Real/Complex_Numbers.thy;
authorwenzelm
Sun, 13 Jan 2002 19:42:30 +0100
changeset 12733 611ab32b2176
parent 12732 c93b2f69b3ba
child 12734 c5f6d8259ecd
Real/Complex_Numbers.thy;
src/HOL/IsaMakefile
src/HOL/Real/Complex_Numbers.thy
src/HOL/Real/ROOT.ML
--- a/src/HOL/IsaMakefile	Sat Jan 12 22:44:10 2002 +0100
+++ b/src/HOL/IsaMakefile	Sun Jan 13 19:42:30 2002 +0100
@@ -112,7 +112,7 @@
 
 HOL-Real: HOL $(OUT)/HOL-Real
 
-$(OUT)/HOL-Real: $(OUT)/HOL \
+$(OUT)/HOL-Real: $(OUT)/HOL Real/Complex_Numbers.thy \
   Real/Lubs.ML Real/Lubs.thy Real/PNat.ML Real/PNat.thy \
   Real/PRat.ML Real/PRat.thy \
   Real/PReal.ML Real/PReal.thy Real/RComplete.ML Real/RComplete.thy \
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/Complex_Numbers.thy	Sun Jan 13 19:42:30 2002 +0100
@@ -0,0 +1,178 @@
+(*  Title:      HOL/Real/Complex_Numbers.thy
+    ID:         $Id$
+    Author:     Gertrud Bauer and Markus Wenzel, TU München
+    License:    GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+header {* Complex numbers *}
+
+theory Complex_Numbers = RealPow + Ring_and_Field:
+
+subsection {* The field of real numbers *}  (* FIXME move *)
+
+instance real :: inverse ..
+instance real :: ring
+  by intro_classes (auto simp add: real_add_mult_distrib)
+
+instance real :: field
+proof
+  fix a b :: real
+  show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" by simp
+  show "b \<noteq> 0 \<Longrightarrow> a / b = a * inverse b" by (simp add: real_divide_def)
+qed
+
+lemma real_power_two: "(r::real)^2 = r * r"
+  by (simp add: numeral_2_eq_2)
+
+lemma real_sqr_ge_zero [iff]: "0 \<le> (r::real)^2"
+  by (simp add: real_power_two)
+
+lemma real_sqr_gt_zero [iff]: "(r::real) \<noteq> 0 \<Longrightarrow> 0 < r^2"
+proof -
+  assume "r \<noteq> 0"
+  hence "0 \<noteq> r^2" by simp
+  also have "0 \<le> r^2" by simp
+  finally show ?thesis .
+qed
+
+lemma real_sqr_not_zero: "r \<noteq> 0 \<Longrightarrow> (r::real)^2 \<noteq> 0"
+  by simp
+
+
+subsection {* The field of complex numbers *}
+
+datatype complex = Complex real real
+
+consts Re :: "complex \<Rightarrow> real"
+primrec "Re (Complex x y) = x"
+
+consts Im :: "complex \<Rightarrow> real"
+primrec "Im (Complex x y) = y"
+
+constdefs
+  complex :: "'a \<Rightarrow> complex"
+  "complex x == Complex (real x) 0"
+  conjg :: "complex \<Rightarrow> complex"
+  "conjg z == Complex (Re z) (-Im z)"
+  im_unit :: complex    ("\<i>")
+  "\<i> == Complex 0 1"
+
+instance complex :: zero ..
+instance complex :: one ..
+instance complex :: number ..
+instance complex :: plus ..
+instance complex :: minus ..
+instance complex :: times ..
+instance complex :: power ..
+instance complex :: inverse ..
+
+defs (overloaded)
+  zero_complex_def: "0 == Complex 0 0"
+  one_complex_def: "1 == Complex 1 0"
+  number_of_complex_def: "number_of b == Complex (number_of b) 0"
+  add_complex_def: "z + w == Complex (Re z + Re w) (Im z + Im w)"
+  minus_complex_def: "z - w == Complex (Re z - Re w) (Im z - Im w)"
+  uminus_complex_def: "- z == Complex (- Re z) (- Im z)"
+  mult_complex_def: "z * w ==
+    Complex (Re z * Re w - Im z * Im w) (Re z * Im w + Im z * Re w)"
+  inverse_complex_def: "(z::complex) \<noteq> 0 \<Longrightarrow> inverse z ==
+    Complex (Re z / ((Re z)^2 + (Im z)^2)) (- Im z / ((Re z)^2 + (Im z)^2))"
+  divide_complex_def: "(w::complex) \<noteq> 0 \<Longrightarrow> z / (w::complex) == z * inverse w"
+
+primrec (power_complex)
+ "z^0 = 1"
