--- a/src/HOL/Isar_examples/NatSum.thy Mon Jun 28 23:02:38 1999 +0200
+++ b/src/HOL/Isar_examples/NatSum.thy Mon Jun 28 23:05:19 1999 +0200
@@ -35,10 +35,10 @@
theorem "2 * sum (%i. i) (Suc n) = n * Suc n";
proof same;
- refine simp_tac;
- refine (induct n);
- refine simp_tac;
- refine asm_simp_tac;
+ apply simp_tac;
+ apply (induct n);
+ apply simp_tac;
+ apply asm_simp_tac;
qed_with sum_of_naturals;
--- a/src/HOL/Isar_examples/Peirce.thy Mon Jun 28 23:02:38 1999 +0200
+++ b/src/HOL/Isar_examples/Peirce.thy Mon Jun 28 23:05:19 1999 +0200
@@ -30,11 +30,9 @@
assume ABA: "(A --> B) --> A";
show A;
proof (rule classical);
-
- assume AB: "A --> B";
+ presume AB: "A --> B";
from ABA AB; show A; ..;
-
- next;
+ next;
assume notA: "~ A";
show "A --> B";
proof;