp_tac} refer to the default simpset (\texttt{simpset()}), which works for
+most purposes. Named simplification sets include \ttindexbold{IFOL_ss},
+for intuitionistic first-order logic, and \ttindexbold{FOL_ss},
+for classical logic. See the file
+\texttt{FOL/simpdata.ML} for a complete listing of the simplification
+rules%
+\iflabelundefined{sec:setting-up-simp}{}%
+ {, and \S\ref{sec:setting-up-simp} for discussion}.
+
+\item
+It instantiates the classical reasoner. See~\S\ref{fol-cla-prover}
+for details.
+
+\item \FOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
+ for an equality throughout a subgoal and its hypotheses. This tactic uses
+ \FOL's general substitution rule.
+\end{itemize}
+
+\begin{warn}\index{simplification!of conjunctions}%
+ Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous. The
+ left part of a conjunction helps in simplifying the right part. This effect
+ is not available by default: it can be slow. It can be obtained by
+ including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
+\end{warn}
+
+
+\section{Intuitionistic proof procedures} \label{fol-int-prover}
+Implication elimination (the rules~\texttt{mp} and~\texttt{impE}) pose
+difficulties for automated proof. In intuitionistic logic, the assumption
+$P\imp Q$ cannot be treated like $\neg P\disj Q$. Given $P\imp Q$, we may
+use~$Q$ provided we can prove~$P$; the proof of~$P$ may require repeated
+use of $P\imp Q$. If the proof of~$P$ fails then the whole branch of the
+proof must be abandoned. Thus intuitionistic propositional logic requires
+backtracking.
+
+For an elementary example, consider the intuitionistic proof of $Q$ from
+$P\imp Q$ and $(P\imp Q)\imp P$. The implication $P\imp Q$ is needed
+twice:
+\[ \infer[({\imp}E)]{Q}{P\imp Q &
+ \infer[({\imp}E)]{P}{(P\imp Q)\imp P & P\imp Q}}
+\]
+The theorem prover for intuitionistic logic does not use~\texttt{impE}.\@
+Instead, it simplifies implications using derived rules
+(Fig.\ts\ref{fol-int-derived}). It reduces the antecedents of implications
+to atoms and then uses Modus Ponens: from $P\imp Q$ and~$P$ deduce~$Q$.
+The rules \tdx{conj_impE} and \tdx{disj_impE} are
+straightforward: $(P\conj Q)\imp S$ is equivalent to $P\imp (Q\imp S)$, and
+$(P\disj Q)\imp S$ is equivalent to the conjunction of $P\imp S$ and $Q\imp
+S$. The other \ldots{\tt_impE} rules are unsafe; the method requires
+backtracking. All the rules are derived in the same simple manner.
+
+Dyckhoff has independently discovered similar rules, and (more importantly)
+has demonstrated their completeness for propositional
+logic~\cite{dyckhoff}. However, the tactics given below are not complete
+for first-order logic because they discard universally quantified
+assumptions after a single use.
+\begin{ttbox}
+mp_tac : int -> tactic
+eq_mp_tac : int -> tactic
+IntPr.safe_step_tac : int -> tactic
+IntPr.safe_tac : tactic
+IntPr.inst_step_tac : int -> tactic
+IntPr.step_tac : int -> tactic
+IntPr.fast_tac : int -> tactic
+IntPr.best_tac : int -> tactic
+\end{ttbox}
+Most of these belong to the structure \texttt{IntPr} and resemble the
+tactics of Isabelle's classical reasoner.
+
+\begin{ttdescription}
+\item[\ttindexbold{mp_tac} {\it i}]
+attempts to use \tdx{notE} or \tdx{impE} within the assumptions in
+subgoal $i$. For each assumption of the form $\neg P$ or $P\imp Q$, it
+searches for another assumption unifiable with~$P$. By
+contradiction with $\neg P$ it can solve the subgoal completely; by Modus
+Ponens it can replace the assumption $P\imp Q$ by $Q$. The tactic can
+produce multiple outcomes, enumerating all suitable pairs of assumptions.
+
+\item[\ttindexbold{eq_mp_tac} {\it i}]
+is like \texttt{mp_tac} {\it i}, but may not instantiate unknowns --- thus, it
+is safe.
+
+\item[\ttindexbold{IntPr.safe_step_tac} $i$] performs a safe step on
+subgoal~$i$. This may include proof by assumption or Modus Ponens (taking
+care not to instantiate unknowns), or \texttt{hyp_subst_tac}.
+
+\item[\ttindexbold{IntPr.safe_tac}] repeatedly performs safe steps on all
+subgoals. It is deterministic, with at most one outcome.
+
+\item[\ttindexbold{IntPr.inst_step_tac} $i$] is like \texttt{safe_step_tac},
+but allows unknowns to be instantiated.
+
+\item[\ttindexbold{IntPr.step_tac} $i$] tries \texttt{safe_tac} or {\tt
+ inst_step_tac}, or applies an unsafe rule. This is the basic step of
+ the intuitionistic proof procedure.
+
+\item[\ttindexbold{IntPr.fast_tac} $i$] applies \texttt{step_tac}, using
+depth-first search, to solve subgoal~$i$.
+
+\item[\ttindexbold{IntPr.best_tac} $i$] applies \texttt{step_tac}, using
+best-first search (guided by the size of the proof state) to solve subgoal~$i$.
+\end{ttdescription}
+Here are some of the theorems that \texttt{IntPr.fast_tac} proves
+automatically. The latter three date from {\it Principia Mathematica}
+(*11.53, *11.55, *11.61)~\cite{principia}.
+\begin{ttbox}
+~~P & ~~(P --> Q) --> ~~Q
+(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))
+(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))
+(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))
+\end{ttbox}
+
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{excluded_middle} ~P | P
+
+\tdx{disjCI} (~Q ==> P) ==> P|Q
+\tdx{exCI} (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)
+\tdx{impCE} [| P-->Q; ~P ==> R; Q ==> R |] ==> R
+\tdx{iffCE} [| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
+\tdx{notnotD} ~~P ==> P
+\tdx{swap} ~P ==> (~Q ==> P) ==> Q
+\end{ttbox}
+\caption{Derived rules for classical logic} \label{fol-cla-derived}
+\end{figure}
+
+
+\section{Classical proof procedures} \label{fol-cla-prover}
+The classical theory, \thydx{FOL}, consists of intuitionistic logic plus
+the rule
+$$ \vcenter{\infer{P}{\infer*{P}{[\neg P]}}} \eqno(classical) $$
+\noindent
+Natural deduction in classical logic is not really all that natural.
+{\FOL} derives classical introduction rules for $\disj$ and~$\exists$, as
+well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
+rule (see Fig.\ts\ref{fol-cla-derived}).
+
+The classical reasoner is installed. Tactics such as \texttt{Blast_tac} and {\tt
+Best_tac} refer to the default claset (\texttt{claset()}), which works for most
+purposes. Named clasets include \ttindexbold{prop_cs}, which includes the
+propositional rules, and \ttindexbold{FOL_cs}, which also includes quantifier
+rules. See the file \texttt{FOL/cladata.ML} for lists of the
+classical rules, and
+\iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
+ {Chap.\ts\ref{chap:classical}}
+for more discussion of classical proof methods.
+
+
+\section{An intuitionistic example}
+Here is a session similar to one in {\em Logic and Computation}
+\cite[pages~222--3]{paulson87}. Isabelle treats quantifiers differently
+from {\sc lcf}-based theorem provers such as {\sc hol}.
+
+First, we specify that we are working in intuitionistic logic:
+\begin{ttbox}
+context IFOL.thy;
+\end{ttbox}
+The proof begins by entering the goal, then applying the rule $({\imp}I)$.
+\begin{ttbox}
+Goal "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
+{\out Level 0}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+\ttbreak
+by (resolve_tac [impI] 1);
+{\out Level 1}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. EX y. ALL x. Q(x,y) ==> ALL x. EX y. Q(x,y)}
+\end{ttbox}
+In this example, we shall never have more than one subgoal. Applying
+$({\imp}I)$ replaces~\verb|-->| by~\verb|==>|, making
+\(\ex{y}\all{x}Q(x,y)\) an assumption. We have the choice of
+$({\exists}E)$ and $({\forall}I)$; let us try the latter.
+\begin{ttbox}
+by (resolve_tac [allI] 1);
+{\out Level 2}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)}
+\end{ttbox}
+Applying $({\forall}I)$ replaces the \texttt{ALL~x} by \hbox{\tt!!x},
+changing the universal quantifier from object~($\forall$) to
+meta~($\Forall$). The bound variable is a {\bf parameter} of the
+subgoal. We now must choose between $({\exists}I)$ and $({\exists}E)$. What
+happens if the wrong rule is chosen?
+\begin{ttbox}
+by (resolve_tac [exI] 1);
+{\out Level 3}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x. EX y. ALL x. Q(x,y) ==> Q(x,?y2(x))}
+\end{ttbox}
+The new subgoal~1 contains the function variable {\tt?y2}. Instantiating
+{\tt?y2} can replace~{\tt?y2(x)} by a term containing~\texttt{x}, even
+though~\texttt{x} is a bound variable. Now we analyse the assumption
+\(\exists y.\forall x. Q(x,y)\) using elimination rules:
+\begin{ttbox}
+by (eresolve_tac [exE] 1);
+{\out Level 4}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x y. ALL x. Q(x,y) ==> Q(x,?y2(x))}
+\end{ttbox}
+Applying $(\exists E)$ has produced the parameter \texttt{y} and stripped the
+existential quantifier from the assumption. But the subgoal is unprovable:
+there is no way to unify \texttt{?y2(x)} with the bound variable~\texttt{y}.
+Using \texttt{choplev} we can return to the critical point. This time we
+apply $({\exists}E)$:
+\begin{ttbox}
+choplev 2;
+{\out Level 2}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x. EX y. ALL x. Q(x,y) ==> EX y. Q(x,y)}
+\ttbreak
+by (eresolve_tac [exE] 1);
+{\out Level 3}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x y. ALL x. Q(x,y) ==> EX y. Q(x,y)}
+\end{ttbox}
+We now have two parameters and no scheme variables. Applying
+$({\exists}I)$ and $({\forall}E)$ produces two scheme variables, which are
+applied to those parameters. Parameters should be produced early, as this
+example demonstrates.
+\begin{ttbox}
+by (resolve_tac [exI] 1);
+{\out Level 4}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x y. ALL x. Q(x,y) ==> Q(x,?y3(x,y))}
+\ttbreak
+by (eresolve_tac [allE] 1);
+{\out Level 5}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. !!x y. Q(?x4(x,y),y) ==> Q(x,?y3(x,y))}
+\end{ttbox}
+The subgoal has variables \texttt{?y3} and \texttt{?x4} applied to both
+parameters. The obvious projection functions unify {\tt?x4(x,y)} with~{\tt
+x} and \verb|?y3(x,y)| with~\texttt{y}.
+\begin{ttbox}
+by (assume_tac 1);
+{\out Level 6}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out No subgoals!}
+\end{ttbox}
+The theorem was proved in six tactic steps, not counting the abandoned
+ones. But proof checking is tedious; \ttindex{IntPr.fast_tac} proves the
+theorem in one step.
+\begin{ttbox}
+Goal "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";
+{\out Level 0}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out 1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+by (IntPr.fast_tac 1);
+{\out Level 1}
+{\out (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))}
+{\out No subgoals!}
+\end{ttbox}
+
+
+\section{An example of intuitionistic negation}
+The following example demonstrates the specialized forms of implication
+elimination. Even propositional formulae can be difficult to prove from
+the basic rules; the specialized rules help considerably.
+
+Propositional examples are easy to invent. As Dummett notes~\cite[page
+28]{dummett}, $\neg P$ is classically provable if and only if it is
+intuitionistically provable; therefore, $P$ is classically provable if and
+only if $\neg\neg P$ is intuitionistically provable.%
+\footnote{Of course this holds only for propositional logic, not if $P$ is
+ allowed to contain quantifiers.} Proving $\neg\neg P$ intuitionistically is
+much harder than proving~$P$ classically.
+
+Our example is the double negation of the classical tautology $(P\imp
+Q)\disj (Q\imp P)$. When stating the goal, we command Isabelle to expand
+negations to implications using the definition $\neg P\equiv P\imp\bot$.
+This allows use of the special implication rules.
+\begin{ttbox}
+Goalw [not_def] "~ ~ ((P-->Q) | (Q-->P))";
+{\out Level 0}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. ((P --> Q) | (Q --> P) --> False) --> False}
+\end{ttbox}
+The first step is trivial.
+\begin{ttbox}
+by (resolve_tac [impI] 1);
+{\out Level 1}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. (P --> Q) | (Q --> P) --> False ==> False}
+\end{ttbox}
+By $(\imp E)$ it would suffice to prove $(P\imp Q)\disj (Q\imp P)$, but
+that formula is not a theorem of intuitionistic logic. Instead we apply
+the specialized implication rule \tdx{disj_impE}. It splits the
+assumption into two assumptions, one for each disjunct.
+\begin{ttbox}
+by (eresolve_tac [disj_impE] 1);
+{\out Level 2}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. [| (P --> Q) --> False; (Q --> P) --> False |] ==> False}
+\end{ttbox}
+We cannot hope to prove $P\imp Q$ or $Q\imp P$ separately, but
+their negations are inconsistent. Applying \tdx{imp_impE} breaks down
+the assumption $\neg(P\imp Q)$, asking to show~$Q$ while providing new
+assumptions~$P$ and~$\neg Q$.
+\begin{ttbox}
+by (eresolve_tac [imp_impE] 1);
+{\out Level 3}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. [| (Q --> P) --> False; P; Q --> False |] ==> Q}
+{\out 2. [| (Q --> P) --> False; False |] ==> False}
+\end{ttbox}
+Subgoal~2 holds trivially; let us ignore it and continue working on
+subgoal~1. Thanks to the assumption~$P$, we could prove $Q\imp P$;
+applying \tdx{imp_impE} is simpler.
+\begin{ttbox}
+by (eresolve_tac [imp_impE] 1);
+{\out Level 4}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. [| P; Q --> False; Q; P --> False |] ==> P}
+{\out 2. [| P; Q --> False; False |] ==> Q}
+{\out 3. [| (Q --> P) --> False; False |] ==> False}
+\end{ttbox}
+The three subgoals are all trivial.
+\begin{ttbox}
+by (REPEAT (eresolve_tac [FalseE] 2));
+{\out Level 5}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out 1. [| P; Q --> False; Q; P --> False |] ==> P}
+\ttbreak
+by (assume_tac 1);
+{\out Level 6}
+{\out ~ ~ ((P --> Q) | (Q --> P))}
+{\out No subgoals!}
+\end{ttbox}
+This proof is also trivial for \texttt{IntPr.fast_tac}.
+
+
+\section{A classical example} \label{fol-cla-example}
+To illustrate classical logic, we shall prove the theorem
+$\ex{y}\all{x}P(y)\imp P(x)$. Informally, the theorem can be proved as
+follows. Choose~$y$ such that~$\neg P(y)$, if such exists; otherwise
+$\all{x}P(x)$ is true. Either way the theorem holds. First, we switch to
+classical logic:
+\begin{ttbox}
+context FOL.thy;
+\end{ttbox}
+
+The formal proof does not conform in any obvious way to the sketch given
+above. The key inference is the first one, \tdx{exCI}; this classical
+version of~$(\exists I)$ allows multiple instantiation of the quantifier.
+\begin{ttbox}
+Goal "EX y. ALL x. P(y)-->P(x)";
+{\out Level 0}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. EX y. ALL x. P(y) --> P(x)}
+\ttbreak
+by (resolve_tac [exCI] 1);
+{\out Level 1}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. ALL y. ~ (ALL x. P(y) --> P(x)) ==> ALL x. P(?a) --> P(x)}
+\end{ttbox}
+We can either exhibit a term {\tt?a} to satisfy the conclusion of
+subgoal~1, or produce a contradiction from the assumption. The next
+steps are routine.
+\begin{ttbox}
+by (resolve_tac [allI] 1);
+{\out Level 2}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x. ALL y. ~ (ALL x. P(y) --> P(x)) ==> P(?a) --> P(x)}
+\ttbreak
+by (resolve_tac [impI] 1);
+{\out Level 3}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x. [| ALL y. ~ (ALL x. P(y) --> P(x)); P(?a) |] ==> P(x)}
+\end{ttbox}
+By the duality between $\exists$ and~$\forall$, applying~$(\forall E)$
+in effect applies~$(\exists I)$ again.
+\begin{ttbox}
+by (eresolve_tac [allE] 1);
+{\out Level 4}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x. [| P(?a); ~ (ALL xa. P(?y3(x)) --> P(xa)) |] ==> P(x)}
+\end{ttbox}
+In classical logic, a negated assumption is equivalent to a conclusion. To
+get this effect, we create a swapped version of~$(\forall I)$ and apply it
+using \ttindex{eresolve_tac}; we could equivalently have applied~$(\forall
+I)$ using \ttindex{swap_res_tac}.
+\begin{ttbox}
+allI RSN (2,swap);
+{\out val it = "[| ~ (ALL x. ?P1(x)); !!x. ~ ?Q ==> ?P1(x) |] ==> ?Q" : thm}
+by (eresolve_tac [it] 1);
+{\out Level 5}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x xa. [| P(?a); ~ P(x) |] ==> P(?y3(x)) --> P(xa)}
+\end{ttbox}
+The previous conclusion, \texttt{P(x)}, has become a negated assumption.
+\begin{ttbox}
+by (resolve_tac [impI] 1);
+{\out Level 6}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x xa. [| P(?a); ~ P(x); P(?y3(x)) |] ==> P(xa)}
+\end{ttbox}
+The subgoal has three assumptions. We produce a contradiction between the
+\index{assumptions!contradictory} assumptions~\verb|~P(x)| and~{\tt
+ P(?y3(x))}. The proof never instantiates the unknown~{\tt?a}.
+\begin{ttbox}
+by (eresolve_tac [notE] 1);
+{\out Level 7}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. !!x xa. [| P(?a); P(?y3(x)) |] ==> P(x)}
+\ttbreak
+by (assume_tac 1);
+{\out Level 8}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out No subgoals!}
+\end{ttbox}
+The civilised way to prove this theorem is through \ttindex{Blast_tac},
+which automatically uses the classical version of~$(\exists I)$:
+\begin{ttbox}
+Goal "EX y. ALL x. P(y)-->P(x)";
+{\out Level 0}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out 1. EX y. ALL x. P(y) --> P(x)}
+by (Blast_tac 1);
+{\out Depth = 0}
+{\out Depth = 1}
+{\out Depth = 2}
+{\out Level 1}
+{\out EX y. ALL x. P(y) --> P(x)}
+{\out No subgoals!}
+\end{ttbox}
+If this theorem seems counterintuitive, then perhaps you are an
+intuitionist. In constructive logic, proving $\ex{y}\all{x}P(y)\imp P(x)$
+requires exhibiting a particular term~$t$ such that $\all{x}P(t)\imp P(x)$,
+which we cannot do without further knowledge about~$P$.
+
+
+\section{Derived rules and the classical tactics}
+Classical first-order logic can be extended with the propositional
+connective $if(P,Q,R)$, where
+$$ if(P,Q,R) \equiv P\conj Q \disj \neg P \conj R. \eqno(if) $$
+Theorems about $if$ can be proved by treating this as an abbreviation,
+replacing $if(P,Q,R)$ by $P\conj Q \disj \neg P \conj R$ in subgoals. But
+this duplicates~$P$, causing an exponential blowup and an unreadable
+formula. Introducing further abbreviations makes the problem worse.
+
+Natural deduction demands rules that introduce and eliminate $if(P,Q,R)$
+directly, without reference to its definition. The simple identity
+\[ if(P,Q,R) \,\bimp\, (P\imp Q)\conj (\neg P\imp R) \]
+suggests that the
+$if$-introduction rule should be
+\[ \infer[({if}\,I)]{if(P,Q,R)}{\infer*{Q}{[P]} & \infer*{R}{[\neg P]}} \]
+The $if$-elimination rule reflects the definition of $if(P,Q,R)$ and the
+elimination rules for~$\disj$ and~$\conj$.
+\[ \infer[({if}\,E)]{S}{if(P,Q,R) & \infer*{S}{[P,Q]}
+ & \infer*{S}{[\neg P,R]}}
+\]
+Having made these plans, we get down to work with Isabelle. The theory of
+classical logic, \texttt{FOL}, is extended with the constant
+$if::[o,o,o]\To o$. The axiom \tdx{if_def} asserts the
+equation~$(if)$.
+\begin{ttbox}
+If = FOL +
+consts if :: [o,o,o]=>o
+rules if_def "if(P,Q,R) == P&Q | ~P&R"
+end
+\end{ttbox}
+We create the file \texttt{If.thy} containing these declarations. (This file
+is on directory \texttt{FOL/ex} in the Isabelle distribution.) Typing
+\begin{ttbox}
+use_thy "If";
+\end{ttbox}
+loads that theory and sets it to be the current context.
+
+
+\subsection{Deriving the introduction rule}
+
+The derivations of the introduction and elimination rules demonstrate the
+methods for rewriting with definitions. Classical reasoning is required,
+so we use \texttt{blast_tac}.
+
+The introduction rule, given the premises $P\Imp Q$ and $\neg P\Imp R$,
+concludes $if(P,Q,R)$. We propose the conclusion as the main goal
+using~\ttindex{Goalw}, which uses \texttt{if_def} to rewrite occurrences
+of $if$ in the subgoal.
