use SMT2 for Boogie examples
authorboehmes
Thu, 01 May 2014 22:57:38 +0200
changeset 56818 689a3eeb6f9e
parent 56817 0a08878f8b37
child 56819 ad1bbed53788
use SMT2 for Boogie examples
src/HOL/ROOT
src/HOL/SMT_Examples/Boogie.thy
src/HOL/SMT_Examples/Boogie_Dijkstra.certs
src/HOL/SMT_Examples/Boogie_Dijkstra.certs2
src/HOL/SMT_Examples/Boogie_Max.certs
src/HOL/SMT_Examples/Boogie_Max.certs2
src/HOL/SMT_Examples/VCC_Max.certs
src/HOL/SMT_Examples/VCC_Max.certs2
src/HOL/SMT_Examples/boogie.ML
--- a/src/HOL/ROOT	Thu May 01 22:57:36 2014 +0200
+++ b/src/HOL/ROOT	Thu May 01 22:57:38 2014 +0200
@@ -775,12 +775,12 @@
   theories [condition = ISABELLE_FULL_TEST]
     SMT_Tests
   files
-    "Boogie_Dijkstra.certs"
-    "Boogie_Max.certs"
+    "Boogie_Dijkstra.certs2"
+    "Boogie_Max.certs2"
     "SMT_Examples.certs"
     "SMT_Examples.certs2"
     "SMT_Word_Examples.certs2"
-    "VCC_Max.certs"
+    "VCC_Max.certs2"
 
 session "HOL-SPARK" (main) in "SPARK" = "HOL-Word" +
   options [document = false]
--- a/src/HOL/SMT_Examples/Boogie.thy	Thu May 01 22:57:36 2014 +0200
+++ b/src/HOL/SMT_Examples/Boogie.thy	Thu May 01 22:57:38 2014 +0200
@@ -51,22 +51,22 @@
 
 section {* Verification condition proofs *}
 
-declare [[smt_oracle = false]]
-declare [[smt_read_only_certificates = true]]
+declare [[smt2_oracle = false]]
+declare [[smt2_read_only_certificates = true]]
 
 
-declare [[smt_certificates = "Boogie_Max.certs"]]
+declare [[smt2_certificates = "Boogie_Max.certs2"]]
 
 boogie_file Boogie_Max
 
 
-declare [[smt_certificates = "Boogie_Dijkstra.certs"]]
+declare [[smt2_certificates = "Boogie_Dijkstra.certs2"]]
 
 boogie_file Boogie_Dijkstra
 
 
-declare [[z3_with_extensions = true]]
-declare [[smt_certificates = "VCC_Max.certs"]]
+declare [[z3_new_extensions = true]]
+declare [[smt2_certificates = "VCC_Max.certs2"]]
 