+ "z^(Suc n) = (z::complex) * (z^n)"
+
+lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
+  by (induct z) simp
+
+lemma complex_equality [simp, intro?]: "Re z = Re w \<Longrightarrow> Im z = Im w \<Longrightarrow> z = w"
+  by (induct z, induct w) simp
+
+lemma Re_zero [simp]: "Re 0 = 0"
+  and Im_zero [simp]: "Im 0 = 0"
+  by (simp_all add: zero_complex_def)
+
+lemma Re_one [simp]: "Re 1 = 1"
+  and Im_one [simp]: "Im 1 = 0"
+  by (simp_all add: one_complex_def)
+
+lemma zero_complex_iff: "(z = 0) = (Re z = 0 \<and> Im z = 0)"
+  and one_complex_iff: "(z = 1) = (Re z = 1 \<and> Im z = 0)"
+  by auto
+
+lemma Re_add [simp]: "Re (z + w) = Re z + Re w"
+  by (simp add: add_complex_def)
+
+lemma Im_add [simp]: "Im (z + w) = Im z + Im w"
+  by (simp add: add_complex_def)
+
+lemma Re_diff [simp]: "Re (z - w) = Re z - Re w"
+  by (simp add: minus_complex_def)
+
+lemma Im_diff [simp]: "Im (z - w) = Im z - Im w"
+  by (simp add: minus_complex_def)
+
+lemma Re_uminus [simp]: "Re (- z) = - Re z"
+  by (simp add: uminus_complex_def)
+
+lemma Im_uminus [simp]: "Im (- z) = - Im z"
+  by (simp add: uminus_complex_def)
+
+lemma Re_mult [simp]: "Re (z * w) = Re z * Re w - Im z * Im w"
+  by (simp add: mult_complex_def)
+
+lemma Im_mult [simp]: "Im (z * w) = Re z * Im w + Im z * Re w"
+  by (simp add: mult_complex_def)
+
+lemma complex_power_two: "z^2 = z * (z::complex)"
+  by (simp add: numeral_2_eq_2)
+
+
+instance complex :: field
+proof
+  fix z u v w :: complex
+  show "(u + v) + w = u + (v + w)"
+    by (simp add: add_complex_def)
+  show "z + w = w + z"
+    by (simp add: add_complex_def)
+  show "0 + z = z"
+    by (simp add: add_complex_def zero_complex_def)
+  show "- z + z = 0"
+    by (simp add: minus_complex_def)
+  show "z - w = z + - w"
+    by (simp add: add_complex_def minus_complex_def uminus_complex_def)
+  show "(u * v) * w = u * (v * w)"
+    by (simp add: mult_complex_def ring_mult_ac ring_distrib real_diff_def)  (* FIXME *)
+  show "z * w = w * z"
+    by (simp add: mult_complex_def)
+  show "1 * z = z"
+    by (simp add: one_complex_def mult_complex_def)
+  show "(u + v) * w = u * w + v * w"
+    by (simp add: add_complex_def mult_complex_def ring_distrib)
+  assume neq: "w \<noteq> 0"
+  show "inverse w * w = 1"
+  proof
+    have neq': "Re w * Re w + Im w * Im w \<noteq> 0"
+    proof -
+      have ge: "0 \<le> Re w * Re w"  "0 \<le> Im w * Im w" by simp_all
+      from neq have "Re w \<noteq> 0 \<or> Im w \<noteq> 0" by (simp add: zero_complex_iff)
+      hence "Re w * Re w \<noteq> 0 \<or> Im w * Im w \<noteq> 0" by simp
+      thus ?thesis by rule (insert ge, arith+)
+    qed
+    with neq show "Re (inverse w * w) = Re 1"
+      by (simp add: inverse_complex_def real_power_two real_add_divide_distrib [symmetric])
+    from neq show "Im (inverse w * w) = Im 1"
+      by (simp add: inverse_complex_def real_power_two
+        real_mult_ac real_add_divide_distrib [symmetric])
+  qed
+  from neq show "z / w = z * inverse w"
+    by (simp add: divide_complex_def)
+qed
+
+
+lemma im_unit_square: "\<i>^2 = -1"
+  -- {* key property of the imaginary unit @{text \<i>} *}
+  by (simp add: im_unit_def complex_power_two mult_complex_def number_of_complex_def)
+
+end
--- a/src/HOL/Real/ROOT.ML	Sat Jan 12 22:44:10 2002 +0100
+++ b/src/HOL/Real/ROOT.ML	Sun Jan 13 19:42:30 2002 +0100
@@ -7,4 +7,5 @@
 by Jacques Fleuriot
 *)
 
+no_document time_use_thy "Ring_and_Field";
 time_use_thy "Real";