+\begin{ttbox}
+val prems = Goalw [if_def]
+ "[| P ==> Q; ~ P ==> R |] ==> if(P,Q,R)";
+{\out Level 0}
+{\out if(P,Q,R)}
+{\out 1. P & Q | ~ P & R}
+\end{ttbox}
+The premises (bound to the {\ML} variable \texttt{prems}) are passed as
+introduction rules to \ttindex{blast_tac}. Remember that \texttt{claset()} refers
+to the default classical set.
+\begin{ttbox}
+by (blast_tac (claset() addIs prems) 1);
+{\out Level 1}
+{\out if(P,Q,R)}
+{\out No subgoals!}
+qed "ifI";
+\end{ttbox}
+
+
+\subsection{Deriving the elimination rule}
+The elimination rule has three premises, two of which are themselves rules.
+The conclusion is simply $S$.
+\begin{ttbox}
+val major::prems = Goalw [if_def]
+ "[| if(P,Q,R); [| P; Q |] ==> S; [| ~ P; R |] ==> S |] ==> S";
+{\out Level 0}
+{\out S}
+{\out 1. S}
+\end{ttbox}
+The major premise contains an occurrence of~$if$, but the version returned
+by \ttindex{Goalw} (and bound to the {\ML} variable~\texttt{major}) has the
+definition expanded. Now \ttindex{cut_facts_tac} inserts~\texttt{major} as an
+assumption in the subgoal, so that \ttindex{blast_tac} can break it down.
+\begin{ttbox}
+by (cut_facts_tac [major] 1);
+{\out Level 1}
+{\out S}
+{\out 1. P & Q | ~ P & R ==> S}
+\ttbreak
+by (blast_tac (claset() addIs prems) 1);
+{\out Level 2}
+{\out S}
+{\out No subgoals!}
+qed "ifE";
+\end{ttbox}
+As you may recall from
+\iflabelundefined{definitions}{{\em Introduction to Isabelle}}%
+ {\S\ref{definitions}}, there are other
+ways of treating definitions when deriving a rule. We can start the
+proof using \texttt{Goal}, which does not expand definitions, instead of
+\texttt{Goalw}. We can use \ttindex{rew_tac}
+to expand definitions in the subgoals---perhaps after calling
+\ttindex{cut_facts_tac} to insert the rule's premises. We can use
+\ttindex{rewrite_rule}, which is a meta-inference rule, to expand
+definitions in the premises directly.
+
+
+\subsection{Using the derived rules}
+The rules just derived have been saved with the {\ML} names \tdx{ifI}
+and~\tdx{ifE}. They permit natural proofs of theorems such as the
+following:
+\begin{eqnarray*}
+ if(P, if(Q,A,B), if(Q,C,D)) & \bimp & if(Q,if(P,A,C),if(P,B,D)) \\
+ if(if(P,Q,R), A, B) & \bimp & if(P,if(Q,A,B),if(R,A,B))
+\end{eqnarray*}
+Proofs also require the classical reasoning rules and the $\bimp$
+introduction rule (called~\tdx{iffI}: do not confuse with~\texttt{ifI}).
+
+To display the $if$-rules in action, let us analyse a proof step by step.
+\begin{ttbox}
+Goal "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))";
+{\out Level 0}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+\ttbreak
+by (resolve_tac [iffI] 1);
+{\out Level 1}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. if(P,if(Q,A,B),if(Q,C,D)) ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 2. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))}
+\end{ttbox}
+The $if$-elimination rule can be applied twice in succession.
+\begin{ttbox}
+by (eresolve_tac [ifE] 1);
+{\out Level 2}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. [| P; if(Q,A,B) |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 2. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 3. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))}
+\ttbreak
+by (eresolve_tac [ifE] 1);
+{\out Level 3}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. [| P; Q; A |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 2. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 3. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 4. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))}
+\end{ttbox}
+%
+In the first two subgoals, all assumptions have been reduced to atoms. Now
+$if$-introduction can be applied. Observe how the $if$-rules break down
+occurrences of $if$ when they become the outermost connective.
+\begin{ttbox}
+by (resolve_tac [ifI] 1);
+{\out Level 4}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. [| P; Q; A; Q |] ==> if(P,A,C)}
+{\out 2. [| P; Q; A; ~ Q |] ==> if(P,B,D)}
+{\out 3. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 4. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 5. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))}
+\ttbreak
+by (resolve_tac [ifI] 1);
+{\out Level 5}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. [| P; Q; A; Q; P |] ==> A}
+{\out 2. [| P; Q; A; Q; ~ P |] ==> C}
+{\out 3. [| P; Q; A; ~ Q |] ==> if(P,B,D)}
+{\out 4. [| P; ~ Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 5. [| ~ P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))}
+{\out 6. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))}
+\end{ttbox}
+Where do we stand? The first subgoal holds by assumption; the second and
+third, by contradiction. This is getting tedious. We could use the classical
+reasoner, but first let us extend the default claset with the derived rules
+for~$if$.
+\begin{ttbox}
+AddSIs [ifI];
+AddSEs [ifE];
+\end{ttbox}
+Now we can revert to the
+initial proof state and let \ttindex{blast_tac} solve it.
+\begin{ttbox}
+choplev 0;
+{\out Level 0}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out 1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+by (Blast_tac 1);
+{\out Level 1}
+{\out if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))}
+{\out No subgoals!}
+\end{ttbox}
+This tactic also solves the other example.
+\begin{ttbox}
+Goal "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))";
+{\out Level 0}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+\ttbreak
+by (Blast_tac 1);
+{\out Level 1}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+{\out No subgoals!}
+\end{ttbox}
+
+
+\subsection{Derived rules versus definitions}
+Dispensing with the derived rules, we can treat $if$ as an
+abbreviation, and let \ttindex{blast_tac} prove the expanded formula. Let
+us redo the previous proof:
+\begin{ttbox}
+choplev 0;
+{\out Level 0}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+\end{ttbox}
+This time, simply unfold using the definition of $if$:
+\begin{ttbox}
+by (rewtac if_def);
+{\out Level 1}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+{\out 1. (P & Q | ~ P & R) & A | ~ (P & Q | ~ P & R) & B <->}
+{\out P & (Q & A | ~ Q & B) | ~ P & (R & A | ~ R & B)}
+\end{ttbox}
+We are left with a subgoal in pure first-order logic, which is why the
+classical reasoner can prove it given \texttt{FOL_cs} alone. (We could, of
+course, have used \texttt{Blast_tac}.)
+\begin{ttbox}
+by (blast_tac FOL_cs 1);
+{\out Level 2}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))}
+{\out No subgoals!}
+\end{ttbox}
+Expanding definitions reduces the extended logic to the base logic. This
+approach has its merits --- especially if the prover for the base logic is
+good --- but can be slow. In these examples, proofs using the default
+claset (which includes the derived rules) run about six times faster
+than proofs using \texttt{FOL_cs}.
+
+Expanding definitions also complicates error diagnosis. Suppose we are having
+difficulties in proving some goal. If by expanding definitions we have
+made it unreadable, then we have little hope of diagnosing the problem.
+
+Attempts at program verification often yield invalid assertions.
+Let us try to prove one:
+\begin{ttbox}
+Goal "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))";
+{\out Level 0}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+by (Blast_tac 1);
+{\out by: tactic failed}
+\end{ttbox}
+This failure message is uninformative, but we can get a closer look at the
+situation by applying \ttindex{Step_tac}.
+\begin{ttbox}
+by (REPEAT (Step_tac 1));
+{\out Level 1}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+{\out 1. [| A; ~ P; R; ~ P; R |] ==> B}
+{\out 2. [| B; ~ P; ~ R; ~ P; ~ R |] ==> A}
+{\out 3. [| ~ P; R; B; ~ P; R |] ==> A}
+{\out 4. [| ~ P; ~ R; A; ~ B; ~ P |] ==> R}
+\end{ttbox}
+Subgoal~1 is unprovable and yields a countermodel: $P$ and~$B$ are false
+while~$R$ and~$A$ are true. This truth assignment reduces the main goal to
+$true\bimp false$, which is of course invalid.
+
+We can repeat this analysis by expanding definitions, using just
+the rules of {\FOL}:
+\begin{ttbox}
+choplev 0;
+{\out Level 0}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+{\out 1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+\ttbreak
+by (rewtac if_def);
+{\out Level 1}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+{\out 1. (P & Q | ~ P & R) & A | ~ (P & Q | ~ P & R) & B <->}
+{\out P & (Q & A | ~ Q & B) | ~ P & (R & B | ~ R & A)}
+by (blast_tac FOL_cs 1);
+{\out by: tactic failed}
+\end{ttbox}
+Again we apply \ttindex{step_tac}:
+\begin{ttbox}
+by (REPEAT (step_tac FOL_cs 1));
+{\out Level 2}
+{\out if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))}
+{\out 1. [| A; ~ P; R; ~ P; R; ~ False |] ==> B}
+{\out 2. [| A; ~ P; R; R; ~ False; ~ B; ~ B |] ==> Q}
+{\out 3. [| B; ~ P; ~ R; ~ P; ~ A |] ==> R}
+{\out 4. [| B; ~ P; ~ R; ~ Q; ~ A |] ==> R}
+{\out 5. [| B; ~ R; ~ P; ~ A; ~ R; Q; ~ False |] ==> A}
+{\out 6. [| ~ P; R; B; ~ P; R; ~ False |] ==> A}
+{\out 7. [| ~ P; ~ R; A; ~ B; ~ R |] ==> P}
+{\out 8. [| ~ P; ~ R; A; ~ B; ~ R |] ==> Q}
+\end{ttbox}
+Subgoal~1 yields the same countermodel as before. But each proof step has
+taken six times as long, and the final result contains twice as many subgoals.
+
+Expanding definitions causes a great increase in complexity. This is why
+the classical prover has been designed to accept derived rules.
+
+\index{first-order logic|)}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/Makefile Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,34 @@
+# $Id$
+#########################################################################
+# #
+# Makefile for the report "Isabelle's Logics: FOL and ZF" #
+# #
+#########################################################################
+
+
+FILES = logics-ZF.tex ../Logics/syntax.tex FOL.tex ZF.tex\
+ ../rail.sty ../proof.sty ../iman.sty ../extra.sty
+
+logics-ZF.dvi.gz: $(FILES)
+ test -r isabelle.eps || ln -s ../gfx/isabelle.eps .
+ -rm logics-ZF.dvi*
+ latex logics-ZF
+ rail logics-ZF
+ bibtex logics-ZF
+ latex logics-ZF
+ latex logics-ZF
+ ../sedindex logics-ZF
+ latex logics-ZF
+ gzip -f logics-ZF.dvi
+
+dist: $(FILES)
+ test -r isabelle.eps || ln -s ../gfx/isabelle.eps .
+ -rm logics-ZF.dvi*
+ latex logics-ZF
+ latex logics-ZF
+ ../sedindex logics-ZF
+ latex logics-ZF
+
+clean:
+ @rm *.aux *.log *.toc *.idx *.rai
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/ZF-eg.txt Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,230 @@
+(**** ZF examples ****)
+
+Pretty.setmargin 72; (*existing macros just allow this margin*)
+print_depth 0;
+
+(*** Powerset example ***)
+
+val [prem] = goal ZF.thy "A<=B ==> Pow(A) <= Pow(B)";
+by (resolve_tac [subsetI] 1);
+by (resolve_tac [PowI] 1);
+by (dresolve_tac [PowD] 1);
+by (eresolve_tac [subset_trans] 1);
+by (resolve_tac [prem] 1);
+val Pow_mono = result();
+
+goal ZF.thy "Pow(A Int B) = Pow(A) Int Pow(B)";
+by (resolve_tac [equalityI] 1);
+by (resolve_tac [Int_greatest] 1);
+by (resolve_tac [Int_lower1 RS Pow_mono] 1);
+by (resolve_tac [Int_lower2 RS Pow_mono] 1);
+by (resolve_tac [subsetI] 1);
+by (eresolve_tac [IntE] 1);
+by (resolve_tac [PowI] 1);
+by (REPEAT (dresolve_tac [PowD] 1));
+by (resolve_tac [Int_greatest] 1);
+by (REPEAT (assume_tac 1));
+choplev 0;
+by (fast_tac (ZF_cs addIs [equalityI]) 1);
+
+Goal "C<=D ==> Union(C) <= Union(D)";
+by (resolve_tac [subsetI] 1);
+by (eresolve_tac [UnionE] 1);
+by (resolve_tac [UnionI] 1);
+by (eresolve_tac [subsetD] 1);
+by (assume_tac 1);
+by (assume_tac 1);
+choplev 0;
+by (resolve_tac [Union_least] 1);
+by (resolve_tac [Union_upper] 1);
+by (eresolve_tac [subsetD] 1);
+
+
+val prems = goal ZF.thy
+ "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \
+\ (f Un g)`a = f`a";
+by (resolve_tac [apply_equality] 1);
+by (resolve_tac [UnI1] 1);
+by (resolve_tac [apply_Pair] 1);
+by (resolve_tac prems 1);
+by (resolve_tac prems 1);
+by (resolve_tac [fun_disjoint_Un] 1);
+by (resolve_tac prems 1);
+by (resolve_tac prems 1);
+by (resolve_tac prems 1);
+
+
+Goal "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \
+\ (f Un g)`a = f`a";
+by (resolve_tac [apply_equality] 1);
+by (resolve_tac [UnI1] 1);
+by (resolve_tac [apply_Pair] 1);
+by (assume_tac 1);
+by (assume_tac 1);
+by (resolve_tac [fun_disjoint_Un] 1);
+by (assume_tac 1);
+by (assume_tac 1);
+by (assume_tac 1);
+
+
+
+
+goal ZF.thy "f``(UN x:A. B(x)) = (UN x:A. f``B(x))";
+by (resolve_tac [equalityI] 1);
+by (resolve_tac [subsetI] 1);
+fe imageE;
+
+
+goal ZF.thy "(UN x:C. A(x) Int B) = (UN x:C. A(x)) Int B";
+by (resolve_tac [equalityI] 1);
+by (resolve_tac [Int_greatest] 1);
+fr UN_mono;
+by (resolve_tac [Int_lower1] 1);
+fr UN_least;
+????
+
+
+> goal ZF.thy "Pow(A Int B) = Pow(A) Int Pow(B)";
+Level 0
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A Int B) = Pow(A) Int Pow(B)
+> by (resolve_tac [equalityI] 1);
+Level 1
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A Int B) <= Pow(A) Int Pow(B)
+ 2. Pow(A) Int Pow(B) <= Pow(A Int B)
+> by (resolve_tac [Int_greatest] 1);
+Level 2
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A Int B) <= Pow(A)
+ 2. Pow(A Int B) <= Pow(B)
+ 3. Pow(A) Int Pow(B) <= Pow(A Int B)
+> by (resolve_tac [Int_lower1 RS Pow_mono] 1);
+Level 3
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A Int B) <= Pow(B)
+ 2. Pow(A) Int Pow(B) <= Pow(A Int B)
+> by (resolve_tac [Int_lower2 RS Pow_mono] 1);
+Level 4
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A) Int Pow(B) <= Pow(A Int B)
+> by (resolve_tac [subsetI] 1);
+Level 5
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)
+> by (eresolve_tac [IntE] 1);
+Level 6
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)
+> by (resolve_tac [PowI] 1);
+Level 7
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B
+> by (REPEAT (dresolve_tac [PowD] 1));
+Level 8
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. !!x. [| x <= A; x <= B |] ==> x <= A Int B
+> by (resolve_tac [Int_greatest] 1);
+Level 9
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. !!x. [| x <= A; x <= B |] ==> x <= A
+ 2. !!x. [| x <= A; x <= B |] ==> x <= B
+> by (REPEAT (assume_tac 1));
+Level 10
+Pow(A Int B) = Pow(A) Int Pow(B)
+No subgoals!
+> choplev 0;
+Level 0
+Pow(A Int B) = Pow(A) Int Pow(B)
+ 1. Pow(A Int B) = Pow(A) Int Pow(B)
+> by (fast_tac (ZF_cs addIs [equalityI]) 1);
+Level 1
+Pow(A Int B) = Pow(A) Int Pow(B)
+No subgoals!
+
+
+
+
+> val [prem] = goal ZF.thy "C<=D ==> Union(C) <= Union(D)";
+Level 0
+Union(C) <= Union(D)
+ 1. Union(C) <= Union(D)
+> by (resolve_tac [subsetI] 1);
+Level 1
+Union(C) <= Union(D)
+ 1. !!x. x : Union(C) ==> x : Union(D)
+> by (eresolve_tac [UnionE] 1);
+Level 2
+Union(C) <= Union(D)
+ 1. !!x B. [| x : B; B : C |] ==> x : Union(D)
+> by (resolve_tac [UnionI] 1);
+Level 3
+Union(C) <= Union(D)
+ 1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : D
+ 2. !!x B. [| x : B; B : C |] ==> x : ?B2(x,B)
+> by (resolve_tac [prem RS subsetD] 1);
+Level 4
+Union(C) <= Union(D)
+ 1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C
+ 2. !!x B. [| x : B; B : C |] ==> x : ?B2(x,B)
+> by (assume_tac 1);
+Level 5
+Union(C) <= Union(D)
+ 1. !!x B. [| x : B; B : C |] ==> x : B
+> by (assume_tac 1);
+Level 6
+Union(C) <= Union(D)
+No subgoals!
+
+
+
+> val prems = goal ZF.thy
+# "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \
+# \ (f Un g)`a = f`a";
+Level 0
+(f Un g) ` a = f ` a
+ 1. (f Un g) ` a = f ` a
+> by (resolve_tac [apply_equality] 1);
+Level 1
+(f Un g) ` a = f ` a
+ 1. <a,f ` a> : f Un g
+ 2. f Un g : (PROD x:?A. ?B(x))
+> by (resolve_tac [UnI1] 1);
+Level 2
+(f Un g) ` a = f ` a
+ 1. <a,f ` a> : f
+ 2. f Un g : (PROD x:?A. ?B(x))
+> by (resolve_tac [apply_Pair] 1);
+Level 3
+(f Un g) ` a = f ` a
+ 1. f : (PROD x:?A2. ?B2(x))
+ 2. a : ?A2
+ 3. f Un g : (PROD x:?A. ?B(x))
+> by (resolve_tac prems 1);
+Level 4
+(f Un g) ` a = f ` a
+ 1. a : A
+ 2. f Un g : (PROD x:?A. ?B(x))
+> by (resolve_tac prems 1);
+Level 5
+(f Un g) ` a = f ` a
+ 1. f Un g : (PROD x:?A. ?B(x))
+> by (resolve_tac [fun_disjoint_Un] 1);
+Level 6
+(f Un g) ` a = f ` a
+ 1. f : ?A3 -> ?B3
+ 2. g : ?C3 -> ?D3
+ 3. ?A3 Int ?C3 = 0
+> by (resolve_tac prems 1);
+Level 7
+(f Un g) ` a = f ` a
+ 1. g : ?C3 -> ?D3
+ 2. A Int ?C3 = 0
+> by (resolve_tac prems 1);
+Level 8
+(f Un g) ` a = f ` a
+ 1. A Int C = 0
+> by (resolve_tac prems 1);
+Level 9
+(f Un g) ` a = f ` a
+No subgoals!
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/ZF.tex Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,2616 @@
+%% $Id$
+\chapter{Zermelo-Fraenkel Set Theory}
+\index{set theory|(}
+
+The theory~\thydx{ZF} implements Zermelo-Fraenkel set
+theory~\cite{halmos60,suppes72} as an extension of~\texttt{FOL}, classical
+first-order logic. The theory includes a collection of derived natural
+deduction rules, for use with Isabelle's classical reasoner. Much
+of it is based on the work of No\"el~\cite{noel}.
+
+A tremendous amount of set theory has been formally developed, including the
+basic properties of relations, functions, ordinals and cardinals. Significant
+results have been proved, such as the Schr\"oder-Bernstein Theorem, the
+Wellordering Theorem and a version of Ramsey's Theorem. \texttt{ZF} provides
+both the integers and the natural numbers. General methods have been
+developed for solving recursion equations over monotonic functors; these have
+been applied to yield constructions of lists, trees, infinite lists, etc.
+
+\texttt{ZF} has a flexible package for handling inductive definitions,
+such as inference systems, and datatype definitions, such as lists and
+trees. Moreover it handles coinductive definitions, such as
+bisimulation relations, and codatatype definitions, such as streams. It
+provides a streamlined syntax for defining primitive recursive functions over
+datatypes.
+
+Because {\ZF} is an extension of {\FOL}, it provides the same
+packages, namely \texttt{hyp_subst_tac}, the simplifier, and the
+classical reasoner. The default simpset and claset are usually
+satisfactory.
+
+Published articles~\cite{paulson-set-I,paulson-set-II} describe \texttt{ZF}
+less formally than this chapter. Isabelle employs a novel treatment of
+non-well-founded data structures within the standard {\sc zf} axioms including
+the Axiom of Foundation~\cite{paulson-final}.
+
+
+\section{Which version of axiomatic set theory?}
+The two main axiom systems for set theory are Bernays-G\"odel~({\sc bg})
+and Zermelo-Fraenkel~({\sc zf}). Resolution theorem provers can use {\sc
+ bg} because it is finite~\cite{boyer86,quaife92}. {\sc zf} does not
+have a finite axiom system because of its Axiom Scheme of Replacement.
+This makes it awkward to use with many theorem provers, since instances
+of the axiom scheme have to be invoked explicitly. Since Isabelle has no
+difficulty with axiom schemes, we may adopt either axiom system.