 boogie_file VCC_Max
 
--- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs	Thu May 01 22:57:36 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6137 +0,0 @@
-5d68fa8702e4a020dc142c33743a5a5445fcba10 6136 0
-#2 := false
-#53 := 0::Int
-decl f30 :: (-> S2 Int)
-decl ?v1!7 :: (-> S2 S2)
-decl ?v0!20 :: S2
-#2123 := ?v0!20
-#5431 := (?v1!7 ?v0!20)
-#18254 := (f30 #5431)
-#1012 := -1::Int
-#17799 := (* -1::Int #18254)
-decl f15 :: (-> S4 Int)
-decl f5 :: (-> S5 S2 S4)
-decl f6 :: (-> S6 S2 S5)
-decl f7 :: S6
-#8 := f7
-#5439 := (f6 f7 #5431)
-#5440 := (f5 #5439 ?v0!20)
-#5441 := (f15 #5440)
-#5442 := (* -1::Int #5441)
-#18528 := (+ #5442 #17799)
-#2126 := (f30 ?v0!20)
-#18529 := (+ #2126 #18528)
-#15418 := (>= #18529 0::Int)
-decl f19 :: (-> S11 S2 Int)
-decl f20 :: S11
-#109 := f20
-#5432 := (f19 f20 #5431)
-#5433 := (* -1::Int #5432)
-#5443 := (+ #5433 #5442)
-#5169 := (f19 f20 ?v0!20)
-#5444 := (+ #5169 #5443)
-#11830 := (>= #5444 0::Int)
-#5445 := (= #5444 0::Int)
-#5446 := (not #5445)
-decl f1 :: S1
-#3 := f1
-decl f9 :: (-> S7 S2 S1)
-decl f21 :: S7
-#115 := f21
-#5436 := (f9 f21 #5431)
-#5437 := (= #5436 f1)
-#5438 := (not #5437)
-#5434 := (+ #5169 #5433)
-#5435 := (<= #5434 0::Int)
-#5447 := (or #5435 #5438 #5446)
-#5448 := (not #5447)
-#5194 := (* -1::Int #5169)
-decl f14 :: Int
-#54 := f14
-#5429 := (+ f14 #5194)
-#5430 := (<= #5429 0::Int)
-#17547 := (not #5430)
-#5195 := (+ #2126 #5194)
-#17503 := (>= #5195 0::Int)
-#5176 := (= #2126 #5169)
-decl f28 :: S2
-#186 := f28
-#19609 := (= f28 ?v0!20)
-#19613 := (not #19609)
-#14451 := (= ?v0!20 f28)
-#15274 := (not #14451)
-#16593 := (iff #15274 #19613)
-#15457 := (iff #14451 #19609)
-#14873 := (iff #19609 #14451)
-#7691 := [commutativity]: #14873
-#16696 := [symm #7691]: #15457
-#14829 := [monotonicity #16696]: #16593
-#5398 := (f9 f21 ?v0!20)
-#5399 := (= #5398 f1)
-#14460 := (or #14451 #5399)
-#15350 := (not #14460)
-decl f10 :: (-> S8 S1 S7)
-decl f11 :: (-> S9 S2 S8)
-decl f12 :: (-> S10 S7 S9)
-decl f13 :: S10
-#27 := f13
-#196 := (f12 f13 f21)
-#197 := (f11 #196 f28)
-#198 := (f10 #197 f1)
-#14446 := (f9 #198 ?v0!20)
-#14450 := (= #14446 f1)
-#14478 := (iff #14450 #14460)
-#11 := (:var 0 S2)
-#42 := (:var 1 S1)
-#40 := (:var 2 S2)
-#38 := (:var 3 S7)
-#39 := (f12 f13 #38)
-#41 := (f11 #39 #40)
-#43 := (f10 #41 #42)
-#44 := (f9 #43 #11)
-#3717 := (pattern #44)
-#48 := (f9 #38 #11)
-#49 := (= #48 f1)
-#47 := (= #42 f1)
-#46 := (= #11 #40)
-#50 := (if #46 #47 #49)
-#45 := (= #44 f1)
-#51 := (iff #45 #50)
-#3718 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) (:pat #3717) #51)
-#52 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) #51)
-#3721 := (iff #52 #3718)
-#3719 := (iff #51 #51)
-#3720 := [refl]: #3719
-#3722 := [quant-intro #3720]: #3721
-#1579 := (~ #52 #52)
-#1609 := (~ #51 #51)
-#1610 := [refl]: #1609
-#1580 := [nnf-pos #1610]: #1579
-#322 := [asserted]: #52
-#1611 := [mp~ #322 #1580]: #52
-#3723 := [mp #1611 #3722]: #3718
-#7628 := (not #3718)
-#15363 := (or #7628 #14478)
-#4146 := (= f1 f1)
-#14455 := (if #14451 #4146 #5399)
-#14456 := (iff #14450 #14455)
-#15337 := (or #7628 #14456)
-#15318 := (iff #15337 #15363)
-#15276 := (iff #15363 #15363)
-#15289 := [rewrite]: #15276
-#14479 := (iff #14456 #14478)
-#14476 := (iff #14455 #14460)
