author chaieb Mon, 09 Feb 2009 11:07:17 +0000 changeset 29835 62da280e5d0b parent 29834 3237cfd177f3 child 29836 3d935e8b0bf7
A formalization of finite cartesian product types
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Finite_Cartesian_Product.thy	Mon Feb 09 11:07:17 2009 +0000
@@ -0,0 +1,268 @@
+(* Title:      HOL/Library/Finite_Cartesian_Product
+   ID:         \$Id: Finite_Cartesian_Product.thy,v 1.5 2009/01/29 22:59:46 chaieb Exp \$
+   Author:     Amine Chaieb, University of Cambridge
+*)
+
+header {* Definition of finite Cartesian product types. *}
+
+theory Finite_Cartesian_Product
+begin
+
+  (* FIXME : ATP_Linkup is only needed for metis at a few places. We could dispense of that by changing the proofs*)
+subsection{* Dimention of sets *}
+
+definition "dimindex (S:: 'a set) = (if finite (UNIV::'a set) then card (UNIV:: 'a set) else 1)"
+
+syntax "_type_dimindex" :: "type => nat" ("(1DIM/(1'(_')))")
+translations "DIM(t)" => "CONST dimindex (UNIV :: t set)"
+
+lemma dimindex_nonzero: "dimindex S \<noteq>  0"
+unfolding dimindex_def
+by (simp add: neq0_conv[symmetric] del: neq0_conv)
+
+lemma dimindex_ge_1: "dimindex S \<ge> 1"
+  using dimindex_nonzero[of S] by arith
+lemma dimindex_univ: "dimindex (S :: 'a set) = DIM('a)" by (simp add: dimindex_def)
+
+definition hassize (infixr "hassize" 12) where
+  "(S hassize n) = (finite S \<and> card S = n)"
+
+lemma dimindex_unique: " (UNIV :: 'a set) hassize n ==> DIM('a) = n"
+
+
+section{* An indexing type parametrized by base type. *}
+
+typedef 'a finite_image = "{1 .. DIM('a)}"
+  using dimindex_ge_1 by auto
+
+lemma finite_image_image: "(UNIV :: 'a finite_image set) = Abs_finite_image ` {1 .. DIM('a)}"
+apply (auto simp add: Abs_finite_image_inverse image_def finite_image_def)
+apply (rule_tac x="Rep_finite_image x" in bexI)
+using Rep_finite_image[where ?'a = 'a]
+unfolding finite_image_def
+apply simp
+done
+
+text{* Dimension of such a type, and indexing over it. *}
+
+lemma inj_on_Abs_finite_image:
+  "inj_on (Abs_finite_image:: _ \<Rightarrow> 'a finite_image) {1 .. DIM('a)}"
+by (auto simp add: inj_on_def finite_image_def Abs_finite_image_inject[where ?'a='a])
+
+lemma has_size_finite_image: "(UNIV:: 'a finite_image set) hassize dimindex (S :: 'a set)"
+  unfolding hassize_def finite_image_image card_image[OF inj_on_Abs_finite_image[where ?'a='a]] by (auto simp add: dimindex_def)
+
+lemma hassize_image_inj: assumes f: "inj_on f S" and S: "S hassize n"
+  shows "f ` S hassize n"
+  using f S card_image[OF f]
+    by (simp add: hassize_def inj_on_def)
+
+lemma card_finite_image: "card (UNIV:: 'a finite_image set) = dimindex(S:: 'a set)"
+using has_size_finite_image
+unfolding hassize_def by blast
+
+lemma finite_finite_image: "finite (UNIV:: 'a finite_image set)"
+using has_size_finite_image
+unfolding hassize_def by blast
+
+lemma dimindex_finite_image: "dimindex (S:: 'a finite_image set) = dimindex(T:: 'a set)"
+unfolding card_finite_image[of T, symmetric]
+by (auto simp add: dimindex_def finite_finite_image)
+
+lemma Abs_finite_image_works:
+  fixes i:: "'a finite_image"