+
+These two theories differ in their treatment of {\bf classes}, which are
+collections that are `too big' to be sets. The class of all sets,~$V$,
+cannot be a set without admitting Russell's Paradox. In {\sc bg}, both
+classes and sets are individuals; $x\in V$ expresses that $x$ is a set. In
+{\sc zf}, all variables denote sets; classes are identified with unary
+predicates. The two systems define essentially the same sets and classes,
+with similar properties. In particular, a class cannot belong to another
+class (let alone a set).
+
+Modern set theorists tend to prefer {\sc zf} because they are mainly concerned
+with sets, rather than classes. {\sc bg} requires tiresome proofs that various
+collections are sets; for instance, showing $x\in\{x\}$ requires showing that
+$x$ is a set.
+
+
+\begin{figure} \small
+\begin{center}
+\begin{tabular}{rrr}
+ \it name &\it meta-type & \it description \\
+ \cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder\\
+ \cdx{0} & $i$ & empty set\\
+ \cdx{cons} & $[i,i]\To i$ & finite set constructor\\
+ \cdx{Upair} & $[i,i]\To i$ & unordered pairing\\
+ \cdx{Pair} & $[i,i]\To i$ & ordered pairing\\
+ \cdx{Inf} & $i$ & infinite set\\
+ \cdx{Pow} & $i\To i$ & powerset\\
+ \cdx{Union} \cdx{Inter} & $i\To i$ & set union/intersection \\
+ \cdx{split} & $[[i,i]\To i, i] \To i$ & generalized projection\\
+ \cdx{fst} \cdx{snd} & $i\To i$ & projections\\
+ \cdx{converse}& $i\To i$ & converse of a relation\\
+ \cdx{succ} & $i\To i$ & successor\\
+ \cdx{Collect} & $[i,i\To o]\To i$ & separation\\
+ \cdx{Replace} & $[i, [i,i]\To o] \To i$ & replacement\\
+ \cdx{PrimReplace} & $[i, [i,i]\To o] \To i$ & primitive replacement\\
+ \cdx{RepFun} & $[i, i\To i] \To i$ & functional replacement\\
+ \cdx{Pi} \cdx{Sigma} & $[i,i\To i]\To i$ & general product/sum\\
+ \cdx{domain} & $i\To i$ & domain of a relation\\
+ \cdx{range} & $i\To i$ & range of a relation\\
+ \cdx{field} & $i\To i$ & field of a relation\\
+ \cdx{Lambda} & $[i, i\To i]\To i$ & $\lambda$-abstraction\\
+ \cdx{restrict}& $[i, i] \To i$ & restriction of a function\\
+ \cdx{The} & $[i\To o]\To i$ & definite description\\
+ \cdx{if} & $[o,i,i]\To i$ & conditional\\
+ \cdx{Ball} \cdx{Bex} & $[i, i\To o]\To o$ & bounded quantifiers
+\end{tabular}
+\end{center}
+\subcaption{Constants}
+
+\begin{center}
+\index{*"`"` symbol}
+\index{*"-"`"` symbol}
+\index{*"` symbol}\index{function applications!in \ZF}
+\index{*"- symbol}
+\index{*": symbol}
+\index{*"<"= symbol}
+\begin{tabular}{rrrr}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \tt `` & $[i,i]\To i$ & Left 90 & image \\
+ \tt -`` & $[i,i]\To i$ & Left 90 & inverse image \\
+ \tt ` & $[i,i]\To i$ & Left 90 & application \\
+ \sdx{Int} & $[i,i]\To i$ & Left 70 & intersection ($\int$) \\
+ \sdx{Un} & $[i,i]\To i$ & Left 65 & union ($\un$) \\
+ \tt - & $[i,i]\To i$ & Left 65 & set difference ($-$) \\[1ex]
+ \tt: & $[i,i]\To o$ & Left 50 & membership ($\in$) \\
+ \tt <= & $[i,i]\To o$ & Left 50 & subset ($\subseteq$)
+\end{tabular}
+\end{center}
+\subcaption{Infixes}
+\caption{Constants of {\ZF}} \label{zf-constants}
+\end{figure}
+
+
+\section{The syntax of set theory}
+The language of set theory, as studied by logicians, has no constants. The
+traditional axioms merely assert the existence of empty sets, unions,
+powersets, etc.; this would be intolerable for practical reasoning. The
+Isabelle theory declares constants for primitive sets. It also extends
+\texttt{FOL} with additional syntax for finite sets, ordered pairs,
+comprehension, general union/intersection, general sums/products, and
+bounded quantifiers. In most other respects, Isabelle implements precisely
+Zermelo-Fraenkel set theory.
+
+Figure~\ref{zf-constants} lists the constants and infixes of~\ZF, while
+Figure~\ref{zf-trans} presents the syntax translations. Finally,
+Figure~\ref{zf-syntax} presents the full grammar for set theory, including
+the constructs of \FOL.
+
+Local abbreviations can be introduced by a \texttt{let} construct whose
+syntax appears in Fig.\ts\ref{zf-syntax}. Internally it is translated into
+the constant~\cdx{Let}. It can be expanded by rewriting with its
+definition, \tdx{Let_def}.
+
+Apart from \texttt{let}, set theory does not use polymorphism. All terms in
+{\ZF} have type~\tydx{i}, which is the type of individuals and has class~{\tt
+ term}. The type of first-order formulae, remember, is~\textit{o}.
+
+Infix operators include binary union and intersection ($A\un B$ and
+$A\int B$), set difference ($A-B$), and the subset and membership
+relations. Note that $a$\verb|~:|$b$ is translated to $\neg(a\in b)$. The
+union and intersection operators ($\bigcup A$ and $\bigcap A$) form the
+union or intersection of a set of sets; $\bigcup A$ means the same as
+$\bigcup@{x\in A}x$. Of these operators, only $\bigcup A$ is primitive.
+
+The constant \cdx{Upair} constructs unordered pairs; thus {\tt
+ Upair($A$,$B$)} denotes the set~$\{A,B\}$ and \texttt{Upair($A$,$A$)}
+denotes the singleton~$\{A\}$. General union is used to define binary
+union. The Isabelle version goes on to define the constant
+\cdx{cons}:
+\begin{eqnarray*}
+ A\cup B & \equiv & \bigcup(\texttt{Upair}(A,B)) \\
+ \texttt{cons}(a,B) & \equiv & \texttt{Upair}(a,a) \un B
+\end{eqnarray*}
+The $\{a@1, \ldots\}$ notation abbreviates finite sets constructed in the
+obvious manner using~\texttt{cons} and~$\emptyset$ (the empty set):
+\begin{eqnarray*}
+ \{a,b,c\} & \equiv & \texttt{cons}(a,\texttt{cons}(b,\texttt{cons}(c,\emptyset)))
+\end{eqnarray*}
+
+The constant \cdx{Pair} constructs ordered pairs, as in {\tt
+Pair($a$,$b$)}. Ordered pairs may also be written within angle brackets,
+as {\tt<$a$,$b$>}. The $n$-tuple {\tt<$a@1$,\ldots,$a@{n-1}$,$a@n$>}
+abbreviates the nest of pairs\par\nobreak
+\centerline{\texttt{Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots).}}
+
+In {\ZF}, a function is a set of pairs. A {\ZF} function~$f$ is simply an
+individual as far as Isabelle is concerned: its Isabelle type is~$i$, not
+say $i\To i$. The infix operator~{\tt`} denotes the application of a
+function set to its argument; we must write~$f{\tt`}x$, not~$f(x)$. The
+syntax for image is~$f{\tt``}A$ and that for inverse image is~$f{\tt-``}A$.
+
+
+\begin{figure}
+\index{lambda abs@$\lambda$-abstractions!in \ZF}
+\index{*"-"> symbol}
+\index{*"* symbol}
+\begin{center} \footnotesize\tt\frenchspacing
+\begin{tabular}{rrr}
+ \it external & \it internal & \it description \\
+ $a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm negated membership\\
+ \ttlbrace$a@1$, $\ldots$, $a@n$\ttrbrace & cons($a@1$,$\ldots$,cons($a@n$,0)) &
+ \rm finite set \\
+ <$a@1$, $\ldots$, $a@{n-1}$, $a@n$> &
+ Pair($a@1$,\ldots,Pair($a@{n-1}$,$a@n$)\ldots) &
+ \rm ordered $n$-tuple \\
+ \ttlbrace$x$:$A . P[x]$\ttrbrace & Collect($A$,$\lambda x. P[x]$) &
+ \rm separation \\
+ \ttlbrace$y . x$:$A$, $Q[x,y]$\ttrbrace & Replace($A$,$\lambda x\,y. Q[x,y]$) &
+ \rm replacement \\
+ \ttlbrace$b[x] . x$:$A$\ttrbrace & RepFun($A$,$\lambda x. b[x]$) &
+ \rm functional replacement \\
+ \sdx{INT} $x$:$A . B[x]$ & Inter(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
+ \rm general intersection \\
+ \sdx{UN} $x$:$A . B[x]$ & Union(\ttlbrace$B[x] . x$:$A$\ttrbrace) &
+ \rm general union \\
+ \sdx{PROD} $x$:$A . B[x]$ & Pi($A$,$\lambda x. B[x]$) &
+ \rm general product \\
+ \sdx{SUM} $x$:$A . B[x]$ & Sigma($A$,$\lambda x. B[x]$) &
+ \rm general sum \\
+ $A$ -> $B$ & Pi($A$,$\lambda x. B$) &
+ \rm function space \\
+ $A$ * $B$ & Sigma($A$,$\lambda x. B$) &
+ \rm binary product \\
+ \sdx{THE} $x . P[x]$ & The($\lambda x. P[x]$) &
+ \rm definite description \\
+ \sdx{lam} $x$:$A . b[x]$ & Lambda($A$,$\lambda x. b[x]$) &
+ \rm $\lambda$-abstraction\\[1ex]
+ \sdx{ALL} $x$:$A . P[x]$ & Ball($A$,$\lambda x. P[x]$) &
+ \rm bounded $\forall$ \\
+ \sdx{EX} $x$:$A . P[x]$ & Bex($A$,$\lambda x. P[x]$) &
+ \rm bounded $\exists$
+\end{tabular}
+\end{center}
+\caption{Translations for {\ZF}} \label{zf-trans}
+\end{figure}
+
+
+\begin{figure}
+\index{*let symbol}
+\index{*in symbol}
+\dquotes
+\[\begin{array}{rcl}
+ term & = & \hbox{expression of type~$i$} \\
+ & | & "let"~id~"="~term";"\dots";"~id~"="~term~"in"~term \\
+ & | & "if"~term~"then"~term~"else"~term \\
+ & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
+ & | & "< " term\; ("," term)^* " >" \\
+ & | & "{\ttlbrace} " id ":" term " . " formula " {\ttrbrace}" \\
+ & | & "{\ttlbrace} " id " . " id ":" term ", " formula " {\ttrbrace}" \\
+ & | & "{\ttlbrace} " term " . " id ":" term " {\ttrbrace}" \\
+ & | & term " `` " term \\
+ & | & term " -`` " term \\
+ & | & term " ` " term \\
+ & | & term " * " term \\
+ & | & term " Int " term \\
+ & | & term " Un " term \\
+ & | & term " - " term \\
+ & | & term " -> " term \\
+ & | & "THE~~" id " . " formula\\
+ & | & "lam~~" id ":" term " . " term \\
+ & | & "INT~~" id ":" term " . " term \\
+ & | & "UN~~~" id ":" term " . " term \\
+ & | & "PROD~" id ":" term " . " term \\
+ & | & "SUM~~" id ":" term " . " term \\[2ex]
+ formula & = & \hbox{expression of type~$o$} \\
+ & | & term " : " term \\
+ & | & term " \ttilde: " term \\
+ & | & term " <= " term \\
+ & | & term " = " term \\
+ & | & term " \ttilde= " term \\
+ & | & "\ttilde\ " formula \\
+ & | & formula " \& " formula \\
+ & | & formula " | " formula \\
+ & | & formula " --> " formula \\
+ & | & formula " <-> " formula \\
+ & | & "ALL " id ":" term " . " formula \\
+ & | & "EX~~" id ":" term " . " formula \\
+ & | & "ALL~" id~id^* " . " formula \\
+ & | & "EX~~" id~id^* " . " formula \\
+ & | & "EX!~" id~id^* " . " formula
+ \end{array}
+\]
+\caption{Full grammar for {\ZF}} \label{zf-syntax}
+\end{figure}
+
+
+\section{Binding operators}
+The constant \cdx{Collect} constructs sets by the principle of {\bf
+ separation}. The syntax for separation is
+\hbox{\tt\ttlbrace$x$:$A$.\ $P[x]$\ttrbrace}, where $P[x]$ is a formula
+that may contain free occurrences of~$x$. It abbreviates the set {\tt
+ Collect($A$,$\lambda x. P[x]$)}, which consists of all $x\in A$ that
+satisfy~$P[x]$. Note that \texttt{Collect} is an unfortunate choice of
+name: some set theories adopt a set-formation principle, related to
+replacement, called collection.
+
+The constant \cdx{Replace} constructs sets by the principle of {\bf
+ replacement}. The syntax
+\hbox{\tt\ttlbrace$y$.\ $x$:$A$,$Q[x,y]$\ttrbrace} denotes the set {\tt
+ Replace($A$,$\lambda x\,y. Q[x,y]$)}, which consists of all~$y$ such
+that there exists $x\in A$ satisfying~$Q[x,y]$. The Replacement Axiom
+has the condition that $Q$ must be single-valued over~$A$: for
+all~$x\in A$ there exists at most one $y$ satisfying~$Q[x,y]$. A
+single-valued binary predicate is also called a {\bf class function}.
+
+The constant \cdx{RepFun} expresses a special case of replacement,
+where $Q[x,y]$ has the form $y=b[x]$. Such a $Q$ is trivially
+single-valued, since it is just the graph of the meta-level
+function~$\lambda x. b[x]$. The resulting set consists of all $b[x]$
+for~$x\in A$. This is analogous to the \ML{} functional \texttt{map},
+since it applies a function to every element of a set. The syntax is
+\hbox{\tt\ttlbrace$b[x]$.\ $x$:$A$\ttrbrace}, which expands to {\tt
+ RepFun($A$,$\lambda x. b[x]$)}.
+
+\index{*INT symbol}\index{*UN symbol}
+General unions and intersections of indexed
+families of sets, namely $\bigcup@{x\in A}B[x]$ and $\bigcap@{x\in A}B[x]$,
+are written \hbox{\tt UN $x$:$A$.\ $B[x]$} and \hbox{\tt INT $x$:$A$.\ $B[x]$}.
+Their meaning is expressed using \texttt{RepFun} as
+\[
+\bigcup(\{B[x]. x\in A\}) \qquad\hbox{and}\qquad
+\bigcap(\{B[x]. x\in A\}).
+\]
+General sums $\sum@{x\in A}B[x]$ and products $\prod@{x\in A}B[x]$ can be
+constructed in set theory, where $B[x]$ is a family of sets over~$A$. They
+have as special cases $A\times B$ and $A\to B$, where $B$ is simply a set.
+This is similar to the situation in Constructive Type Theory (set theory
+has `dependent sets') and calls for similar syntactic conventions. The
+constants~\cdx{Sigma} and~\cdx{Pi} construct general sums and
+products. Instead of \texttt{Sigma($A$,$B$)} and \texttt{Pi($A$,$B$)} we may
+write
+\hbox{\tt SUM $x$:$A$.\ $B[x]$} and \hbox{\tt PROD $x$:$A$.\ $B[x]$}.
+\index{*SUM symbol}\index{*PROD symbol}%
+The special cases as \hbox{\tt$A$*$B$} and \hbox{\tt$A$->$B$} abbreviate
+general sums and products over a constant family.\footnote{Unlike normal
+infix operators, {\tt*} and {\tt->} merely define abbreviations; there are
+no constants~\texttt{op~*} and~\hbox{\tt op~->}.} Isabelle accepts these
+abbreviations in parsing and uses them whenever possible for printing.
+
+\index{*THE symbol}
+As mentioned above, whenever the axioms assert the existence and uniqueness
+of a set, Isabelle's set theory declares a constant for that set. These
+constants can express the {\bf definite description} operator~$\iota
+x. P[x]$, which stands for the unique~$a$ satisfying~$P[a]$, if such exists.
+Since all terms in {\ZF} denote something, a description is always
+meaningful, but we do not know its value unless $P[x]$ defines it uniquely.
+Using the constant~\cdx{The}, we may write descriptions as {\tt
+ The($\lambda x. P[x]$)} or use the syntax \hbox{\tt THE $x$.\ $P[x]$}.
+
+\index{*lam symbol}
+Function sets may be written in $\lambda$-notation; $\lambda x\in A. b[x]$
+stands for the set of all pairs $\pair{x,b[x]}$ for $x\in A$. In order for
+this to be a set, the function's domain~$A$ must be given. Using the
+constant~\cdx{Lambda}, we may express function sets as {\tt
+Lambda($A$,$\lambda x. b[x]$)} or use the syntax \hbox{\tt lam $x$:$A$.\ $b[x]$}.
+
+Isabelle's set theory defines two {\bf bounded quantifiers}:
+\begin{eqnarray*}
+ \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
+ \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
+\end{eqnarray*}
+The constants~\cdx{Ball} and~\cdx{Bex} are defined
+accordingly. Instead of \texttt{Ball($A$,$P$)} and \texttt{Bex($A$,$P$)} we may
+write
+\hbox{\tt ALL $x$:$A$.\ $P[x]$} and \hbox{\tt EX $x$:$A$.\ $P[x]$}.
+
+
+%%%% ZF.thy
+
+\begin{figure}
+\begin{ttbox}
+\tdx{Let_def} Let(s, f) == f(s)
+
+\tdx{Ball_def} Ball(A,P) == ALL x. x:A --> P(x)
+\tdx{Bex_def} Bex(A,P) == EX x. x:A & P(x)
+
+\tdx{subset_def} A <= B == ALL x:A. x:B
+\tdx{extension} A = B <-> A <= B & B <= A
+
+\tdx{Union_iff} A : Union(C) <-> (EX B:C. A:B)
+\tdx{Pow_iff} A : Pow(B) <-> A <= B
+\tdx{foundation} A=0 | (EX x:A. ALL y:x. ~ y:A)
+
+\tdx{replacement} (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>
+ b : PrimReplace(A,P) <-> (EX x:A. P(x,b))
+\subcaption{The Zermelo-Fraenkel Axioms}
+
+\tdx{Replace_def} Replace(A,P) ==
+ PrimReplace(A, \%x y. (EX!z. P(x,z)) & P(x,y))
+\tdx{RepFun_def} RepFun(A,f) == {\ttlbrace}y . x:A, y=f(x)\ttrbrace
+\tdx{the_def} The(P) == Union({\ttlbrace}y . x:{\ttlbrace}0{\ttrbrace}, P(y){\ttrbrace})
+\tdx{if_def} if(P,a,b) == THE z. P & z=a | ~P & z=b
+\tdx{Collect_def} Collect(A,P) == {\ttlbrace}y . x:A, x=y & P(x){\ttrbrace}
+\tdx{Upair_def} Upair(a,b) ==
+ {\ttlbrace}y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b){\ttrbrace}
+\subcaption{Consequences of replacement}
+
+\tdx{Inter_def} Inter(A) == {\ttlbrace}x:Union(A) . ALL y:A. x:y{\ttrbrace}
+\tdx{Un_def} A Un B == Union(Upair(A,B))
+\tdx{Int_def} A Int B == Inter(Upair(A,B))
+\tdx{Diff_def} A - B == {\ttlbrace}x:A . x~:B{\ttrbrace}
+\subcaption{Union, intersection, difference}
+\end{ttbox}
+\caption{Rules and axioms of {\ZF}} \label{zf-rules}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{cons_def} cons(a,A) == Upair(a,a) Un A
+\tdx{succ_def} succ(i) == cons(i,i)
+\tdx{infinity} 0:Inf & (ALL y:Inf. succ(y): Inf)
+\subcaption{Finite and infinite sets}
+
+\tdx{Pair_def} <a,b> == {\ttlbrace}{\ttlbrace}a,a{\ttrbrace}, {\ttlbrace}a,b{\ttrbrace}{\ttrbrace}
+\tdx{split_def} split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)
+\tdx{fst_def} fst(A) == split(\%x y. x, p)
+\tdx{snd_def} snd(A) == split(\%x y. y, p)
+\tdx{Sigma_def} Sigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x,y>{\ttrbrace}
+\subcaption{Ordered pairs and Cartesian products}
+
+\tdx{converse_def} converse(r) == {\ttlbrace}z. w:r, EX x y. w=<x,y> & z=<y,x>{\ttrbrace}
+\tdx{domain_def} domain(r) == {\ttlbrace}x. w:r, EX y. w=<x,y>{\ttrbrace}
+\tdx{range_def} range(r) == domain(converse(r))
+\tdx{field_def} field(r) == domain(r) Un range(r)
+\tdx{image_def} r `` A == {\ttlbrace}y : range(r) . EX x:A. <x,y> : r{\ttrbrace}
+\tdx{vimage_def} r -`` A == converse(r)``A
+\subcaption{Operations on relations}
+
+\tdx{lam_def} Lambda(A,b) == {\ttlbrace}<x,b(x)> . x:A{\ttrbrace}
+\tdx{apply_def} f`a == THE y. <a,y> : f
+\tdx{Pi_def} Pi(A,B) == {\ttlbrace}f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f{\ttrbrace}
+\tdx{restrict_def} restrict(f,A) == lam x:A. f`x
+\subcaption{Functions and general product}
+\end{ttbox}
+\caption{Further definitions of {\ZF}} \label{zf-defs}
+\end{figure}
+
+
+
+\section{The Zermelo-Fraenkel axioms}
+The axioms appear in Fig.\ts \ref{zf-rules}. They resemble those
+presented by Suppes~\cite{suppes72}. Most of the theory consists of
+definitions. In particular, bounded quantifiers and the subset relation
+appear in other axioms. Object-level quantifiers and implications have
+been replaced by meta-level ones wherever possible, to simplify use of the
+axioms. See the file \texttt{ZF/ZF.thy} for details.