-#1 := true
-#14457 := (if #14451 true #5399)
-#14461 := (iff #14457 #14460)
-#14475 := [rewrite]: #14461
-#14458 := (iff #14455 #14457)
-#4148 := (iff #4146 true)
-#4149 := [rewrite]: #4148
-#14459 := [monotonicity #4149]: #14458
-#14477 := [trans #14459 #14475]: #14476
-#14480 := [monotonicity #14477]: #14479
-#15256 := [monotonicity #14480]: #15318
-#15235 := [trans #15256 #15289]: #15318
-#15310 := [quant-inst #115 #186 #3 #2123]: #15337
-#15352 := [mp #15310 #15235]: #15363
-#16371 := [unit-resolution #15352 #3723]: #14478
-#15284 := (not #14450)
-decl f29 :: S7
-#195 := f29
-#4622 := (f9 f29 ?v0!20)
-#4623 := (= #4622 f1)
-#4630 := (not #4623)
-#15122 := (iff #4630 #15284)
-#15124 := (iff #4623 #14450)
-#16582 := (iff #14450 #4623)
-#16482 := (= #14446 #4622)
-#9268 := (= #198 f29)
-#199 := (= f29 #198)
-#91 := (f6 f7 #11)
-#3782 := (pattern #91)
-#217 := (f9 f29 #11)
-#3943 := (pattern #217)
-#207 := (f30 #11)
-#3918 := (pattern #207)
-#2136 := (f5 #91 ?v0!20)
-#2137 := (f15 #2136)
-#2127 := (* -1::Int #2126)
-#2472 := (+ #2127 #2137)
-#2473 := (+ #207 #2472)
-#2476 := (= #2473 0::Int)
-#3030 := (not #2476)
-#218 := (= #217 f1)
-#225 := (not #218)
-#2133 := (+ #207 #2127)
-#2134 := (>= #2133 0::Int)
-#3031 := (or #2134 #225 #3030)
-#3977 := (forall (vars (?v1 S2)) (:pat #3918 #3943 #3782) #3031)
-#3982 := (not #3977)
-#2128 := (+ f14 #2127)
-#2129 := (<= #2128 0::Int)
-decl f16 :: S2
-#65 := f16
-#2124 := (= ?v0!20 f16)
-#9 := (:var 1 S2)
-#92 := (f5 #91 #9)
-#3773 := (pattern #92)
-#229 := (f30 #9)
-#1275 := (* -1::Int #229)
-#1276 := (+ #207 #1275)
-#93 := (f15 #92)
-#1296 := (+ #93 #1276)
-#1294 := (>= #1296 0::Int)
-#1027 := (* -1::Int #93)
-#1028 := (+ f14 #1027)
-#1029 := (<= #1028 0::Int)
-#3022 := (or #225 #1029 #1294)
-#3969 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #3022)
-#3974 := (not #3969)
-#3985 := (or #3974 #2124 #2129 #3982)
-#3988 := (not #3985)
-decl ?v0!19 :: S2
-#2092 := ?v0!19
-#2105 := (f30 ?v0!19)
-#2106 := (* -1::Int #2105)
-decl ?v1!18 :: S2
-#2091 := ?v1!18
-#2104 := (f30 ?v1!18)
-#2107 := (+ #2104 #2106)
-#2095 := (f6 f7 ?v1!18)
-#2096 := (f5 #2095 ?v0!19)
-#2097 := (f15 #2096)
-#2108 := (+ #2097 #2107)
-#2109 := (>= #2108 0::Int)
-#2098 := (* -1::Int #2097)
-#2099 := (+ f14 #2098)
-#2100 := (<= #2099 0::Int)
-#2093 := (f9 f29 ?v1!18)
-#2094 := (= #2093 f1)
-#2985 := (not #2094)
-#3000 := (or #2985 #2100 #2109)
-#3005 := (not #3000)
-#3991 := (or #3005 #3988)
-#3994 := (not #3991)
-#3960 := (pattern #207 #229)
-#1274 := (>= #1276 0::Int)
-#226 := (f9 f29 #9)
-#227 := (= #226 f1)
-#2962 := (not #227)
-#2977 := (or #218 #2962 #1274)
-#3961 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3960) #2977)
-#3966 := (not #3961)
-#3997 := (or #3966 #3994)
-#4000 := (not #3997)
-decl ?v0!17 :: S2
-#2065 := ?v0!17
-#2074 := (f30 ?v0!17)
-#2075 := (* -1::Int #2074)
-decl ?v1!16 :: S2
-#2064 := ?v1!16
-#2073 := (f30 ?v1!16)
-#2076 := (+ #2073 #2075)
-#2077 := (>= #2076 0::Int)
-#2069 := (f9 f29 ?v0!17)
-#2070 := (= #2069 f1)
-#2939 := (not #2070)
-#2066 := (f9 f29 ?v1!16)
-#2067 := (= #2066 f1)
-#2954 := (or #2067 #2939 #2077)
-#2959 := (not #2954)
-#4003 := (or #2959 #4000)
-#4006 := (not #4003)
-#1265 := (>= #207 0::Int)
-#3952 := (forall (vars (?v0 S2)) (:pat #3918) #1265)