+  shows " \<exists>!n \<in> {1 .. DIM('a)}. Abs_finite_image n = i"
+  unfolding Bex1_def Ex1_def
+  apply (rule_tac x="Rep_finite_image i" in exI)
+  using Rep_finite_image_inverse[where ?'a = 'a]
+    Rep_finite_image[where ?'a = 'a]
+  Abs_finite_image_inverse[where ?'a='a, symmetric]
+  by (auto simp add: finite_image_def)
+
+lemma Abs_finite_image_inj:
+ "i \<in> {1 .. DIM('a)} \<Longrightarrow> j \<in> {1 .. DIM('a)}
+  \<Longrightarrow> (((Abs_finite_image i ::'a finite_image) = Abs_finite_image j) \<longleftrightarrow> (i = j))"
+  using Abs_finite_image_works[where ?'a = 'a]
+  by (auto simp add: atLeastAtMost_iff Bex1_def)
+
+lemma forall_Abs_finite_image:
+  "(\<forall>k:: 'a finite_image. P k) \<longleftrightarrow> (\<forall>i \<in> {1 .. DIM('a)}. P(Abs_finite_image i))"
+unfolding Ball_def atLeastAtMost_iff Ex1_def
+using Abs_finite_image_works[where ?'a = 'a, unfolded atLeastAtMost_iff Bex1_def]
+by metis
+
+subsection {* Finite Cartesian products, with indexing and lambdas. *}
+
+typedef (Cart)
+  ('a, 'b) "^" (infixl "^" 15)
+    = "{f:: 'b finite_image \<Rightarrow> 'a . True}" by simp
+
+abbreviation dimset:: "('a ^ 'n) \<Rightarrow> nat set" where
+  "dimset a \<equiv> {1 .. DIM('n)}"
+
+definition Cart_nth :: "'a ^ 'b \<Rightarrow> nat \<Rightarrow> 'a" (infixl "\$" 90) where
+  "x\$i = Rep_Cart x (Abs_finite_image i)"
+
+lemma stupid_ext: "(\<forall>x. f x = g x) \<longleftrightarrow> (f = g)"
+  apply auto
+  apply (rule ext)
+  apply auto
+  done
+lemma Cart_eq: "((x:: 'a ^ 'b) = y) \<longleftrightarrow> (\<forall>i\<in> dimset x. x\$i = y\$i)"
+  unfolding Cart_nth_def forall_Abs_finite_image[symmetric, where P = "\<lambda>i. Rep_Cart x i = Rep_Cart y i"] stupid_ext
+  using Rep_Cart_inject[of x y] ..
+
+consts Cart_lambda :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a ^ 'b"
+notation (xsymbols) Cart_lambda (binder "\<chi>" 10)
+
+defs Cart_lambda_def: "Cart_lambda g == (SOME (f:: 'a ^ 'b). \<forall>i \<in> {1 .. DIM('b)}. f\$i = g i)"
+
+lemma  Cart_lambda_beta: " \<forall> i\<in> {1 .. DIM('b)}. (Cart_lambda g:: 'a ^ 'b)\$i = g i"
+  unfolding Cart_lambda_def
+proof (rule someI_ex)
+  let ?p = "\<lambda>(i::nat) (k::'b finite_image). i \<in> {1 .. DIM('b)} \<and> (Abs_finite_image i = k)"
+  let ?f = "Abs_Cart (\<lambda>k. g (THE i. ?p i k)):: 'a ^ 'b"
+  let ?P = "\<lambda>f i. f\$i = g i"
+  let ?Q = "\<lambda>(f::'a ^ 'b). \<forall> i \<in> {1 .. DIM('b)}. ?P f i"
+  {fix i
+    assume i: "i \<in> {1 .. DIM('b)}"
+    let ?j = "THE j. ?p j (Abs_finite_image i)"
+    from theI'[where P = "\<lambda>j. ?p (j::nat) (Abs_finite_image i :: 'b finite_image)", OF Abs_finite_image_works[of "Abs_finite_image i :: 'b finite_image", unfolded Bex1_def]]
+    have j: "?j \<in> {1 .. DIM('b)}" "(Abs_finite_image ?j :: 'b finite_image) = Abs_finite_image i" by blast+
+    from i j Abs_finite_image_inject[of i ?j, where ?'a = 'b]
+    have th: "?j = i" by (simp add: finite_image_def)
+    have "?P ?f i"
+      using th
+      by (simp add: Cart_nth_def Abs_Cart_inverse Rep_Cart_inverse Cart_def) }
+  hence th0: "?Q ?f" ..