+
+The traditional replacement axiom asserts
+\[ y \in \texttt{PrimReplace}(A,P) \bimp (\exists x\in A. P(x,y)) \]
+subject to the condition that $P(x,y)$ is single-valued for all~$x\in A$.
+The Isabelle theory defines \cdx{Replace} to apply
+\cdx{PrimReplace} to the single-valued part of~$P$, namely
+\[ (\exists!z. P(x,z)) \conj P(x,y). \]
+Thus $y\in \texttt{Replace}(A,P)$ if and only if there is some~$x$ such that
+$P(x,-)$ holds uniquely for~$y$. Because the equivalence is unconditional,
+\texttt{Replace} is much easier to use than \texttt{PrimReplace}; it defines the
+same set, if $P(x,y)$ is single-valued. The nice syntax for replacement
+expands to \texttt{Replace}.
+
+Other consequences of replacement include functional replacement
+(\cdx{RepFun}) and definite descriptions (\cdx{The}).
+Axioms for separation (\cdx{Collect}) and unordered pairs
+(\cdx{Upair}) are traditionally assumed, but they actually follow
+from replacement~\cite[pages 237--8]{suppes72}.
+
+The definitions of general intersection, etc., are straightforward. Note
+the definition of \texttt{cons}, which underlies the finite set notation.
+The axiom of infinity gives us a set that contains~0 and is closed under
+successor (\cdx{succ}). Although this set is not uniquely defined,
+the theory names it (\cdx{Inf}) in order to simplify the
+construction of the natural numbers.
+
+Further definitions appear in Fig.\ts\ref{zf-defs}. Ordered pairs are
+defined in the standard way, $\pair{a,b}\equiv\{\{a\},\{a,b\}\}$. Recall
+that \cdx{Sigma}$(A,B)$ generalizes the Cartesian product of two
+sets. It is defined to be the union of all singleton sets
+$\{\pair{x,y}\}$, for $x\in A$ and $y\in B(x)$. This is a typical usage of
+general union.
+
+The projections \cdx{fst} and~\cdx{snd} are defined in terms of the
+generalized projection \cdx{split}. The latter has been borrowed from
+Martin-L\"of's Type Theory, and is often easier to use than \cdx{fst}
+and~\cdx{snd}.
+
+Operations on relations include converse, domain, range, and image. The
+set ${\tt Pi}(A,B)$ generalizes the space of functions between two sets.
+Note the simple definitions of $\lambda$-abstraction (using
+\cdx{RepFun}) and application (using a definite description). The
+function \cdx{restrict}$(f,A)$ has the same values as~$f$, but only
+over the domain~$A$.
+
+
+%%%% zf.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{ballI} [| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)
+\tdx{bspec} [| ALL x:A. P(x); x: A |] ==> P(x)
+\tdx{ballE} [| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q
+
+\tdx{ball_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
+ (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))
+
+\tdx{bexI} [| P(x); x: A |] ==> EX x:A. P(x)
+\tdx{bexCI} [| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A. P(x)
+\tdx{bexE} [| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q
+
+\tdx{bex_cong} [| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==>
+ (EX x:A. P(x)) <-> (EX x:A'. P'(x))
+\subcaption{Bounded quantifiers}
+
+\tdx{subsetI} (!!x. x:A ==> x:B) ==> A <= B
+\tdx{subsetD} [| A <= B; c:A |] ==> c:B
+\tdx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P
+\tdx{subset_refl} A <= A
+\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C
+
+\tdx{equalityI} [| A <= B; B <= A |] ==> A = B
+\tdx{equalityD1} A = B ==> A<=B
+\tdx{equalityD2} A = B ==> B<=A
+\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P
+\subcaption{Subsets and extensionality}
+
+\tdx{emptyE} a:0 ==> P
+\tdx{empty_subsetI} 0 <= A
+\tdx{equals0I} [| !!y. y:A ==> False |] ==> A=0
+\tdx{equals0D} [| A=0; a:A |] ==> P
+
+\tdx{PowI} A <= B ==> A : Pow(B)
+\tdx{PowD} A : Pow(B) ==> A<=B
+\subcaption{The empty set; power sets}
+\end{ttbox}
+\caption{Basic derived rules for {\ZF}} \label{zf-lemmas1}
+\end{figure}
+
+
+\section{From basic lemmas to function spaces}
+Faced with so many definitions, it is essential to prove lemmas. Even
+trivial theorems like $A \int B = B \int A$ would be difficult to
+prove from the definitions alone. Isabelle's set theory derives many
+rules using a natural deduction style. Ideally, a natural deduction
+rule should introduce or eliminate just one operator, but this is not
+always practical. For most operators, we may forget its definition
+and use its derived rules instead.
+
+\subsection{Fundamental lemmas}
+Figure~\ref{zf-lemmas1} presents the derived rules for the most basic
+operators. The rules for the bounded quantifiers resemble those for the
+ordinary quantifiers, but note that \tdx{ballE} uses a negated assumption
+in the style of Isabelle's classical reasoner. The \rmindex{congruence
+ rules} \tdx{ball_cong} and \tdx{bex_cong} are required by Isabelle's
+simplifier, but have few other uses. Congruence rules must be specially
+derived for all binding operators, and henceforth will not be shown.
+
+Figure~\ref{zf-lemmas1} also shows rules for the subset and equality
+relations (proof by extensionality), and rules about the empty set and the
+power set operator.
+
+Figure~\ref{zf-lemmas2} presents rules for replacement and separation.
+The rules for \cdx{Replace} and \cdx{RepFun} are much simpler than
+comparable rules for \texttt{PrimReplace} would be. The principle of
+separation is proved explicitly, although most proofs should use the
+natural deduction rules for \texttt{Collect}. The elimination rule
+\tdx{CollectE} is equivalent to the two destruction rules
+\tdx{CollectD1} and \tdx{CollectD2}, but each rule is suited to
+particular circumstances. Although too many rules can be confusing, there
+is no reason to aim for a minimal set of rules. See the file
+\texttt{ZF/ZF.ML} for a complete listing.
+
+Figure~\ref{zf-lemmas3} presents rules for general union and intersection.
+The empty intersection should be undefined. We cannot have
+$\bigcap(\emptyset)=V$ because $V$, the universal class, is not a set. All
+expressions denote something in {\ZF} set theory; the definition of
+intersection implies $\bigcap(\emptyset)=\emptyset$, but this value is
+arbitrary. The rule \tdx{InterI} must have a premise to exclude
+the empty intersection. Some of the laws governing intersections require
+similar premises.
+
+
+%the [p] gives better page breaking for the book
+\begin{figure}[p]
+\begin{ttbox}
+\tdx{ReplaceI} [| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==>
+ b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace}
+
+\tdx{ReplaceE} [| b : {\ttlbrace}y. x:A, P(x,y){\ttrbrace};
+ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R
+ |] ==> R
+
+\tdx{RepFunI} [| a : A |] ==> f(a) : {\ttlbrace}f(x). x:A{\ttrbrace}
+\tdx{RepFunE} [| b : {\ttlbrace}f(x). x:A{\ttrbrace};
+ !!x.[| x:A; b=f(x) |] ==> P |] ==> P
+
+\tdx{separation} a : {\ttlbrace}x:A. P(x){\ttrbrace} <-> a:A & P(a)
+\tdx{CollectI} [| a:A; P(a) |] ==> a : {\ttlbrace}x:A. P(x){\ttrbrace}
+\tdx{CollectE} [| a : {\ttlbrace}x:A. P(x){\ttrbrace}; [| a:A; P(a) |] ==> R |] ==> R
+\tdx{CollectD1} a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> a:A
+\tdx{CollectD2} a : {\ttlbrace}x:A. P(x){\ttrbrace} ==> P(a)
+\end{ttbox}
+\caption{Replacement and separation} \label{zf-lemmas2}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{UnionI} [| B: C; A: B |] ==> A: Union(C)
+\tdx{UnionE} [| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R
+
+\tdx{InterI} [| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)
+\tdx{InterD} [| A : Inter(C); B : C |] ==> A : B
+\tdx{InterE} [| A : Inter(C); A:B ==> R; ~ B:C ==> R |] ==> R
+
+\tdx{UN_I} [| a: A; b: B(a) |] ==> b: (UN x:A. B(x))
+\tdx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R
+ |] ==> R
+
+\tdx{INT_I} [| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))
+\tdx{INT_E} [| b : (INT x:A. B(x)); a: A |] ==> b : B(a)
+\end{ttbox}
+\caption{General union and intersection} \label{zf-lemmas3}
+\end{figure}
+
+
+%%% upair.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{pairing} a:Upair(b,c) <-> (a=b | a=c)
+\tdx{UpairI1} a : Upair(a,b)
+\tdx{UpairI2} b : Upair(a,b)
+\tdx{UpairE} [| a : Upair(b,c); a = b ==> P; a = c ==> P |] ==> P
+\end{ttbox}
+\caption{Unordered pairs} \label{zf-upair1}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{UnI1} c : A ==> c : A Un B
+\tdx{UnI2} c : B ==> c : A Un B
+\tdx{UnCI} (~c : B ==> c : A) ==> c : A Un B
+\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P
+
+\tdx{IntI} [| c : A; c : B |] ==> c : A Int B
+\tdx{IntD1} c : A Int B ==> c : A
+\tdx{IntD2} c : A Int B ==> c : B
+\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P
+
+\tdx{DiffI} [| c : A; ~ c : B |] ==> c : A - B
+\tdx{DiffD1} c : A - B ==> c : A
+\tdx{DiffD2} c : A - B ==> c ~: B
+\tdx{DiffE} [| c : A - B; [| c:A; ~ c:B |] ==> P |] ==> P
+\end{ttbox}
+\caption{Union, intersection, difference} \label{zf-Un}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{consI1} a : cons(a,B)
+\tdx{consI2} a : B ==> a : cons(b,B)
+\tdx{consCI} (~ a:B ==> a=b) ==> a: cons(b,B)
+\tdx{consE} [| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P
+
+\tdx{singletonI} a : {\ttlbrace}a{\ttrbrace}
+\tdx{singletonE} [| a : {\ttlbrace}b{\ttrbrace}; a=b ==> P |] ==> P
+\end{ttbox}
+\caption{Finite and singleton sets} \label{zf-upair2}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{succI1} i : succ(i)
+\tdx{succI2} i : j ==> i : succ(j)
+\tdx{succCI} (~ i:j ==> i=j) ==> i: succ(j)
+\tdx{succE} [| i : succ(j); i=j ==> P; i:j ==> P |] ==> P
+\tdx{succ_neq_0} [| succ(n)=0 |] ==> P
+\tdx{succ_inject} succ(m) = succ(n) ==> m=n
+\end{ttbox}
+\caption{The successor function} \label{zf-succ}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{the_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a
+\tdx{theI} EX! x. P(x) ==> P(THE x. P(x))
+
+\tdx{if_P} P ==> (if P then a else b) = a
+\tdx{if_not_P} ~P ==> (if P then a else b) = b
+
+\tdx{mem_asym} [| a:b; b:a |] ==> P
+\tdx{mem_irrefl} a:a ==> P
+\end{ttbox}
+\caption{Descriptions; non-circularity} \label{zf-the}
+\end{figure}
+
+
+\subsection{Unordered pairs and finite sets}
+Figure~\ref{zf-upair1} presents the principle of unordered pairing, along
+with its derived rules. Binary union and intersection are defined in terms
+of ordered pairs (Fig.\ts\ref{zf-Un}). Set difference is also included. The
+rule \tdx{UnCI} is useful for classical reasoning about unions,
+like \texttt{disjCI}\@; it supersedes \tdx{UnI1} and
+\tdx{UnI2}, but these rules are often easier to work with. For
+intersection and difference we have both elimination and destruction rules.
+Again, there is no reason to provide a minimal rule set.
+
+Figure~\ref{zf-upair2} is concerned with finite sets: it presents rules
+for~\texttt{cons}, the finite set constructor, and rules for singleton
+sets. Figure~\ref{zf-succ} presents derived rules for the successor
+function, which is defined in terms of~\texttt{cons}. The proof that {\tt
+ succ} is injective appears to require the Axiom of Foundation.
+
+Definite descriptions (\sdx{THE}) are defined in terms of the singleton
+set~$\{0\}$, but their derived rules fortunately hide this
+(Fig.\ts\ref{zf-the}). The rule~\tdx{theI} is difficult to apply
+because of the two occurrences of~$\Var{P}$. However,
+\tdx{the_equality} does not have this problem and the files contain
+many examples of its use.
+
+Finally, the impossibility of having both $a\in b$ and $b\in a$
+(\tdx{mem_asym}) is proved by applying the Axiom of Foundation to
+the set $\{a,b\}$. The impossibility of $a\in a$ is a trivial consequence.
+
+See the file \texttt{ZF/upair.ML} for full proofs of the rules discussed in
+this section.
+
+
+%%% subset.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{Union_upper} B:A ==> B <= Union(A)
+\tdx{Union_least} [| !!x. x:A ==> x<=C |] ==> Union(A) <= C
+
+\tdx{Inter_lower} B:A ==> Inter(A) <= B
+\tdx{Inter_greatest} [| a:A; !!x. x:A ==> C<=x |] ==> C <= Inter(A)
+
+\tdx{Un_upper1} A <= A Un B
+\tdx{Un_upper2} B <= A Un B
+\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C
+
+\tdx{Int_lower1} A Int B <= A
+\tdx{Int_lower2} A Int B <= B
+\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B
+
+\tdx{Diff_subset} A-B <= A
+\tdx{Diff_contains} [| C<=A; C Int B = 0 |] ==> C <= A-B
+
+\tdx{Collect_subset} Collect(A,P) <= A
+\end{ttbox}
+\caption{Subset and lattice properties} \label{zf-subset}
+\end{figure}
+
+
+\subsection{Subset and lattice properties}
+The subset relation is a complete lattice. Unions form least upper bounds;
+non-empty intersections form greatest lower bounds. Figure~\ref{zf-subset}
+shows the corresponding rules. A few other laws involving subsets are
+included. Proofs are in the file \texttt{ZF/subset.ML}.
+
+Reasoning directly about subsets often yields clearer proofs than
+reasoning about the membership relation. Section~\ref{sec:ZF-pow-example}
+below presents an example of this, proving the equation ${{\tt Pow}(A)\cap
+ {\tt Pow}(B)}= {\tt Pow}(A\cap B)$.
+
+%%% pair.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{Pair_inject1} <a,b> = <c,d> ==> a=c
+\tdx{Pair_inject2} <a,b> = <c,d> ==> b=d
+\tdx{Pair_inject} [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P
+\tdx{Pair_neq_0} <a,b>=0 ==> P
+
+\tdx{fst_conv} fst(<a,b>) = a
+\tdx{snd_conv} snd(<a,b>) = b
+\tdx{split} split(\%x y. c(x,y), <a,b>) = c(a,b)
+
+\tdx{SigmaI} [| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)
+
+\tdx{SigmaE} [| c: Sigma(A,B);
+ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P
+
+\tdx{SigmaE2} [| <a,b> : Sigma(A,B);
+ [| a:A; b:B(a) |] ==> P |] ==> P
+\end{ttbox}
+\caption{Ordered pairs; projections; general sums} \label{zf-pair}
+\end{figure}
+
+
+\subsection{Ordered pairs} \label{sec:pairs}
+
+Figure~\ref{zf-pair} presents the rules governing ordered pairs,
+projections and general sums. File \texttt{ZF/pair.ML} contains the
+full (and tedious) proof that $\{\{a\},\{a,b\}\}$ functions as an ordered
+pair. This property is expressed as two destruction rules,
+\tdx{Pair_inject1} and \tdx{Pair_inject2}, and equivalently
+as the elimination rule \tdx{Pair_inject}.
+
+The rule \tdx{Pair_neq_0} asserts $\pair{a,b}\neq\emptyset$. This
+is a property of $\{\{a\},\{a,b\}\}$, and need not hold for other
+encodings of ordered pairs. The non-standard ordered pairs mentioned below
+satisfy $\pair{\emptyset;\emptyset}=\emptyset$.
+
+The natural deduction rules \tdx{SigmaI} and \tdx{SigmaE}
+assert that \cdx{Sigma}$(A,B)$ consists of all pairs of the form
+$\pair{x,y}$, for $x\in A$ and $y\in B(x)$. The rule \tdx{SigmaE2}
+merely states that $\pair{a,b}\in \texttt{Sigma}(A,B)$ implies $a\in A$ and
+$b\in B(a)$.
+
+In addition, it is possible to use tuples as patterns in abstractions:
+\begin{center}
+{\tt\%<$x$,$y$>. $t$} \quad stands for\quad \texttt{split(\%$x$ $y$.\ $t$)}
+\end{center}
+Nested patterns are translated recursively:
+{\tt\%<$x$,$y$,$z$>. $t$} $\leadsto$ {\tt\%<$x$,<$y$,$z$>>. $t$} $\leadsto$
+\texttt{split(\%$x$.\%<$y$,$z$>. $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
+ $z$.\ $t$))}. The reverse translation is performed upon printing.
+\begin{warn}
+ The translation between patterns and \texttt{split} is performed automatically
+ by the parser and printer. Thus the internal and external form of a term
+ may differ, which affects proofs. For example the term {\tt
+ (\%<x,y>.<y,x>)<a,b>} requires the theorem \texttt{split} to rewrite to
+ {\tt<b,a>}.
+\end{warn}
+In addition to explicit $\lambda$-abstractions, patterns can be used in any
+variable binding construct which is internally described by a
+$\lambda$-abstraction. Here are some important examples:
+\begin{description}
+\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
+\item[Choice:] \texttt{THE~{\it pattern}~.~$P$}
+\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
+\item[Comprehension:] \texttt{{\ttlbrace}~{\it pattern}:$A$~.~$P$~{\ttrbrace}}
+\end{description}
+
+
+%%% domrange.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{domainI} <a,b>: r ==> a : domain(r)
+\tdx{domainE} [| a : domain(r); !!y. <a,y>: r ==> P |] ==> P
+\tdx{domain_subset} domain(Sigma(A,B)) <= A
+
+\tdx{rangeI} <a,b>: r ==> b : range(r)
+\tdx{rangeE} [| b : range(r); !!x. <x,b>: r ==> P |] ==> P
+\tdx{range_subset} range(A*B) <= B
+
+\tdx{fieldI1} <a,b>: r ==> a : field(r)
+\tdx{fieldI2} <a,b>: r ==> b : field(r)
+\tdx{fieldCI} (~ <c,a>:r ==> <a,b>: r) ==> a : field(r)
+
+\tdx{fieldE} [| a : field(r);
+ !!x. <a,x>: r ==> P;
+ !!x. <x,a>: r ==> P
+ |] ==> P
+
+\tdx{field_subset} field(A*A) <= A
+\end{ttbox}
+\caption{Domain, range and field of a relation} \label{zf-domrange}
+\end{figure}
+
+\begin{figure}
+\begin{ttbox}
+\tdx{imageI} [| <a,b>: r; a:A |] ==> b : r``A
+\tdx{imageE} [| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P
+
+\tdx{vimageI} [| <a,b>: r; b:B |] ==> a : r-``B
+\tdx{vimageE} [| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P
+\end{ttbox}
+\caption{Image and inverse image} \label{zf-domrange2}
+\end{figure}
+
+
+\subsection{Relations}
+Figure~\ref{zf-domrange} presents rules involving relations, which are sets
+of ordered pairs. The converse of a relation~$r$ is the set of all pairs
+$\pair{y,x}$ such that $\pair{x,y}\in r$; if $r$ is a function, then
+{\cdx{converse}$(r)$} is its inverse. The rules for the domain
+operation, namely \tdx{domainI} and~\tdx{domainE}, assert that
+\cdx{domain}$(r)$ consists of all~$x$ such that $r$ contains
+some pair of the form~$\pair{x,y}$. The range operation is similar, and
+the field of a relation is merely the union of its domain and range.
+
+Figure~\ref{zf-domrange2} presents rules for images and inverse images.
+Note that these operations are generalisations of range and domain,
+respectively. See the file \texttt{ZF/domrange.ML} for derivations of the
+rules.
