define polynomial multiplication using poly_rec
authorhuffman
Tue, 13 Jan 2009 08:58:56 -0800
changeset 29474 674a21226c5a
parent 29473 5fc19891652c
child 29475 c06d1b0a970f
define polynomial multiplication using poly_rec
src/HOL/Polynomial.thy
--- a/src/HOL/Polynomial.thy	Tue Jan 13 08:20:12 2009 -0800
+++ b/src/HOL/Polynomial.thy	Tue Jan 13 08:58:56 2009 -0800
@@ -463,57 +463,7 @@
 
 subsection {* Multiplication of polynomials *}
 
-lemma Poly_mult_lemma:
-  fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0" and m n :: nat
-  assumes "\<forall>i>m. f i = 0"
-  assumes "\<forall>j>n. g j = 0"
-  shows "\<forall>k>m+n. (\<Sum>i\<le>k. f i * g (k-i)) = 0"
-proof (clarify)
-  fix k :: nat
-  assume "m + n < k"
-  show "(\<Sum>i\<le>k. f i * g (k - i)) = 0"
-  proof (rule setsum_0' [rule_format])
-    fix i :: nat
-    assume "i \<in> {..k}" hence "i \<le> k" by simp
-    with `m + n < k` have "m < i \<or> n < k - i" by arith
-    thus "f i * g (k - i) = 0"
-      using prems by auto
-  qed
-qed
-
-lemma Poly_mult:
-  fixes f g :: "nat \<Rightarrow> 'a::comm_semiring_0"
-  shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i * g (n-i)) \<in> Poly"
-  unfolding Poly_def
-  by (safe, rule exI, rule Poly_mult_lemma)
-
-lemma poly_mult_assoc_lemma:
-  fixes k :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
-  shows "(\<Sum>j\<le>k. \<Sum>i\<le>j. f i (j - i) (n - j)) =
-         (\<Sum>j\<le>k. \<Sum>i\<le>k - j. f j i (n - j - i))"
-proof (induct k)
-  case 0 show ?case by simp
-next
-  case (Suc k) thus ?case
-    by (simp add: Suc_diff_le setsum_addf add_assoc
-             cong: strong_setsum_cong)
-qed
-
-lemma poly_mult_commute_lemma:
-  fixes n :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
-  shows "(\<Sum>i\<le>n. f i (n - i)) = (\<Sum>i\<le>n. f (n - i) i)"
-proof (rule setsum_reindex_cong)
-  show "inj_on (\<lambda>i. n - i) {..n}"
-    by (rule inj_onI) simp
-  show "{..n} = (\<lambda>i. n - i) ` {..n}"
-    by (auto, rule_tac x="n - x" in image_eqI, simp_all)
-next
-  fix i assume "i \<in> {..n}"
-  hence "n - (n - i) = i" by simp
-  thus "f (n - i) i = f (n - i) (n - (n - i))" by simp
-qed
-
-text {* TODO: move to appropriate theory *}
+text {* TODO: move to SetInterval.thy *}
 lemma setsum_atMost_Suc_shift:
   fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
   shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
@@ -538,69 +488,69 @@
 
 definition
   times_poly_def:
-    "p * q = Abs_poly (\<lambda>n. \<Sum>i\<le>n. coeff p i * coeff q (n-i))"
+    "p * q = poly_rec 0 (\<lambda>a p pq. smult a q + pCons 0 pq) p"
+
+lemma mult_poly_0_left: "(0::'a poly) * q = 0"
+  unfolding times_poly_def by (simp add: poly_rec_0)
+
+lemma mult_pCons_left [simp]:
+  "pCons a p * q = smult a q + pCons 0 (p * q)"
+  unfolding times_poly_def by (simp add: poly_rec_pCons)
+
+lemma mult_poly_0_right: "p * (0::'a poly) = 0"
+  by (induct p, simp add: mult_poly_0_left, simp)
 
-lemma coeff_mult:
-  "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
-  unfolding times_poly_def
-  by (simp add: Abs_poly_inverse coeff Poly_mult)
+lemma mult_pCons_right [simp]:
+  "p * pCons a q = smult a p + pCons 0 (p * q)"
+  by (induct p, simp add: mult_poly_0_left, simp add: ring_simps)
+
+lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
+
+lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
+  by (induct p, simp add: mult_poly_0, simp add: smult_add_right)
+
+lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
+  by (induct q, simp add: mult_poly_0, simp add: smult_add_right)
+
+lemma mult_poly_add_left:
+  fixes p q r :: "'a poly"
+  shows "(p + q) * r = p * r + q * r"
+  by (induct r, simp add: mult_poly_0,
+                simp add: smult_distribs group_simps)
 
 instance proof
   fix p q r :: "'a poly"
   show 0: "0 * p = 0"
-    by (simp add: expand_poly_eq coeff_mult)
+    by (rule mult_poly_0_left)
   show "p * 0 = 0"
-    by (simp add: expand_poly_eq coeff_mult)
+    by (rule mult_poly_0_right)
   show "(p + q) * r = p * r + q * r"
-    by (simp add: expand_poly_eq coeff_mult left_distrib setsum_addf)
+    by (rule mult_poly_add_left)
   show "(p * q) * r = p * (q * r)"
-  proof (rule poly_ext)
-    fix n :: nat
-    have "(\<Sum>j\<le>n. \<Sum>i\<le>j. coeff p i * coeff q (j - i) * coeff r (n - j)) =
-          (\<Sum>j\<le>n. \<Sum>i\<le>n - j. coeff p j * coeff q i * coeff r (n - j - i))"
-      by (rule poly_mult_assoc_lemma)
-    thus "coeff ((p * q) * r) n = coeff (p * (q * r)) n"
-      by (simp add: coeff_mult setsum_right_distrib
-                    setsum_left_distrib mult_assoc)
-  qed
+    by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left)
   show "p * q = q * p"
-  proof (rule poly_ext)
-    fix n :: nat
-    have "(\<Sum>i\<le>n. coeff p i * coeff q (n - i)) =
-          (\<Sum>i\<le>n. coeff p (n - i) * coeff q i)"
-      by (rule poly_mult_commute_lemma)
-    thus "coeff (p * q) n = coeff (q * p) n"
-      by (simp add: coeff_mult mult_commute)
-  qed
+    by (induct p, simp add: mult_poly_0, simp)
 qed
 
 end
 
-lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
-apply (rule degree_le, simp add: coeff_mult)
-apply (rule Poly_mult_lemma)
-apply (simp_all add: coeff_eq_0)
-done
+lemma coeff_mult:
+  "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
+proof (induct p arbitrary: n)
+  case 0 show ?case by simp
+next
+  case (pCons a p n) thus ?case
+    by (cases n, simp, simp add: setsum_atMost_Suc_shift
+                            del: setsum_atMost_Suc)
+qed
 
-lemma mult_pCons_left [simp]:
-  "pCons a p * q = smult a q + pCons 0 (p * q)"
-apply (rule poly_ext)
-apply (case_tac n)
-apply (simp add: coeff_mult)
-apply (simp add: coeff_mult setsum_atMost_Suc_shift
-            del: setsum_atMost_Suc)
+lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
+apply (rule degree_le)
+apply (induct p)
+apply simp
+apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
 done
 
-lemma mult_pCons_right [simp]:
-  "p * pCons a q = smult a p + pCons 0 (p * q)"
-  using mult_pCons_left [of a q p] by (simp add: mult_commute)
-
-lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
-  by (induct p, simp, simp add: smult_add_right)
-
-lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
-  by (induct q, simp, simp add: smult_add_right)
-
 lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
   by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)