+  with th0 show "\<exists>f. ?Q f" unfolding Ex1_def by auto
+qed
+
+lemma  Cart_lambda_beta': "i\<in> {1 .. DIM('b)} \<Longrightarrow> (Cart_lambda g:: 'a ^ 'b)\$i = g i"
+  using Cart_lambda_beta by blast
+
+lemma Cart_lambda_unique:
+  fixes f :: "'a ^ 'b"
+  shows "(\<forall>i\<in> {1 .. DIM('b)}. f\$i = g i) \<longleftrightarrow> Cart_lambda g = f"
+  by (auto simp add: Cart_eq Cart_lambda_beta)
+
+lemma Cart_lambda_eta: "(\<chi> i. (g\$i)) = g" by (simp add: Cart_eq Cart_lambda_beta)
+
+text{* A non-standard sum to "paste" Cartesian products. *}
+
+typedef ('a,'b) finite_sum = "{1 .. DIM('a) + DIM('b)}"
+  apply (rule exI[where x="1"])
+  using dimindex_ge_1[of "UNIV :: 'a set"] dimindex_ge_1[of "UNIV :: 'b set"]
+  by auto
+
+definition pastecart :: "'a ^ 'm \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ ('m,'n) finite_sum" where
+  "pastecart f g = (\<chi> i. (if i <= DIM('m) then f\$i else g\$(i - DIM('m))))"
+
+definition fstcart:: "'a ^('m, 'n) finite_sum \<Rightarrow> 'a ^ 'm" where
+  "fstcart f = (\<chi> i. (f\$i))"
+
+definition sndcart:: "'a ^('m, 'n) finite_sum \<Rightarrow> 'a ^ 'n" where
+  "sndcart f = (\<chi> i. (f\$(i + DIM('m))))"
+
+lemma finite_sum_image: "(UNIV::('a,'b) finite_sum set) = Abs_finite_sum ` {1 .. DIM('a) + DIM('b)}"
+apply (rule_tac x="Rep_finite_sum x" in bexI)
+using Rep_finite_sum[unfolded finite_sum_def, where ?'a = 'a and ?'b = 'b]
+done
+
+lemma inj_on_Abs_finite_sum: "inj_on (Abs_finite_sum :: _ \<Rightarrow> ('a,'b) finite_sum) {1 .. DIM('a) + DIM('b)}"
+  using Abs_finite_sum_inject[where ?'a = 'a and ?'b = 'b]
+  by (auto simp add: inj_on_def finite_sum_def)
+
+lemma dimindex_has_size_finite_sum:
+  "(UNIV::('m,'n) finite_sum set) hassize (DIM('m) + DIM('n))"
+  by (simp add: finite_sum_image hassize_def card_image[OF inj_on_Abs_finite_sum[where ?'a = 'm and ?'b = 'n]] del: One_nat_def)
+
+lemma dimindex_finite_sum: "DIM(('m,'n) finite_sum) = DIM('m) + DIM('n)"
+  using dimindex_has_size_finite_sum[where ?'n = 'n and ?'m = 'm, unfolded hassize_def]
+
+lemma fstcart_pastecart: "fstcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = x"
+  by (simp add: pastecart_def fstcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
+
+lemma sndcart_pastecart: "sndcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = y"
+  by (simp add: pastecart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
+
+lemma pastecart_fst_snd: "pastecart (fstcart z) (sndcart z) = z"
+proof -
+ {fix i
+  assume H: "i \<le> DIM('b) + DIM('c)"
+    "\<not> i \<le> DIM('b)"
+    from H have ith: "i - DIM('b) \<in> {1 .. DIM('c)}"
+      apply simp by arith
+    from H have th0: "i - DIM('b) + DIM('b) = i"
+      by simp
+  have "(\<chi> i. (z\$(i + DIM('b))) :: 'a ^ 'c)\$(i - DIM('b)) = z\$i"
+    unfolding Cart_lambda_beta'[where g = "\<lambda> i. z\$(i + DIM('b))", OF ith] th0 ..}