+
+
+%%% func.ML
+
+\begin{figure}
+\begin{ttbox}
+\tdx{fun_is_rel} f: Pi(A,B) ==> f <= Sigma(A,B)
+
+\tdx{apply_equality} [| <a,b>: f; f: Pi(A,B) |] ==> f`a = b
+\tdx{apply_equality2} [| <a,b>: f; <a,c>: f; f: Pi(A,B) |] ==> b=c
+
+\tdx{apply_type} [| f: Pi(A,B); a:A |] ==> f`a : B(a)
+\tdx{apply_Pair} [| f: Pi(A,B); a:A |] ==> <a,f`a>: f
+\tdx{apply_iff} f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b
+
+\tdx{fun_extension} [| f : Pi(A,B); g: Pi(A,D);
+ !!x. x:A ==> f`x = g`x |] ==> f=g
+
+\tdx{domain_type} [| <a,b> : f; f: Pi(A,B) |] ==> a : A
+\tdx{range_type} [| <a,b> : f; f: Pi(A,B) |] ==> b : B(a)
+
+\tdx{Pi_type} [| f: A->C; !!x. x:A ==> f`x: B(x) |] ==> f: Pi(A,B)
+\tdx{domain_of_fun} f: Pi(A,B) ==> domain(f)=A
+\tdx{range_of_fun} f: Pi(A,B) ==> f: A->range(f)
+
+\tdx{restrict} a : A ==> restrict(f,A) ` a = f`a
+\tdx{restrict_type} [| !!x. x:A ==> f`x: B(x) |] ==>
+ restrict(f,A) : Pi(A,B)
+\end{ttbox}
+\caption{Functions} \label{zf-func1}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{lamI} a:A ==> <a,b(a)> : (lam x:A. b(x))
+\tdx{lamE} [| p: (lam x:A. b(x)); !!x.[| x:A; p=<x,b(x)> |] ==> P
+ |] ==> P
+
+\tdx{lam_type} [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)
+
+\tdx{beta} a : A ==> (lam x:A. b(x)) ` a = b(a)
+\tdx{eta} f : Pi(A,B) ==> (lam x:A. f`x) = f
+\end{ttbox}
+\caption{$\lambda$-abstraction} \label{zf-lam}
+\end{figure}
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{fun_empty} 0: 0->0
+\tdx{fun_single} {\ttlbrace}<a,b>{\ttrbrace} : {\ttlbrace}a{\ttrbrace} -> {\ttlbrace}b{\ttrbrace}
+
+\tdx{fun_disjoint_Un} [| f: A->B; g: C->D; A Int C = 0 |] ==>
+ (f Un g) : (A Un C) -> (B Un D)
+
+\tdx{fun_disjoint_apply1} [| a:A; f: A->B; g: C->D; A Int C = 0 |] ==>
+ (f Un g)`a = f`a
+
+\tdx{fun_disjoint_apply2} [| c:C; f: A->B; g: C->D; A Int C = 0 |] ==>
+ (f Un g)`c = g`c
+\end{ttbox}
+\caption{Constructing functions from smaller sets} \label{zf-func2}
+\end{figure}
+
+
+\subsection{Functions}
+Functions, represented by graphs, are notoriously difficult to reason
+about. The file \texttt{ZF/func.ML} derives many rules, which overlap more
+than they ought. This section presents the more important rules.
+
+Figure~\ref{zf-func1} presents the basic properties of \cdx{Pi}$(A,B)$,
+the generalized function space. For example, if $f$ is a function and
+$\pair{a,b}\in f$, then $f`a=b$ (\tdx{apply_equality}). Two functions
+are equal provided they have equal domains and deliver equals results
+(\tdx{fun_extension}).
+
+By \tdx{Pi_type}, a function typing of the form $f\in A\to C$ can be
+refined to the dependent typing $f\in\prod@{x\in A}B(x)$, given a suitable
+family of sets $\{B(x)\}@{x\in A}$. Conversely, by \tdx{range_of_fun},
+any dependent typing can be flattened to yield a function type of the form
+$A\to C$; here, $C={\tt range}(f)$.
+
+Among the laws for $\lambda$-abstraction, \tdx{lamI} and \tdx{lamE}
+describe the graph of the generated function, while \tdx{beta} and
+\tdx{eta} are the standard conversions. We essentially have a
+dependently-typed $\lambda$-calculus (Fig.\ts\ref{zf-lam}).
+
+Figure~\ref{zf-func2} presents some rules that can be used to construct
+functions explicitly. We start with functions consisting of at most one
+pair, and may form the union of two functions provided their domains are
+disjoint.
+
+
+\begin{figure}
+\begin{ttbox}
+\tdx{Int_absorb} A Int A = A
+\tdx{Int_commute} A Int B = B Int A
+\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C)
+\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)
+
+\tdx{Un_absorb} A Un A = A
+\tdx{Un_commute} A Un B = B Un A
+\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C)
+\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)
+
+\tdx{Diff_cancel} A-A = 0
+\tdx{Diff_disjoint} A Int (B-A) = 0
+\tdx{Diff_partition} A<=B ==> A Un (B-A) = B
+\tdx{double_complement} [| A<=B; B<= C |] ==> (B - (C-A)) = A
+\tdx{Diff_Un} A - (B Un C) = (A-B) Int (A-C)
+\tdx{Diff_Int} A - (B Int C) = (A-B) Un (A-C)
+
+\tdx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)
+\tdx{Inter_Un_distrib} [| a:A; b:B |] ==>
+ Inter(A Un B) = Inter(A) Int Inter(B)
+
+\tdx{Int_Union_RepFun} A Int Union(B) = (UN C:B. A Int C)
+
+\tdx{Un_Inter_RepFun} b:B ==>
+ A Un Inter(B) = (INT C:B. A Un C)
+
+\tdx{SUM_Un_distrib1} (SUM x:A Un B. C(x)) =
+ (SUM x:A. C(x)) Un (SUM x:B. C(x))
+
+\tdx{SUM_Un_distrib2} (SUM x:C. A(x) Un B(x)) =
+ (SUM x:C. A(x)) Un (SUM x:C. B(x))
+
+\tdx{SUM_Int_distrib1} (SUM x:A Int B. C(x)) =
+ (SUM x:A. C(x)) Int (SUM x:B. C(x))
+
+\tdx{SUM_Int_distrib2} (SUM x:C. A(x) Int B(x)) =
+ (SUM x:C. A(x)) Int (SUM x:C. B(x))
+\end{ttbox}
+\caption{Equalities} \label{zf-equalities}
+\end{figure}
+
+
+\begin{figure}
+%\begin{constants}
+% \cdx{1} & $i$ & & $\{\emptyset\}$ \\
+% \cdx{bool} & $i$ & & the set $\{\emptyset,1\}$ \\
+% \cdx{cond} & $[i,i,i]\To i$ & & conditional for \texttt{bool} \\
+% \cdx{not} & $i\To i$ & & negation for \texttt{bool} \\
+% \sdx{and} & $[i,i]\To i$ & Left 70 & conjunction for \texttt{bool} \\
+% \sdx{or} & $[i,i]\To i$ & Left 65 & disjunction for \texttt{bool} \\
+% \sdx{xor} & $[i,i]\To i$ & Left 65 & exclusive-or for \texttt{bool}
+%\end{constants}
+%
+\begin{ttbox}
+\tdx{bool_def} bool == {\ttlbrace}0,1{\ttrbrace}
+\tdx{cond_def} cond(b,c,d) == if b=1 then c else d
+\tdx{not_def} not(b) == cond(b,0,1)
+\tdx{and_def} a and b == cond(a,b,0)
+\tdx{or_def} a or b == cond(a,1,b)
+\tdx{xor_def} a xor b == cond(a,not(b),b)
+
+\tdx{bool_1I} 1 : bool
+\tdx{bool_0I} 0 : bool
+\tdx{boolE} [| c: bool; c=1 ==> P; c=0 ==> P |] ==> P
+\tdx{cond_1} cond(1,c,d) = c
+\tdx{cond_0} cond(0,c,d) = d
+\end{ttbox}
+\caption{The booleans} \label{zf-bool}
+\end{figure}
+
+
+\section{Further developments}
+The next group of developments is complex and extensive, and only
+highlights can be covered here. It involves many theories and ML files of
+proofs.
+
+Figure~\ref{zf-equalities} presents commutative, associative, distributive,
+and idempotency laws of union and intersection, along with other equations.
+See file \texttt{ZF/equalities.ML}.
+
+Theory \thydx{Bool} defines $\{0,1\}$ as a set of booleans, with the usual
+operators including a conditional (Fig.\ts\ref{zf-bool}). Although {\ZF} is a
+first-order theory, you can obtain the effect of higher-order logic using
+\texttt{bool}-valued functions, for example. The constant~\texttt{1} is
+translated to \texttt{succ(0)}.
+
+\begin{figure}
+\index{*"+ symbol}
+\begin{constants}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \tt + & $[i,i]\To i$ & Right 65 & disjoint union operator\\
+ \cdx{Inl}~~\cdx{Inr} & $i\To i$ & & injections\\
+ \cdx{case} & $[i\To i,i\To i, i]\To i$ & & conditional for $A+B$
+\end{constants}
+\begin{ttbox}
+\tdx{sum_def} A+B == {\ttlbrace}0{\ttrbrace}*A Un {\ttlbrace}1{\ttrbrace}*B
+\tdx{Inl_def} Inl(a) == <0,a>
+\tdx{Inr_def} Inr(b) == <1,b>
+\tdx{case_def} case(c,d,u) == split(\%y z. cond(y, d(z), c(z)), u)
+
+\tdx{sum_InlI} a : A ==> Inl(a) : A+B
+\tdx{sum_InrI} b : B ==> Inr(b) : A+B
+
+\tdx{Inl_inject} Inl(a)=Inl(b) ==> a=b
+\tdx{Inr_inject} Inr(a)=Inr(b) ==> a=b
+\tdx{Inl_neq_Inr} Inl(a)=Inr(b) ==> P
+
+\tdx{sumE2} u: A+B ==> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))
+
+\tdx{case_Inl} case(c,d,Inl(a)) = c(a)
+\tdx{case_Inr} case(c,d,Inr(b)) = d(b)
+\end{ttbox}
+\caption{Disjoint unions} \label{zf-sum}
+\end{figure}
+
+
+Theory \thydx{Sum} defines the disjoint union of two sets, with
+injections and a case analysis operator (Fig.\ts\ref{zf-sum}). Disjoint
+unions play a role in datatype definitions, particularly when there is
+mutual recursion~\cite{paulson-set-II}.
+
+\begin{figure}
+\begin{ttbox}
+\tdx{QPair_def} <a;b> == a+b
+\tdx{qsplit_def} qsplit(c,p) == THE y. EX a b. p=<a;b> & y=c(a,b)
+\tdx{qfsplit_def} qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)
+\tdx{qconverse_def} qconverse(r) == {\ttlbrace}z. w:r, EX x y. w=<x;y> & z=<y;x>{\ttrbrace}
+\tdx{QSigma_def} QSigma(A,B) == UN x:A. UN y:B(x). {\ttlbrace}<x;y>{\ttrbrace}
+
+\tdx{qsum_def} A <+> B == ({\ttlbrace}0{\ttrbrace} <*> A) Un ({\ttlbrace}1{\ttrbrace} <*> B)
+\tdx{QInl_def} QInl(a) == <0;a>
+\tdx{QInr_def} QInr(b) == <1;b>
+\tdx{qcase_def} qcase(c,d) == qsplit(\%y z. cond(y, d(z), c(z)))
+\end{ttbox}
+\caption{Non-standard pairs, products and sums} \label{zf-qpair}
+\end{figure}
+
+Theory \thydx{QPair} defines a notion of ordered pair that admits
+non-well-founded tupling (Fig.\ts\ref{zf-qpair}). Such pairs are written
+{\tt<$a$;$b$>}. It also defines the eliminator \cdx{qsplit}, the
+converse operator \cdx{qconverse}, and the summation operator
+\cdx{QSigma}. These are completely analogous to the corresponding
+versions for standard ordered pairs. The theory goes on to define a
+non-standard notion of disjoint sum using non-standard pairs. All of these
+concepts satisfy the same properties as their standard counterparts; in
+addition, {\tt<$a$;$b$>} is continuous. The theory supports coinductive
+definitions, for example of infinite lists~\cite{paulson-final}.
+
+\begin{figure}
+\begin{ttbox}
+\tdx{bnd_mono_def} bnd_mono(D,h) ==
+ h(D)<=D & (ALL W X. W<=X --> X<=D --> h(W) <= h(X))
+
+\tdx{lfp_def} lfp(D,h) == Inter({\ttlbrace}X: Pow(D). h(X) <= X{\ttrbrace})
+\tdx{gfp_def} gfp(D,h) == Union({\ttlbrace}X: Pow(D). X <= h(X){\ttrbrace})
+
+
+\tdx{lfp_lowerbound} [| h(A) <= A; A<=D |] ==> lfp(D,h) <= A
+
+\tdx{lfp_subset} lfp(D,h) <= D
+
+\tdx{lfp_greatest} [| bnd_mono(D,h);
+ !!X. [| h(X) <= X; X<=D |] ==> A<=X
+ |] ==> A <= lfp(D,h)
+
+\tdx{lfp_Tarski} bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))
+
+\tdx{induct} [| a : lfp(D,h); bnd_mono(D,h);
+ !!x. x : h(Collect(lfp(D,h),P)) ==> P(x)
+ |] ==> P(a)
+
+\tdx{lfp_mono} [| bnd_mono(D,h); bnd_mono(E,i);
+ !!X. X<=D ==> h(X) <= i(X)
+ |] ==> lfp(D,h) <= lfp(E,i)
+
+\tdx{gfp_upperbound} [| A <= h(A); A<=D |] ==> A <= gfp(D,h)
+
+\tdx{gfp_subset} gfp(D,h) <= D
+
+\tdx{gfp_least} [| bnd_mono(D,h);
+ !!X. [| X <= h(X); X<=D |] ==> X<=A
+ |] ==> gfp(D,h) <= A
+
+\tdx{gfp_Tarski} bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))
+
+\tdx{coinduct} [| bnd_mono(D,h); a: X; X <= h(X Un gfp(D,h)); X <= D
+ |] ==> a : gfp(D,h)
+
+\tdx{gfp_mono} [| bnd_mono(D,h); D <= E;
+ !!X. X<=D ==> h(X) <= i(X)
+ |] ==> gfp(D,h) <= gfp(E,i)
+\end{ttbox}
+\caption{Least and greatest fixedpoints} \label{zf-fixedpt}
+\end{figure}
+
+The Knaster-Tarski Theorem states that every monotone function over a
+complete lattice has a fixedpoint. Theory \thydx{Fixedpt} proves the
+Theorem only for a particular lattice, namely the lattice of subsets of a
+set (Fig.\ts\ref{zf-fixedpt}). The theory defines least and greatest
+fixedpoint operators with corresponding induction and coinduction rules.
+These are essential to many definitions that follow, including the natural
+numbers and the transitive closure operator. The (co)inductive definition
+package also uses the fixedpoint operators~\cite{paulson-CADE}. See
+Davey and Priestley~\cite{davey&priestley} for more on the Knaster-Tarski
+Theorem and my paper~\cite{paulson-set-II} for discussion of the Isabelle
+proofs.
+
+Monotonicity properties are proved for most of the set-forming operations:
+union, intersection, Cartesian product, image, domain, range, etc. These
+are useful for applying the Knaster-Tarski Fixedpoint Theorem. The proofs
+themselves are trivial applications of Isabelle's classical reasoner. See
+file \texttt{ZF/mono.ML}.
+
+
+\begin{figure}
+\begin{constants}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \sdx{O} & $[i,i]\To i$ & Right 60 & composition ($\circ$) \\
+ \cdx{id} & $i\To i$ & & identity function \\
+ \cdx{inj} & $[i,i]\To i$ & & injective function space\\
+ \cdx{surj} & $[i,i]\To i$ & & surjective function space\\
+ \cdx{bij} & $[i,i]\To i$ & & bijective function space
+\end{constants}
+
+\begin{ttbox}
+\tdx{comp_def} r O s == {\ttlbrace}xz : domain(s)*range(r) .
+ EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r{\ttrbrace}
+\tdx{id_def} id(A) == (lam x:A. x)
+\tdx{inj_def} inj(A,B) == {\ttlbrace} f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x {\ttrbrace}
+\tdx{surj_def} surj(A,B) == {\ttlbrace} f: A->B . ALL y:B. EX x:A. f`x=y {\ttrbrace}
+\tdx{bij_def} bij(A,B) == inj(A,B) Int surj(A,B)
+
+
+\tdx{left_inverse} [| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a
+\tdx{right_inverse} [| f: inj(A,B); b: range(f) |] ==>
+ f`(converse(f)`b) = b
+
+\tdx{inj_converse_inj} f: inj(A,B) ==> converse(f): inj(range(f), A)
+\tdx{bij_converse_bij} f: bij(A,B) ==> converse(f): bij(B,A)
+
+\tdx{comp_type} [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C
+\tdx{comp_assoc} (r O s) O t = r O (s O t)
+
+\tdx{left_comp_id} r<=A*B ==> id(B) O r = r
+\tdx{right_comp_id} r<=A*B ==> r O id(A) = r
+
+\tdx{comp_func} [| g:A->B; f:B->C |] ==> (f O g):A->C
+\tdx{comp_func_apply} [| g:A->B; f:B->C; a:A |] ==> (f O g)`a = f`(g`a)
+
+\tdx{comp_inj} [| g:inj(A,B); f:inj(B,C) |] ==> (f O g):inj(A,C)
+\tdx{comp_surj} [| g:surj(A,B); f:surj(B,C) |] ==> (f O g):surj(A,C)
+\tdx{comp_bij} [| g:bij(A,B); f:bij(B,C) |] ==> (f O g):bij(A,C)
+
+\tdx{left_comp_inverse} f: inj(A,B) ==> converse(f) O f = id(A)
+\tdx{right_comp_inverse} f: surj(A,B) ==> f O converse(f) = id(B)
+
+\tdx{bij_disjoint_Un}
+ [| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==>
+ (f Un g) : bij(A Un C, B Un D)
+
+\tdx{restrict_bij} [| f:inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)
+\end{ttbox}
+\caption{Permutations} \label{zf-perm}
+\end{figure}
+
+The theory \thydx{Perm} is concerned with permutations (bijections) and
+related concepts. These include composition of relations, the identity
+relation, and three specialized function spaces: injective, surjective and
+bijective. Figure~\ref{zf-perm} displays many of their properties that
+have been proved. These results are fundamental to a treatment of
+equipollence and cardinality.
+
+\begin{figure}\small
+\index{#*@{\tt\#*} symbol}
+\index{*div symbol}
+\index{*mod symbol}
+\index{#+@{\tt\#+} symbol}
+\index{#-@{\tt\#-} symbol}
+\begin{constants}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \cdx{nat} & $i$ & & set of natural numbers \\
+ \cdx{nat_case}& $[i,i\To i,i]\To i$ & & conditional for $nat$\\
+ \tt \#* & $[i,i]\To i$ & Left 70 & multiplication \\
+ \tt div & $[i,i]\To i$ & Left 70 & division\\
+ \tt mod & $[i,i]\To i$ & Left 70 & modulus\\
+ \tt \#+ & $[i,i]\To i$ & Left 65 & addition\\
+ \tt \#- & $[i,i]\To i$ & Left 65 & subtraction
+\end{constants}
+
+\begin{ttbox}
+\tdx{nat_def} nat == lfp(lam r: Pow(Inf). {\ttlbrace}0{\ttrbrace} Un {\ttlbrace}succ(x). x:r{\ttrbrace}
+
+\tdx{mod_def} m mod n == transrec(m, \%j f. if j:n then j else f`(j#-n))
+\tdx{div_def} m div n == transrec(m, \%j f. if j:n then 0 else succ(f`(j#-n)))
+
+\tdx{nat_case_def} nat_case(a,b,k) ==
+ THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))
+
+\tdx{nat_0I} 0 : nat
+\tdx{nat_succI} n : nat ==> succ(n) : nat
+
+\tdx{nat_induct}
+ [| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x))
+ |] ==> P(n)
+
+\tdx{nat_case_0} nat_case(a,b,0) = a
+\tdx{nat_case_succ} nat_case(a,b,succ(m)) = b(m)
+
+\tdx{add_0} 0 #+ n = n
+\tdx{add_succ} succ(m) #+ n = succ(m #+ n)
+
+\tdx{mult_type} [| m:nat; n:nat |] ==> m #* n : nat
+\tdx{mult_0} 0 #* n = 0
+\tdx{mult_succ} succ(m) #* n = n #+ (m #* n)
+\tdx{mult_commute} [| m:nat; n:nat |] ==> m #* n = n #* m
+\tdx{add_mult_dist} [| m:nat; k:nat |] ==> (m #+ n) #* k = (m #* k){\thinspace}#+{\thinspace}(n #* k)
+\tdx{mult_assoc}
+ [| m:nat; n:nat; k:nat |] ==> (m #* n) #* k = m #* (n #* k)
+\tdx{mod_quo_equality}
+ [| 0:n; m:nat; n:nat |] ==> (m div n)#*n #+ m mod n = m
+\end{ttbox}
+\caption{The natural numbers} \label{zf-nat}
+\end{figure}
+
+Theory \thydx{Nat} defines the natural numbers and mathematical
+induction, along with a case analysis operator. The set of natural
+numbers, here called \texttt{nat}, is known in set theory as the ordinal~$\omega$.
+
+Theory \thydx{Arith} develops arithmetic on the natural numbers
+(Fig.\ts\ref{zf-nat}). Addition, multiplication and subtraction are defined
+by primitive recursion. Division and remainder are defined by repeated
+subtraction, which requires well-founded recursion; the termination argument
+relies on the divisor's being non-zero. Many properties are proved:
+commutative, associative and distributive laws, identity and cancellation
+laws, etc. The most interesting result is perhaps the theorem $a \bmod b +
+(a/b)\times b = a$.
