--- a/doc-src/TutorialI/Rules/rules.tex Tue Dec 18 14:20:38 2001 +0100
+++ b/doc-src/TutorialI/Rules/rules.tex Tue Dec 18 14:27:57 2001 +0100
@@ -304,7 +304,7 @@
(?P\ \isasymLongrightarrow\ ?Q)\ \isasymLongrightarrow\ ?P\
\isasymlongrightarrow\ ?Q\rulenamedx{impI}
\end{isabelle}
-And this is \emph{modus ponens}\index{modus ponens@\emph{modus ponens}} :
+And this is \emph{modus ponens}\index{modus ponens@\emph{modus ponens}}:
\begin{isabelle}
\isasymlbrakk?P\ \isasymlongrightarrow\ ?Q;\ ?P\isasymrbrakk\
\isasymLongrightarrow\ ?Q
@@ -1691,7 +1691,7 @@
The proof must fail because the assumption \isa{Q\ xa} and conclusion \isa{Q\ x}
refer to distinct bound variables. To reach this state, \isa{clarify} applied
the introduction rules for \isa{\isasymlongrightarrow} and \isa{\isasymforall}
-and the elimination rule for ~\isa{\isasymand}. It did not apply the introduction
+and the elimination rule for \isa{\isasymand}. It did not apply the introduction
rule for \isa{\isasymand} because of its policy never to split goals.
Also available is \methdx{clarsimp}, a method
@@ -1925,7 +1925,7 @@
\end{isabelle}
\begin{warn}
-To give~\isa{of} a nonvariable term, enclose it in quotation marks, as in
+To give~\isa{of} a nonatomic term, enclose it in quotation marks, as in
\isa{[of "k*m"]}. The term must not contain unknowns: an
attribute such as
\isa{[of "?k*m"]} will be rejected.
@@ -2438,7 +2438,7 @@
analysis on \isa{n=0}. We apply \methdx{case_tac} with type
\isa{bool} --- and not with a datatype, as we have done until now. Since
\isa{nat} is a datatype, we could have written
-\isa{case_tac~"n"} instead of \isa{case_tac~"n=0"}. However, the definition
+\isa{case_tac~n} instead of \isa{case_tac~"n=0"}. However, the definition
of \isa{gcd} makes a Boolean decision:
\begin{isabelle}
\ \ \ \ "gcd\ (m,n)\ =\ (if\ n=0\ then\ m\ else\ gcd(n,\ m\ mod\ n))"
--- a/doc-src/TutorialI/Sets/sets.tex Tue Dec 18 14:20:38 2001 +0100
+++ b/doc-src/TutorialI/Sets/sets.tex Tue Dec 18 14:27:57 2001 +0100
@@ -424,7 +424,7 @@
\begin{warn}
The term \isa{finite\ A} is defined via a syntax translation as an
-abbreviation for \isa{A \isasymin Finites}, where the constant
+abbreviation for \isa{A {\isasymin} Finites}, where the constant
\cdx{Finites} denotes the set of all finite sets of a given type. There
is no constant \isa{finite}.
\end{warn}