+thus ?thesis by (auto simp add: pastecart_def fstcart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
+qed
+
+lemma pastecart_eq: "(x = y) \<longleftrightarrow> (fstcart x = fstcart y) \<and> (sndcart x = sndcart y)"
+  using pastecart_fst_snd[of x] pastecart_fst_snd[of y] by metis
+
+lemma forall_pastecart: "(\<forall>p. P p) \<longleftrightarrow> (\<forall>x y. P (pastecart x y))"
+  by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart)
+
+lemma exists_pastecart: "(\<exists>p. P p)  \<longleftrightarrow> (\<exists>x y. P (pastecart x y))"
+  by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart)
+
+text{* The finiteness lemma. *}
+
+lemma finite_cart:
+ "\<forall>i \<in> {1 .. DIM('n)}. finite {x.  P i x}
+  \<Longrightarrow> finite {v::'a ^ 'n . (\<forall>i \<in> {1 .. DIM('n)}. P i (v\$i))}"
+proof-
+  assume f: "\<forall>i \<in> {1 .. DIM('n)}. finite {x.  P i x}"
+  {fix n
+    assume n: "n \<le> DIM('n)"
+    have "finite {v:: 'a ^ 'n . (\<forall>i\<in> {1 .. DIM('n)}. i \<le> n \<longrightarrow> P i (v\$i))
+                              \<and> (\<forall>i\<in> {1 .. DIM('n)}. n < i \<longrightarrow> v\$i = (SOME x. False))}"
+      using n
+      proof(induct n)
+	case 0
+	have th0: "{v . (\<forall>i \<in> {1 .. DIM('n)}. v\$i = (SOME x. False))} =
+      {(\<chi> i. (SOME x. False)::'a ^ 'n)}" by (auto simp add: Cart_lambda_beta Cart_eq)
+	with "0.prems" show ?case by auto
+      next
+	case (Suc n)
+	let ?h = "\<lambda>(x::'a,v:: 'a ^ 'n). (\<chi> i. if i = Suc n then x else v\$i):: 'a ^ 'n"
+	let ?T = "{v\<Colon>'a ^ 'n.
+            (\<forall>i\<Colon>nat\<in>{1\<Colon>nat..DIM('n)}. i \<le> Suc n \<longrightarrow> P i (v\$i)) \<and>
+            (\<forall>i\<Colon>nat\<in>{1\<Colon>nat..DIM('n)}.
+                Suc n < i \<longrightarrow> v\$i = (SOME x\<Colon>'a. False))}"
+	let ?S = "{x::'a . P (Suc  n) x} \<times> {v:: 'a^'n. (\<forall>i \<in> {1 .. DIM('n)}. i <= n \<longrightarrow> P i (v\$i)) \<and> (\<forall>i \<in> {1 .. DIM('n)}. n < i \<longrightarrow> v\$i = (SOME x. False))}"
+	have th0: " ?T \<subseteq> (?h ` ?S)"
+	  using Suc.prems
+	  apply (auto simp add: image_def)
+	  apply (rule_tac x = "x\$(Suc n)" in exI)
+	  apply (rule conjI)
+	  apply (rotate_tac)
+	  apply (erule ballE[where x="Suc n"])
+	  apply simp
+	  apply simp
+	  apply (rule_tac x= "\<chi> i. if i = Suc n then (SOME x:: 'a. False) else (x:: 'a ^ 'n)\$i:: 'a ^ 'n" in exI)
+	  by (simp add: Cart_eq Cart_lambda_beta)
+	have th1: "finite ?S"
+	  apply (rule finite_cartesian_product)
+	  using f Suc.hyps Suc.prems by auto
+	from finite_imageI[OF th1] have th2: "finite (?h ` ?S)" .
+	from finite_subset[OF th0 th2] show ?case by blast
+      qed}
+
+  note th = this
+  from this[of "DIM('n)"] f
+  show ?thesis by auto
+qed
+
+
+end```