+
+Theory \thydx{Univ} defines a `universe' $\texttt{univ}(A)$, which is used by
+the datatype package. This set contains $A$ and the
+natural numbers. Vitally, it is closed under finite products: ${\tt
+ univ}(A)\times{\tt univ}(A)\subseteq{\tt univ}(A)$. This theory also
+defines the cumulative hierarchy of axiomatic set theory, which
+traditionally is written $V@\alpha$ for an ordinal~$\alpha$. The
+`universe' is a simple generalization of~$V@\omega$.
+
+Theory \thydx{QUniv} defines a `universe' ${\tt quniv}(A)$, which is used by
+the datatype package to construct codatatypes such as streams. It is
+analogous to ${\tt univ}(A)$ (and is defined in terms of it) but is closed
+under the non-standard product and sum.
+
+Theory \texttt{Finite} (Figure~\ref{zf-fin}) defines the finite set operator;
+${\tt Fin}(A)$ is the set of all finite sets over~$A$. The theory employs
+Isabelle's inductive definition package, which proves various rules
+automatically. The induction rule shown is stronger than the one proved by
+the package. The theory also defines the set of all finite functions
+between two given sets.
+
+\begin{figure}
+\begin{ttbox}
+\tdx{Fin.emptyI} 0 : Fin(A)
+\tdx{Fin.consI} [| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)
+
+\tdx{Fin_induct}
+ [| b: Fin(A);
+ P(0);
+ !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y))
+ |] ==> P(b)
+
+\tdx{Fin_mono} A<=B ==> Fin(A) <= Fin(B)
+\tdx{Fin_UnI} [| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)
+\tdx{Fin_UnionI} C : Fin(Fin(A)) ==> Union(C) : Fin(A)
+\tdx{Fin_subset} [| c<=b; b: Fin(A) |] ==> c: Fin(A)
+\end{ttbox}
+\caption{The finite set operator} \label{zf-fin}
+\end{figure}
+
+\begin{figure}
+\begin{constants}
+ \it symbol & \it meta-type & \it priority & \it description \\
+ \cdx{list} & $i\To i$ && lists over some set\\
+ \cdx{list_case} & $[i, [i,i]\To i, i] \To i$ && conditional for $list(A)$ \\
+ \cdx{map} & $[i\To i, i] \To i$ & & mapping functional\\
+ \cdx{length} & $i\To i$ & & length of a list\\
+ \cdx{rev} & $i\To i$ & & reverse of a list\\
+ \tt \at & $[i,i]\To i$ & Right 60 & append for lists\\
+ \cdx{flat} & $i\To i$ & & append of list of lists
+\end{constants}
+
+\underscoreon %%because @ is used here
+\begin{ttbox}
+\tdx{NilI} Nil : list(A)
+\tdx{ConsI} [| a: A; l: list(A) |] ==> Cons(a,l) : list(A)
+
+\tdx{List.induct}
+ [| l: list(A);
+ P(Nil);
+ !!x y. [| x: A; y: list(A); P(y) |] ==> P(Cons(x,y))
+ |] ==> P(l)
+
+\tdx{Cons_iff} Cons(a,l)=Cons(a',l') <-> a=a' & l=l'
+\tdx{Nil_Cons_iff} ~ Nil=Cons(a,l)
+
+\tdx{list_mono} A<=B ==> list(A) <= list(B)
+
+\tdx{map_ident} l: list(A) ==> map(\%u. u, l) = l
+\tdx{map_compose} l: list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)
+\tdx{map_app_distrib} xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
+\tdx{map_type}
+ [| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)
+\tdx{map_flat}
+ ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))
+\end{ttbox}
+\caption{Lists} \label{zf-list}
+\end{figure}
+
+
+Figure~\ref{zf-list} presents the set of lists over~$A$, ${\tt list}(A)$. The
+definition employs Isabelle's datatype package, which defines the introduction
+and induction rules automatically, as well as the constructors, case operator
+(\verb|list_case|) and recursion operator. The theory then defines the usual
+list functions by primitive recursion. See theory \texttt{List}.
+
+
+\section{Simplification and classical reasoning}
+
+{\ZF} inherits simplification from {\FOL} but adopts it for set theory. The
+extraction of rewrite rules takes the {\ZF} primitives into account. It can
+strip bounded universal quantifiers from a formula; for example, ${\forall
+ x\in A. f(x)=g(x)}$ yields the conditional rewrite rule $x\in A \Imp
+f(x)=g(x)$. Given $a\in\{x\in A. P(x)\}$ it extracts rewrite rules from $a\in
+A$ and~$P(a)$. It can also break down $a\in A\int B$ and $a\in A-B$.
+
+Simplification tactics tactics such as \texttt{Asm_simp_tac} and
+\texttt{Full_simp_tac} use the default simpset (\texttt{simpset()}), which
+works for most purposes. A small simplification set for set theory is
+called~\ttindexbold{ZF_ss}, and you can even use \ttindex{FOL_ss} as a minimal
+starting point. \texttt{ZF_ss} contains congruence rules for all the binding
+operators of {\ZF}\@. It contains all the conversion rules, such as
+\texttt{fst} and \texttt{snd}, as well as the rewrites shown in
+Fig.\ts\ref{zf-simpdata}. See the file \texttt{ZF/simpdata.ML} for a fuller
+list.
+
+As for the classical reasoner, tactics such as \texttt{Blast_tac} and {\tt
+ Best_tac} refer to the default claset (\texttt{claset()}). This works for
+most purposes. Named clasets include \ttindexbold{ZF_cs} (basic set theory)
+and \ttindexbold{le_cs} (useful for reasoning about the relations $<$ and
+$\le$). You can use \ttindex{FOL_cs} as a minimal basis for building your own
+clasets. See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
+{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
+
+
+\begin{figure}
+\begin{eqnarray*}
+ a\in \emptyset & \bimp & \bot\\
+ a \in A \un B & \bimp & a\in A \disj a\in B\\
+ a \in A \int B & \bimp & a\in A \conj a\in B\\
+ a \in A-B & \bimp & a\in A \conj \neg (a\in B)\\
+ \pair{a,b}\in {\tt Sigma}(A,B)
+ & \bimp & a\in A \conj b\in B(a)\\
+ a \in {\tt Collect}(A,P) & \bimp & a\in A \conj P(a)\\
+ (\forall x \in \emptyset. P(x)) & \bimp & \top\\
+ (\forall x \in A. \top) & \bimp & \top
+\end{eqnarray*}
+\caption{Some rewrite rules for set theory} \label{zf-simpdata}
+\end{figure}
+
+
+\section{Datatype definitions}
+\label{sec:ZF:datatype}
+\index{*datatype|(}
+
+The \ttindex{datatype} definition package of \ZF\ constructs inductive
+datatypes similar to those of \ML. It can also construct coinductive
+datatypes (codatatypes), which are non-well-founded structures such as
+streams. It defines the set using a fixed-point construction and proves
+induction rules, as well as theorems for recursion and case combinators. It
+supplies mechanisms for reasoning about freeness. The datatype package can
+handle both mutual and indirect recursion.
+
+
+\subsection{Basics}
+\label{subsec:datatype:basics}
+
+A \texttt{datatype} definition has the following form:
+\[
+\begin{array}{llcl}
+\mathtt{datatype} & t@1(A@1,\ldots,A@h) & = &
+ constructor^1@1 ~\mid~ \ldots ~\mid~ constructor^1@{k@1} \\
+ & & \vdots \\
+\mathtt{and} & t@n(A@1,\ldots,A@h) & = &
+ constructor^n@1~ ~\mid~ \ldots ~\mid~ constructor^n@{k@n}
+\end{array}
+\]
+Here $t@1$, \ldots,~$t@n$ are identifiers and $A@1$, \ldots,~$A@h$ are
+variables: the datatype's parameters. Each constructor specification has the
+form \dquotesoff
+\[ C \hbox{\tt~( } \hbox{\tt"} x@1 \hbox{\tt:} T@1 \hbox{\tt"},\;
+ \ldots,\;
+ \hbox{\tt"} x@m \hbox{\tt:} T@m \hbox{\tt"}
+ \hbox{\tt~)}
+\]
+Here $C$ is the constructor name, and variables $x@1$, \ldots,~$x@m$ are the
+constructor arguments, belonging to the sets $T@1$, \ldots, $T@m$,
+respectively. Typically each $T@j$ is either a constant set, a datatype
+parameter (one of $A@1$, \ldots, $A@h$) or a recursive occurrence of one of
+the datatypes, say $t@i(A@1,\ldots,A@h)$. More complex possibilities exist,
+but they are much harder to realize. Often, additional information must be
+supplied in the form of theorems.
+
+A datatype can occur recursively as the argument of some function~$F$. This
+is called a {\em nested} (or \emph{indirect}) occurrence. It is only allowed
+if the datatype package is given a theorem asserting that $F$ is monotonic.
+If the datatype has indirect occurrences, then Isabelle/ZF does not support
+recursive function definitions.
+
+A simple example of a datatype is \texttt{list}, which is built-in, and is
+defined by
+\begin{ttbox}
+consts list :: i=>i
+datatype "list(A)" = Nil | Cons ("a:A", "l: list(A)")
+\end{ttbox}
+Note that the datatype operator must be declared as a constant first.
+However, the package declares the constructors. Here, \texttt{Nil} gets type
+$i$ and \texttt{Cons} gets type $[i,i]\To i$.
+
+Trees and forests can be modelled by the mutually recursive datatype
+definition
+\begin{ttbox}
+consts tree, forest, tree_forest :: i=>i
+datatype "tree(A)" = Tcons ("a: A", "f: forest(A)")
+and "forest(A)" = Fnil | Fcons ("t: tree(A)", "f: forest(A)")
+\end{ttbox}
+Here $\texttt{tree}(A)$ is the set of trees over $A$, $\texttt{forest}(A)$ is
+the set of forests over $A$, and $\texttt{tree_forest}(A)$ is the union of
+the previous two sets. All three operators must be declared first.
+
+The datatype \texttt{term}, which is defined by
+\begin{ttbox}
+consts term :: i=>i
+datatype "term(A)" = Apply ("a: A", "l: list(term(A))")
+ monos "[list_mono]"
+\end{ttbox}
+is an example of nested recursion. (The theorem \texttt{list_mono} is proved
+in file \texttt{List.ML}, and the \texttt{term} example is devaloped in theory
+\thydx{ex/Term}.)
+
+\subsubsection{Freeness of the constructors}
+
+Constructors satisfy {\em freeness} properties. Constructions are distinct,
+for example $\texttt{Nil}\not=\texttt{Cons}(a,l)$, and they are injective, for
+example $\texttt{Cons}(a,l)=\texttt{Cons}(a',l') \bimp a=a' \conj l=l'$.
+Because the number of freeness is quadratic in the number of constructors, the
+datatype package does not prove them, but instead provides several means of
+proving them dynamically. For the \texttt{list} datatype, freeness reasoning
+can be done in two ways: by simplifying with the theorems
+\texttt{list.free_iffs} or by invoking the classical reasoner with
+\texttt{list.free_SEs} as safe elimination rules. Occasionally this exposes
+the underlying representation of some constructor, which can be rectified
+using the command \hbox{\tt fold_tac list.con_defs}.
+
+\subsubsection{Structural induction}
+
+The datatype package also provides structural induction rules. For datatypes
+without mutual or nested recursion, the rule has the form exemplified by
+\texttt{list.induct} in Fig.\ts\ref{zf-list}. For mutually recursive
+datatypes, the induction rule is supplied in two forms. Consider datatype
+\texttt{TF}. The rule \texttt{tree_forest.induct} performs induction over a
+single predicate~\texttt{P}, which is presumed to be defined for both trees
+and forests:
+\begin{ttbox}
+[| x : tree_forest(A);
+ !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); P(Fnil);
+ !!f t. [| t : tree(A); P(t); f : forest(A); P(f) |]
+ ==> P(Fcons(t, f))
+|] ==> P(x)
+\end{ttbox}
+The rule \texttt{tree_forest.mutual_induct} performs induction over two
+distinct predicates, \texttt{P_tree} and \texttt{P_forest}.
+\begin{ttbox}
+[| !!a f.
+ [| a : A; f : forest(A); P_forest(f) |] ==> P_tree(Tcons(a, f));
+ P_forest(Fnil);
+ !!f t. [| t : tree(A); P_tree(t); f : forest(A); P_forest(f) |]
+ ==> P_forest(Fcons(t, f))
+|] ==> (ALL za. za : tree(A) --> P_tree(za)) &
+ (ALL za. za : forest(A) --> P_forest(za))
+\end{ttbox}
+
+For datatypes with nested recursion, such as the \texttt{term} example from
+above, things are a bit more complicated. The rule \texttt{term.induct}
+refers to the monotonic operator, \texttt{list}:
+\begin{ttbox}
+[| x : term(A);
+ !!a l. [| a : A; l : list(Collect(term(A), P)) |] ==> P(Apply(a, l))
+|] ==> P(x)
+\end{ttbox}
+The file \texttt{ex/Term.ML} derives two higher-level induction rules, one of
+which is particularly useful for proving equations:
+\begin{ttbox}
+[| t : term(A);
+ !!x zs. [| x : A; zs : list(term(A)); map(f, zs) = map(g, zs) |]
+ ==> f(Apply(x, zs)) = g(Apply(x, zs))
+|] ==> f(t) = g(t)
+\end{ttbox}
+How this can be generalized to other nested datatypes is a matter for future
+research.
+
+
+\subsubsection{The \texttt{case} operator}
+
+The package defines an operator for performing case analysis over the
+datatype. For \texttt{list}, it is called \texttt{list_case} and satisfies
+the equations
+\begin{ttbox}
+list_case(f_Nil, f_Cons, []) = f_Nil
+list_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)
+\end{ttbox}
+Here \texttt{f_Nil} is the value to return if the argument is \texttt{Nil} and
+\texttt{f_Cons} is a function that computes the value to return if the
+argument has the form $\texttt{Cons}(a,l)$. The function can be expressed as
+an abstraction, over patterns if desired (\S\ref{sec:pairs}).
+
+For mutually recursive datatypes, there is a single \texttt{case} operator.
+In the tree/forest example, the constant \texttt{tree_forest_case} handles all
+of the constructors of the two datatypes.
+
+
+
+
+\subsection{Defining datatypes}
+
+The theory syntax for datatype definitions is shown in
+Fig.~\ref{datatype-grammar}. In order to be well-formed, a datatype
+definition has to obey the rules stated in the previous section. As a result
+the theory is extended with the new types, the constructors, and the theorems
+listed in the previous section. The quotation marks are necessary because
+they enclose general Isabelle formul\ae.
+
+\begin{figure}
+\begin{rail}
+datatype : ( 'datatype' | 'codatatype' ) datadecls;
+
+datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and'
+ ;
+constructor : name ( () | consargs ) ( () | ( '(' mixfix ')' ) )
+ ;
+consargs : '(' ('"' var ':' term '"' + ',') ')'
+ ;
+\end{rail}
+\caption{Syntax of datatype declarations}
+\label{datatype-grammar}
+\end{figure}
+
+Codatatypes are declared like datatypes and are identical to them in every
+respect except that they have a coinduction rule instead of an induction rule.
+Note that while an induction rule has the effect of limiting the values
+contained in the set, a coinduction rule gives a way of constructing new
+values of the set.
+
+Most of the theorems about datatypes become part of the default simpset. You
+never need to see them again because the simplifier applies them
+automatically. Add freeness properties (\texttt{free_iffs}) to the simpset
+when you want them. Induction or exhaustion are usually invoked by hand,
+usually via these special-purpose tactics:
+\begin{ttdescription}
+\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] applies structural
+ induction on variable $x$ to subgoal $i$, provided the type of $x$ is a
+ datatype. The induction variable should not occur among other assumptions
+ of the subgoal.
+\end{ttdescription}
+In some cases, induction is overkill and a case distinction over all
+constructors of the datatype suffices.
+\begin{ttdescription}
+\item[\ttindexbold{exhaust_tac} {\tt"}$x${\tt"} $i$]
+ performs an exhaustive case analysis for the variable~$x$.
+\end{ttdescription}
+
+Both tactics can only be applied to a variable, whose typing must be given in
+some assumption, for example the assumption \texttt{x:\ list(A)}. The tactics
+also work for the natural numbers (\texttt{nat}) and disjoint sums, although
+these sets were not defined using the datatype package. (Disjoint sums are
+not recursive, so only \texttt{exhaust_tac} is available.)
+
+\bigskip
+Here are some more details for the technically minded. Processing the
+theory file produces an \ML\ structure which, in addition to the usual
+components, contains a structure named $t$ for each datatype $t$ defined in
+the file. Each structure $t$ contains the following elements:
+\begin{ttbox}
+val intrs : thm list \textrm{the introduction rules}
+val elim : thm \textrm{the elimination (case analysis) rule}
+val induct : thm \textrm{the standard induction rule}
+val mutual_induct : thm \textrm{the mutual induction rule, or \texttt{True}}
+val case_eqns : thm list \textrm{equations for the case operator}
+val recursor_eqns : thm list \textrm{equations for the recursor}
+val con_defs : thm list \textrm{definitions of the case operator and constructors}
+val free_iffs : thm list \textrm{logical equivalences for proving freeness}
+val free_SEs : thm list \textrm{elimination rules for proving freeness}
+val mk_free : string -> thm \textrm{A function for proving freeness theorems}
+val mk_cases : thm list -> string -> thm \textrm{case analysis, see below}
+val defs : thm list \textrm{definitions of operators}
+val bnd_mono : thm list \textrm{monotonicity property}
+val dom_subset : thm list \textrm{inclusion in `bounding set'}
+\end{ttbox}
+Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
+example, the \texttt{list} datatype's introduction rules are bound to the
+identifiers \texttt{Nil_I} and \texttt{Cons_I}.
+
+For a codatatype, the component \texttt{coinduct} is the coinduction rule,
+replacing the \texttt{induct} component.
+
+See the theories \texttt{ex/Ntree} and \texttt{ex/Brouwer} for examples of
+infinitely branching datatypes. See theory \texttt{ex/LList} for an example
+of a codatatype. Some of these theories illustrate the use of additional,
+undocumented features of the datatype package. Datatype definitions are
+reduced to inductive definitions, and the advanced features should be
+understood in that light.
+
+
+\subsection{Examples}
+
+\subsubsection{The datatype of binary trees}
+
+Let us define the set $\texttt{bt}(A)$ of binary trees over~$A$. The theory
+must contain these lines:
+\begin{ttbox}
+consts bt :: i=>i
+datatype "bt(A)" = Lf | Br ("a: A", "t1: bt(A)", "t2: bt(A)")
+\end{ttbox}
+After loading the theory, we can prove, for example, that no tree equals its
+left branch. To ease the induction, we state the goal using quantifiers.
+\begin{ttbox}
+Goal "l : bt(A) ==> ALL x r. Br(x,l,r) ~= l";
+{\out Level 0}
+{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
+{\out 1. l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
+\end{ttbox}
+This can be proved by the structural induction tactic:
+\begin{ttbox}
+by (induct_tac "l" 1);
+{\out Level 1}
+{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
+{\out 1. ALL x r. Br(x, Lf, r) ~= Lf}
+{\out 2. !!a t1 t2.}
+{\out [| a : A; t1 : bt(A); ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}
+{\out ALL x r. Br(x, t2, r) ~= t2 |]}
+{\out ==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)}
+\end{ttbox}
+Both subgoals are proved using the simplifier. Tactic
+\texttt{asm_full_simp_tac} is used, rewriting the assumptions.
+This is because simplification using the freeness properties can unfold the
+definition of constructor~\texttt{Br}, so we arrange that all occurrences are
+unfolded.
+\begin{ttbox}
+by (ALLGOALS (asm_full_simp_tac (simpset() addsimps bt.free_iffs)));
+{\out Level 2}
+{\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
+{\out No subgoals!}
+\end{ttbox}
+To remove the quantifiers from the induction formula, we save the theorem using
+\ttindex{qed_spec_mp}.
+\begin{ttbox}
+qed_spec_mp "Br_neq_left";
+{\out val Br_neq_left = "?l : bt(?A) ==> Br(?x, ?l, ?r) ~= ?l" : thm}
+\end{ttbox}
+
+When there are only a few constructors, we might prefer to prove the freenness
+theorems for each constructor. This is trivial, using the function given us
+for that purpose:
+\begin{ttbox}
+val Br_iff = bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";
+{\out val Br_iff =}
+{\out "Br(?a, ?l, ?r) = Br(?a', ?l', ?r') <->}
+{\out ?a = ?a' & ?l = ?l' & ?r = ?r'" : thm}
+\end{ttbox}
+
+The purpose of \ttindex{mk_cases} is to generate simplified instances of the
+elimination (case analysis) rule. Its theorem list argument is a list of
+constructor definitions, which it uses for freeness reasoning. For example,
+this instance of the elimination rule propagates type-checking information
+from the premise $\texttt{Br}(a,l,r)\in\texttt{bt}(A)$:
+\begin{ttbox}
+val BrE = bt.mk_cases bt.con_defs "Br(a,l,r) : bt(A)";
+{\out val BrE =}
+{\out "[| Br(?a, ?l, ?r) : bt(?A);}
+{\out [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |] ==> ?Q" : thm}
+\end{ttbox}
+
+
+\subsubsection{Mixfix syntax in datatypes}
+
+Mixfix syntax is sometimes convenient. The theory \texttt{ex/PropLog} makes a
+deep embedding of propositional logic:
+\begin{ttbox}
+consts prop :: i
+datatype "prop" = Fls
+ | Var ("n: nat") ("#_" [100] 100)
+ | "=>" ("p: prop", "q: prop") (infixr 90)
+\end{ttbox}
+The second constructor has a special $\#n$ syntax, while the third constructor
+is an infixed arrow.
+
+
+\subsubsection{A giant enumeration type}
+
+This example shows a datatype that consists of 60 constructors:
+\begin{ttbox}
+consts enum :: i
+datatype
+ "enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09
+ | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19
+ | C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29
+ | C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39
+ | C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49
+ | C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59
+end
+\end{ttbox}
+The datatype package scales well. Even though all properties are proved
+rather than assumed, full processing of this definition takes under 15 seconds
+(on a 300 MHz Pentium). The constructors have a balanced representation,
+essentially binary notation, so freeness properties can be proved fast.
+\begin{ttbox}
+Goal "C00 ~= C01";
+by (simp_tac (simpset() addsimps enum.free_iffs) 1);
+\end{ttbox}
+You need not derive such inequalities explicitly. The simplifier will dispose
+of them automatically, given the theorem list \texttt{free_iffs}.
+
+\index{*datatype|)}
+
+
+\subsection{Recursive function definitions}\label{sec:ZF:recursive}
+\index{recursive functions|see{recursion}}
+\index{*primrec|(}
+
+Datatypes come with a uniform way of defining functions, {\bf primitive
+ recursion}. Such definitions rely on the recursion operator defined by the
+datatype package. Isabelle proves the desired recursion equations as
+theorems.
+
+In principle, one could introduce primitive recursive functions by asserting
+their reduction rules as new axioms. Here is a dangerous way of defining the
+append function for lists:
+\begin{ttbox}\slshape
+consts "\at" :: [i,i]=>i (infixr 60)
+rules
+ app_Nil "[] \at ys = ys"
+ app_Cons "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
+\end{ttbox}
+Asserting axioms brings the danger of accidentally asserting nonsense. It
+should be avoided at all costs!
+
+The \ttindex{primrec} declaration is a safe means of defining primitive
+recursive functions on datatypes:
+\begin{ttbox}
+consts "\at" :: [i,i]=>i (infixr 60)
+primrec
+ "[] \at ys = ys"
+ "(Cons(a,l)) \at ys = Cons(a, l \at ys)"
+\end{ttbox}
+Isabelle will now check that the two rules do indeed form a primitive
+recursive definition. For example, the declaration
+\begin{ttbox}
+primrec
+ "[] \at ys = us"
+\end{ttbox}
+is rejected with an error message ``\texttt{Extra variables on rhs}''.
+
+
+\subsubsection{Syntax of recursive definitions}
+
+The general form of a primitive recursive definition is
+\begin{ttbox}
+primrec
+ {\it reduction rules}
+\end{ttbox}
+where \textit{reduction rules} specify one or more equations of the form
+\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
+\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
+contains only the free variables on the left-hand side, and all recursive
+calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.
+There must be at most one reduction rule for each constructor. The order is
+immaterial. For missing constructors, the function is defined to return zero.
+
+All reduction rules are added to the default simpset.
+If you would like to refer to some rule by name, then you must prefix
+the rule with an identifier. These identifiers, like those in the
+\texttt{rules} section of a theory, will be visible at the \ML\ level.
+
+The reduction rules for {\tt\at} become part of the default simpset, which
+leads to short proof scripts:
+\begin{ttbox}\underscoreon
+Goal "xs: list(A) ==> (xs @ ys) @ zs = xs @ (ys @ zs)";
+by (induct\_tac "xs" 1);
+by (ALLGOALS Asm\_simp\_tac);
+\end{ttbox}
+
+You can even use the \texttt{primrec} form with non-recursive datatypes and
+with codatatypes. Recursion is not allowed, but it provides a convenient
+syntax for defining functions by cases.
+
+
+\subsubsection{Example: varying arguments}
+
+All arguments, other than the recursive one, must be the same in each equation
+and in each recursive call. To get around this restriction, use explict
+$\lambda$-abstraction and function application. Here is an example, drawn
+from the theory \texttt{Resid/Substitution}. The type of redexes is declared
+as follows:
+\begin{ttbox}
+consts redexes :: i
+datatype
+ "redexes" = Var ("n: nat")
+ | Fun ("t: redexes")
+ | App ("b:bool" ,"f:redexes" , "a:redexes")
+\end{ttbox}
+
+The function \texttt{lift} takes a second argument, $k$, which varies in
+recursive calls.
+\begin{ttbox}
+primrec
+ "lift(Var(i)) = (lam k:nat. if i<k then Var(i) else Var(succ(i)))"
+ "lift(Fun(t)) = (lam k:nat. Fun(lift(t) ` succ(k)))"
+ "lift(App(b,f,a)) = (lam k:nat. App(b, lift(f)`k, lift(a)`k))"
+\end{ttbox}
+Now \texttt{lift(r)`k} satisfies the required recursion equations.
+
+\index{recursion!primitive|)}
+\index{*primrec|)}
+
+
+\section{Inductive and coinductive definitions}
+\index{*inductive|(}
+\index{*coinductive|(}
+
+An {\bf inductive definition} specifies the least set~$R$ closed under given
+rules. (Applying a rule to elements of~$R$ yields a result within~$R$.) For
+example, a structural operational semantics is an inductive definition of an
+evaluation relation. Dually, a {\bf coinductive definition} specifies the
+greatest set~$R$ consistent with given rules. (Every element of~$R$ can be
+seen as arising by applying a rule to elements of~$R$.) An important example
+is using bisimulation relations to formalise equivalence of processes and
+infinite data structures.
+
+A theory file may contain any number of inductive and coinductive
+definitions. They may be intermixed with other declarations; in
+particular, the (co)inductive sets {\bf must} be declared separately as
+constants, and may have mixfix syntax or be subject to syntax translations.
+
+Each (co)inductive definition adds definitions to the theory and also
+proves some theorems. Each definition creates an \ML\ structure, which is a
+substructure of the main theory structure.
+This package is described in detail in a separate paper,%
+\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
+ distributed with Isabelle as \emph{A Fixedpoint Approach to
+ (Co)Inductive and (Co)Datatype Definitions}.} %
+which you might refer to for background information.
+
+
+\subsection{The syntax of a (co)inductive definition}
+An inductive definition has the form
+\begin{ttbox}
+inductive
+ domains {\it domain declarations}
+ intrs {\it introduction rules}
+ monos {\it monotonicity theorems}
+ con_defs {\it constructor definitions}
+ type_intrs {\it introduction rules for type-checking}
+ type_elims {\it elimination rules for type-checking}
+\end{ttbox}
+A coinductive definition is identical, but starts with the keyword
+{\tt coinductive}.
+
+The {\tt monos}, {\tt con\_defs}, {\tt type\_intrs} and {\tt type\_elims}
+sections are optional. If present, each is specified either as a list of
+identifiers or as a string. If the latter, then the string must be a valid
+\textsc{ml} expression of type {\tt thm list}. The string is simply inserted
+into the {\tt _thy.ML} file; if it is ill-formed, it will trigger \textsc{ml}
+error messages. You can then inspect the file on the temporary directory.
+
+\begin{description}
+\item[\it domain declarations] consist of one or more items of the form
+ {\it string\/}~{\tt <=}~{\it string}, associating each recursive set with
+ its domain. (The domain is some existing set that is large enough to
+ hold the new set being defined.)
+
+\item[\it introduction rules] specify one or more introduction rules in
+ the form {\it ident\/}~{\it string}, where the identifier gives the name of
+ the rule in the result structure.
+
+\item[\it monotonicity theorems] are required for each operator applied to
+ a recursive set in the introduction rules. There \textbf{must} be a theorem
+ of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each premise $t\in M(R_i)$
+ in an introduction rule!
+
+\item[\it constructor definitions] contain definitions of constants
+ appearing in the introduction rules. The (co)datatype package supplies
+ the constructors' definitions here. Most (co)inductive definitions omit
+ this section; one exception is the primitive recursive functions example;
+ see theory \texttt{ex/Primrec}.
+
+\item[\it type\_intrs] consists of introduction rules for type-checking the
+ definition: for demonstrating that the new set is included in its domain.
+ (The proof uses depth-first search.)
+
+\item[\it type\_elims] consists of elimination rules for type-checking the
+ definition. They are presumed to be safe and are applied as often as
+ possible prior to the {\tt type\_intrs} search.
+\end{description}
+
+The package has a few restrictions:
+\begin{itemize}
+\item The theory must separately declare the recursive sets as
+ constants.
+
+\item The names of the recursive sets must be identifiers, not infix
+operators.
+
+\item Side-conditions must not be conjunctions. However, an introduction rule
+may contain any number of side-conditions.
+
+\item Side-conditions of the form $x=t$, where the variable~$x$ does not
+ occur in~$t$, will be substituted through the rule \verb|mutual_induct|.
+\end{itemize}
+
+
+\subsection{Example of an inductive definition}
+
+Two declarations, included in a theory file, define the finite powerset
+operator. First we declare the constant~\texttt{Fin}. Then we declare it
+inductively, with two introduction rules:
+\begin{ttbox}
+consts Fin :: i=>i
+
+inductive
+ domains "Fin(A)" <= "Pow(A)"
+ intrs
+ emptyI "0 : Fin(A)"
+ consI "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"
+ type_intrs empty_subsetI, cons_subsetI, PowI
+ type_elims "[make_elim PowD]"
+\end{ttbox}
+The resulting theory structure contains a substructure, called~\texttt{Fin}.
+It contains the \texttt{Fin}$~A$ introduction rules as the list
+\texttt{Fin.intrs}, and also individually as \texttt{Fin.emptyI} and
+\texttt{Fin.consI}. The induction rule is \texttt{Fin.induct}.
+
+The chief problem with making (co)inductive definitions involves type-checking
+the rules. Sometimes, additional theorems need to be supplied under
+\texttt{type_intrs} or \texttt{type_elims}. If the package fails when trying
+to prove your introduction rules, then set the flag \ttindexbold{trace_induct}
+to \texttt{true} and try again. (See the manual \emph{A Fixedpoint Approach
+ \ldots} for more discussion of type-checking.)
+
+In the example above, $\texttt{Pow}(A)$ is given as the domain of
+$\texttt{Fin}(A)$, for obviously every finite subset of~$A$ is a subset
+of~$A$. However, the inductive definition package can only prove that given a
+few hints.
+Here is the output that results (with the flag set) when the
+\texttt{type_intrs} and \texttt{type_elims} are omitted from the inductive
+definition above:
+\begin{ttbox}
+Inductive definition Finite.Fin
+Fin(A) ==
+lfp(Pow(A),
+ \%X. {z: Pow(A) . z = 0 | (EX a b. z = cons(a, b) & a : A & b : X)})
+ Proving monotonicity...
+\ttbreak
+ Proving the introduction rules...
+The typechecking subgoal:
+0 : Fin(A)
+ 1. 0 : Pow(A)
+\ttbreak
+The subgoal after monos, type_elims:
+0 : Fin(A)
+ 1. 0 : Pow(A)
+*** prove_goal: tactic failed
+\end{ttbox}
+We see the need to supply theorems to let the package prove
+$\emptyset\in\texttt{Pow}(A)$. Restoring the \texttt{type_intrs} but not the
+\texttt{type_elims}, we again get an error message:
+\begin{ttbox}
+The typechecking subgoal:
+0 : Fin(A)
+ 1. 0 : Pow(A)
+\ttbreak
+The subgoal after monos, type_elims:
+0 : Fin(A)
+ 1. 0 : Pow(A)
+\ttbreak
+The typechecking subgoal:
+cons(a, b) : Fin(A)
+ 1. [| a : A; b : Fin(A) |] ==> cons(a, b) : Pow(A)
+\ttbreak
+The subgoal after monos, type_elims:
+cons(a, b) : Fin(A)
+ 1. [| a : A; b : Pow(A) |] ==> cons(a, b) : Pow(A)
+*** prove_goal: tactic failed
+\end{ttbox}
+The first rule has been type-checked, but the second one has failed. The
+simplest solution to such problems is to prove the failed subgoal separately
+and to supply it under \texttt{type_intrs}. The solution actually used is
+to supply, under \texttt{type_elims}, a rule that changes
+$b\in\texttt{Pow}(A)$ to $b\subseteq A$; together with \texttt{cons_subsetI}
+and \texttt{PowI}, it is enough to complete the type-checking.
+
+
+
+\subsection{Further examples}
+
+An inductive definition may involve arbitrary monotonic operators. Here is a
+standard example: the accessible part of a relation. Note the use
+of~\texttt{Pow} in the introduction rule and the corresponding mention of the
+rule \verb|Pow_mono| in the \texttt{monos} list. If the desired rule has a
+universally quantified premise, usually the effect can be obtained using
+\texttt{Pow}.
+\begin{ttbox}
+consts acc :: i=>i
+inductive
+ domains "acc(r)" <= "field(r)"
+ intrs
+ vimage "[| r-``{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"
+ monos Pow_mono
+\end{ttbox}
+
+Finally, here is a coinductive definition. It captures (as a bisimulation)
+the notion of equality on lazy lists, which are first defined as a codatatype:
+\begin{ttbox}
+consts llist :: i=>i
+codatatype "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")
+\ttbreak
+
+consts lleq :: i=>i
+coinductive
+ domains "lleq(A)" <= "llist(A) * llist(A)"
+ intrs
+ LNil "<LNil, LNil> : lleq(A)"
+ LCons "[| a:A; <l,l'>: lleq(A) |]
+ ==> <LCons(a,l), LCons(a,l')>: lleq(A)"
+ type_intrs "llist.intrs"
+\end{ttbox}
+This use of \texttt{type_intrs} is typical: the relation concerns the
+codatatype \texttt{llist}, so naturally the introduction rules for that
+codatatype will be required for type-checking the rules.
+
+The Isabelle distribution contains many other inductive definitions. Simple
+examples are collected on subdirectory \texttt{ZF/ex}. The directory
+\texttt{Coind} and the theory \texttt{ZF/ex/LList} contain coinductive
+definitions. Larger examples may be found on other subdirectories of
+\texttt{ZF}, such as \texttt{IMP}, and \texttt{Resid}.
+
+
+\subsection{The result structure}
+
+Each (co)inductive set defined in a theory file generates an \ML\ substructure
+having the same name. The the substructure contains the following elements:
+
+\begin{ttbox}
+val intrs : thm list \textrm{the introduction rules}
+val elim : thm \textrm{the elimination (case analysis) rule}
+val mk_cases : thm list -> string -> thm \textrm{case analysis, see below}
+val induct : thm \textrm{the standard induction rule}
+val mutual_induct : thm \textrm{the mutual induction rule, or \texttt{True}}
+val defs : thm list \textrm{definitions of operators}
+val bnd_mono : thm list \textrm{monotonicity property}
+val dom_subset : thm list \textrm{inclusion in `bounding set'}
+\end{ttbox}
+Furthermore there is the theorem $C$\texttt{_I} for every constructor~$C$; for
+example, the \texttt{list} datatype's introduction rules are bound to the
+identifiers \texttt{Nil_I} and \texttt{Cons_I}.
+
+For a codatatype, the component \texttt{coinduct} is the coinduction rule,
+replacing the \texttt{induct} component.
+
+Recall that \ttindex{mk_cases} generates simplified instances of the
+elimination (case analysis) rule. It is as useful for inductive definitions
+as it is for datatypes. There are many examples in the theory
+\texttt{ex/Comb}, which is discussed at length
+elsewhere~\cite{paulson-generic}. The theory first defines the datatype
+\texttt{comb} of combinators:
+\begin{ttbox}
+consts comb :: i
+datatype "comb" = K
+ | S
+ | "#" ("p: comb", "q: comb") (infixl 90)
+\end{ttbox}
+The theory goes on to define contraction and parallel contraction
+inductively. Then the file \texttt{ex/Comb.ML} defines special cases of
+contraction using \texttt{mk_cases}:
+\begin{ttbox}
+val K_contractE = contract.mk_cases comb.con_defs "K -1-> r";
+{\out val K_contractE = "K -1-> ?r ==> ?Q" : thm}
+\end{ttbox}
+We can read this as saying that the combinator \texttt{K} cannot reduce to
+anything. Similar elimination rules for \texttt{S} and application are also
+generated and are supplied to the classical reasoner. Note that
+\texttt{comb.con_defs} is given to \texttt{mk_cases} to allow freeness
+reasoning on datatype \texttt{comb}.
+
+\index{*coinductive|)} \index{*inductive|)}
+
+
+
+
+\section{The outer reaches of set theory}
+
+The constructions of the natural numbers and lists use a suite of
+operators for handling recursive function definitions. I have described
+the developments in detail elsewhere~\cite{paulson-set-II}. Here is a brief
+summary:
+\begin{itemize}
+ \item Theory \texttt{Trancl} defines the transitive closure of a relation
+ (as a least fixedpoint).
+
+ \item Theory \texttt{WF} proves the Well-Founded Recursion Theorem, using an
+ elegant approach of Tobias Nipkow. This theorem permits general
+ recursive definitions within set theory.
+
+ \item Theory \texttt{Ord} defines the notions of transitive set and ordinal
+ number. It derives transfinite induction. A key definition is {\bf
+ less than}: $i<j$ if and only if $i$ and $j$ are both ordinals and
+ $i\in j$. As a special case, it includes less than on the natural
+ numbers.
+
+ \item Theory \texttt{Epsilon} derives $\varepsilon$-induction and
+ $\varepsilon$-recursion, which are generalisations of transfinite
+ induction and recursion. It also defines \cdx{rank}$(x)$, which
+ is the least ordinal $\alpha$ such that $x$ is constructed at
+ stage $\alpha$ of the cumulative hierarchy (thus $x\in
+ V@{\alpha+1}$).
+\end{itemize}
+
+Other important theories lead to a theory of cardinal numbers. They have
+not yet been written up anywhere. Here is a summary:
+\begin{itemize}
+\item Theory \texttt{Rel} defines the basic properties of relations, such as
+ (ir)reflexivity, (a)symmetry, and transitivity.
+
+\item Theory \texttt{EquivClass} develops a theory of equivalence
+ classes, not using the Axiom of Choice.
+
+\item Theory \texttt{Order} defines partial orderings, total orderings and
+ wellorderings.
+
+\item Theory \texttt{OrderArith} defines orderings on sum and product sets.
+ These can be used to define ordinal arithmetic and have applications to
+ cardinal arithmetic.
+
+\item Theory \texttt{OrderType} defines order types. Every wellordering is
+ equivalent to a unique ordinal, which is its order type.
+
+\item Theory \texttt{Cardinal} defines equipollence and cardinal numbers.
+
+\item Theory \texttt{CardinalArith} defines cardinal addition and
+ multiplication, and proves their elementary laws. It proves that there
+ is no greatest cardinal. It also proves a deep result, namely
+ $\kappa\otimes\kappa=\kappa$ for every infinite cardinal~$\kappa$; see
+ Kunen~\cite[page 29]{kunen80}. None of these results assume the Axiom of
+ Choice, which complicates their proofs considerably.
+\end{itemize}
+
+The following developments involve the Axiom of Choice (AC):
+\begin{itemize}
+\item Theory \texttt{AC} asserts the Axiom of Choice and proves some simple
+ equivalent forms.
+
+\item Theory \texttt{Zorn} proves Hausdorff's Maximal Principle, Zorn's Lemma
+ and the Wellordering Theorem, following Abrial and
+ Laffitte~\cite{abrial93}.
+
+\item Theory \verb|Cardinal_AC| uses AC to prove simplified theorems about
+ the cardinals. It also proves a theorem needed to justify
+ infinitely branching datatype declarations: if $\kappa$ is an infinite
+ cardinal and $|X(\alpha)| \le \kappa$ for all $\alpha<\kappa$ then
+ $|\union\sb{\alpha<\kappa} X(\alpha)| \le \kappa$.
+
+\item Theory \texttt{InfDatatype} proves theorems to justify infinitely
+ branching datatypes. Arbitrary index sets are allowed, provided their
+ cardinalities have an upper bound. The theory also justifies some
+ unusual cases of finite branching, involving the finite powerset operator
+ and the finite function space operator.
+\end{itemize}
+
+
+
+\section{The examples directories}
+Directory \texttt{HOL/IMP} contains a mechanised version of a semantic
+equivalence proof taken from Winskel~\cite{winskel93}. It formalises the
+denotational and operational semantics of a simple while-language, then
+proves the two equivalent. It contains several datatype and inductive
+definitions, and demonstrates their use.
+
+The directory \texttt{ZF/ex} contains further developments in {\ZF} set
+theory. Here is an overview; see the files themselves for more details. I
+describe much of this material in other
+publications~\cite{paulson-set-I,paulson-set-II,paulson-CADE}.
+\begin{itemize}
+\item File \texttt{misc.ML} contains miscellaneous examples such as
+ Cantor's Theorem, the Schr\"oder-Bernstein Theorem and the `Composition
+ of homomorphisms' challenge~\cite{boyer86}.
+
+\item Theory \texttt{Ramsey} proves the finite exponent 2 version of
+ Ramsey's Theorem, following Basin and Kaufmann's
+ presentation~\cite{basin91}.
+
+\item Theory \texttt{Integ} develops a theory of the integers as
+ equivalence classes of pairs of natural numbers.
+
+\item Theory \texttt{Primrec} develops some computation theory. It
+ inductively defines the set of primitive recursive functions and presents a
+ proof that Ackermann's function is not primitive recursive.
+
+\item Theory \texttt{Primes} defines the Greatest Common Divisor of two
+ natural numbers and and the ``divides'' relation.
+
+\item Theory \texttt{Bin} defines a datatype for two's complement binary
+ integers, then proves rewrite rules to perform binary arithmetic. For
+ instance, $1359\times {-}2468 = {-}3354012$ takes under 14 seconds.
+
+\item Theory \texttt{BT} defines the recursive data structure ${\tt
+ bt}(A)$, labelled binary trees.
+
+\item Theory \texttt{Term} defines a recursive data structure for terms
+ and term lists. These are simply finite branching trees.
+
+\item Theory \texttt{TF} defines primitives for solving mutually
+ recursive equations over sets. It constructs sets of trees and forests
+ as an example, including induction and recursion rules that handle the
+ mutual recursion.
+
+\item Theory \texttt{Prop} proves soundness and completeness of
+ propositional logic~\cite{paulson-set-II}. This illustrates datatype
+ definitions, inductive definitions, structural induction and rule
+ induction.
+
+\item Theory \texttt{ListN} inductively defines the lists of $n$
+ elements~\cite{paulin92}.
+
+\item Theory \texttt{Acc} inductively defines the accessible part of a
+ relation~\cite{paulin92}.
+
+\item Theory \texttt{Comb} defines the datatype of combinators and
+ inductively defines contraction and parallel contraction. It goes on to
+ prove the Church-Rosser Theorem. This case study follows Camilleri and
+ Melham~\cite{camilleri92}.
+
+\item Theory \texttt{LList} defines lazy lists and a coinduction
+ principle for proving equations between them.
+\end{itemize}
+
+
+\section{A proof about powersets}\label{sec:ZF-pow-example}
+To demonstrate high-level reasoning about subsets, let us prove the
+equation ${{\tt Pow}(A)\cap {\tt Pow}(B)}= {\tt Pow}(A\cap B)$. Compared
+with first-order logic, set theory involves a maze of rules, and theorems
+have many different proofs. Attempting other proofs of the theorem might
+be instructive. This proof exploits the lattice properties of
+intersection. It also uses the monotonicity of the powerset operation,
+from \texttt{ZF/mono.ML}:
+\begin{ttbox}
+\tdx{Pow_mono} A<=B ==> Pow(A) <= Pow(B)
+\end{ttbox}
+We enter the goal and make the first step, which breaks the equation into
+two inclusions by extensionality:\index{*equalityI theorem}
+\begin{ttbox}
+Goal "Pow(A Int B) = Pow(A) Int Pow(B)";
+{\out Level 0}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A Int B) = Pow(A) Int Pow(B)}
+\ttbreak
+by (resolve_tac [equalityI] 1);
+{\out Level 1}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A Int B) <= Pow(A) Int Pow(B)}
+{\out 2. Pow(A) Int Pow(B) <= Pow(A Int B)}
+\end{ttbox}
+Both inclusions could be tackled straightforwardly using \texttt{subsetI}.
+A shorter proof results from noting that intersection forms the greatest
+lower bound:\index{*Int_greatest theorem}
+\begin{ttbox}
+by (resolve_tac [Int_greatest] 1);
+{\out Level 2}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A Int B) <= Pow(A)}
+{\out 2. Pow(A Int B) <= Pow(B)}
+{\out 3. Pow(A) Int Pow(B) <= Pow(A Int B)}
+\end{ttbox}
+Subgoal~1 follows by applying the monotonicity of \texttt{Pow} to $A\int
+B\subseteq A$; subgoal~2 follows similarly:
+\index{*Int_lower1 theorem}\index{*Int_lower2 theorem}
+\begin{ttbox}
+by (resolve_tac [Int_lower1 RS Pow_mono] 1);
+{\out Level 3}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A Int B) <= Pow(B)}
+{\out 2. Pow(A) Int Pow(B) <= Pow(A Int B)}
+\ttbreak
+by (resolve_tac [Int_lower2 RS Pow_mono] 1);
+{\out Level 4}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A) Int Pow(B) <= Pow(A Int B)}
+\end{ttbox}
+We are left with the opposite inclusion, which we tackle in the
+straightforward way:\index{*subsetI theorem}
+\begin{ttbox}
+by (resolve_tac [subsetI] 1);
+{\out Level 5}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. !!x. x : Pow(A) Int Pow(B) ==> x : Pow(A Int B)}
+\end{ttbox}
+The subgoal is to show $x\in {\tt Pow}(A\cap B)$ assuming $x\in{\tt
+Pow}(A)\cap {\tt Pow}(B)$; eliminating this assumption produces two
+subgoals. The rule \tdx{IntE} treats the intersection like a conjunction
+instead of unfolding its definition.
+\begin{ttbox}
+by (eresolve_tac [IntE] 1);
+{\out Level 6}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x : Pow(A Int B)}
+\end{ttbox}
+The next step replaces the \texttt{Pow} by the subset
+relation~($\subseteq$).\index{*PowI theorem}
+\begin{ttbox}
+by (resolve_tac [PowI] 1);
+{\out Level 7}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. !!x. [| x : Pow(A); x : Pow(B) |] ==> x <= A Int B}
+\end{ttbox}
+We perform the same replacement in the assumptions. This is a good
+demonstration of the tactic \ttindex{dresolve_tac}:\index{*PowD theorem}
+\begin{ttbox}
+by (REPEAT (dresolve_tac [PowD] 1));
+{\out Level 8}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. !!x. [| x <= A; x <= B |] ==> x <= A Int B}
+\end{ttbox}
+The assumptions are that $x$ is a lower bound of both $A$ and~$B$, but
+$A\int B$ is the greatest lower bound:\index{*Int_greatest theorem}
+\begin{ttbox}
+by (resolve_tac [Int_greatest] 1);
+{\out Level 9}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. !!x. [| x <= A; x <= B |] ==> x <= A}
+{\out 2. !!x. [| x <= A; x <= B |] ==> x <= B}
+\end{ttbox}
+To conclude the proof, we clear up the trivial subgoals:
+\begin{ttbox}
+by (REPEAT (assume_tac 1));
+{\out Level 10}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out No subgoals!}
+\end{ttbox}
+\medskip
+We could have performed this proof in one step by applying
+\ttindex{Blast_tac}. Let us
+go back to the start:
+\begin{ttbox}
+choplev 0;
+{\out Level 0}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out 1. Pow(A Int B) = Pow(A) Int Pow(B)}
+by (Blast_tac 1);
+{\out Depth = 0}
+{\out Depth = 1}
+{\out Depth = 2}
+{\out Depth = 3}
+{\out Level 1}
+{\out Pow(A Int B) = Pow(A) Int Pow(B)}
+{\out No subgoals!}
+\end{ttbox}
+Past researchers regarded this as a difficult proof, as indeed it is if all
+the symbols are replaced by their definitions.
+\goodbreak
+
+\section{Monotonicity of the union operator}
+For another example, we prove that general union is monotonic:
+${C\subseteq D}$ implies $\bigcup(C)\subseteq \bigcup(D)$. To begin, we
+tackle the inclusion using \tdx{subsetI}:
+\begin{ttbox}
+Goal "C<=D ==> Union(C) <= Union(D)";
+{\out Level 0}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. C <= D ==> Union(C) <= Union(D)}
+\ttbreak
+by (resolve_tac [subsetI] 1);
+{\out Level 1}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. !!x. [| C <= D; x : Union(C) |] ==> x : Union(D)}
+\end{ttbox}
+Big union is like an existential quantifier --- the occurrence in the
+assumptions must be eliminated early, since it creates parameters.
+\index{*UnionE theorem}
+\begin{ttbox}
+by (eresolve_tac [UnionE] 1);
+{\out Level 2}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> x : Union(D)}
+\end{ttbox}
+Now we may apply \tdx{UnionI}, which creates an unknown involving the
+parameters. To show $x\in \bigcup(D)$ it suffices to show that $x$ belongs
+to some element, say~$\Var{B2}(x,B)$, of~$D$.
+\begin{ttbox}
+by (resolve_tac [UnionI] 1);
+{\out Level 3}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> ?B2(x,B) : D}
+{\out 2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
+\end{ttbox}
+Combining \tdx{subsetD} with the assumption $C\subseteq D$ yields
+$\Var{a}\in C \Imp \Var{a}\in D$, which reduces subgoal~1. Note that
+\texttt{eresolve_tac} has removed that assumption.
+\begin{ttbox}
+by (eresolve_tac [subsetD] 1);
+{\out Level 4}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. !!x B. [| x : B; B : C |] ==> ?B2(x,B) : C}
+{\out 2. !!x B. [| C <= D; x : B; B : C |] ==> x : ?B2(x,B)}
+\end{ttbox}
+The rest is routine. Observe how~$\Var{B2}(x,B)$ is instantiated.
+\begin{ttbox}
+by (assume_tac 1);
+{\out Level 5}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out 1. !!x B. [| C <= D; x : B; B : C |] ==> x : B}
+by (assume_tac 1);
+{\out Level 6}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out No subgoals!}
+\end{ttbox}
+Again, \ttindex{Blast_tac} can prove the theorem in one step.
+\begin{ttbox}
+by (Blast_tac 1);
+{\out Depth = 0}
+{\out Depth = 1}
+{\out Depth = 2}
+{\out Level 1}
+{\out C <= D ==> Union(C) <= Union(D)}
+{\out No subgoals!}
+\end{ttbox}
+
+The file \texttt{ZF/equalities.ML} has many similar proofs. Reasoning about
+general intersection can be difficult because of its anomalous behaviour on
+the empty set. However, \ttindex{Blast_tac} copes well with these. Here is
+a typical example, borrowed from Devlin~\cite[page 12]{devlin79}:
+\begin{ttbox}
+a:C ==> (INT x:C. A(x) Int B(x)) = (INT x:C. A(x)) Int (INT x:C. B(x))
+\end{ttbox}
+In traditional notation this is
+\[ a\in C \,\Imp\, \inter@{x\in C} \Bigl(A(x) \int B(x)\Bigr) =
+ \Bigl(\inter@{x\in C} A(x)\Bigr) \int
+ \Bigl(\inter@{x\in C} B(x)\Bigr) \]
+
+\section{Low-level reasoning about functions}
+The derived rules \texttt{lamI}, \texttt{lamE}, \texttt{lam_type}, \texttt{beta}
+and \texttt{eta} support reasoning about functions in a
+$\lambda$-calculus style. This is generally easier than regarding
+functions as sets of ordered pairs. But sometimes we must look at the
+underlying representation, as in the following proof
+of~\tdx{fun_disjoint_apply1}. This states that if $f$ and~$g$ are
+functions with disjoint domains~$A$ and~$C$, and if $a\in A$, then
+$(f\un g)`a = f`a$:
+\begin{ttbox}
+Goal "[| a:A; f: A->B; g: C->D; A Int C = 0 |] ==> \ttback
+\ttback (f Un g)`a = f`a";
+{\out Level 0}
+{\out [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
+{\out ==> (f Un g) ` a = f ` a}
+{\out 1. [| a : A; f : A -> B; g : C -> D; A Int C = 0 |]}
+{\out ==> (f Un g) ` a = f ` a}
+\end{ttbox}
+Using \tdx{apply_equality}, we reduce the equality to reasoning about
+ordered pairs. The second subgoal is to verify that $f\un g$ is a function.
+To save space, the assumptions will be abbreviated below.
+\begin{ttbox}
+by (resolve_tac [apply_equality] 1);
+{\out Level 1}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> <a,f ` a> : f Un g}
+{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
+\end{ttbox}
+We must show that the pair belongs to~$f$ or~$g$; by~\tdx{UnI1} we
+choose~$f$:
+\begin{ttbox}
+by (resolve_tac [UnI1] 1);
+{\out Level 2}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> <a,f ` a> : f}
+{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
+\end{ttbox}
+To show $\pair{a,f`a}\in f$ we use \tdx{apply_Pair}, which is
+essentially the converse of \tdx{apply_equality}:
+\begin{ttbox}
+by (resolve_tac [apply_Pair] 1);
+{\out Level 3}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> f : (PROD x:?A2. ?B2(x))}
+{\out 2. [| \ldots |] ==> a : ?A2}
+{\out 3. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
+\end{ttbox}
+Using the assumptions $f\in A\to B$ and $a\in A$, we solve the two subgoals
+from \tdx{apply_Pair}. Recall that a $\Pi$-set is merely a generalized
+function space, and observe that~{\tt?A2} is instantiated to~\texttt{A}.
+\begin{ttbox}
+by (assume_tac 1);
+{\out Level 4}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> a : A}
+{\out 2. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
+by (assume_tac 1);
+{\out Level 5}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> f Un g : (PROD x:?A. ?B(x))}
+\end{ttbox}
+To construct functions of the form $f\un g$, we apply
+\tdx{fun_disjoint_Un}:
+\begin{ttbox}
+by (resolve_tac [fun_disjoint_Un] 1);
+{\out Level 6}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> f : ?A3 -> ?B3}
+{\out 2. [| \ldots |] ==> g : ?C3 -> ?D3}
+{\out 3. [| \ldots |] ==> ?A3 Int ?C3 = 0}
+\end{ttbox}
+The remaining subgoals are instances of the assumptions. Again, observe how
+unknowns are instantiated:
+\begin{ttbox}
+by (assume_tac 1);
+{\out Level 7}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> g : ?C3 -> ?D3}
+{\out 2. [| \ldots |] ==> A Int ?C3 = 0}
+by (assume_tac 1);
+{\out Level 8}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out 1. [| \ldots |] ==> A Int C = 0}
+by (assume_tac 1);
+{\out Level 9}
+{\out [| \ldots |] ==> (f Un g) ` a = f ` a}
+{\out No subgoals!}
+\end{ttbox}
+See the files \texttt{ZF/func.ML} and \texttt{ZF/WF.ML} for more
+examples of reasoning about functions.
+
+\index{set theory|)}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/logics-ZF.bbl Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,124 @@
+\begin{thebibliography}{10}
+
+\bibitem{abrial93}
+J.~R. Abrial and G.~Laffitte.
+\newblock Towards the mechanization of the proofs of some classical theorems of
+ set theory.
+\newblock preprint, February 1993.
+
+\bibitem{basin91}
+David Basin and Matt Kaufmann.
+\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison.
+\newblock In {G\'erard} Huet and Gordon Plotkin, editors, {\em Logical
+ Frameworks}, pages 89--119. Cambridge University Press, 1991.
+
+\bibitem{boyer86}
+Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel, and
+ Lawrence Wos.
+\newblock Set theory in first-order logic: Clauses for {G\"{o}del's} axioms.
+\newblock {\em Journal of Automated Reasoning}, 2(3):287--327, 1986.
+
+\bibitem{camilleri92}
+J.~Camilleri and T.~F. Melham.
+\newblock Reasoning with inductively defined relations in the {HOL} theorem
+ prover.
+\newblock Technical Report 265, Computer Laboratory, University of Cambridge,
+ August 1992.
+
+\bibitem{davey&priestley}
+B.~A. Davey and H.~A. Priestley.
+\newblock {\em Introduction to Lattices and Order}.
+\newblock Cambridge University Press, 1990.
+
+\bibitem{devlin79}
+Keith~J. Devlin.
+\newblock {\em Fundamentals of Contemporary Set Theory}.
+\newblock Springer, 1979.
+
+\bibitem{dummett}
+Michael Dummett.
+\newblock {\em Elements of Intuitionism}.
+\newblock Oxford University Press, 1977.
+
+\bibitem{dyckhoff}
+Roy Dyckhoff.
+\newblock Contraction-free sequent calculi for intuitionistic logic.
+\newblock {\em Journal of Symbolic Logic}, 57(3):795--807, 1992.
+
+\bibitem{halmos60}
+Paul~R. Halmos.
+\newblock {\em Naive Set Theory}.
+\newblock Van Nostrand, 1960.
+
+\bibitem{kunen80}
+Kenneth Kunen.
+\newblock {\em Set Theory: An Introduction to Independence Proofs}.
+\newblock North-Holland, 1980.
+
+\bibitem{noel}
+Philippe No{\"e}l.
+\newblock Experimenting with {Isabelle} in {ZF} set theory.
+\newblock {\em Journal of Automated Reasoning}, 10(1):15--58, 1993.
+
+\bibitem{paulin92}
+Christine Paulin-Mohring.
+\newblock Inductive definitions in the system {Coq}: Rules and properties.
+\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon,
+ December 1992.
+
+\bibitem{paulson87}
+Lawrence~C. Paulson.
+\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF}.
+\newblock Cambridge University Press, 1987.
+
+\bibitem{paulson-set-I}
+Lawrence~C. Paulson.
+\newblock Set theory for verification: {I}. {From} foundations to functions.
+\newblock {\em Journal of Automated Reasoning}, 11(3):353--389, 1993.
+
+\bibitem{paulson-CADE}
+Lawrence~C. Paulson.
+\newblock A fixedpoint approach to implementing (co)inductive definitions.
+\newblock In Alan Bundy, editor, {\em Automated Deduction --- {CADE}-12
+ International Conference}, LNAI 814, pages 148--161. Springer, 1994.
+
+\bibitem{paulson-final}
+Lawrence~C. Paulson.
+\newblock A concrete final coalgebra theorem for {ZF} set theory.
+\newblock In Peter Dybjer, Bengt Nordstr{\"om}, and Jan Smith, editors, {\em
+ Types for Proofs and Programs: International Workshop {TYPES '94}}, LNCS 996,
+ pages 120--139. Springer, 1995.
+
+\bibitem{paulson-set-II}
+Lawrence~C. Paulson.
+\newblock Set theory for verification: {II}. {Induction} and recursion.
+\newblock {\em Journal of Automated Reasoning}, 15(2):167--215, 1995.
+
+\bibitem{paulson-generic}
+Lawrence~C. Paulson.
+\newblock Generic automatic proof tools.
+\newblock In Robert Veroff, editor, {\em Automated Reasoning and its
+ Applications: Essays in Honor of {Larry Wos}}, chapter~3. MIT Press, 1997.
+
+\bibitem{quaife92}
+Art Quaife.
+\newblock Automated deduction in {von Neumann-Bernays-G\"{o}del} set theory.
+\newblock {\em Journal of Automated Reasoning}, 8(1):91--147, 1992.
+
+\bibitem{suppes72}
+Patrick Suppes.
+\newblock {\em Axiomatic Set Theory}.
+\newblock Dover, 1972.
+
+\bibitem{principia}
+A.~N. Whitehead and B.~Russell.
+\newblock {\em Principia Mathematica}.
+\newblock Cambridge University Press, 1962.
+\newblock Paperback edition to *56, abridged from the 2nd edition (1927).
+
+\bibitem{winskel93}
+Glynn Winskel.
+\newblock {\em The Formal Semantics of Programming Languages}.
+\newblock MIT Press, 1993.
+
+\end{thebibliography}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/logics-ZF.tex Wed Jan 13 16:36:36 1999 +0100
@@ -0,0 +1,62 @@
+%% $Id$
+\documentclass[12pt]{report}
+\usepackage{graphicx,a4,latexsym,../pdfsetup}
+
+\makeatletter
+\input{../proof.sty}
+\input{../rail.sty}
+\input{../iman.sty}
+\input{../extra.sty}
+\makeatother
+
+%%% to index derived rls: ^\([a-zA-Z0-9][a-zA-Z0-9_]*\) \\tdx{\1}
+%%% to index rulenames: ^ *(\([a-zA-Z0-9][a-zA-Z0-9_]*\), \\tdx{\1}
+%%% to index constants: \\tt \([a-zA-Z0-9][a-zA-Z0-9_]*\) \\cdx{\1}
+%%% to deverbify: \\verb|\([^|]*\)| \\ttindex{\1}
+
+\title{\includegraphics[scale=0.5]{isabelle.eps} \\[4ex]
+ Isabelle's Logics: FOL and ZF}
+
+\author{{\em Lawrence C. Paulson}\\
+ Computer Laboratory \\ University of Cambridge \\
+ \texttt{lcp@cl.cam.ac.uk}\\[3ex]
+ With Contributions by Tobias Nipkow and Markus Wenzel%
+\thanks{Markus Wenzel made numerous improvements.
+ Philippe de Groote and contributed to~\ZF{}. Philippe No\"el and
+ Martin Coen made many contributions to~\ZF{}. The research has
+ been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381,
+ GR/K77051) and by ESPRIT project 6453: Types.}
+}
+
+\newcommand\subcaption[1]{\par {\centering\normalsize\sc#1\par}\bigskip
+ \hrule\bigskip}
+\newenvironment{constants}{\begin{center}\small\begin{tabular}{rrrr}}{\end{tabular}\end{center}}
+
+\makeindex
+
+\underscoreoff
+
+\setcounter{secnumdepth}{2} \setcounter{tocdepth}{2} %% {secnumdepth}{2}???
+
+\pagestyle{headings}
+\sloppy
+\binperiod %%%treat . like a binary operator
+
+\begin{document}
+\maketitle
+
+\begin{abstract}
+This manual describes Isabelle's formalizations of many-sorted first-order
+logic (\texttt{FOL}) and Zermelo-Fraenkel set theory (\texttt{ZF}). See the
+\emph{Reference Manual} for general Isabelle commands, and \emph{Introduction
+ to Isabelle} for an overall tutorial.
+\end{abstract}
+
+\pagenumbering{roman} \tableofcontents \clearfirst
+\include{../Logics/syntax}
+\include{FOL}
+\include{ZF}
+\bibliographystyle{plain}
+\bibliography{string,general,atp,theory,funprog,logicprog,isabelle,crossref}
+\input{logics-ZF.ind}
+\end{document}