-#3957 := (not #3952)
-#4009 := (or #3957 #4006)
-#4012 := (not #4009)
-decl ?v0!15 :: S2
-#2049 := ?v0!15
-#2050 := (f30 ?v0!15)
-#2051 := (>= #2050 0::Int)
-#2052 := (not #2051)
-#4015 := (or #2052 #4012)
-#4018 := (not #4015)
-#221 := (f30 f16)
-#222 := (= #221 0::Int)
-#713 := (not #222)
-#4021 := (or #713 #4018)
-#4024 := (not #4021)
-#4027 := (or #713 #4024)
-#4030 := (not #4027)
-#112 := (f19 f20 #11)
-#3805 := (pattern #112)
-#212 := (= #207 #112)
-#603 := (or #225 #212)
-#3944 := (forall (vars (?v0 S2)) (:pat #3943 #3918 #3805) #603)
-#3949 := (not #3944)
-#4033 := (or #3949 #4030)
-#4036 := (not #4033)
-decl ?v0!14 :: S2
-#2024 := ?v0!14
-#2029 := (f19 f20 ?v0!14)
-#2028 := (f30 ?v0!14)
-#2030 := (= #2028 #2029)
-#2025 := (f9 f29 ?v0!14)
-#2026 := (= #2025 f1)
-#2027 := (not #2026)
-#2031 := (or #2027 #2030)
-#2032 := (not #2031)
-#4039 := (or #2032 #4036)
-#4042 := (not #4039)
-#1255 := (* -1::Int #207)
-#1256 := (+ #112 #1255)
-#1254 := (>= #1256 0::Int)
-#3935 := (forall (vars (?v0 S2)) (:pat #3805 #3918) #1254)
-#3940 := (not #3935)
-#4045 := (or #3940 #4042)
-#4048 := (not #4045)
-decl ?v0!13 :: S2
-#2006 := ?v0!13
-#2008 := (f30 ?v0!13)
-#2009 := (* -1::Int #2008)
-#2007 := (f19 f20 ?v0!13)
-#2010 := (+ #2007 #2009)
-#2011 := (>= #2010 0::Int)
-#2012 := (not #2011)
-#4051 := (or #2012 #4048)
-#4054 := (not #4051)
-#200 := (f6 f7 f28)
-#201 := (f5 #200 #11)
-#3917 := (pattern #201)
-#202 := (f15 #201)
-#1229 := (* -1::Int #202)
-#190 := (f19 f20 f28)
-#1235 := (* -1::Int #190)
-#1236 := (+ #1235 #1229)
-#1237 := (+ #112 #1236)
-#1238 := (<= #1237 0::Int)
-#1230 := (+ f14 #1229)
-#1231 := (<= #1230 0::Int)
-#2911 := (or #1231 #1238)
-#2912 := (not #2911)
-#2933 := (or #2912 #212)
-#3927 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2933)
-#3932 := (not #3927)
-#1385 := (+ #202 #1255)
-#1386 := (+ #190 #1385)
-#1383 := (= #1386 0::Int)
-#2925 := (or #1231 #1238 #1383)
-#3919 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2925)
-#3924 := (not #3919)
-#778 := (not #199)
-#116 := (f9 f21 #11)
-#3839 := (pattern #116)
-#1398 := (+ #112 #1235)
-#1397 := (>= #1398 0::Int)
-#117 := (= #116 f1)
-#1401 := (or #117 #1397)
-#3909 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #1401)
-#3914 := (not #3909)
-#1410 := (+ f14 #1235)
-#1411 := (<= #1410 0::Int)
-#187 := (f9 f21 f28)
-#188 := (= #187 f1)
-decl ?v0!12 :: S2
-#1961 := ?v0!12
-#1965 := (f19 f20 ?v0!12)
-#1966 := (* -1::Int #1965)
-#1967 := (+ f14 #1966)
-#1968 := (<= #1967 0::Int)
-#1962 := (f9 f21 ?v0!12)
-#1963 := (= #1962 f1)
-#4057 := (or #1963 #1968 #188 #1411 #3914 #778 #3924 #3932 #4054)
-#4060 := (not #4057)
-decl f25 :: S11
-#148 := f25
-#168 := (f19 f25 f16)
-#169 := (= #168 0::Int)
-#156 := (f19 f25 #9)
-#1149 := (* -1::Int #156)
-#153 := (f19 f25 #11)
-#1150 := (+ #153 #1149)
-#1156 := (+ #93 #1150)
-#1179 := (>= #1156 0::Int)
-#1136 := (* -1::Int #153)
-#1137 := (+ f14 #1136)
-#1138 := (<= #1137 0::Int)
-#2865 := (or #1138 #1029 #1179)
-#3871 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2865)
-#3876 := (not #3871)
-#3879 := (or #3876 #169)
-#3882 := (not #3879)
-decl ?v0!11 :: S2
-#1905 := ?v0!11
-#1920 := (f19 f25 ?v0!11)
-#1921 := (* -1::Int #1920)
-decl ?v1!10 :: S2
-#1904 := ?v1!10
-#1911 := (f6 f7 ?v1!10)
-#1912 := (f5 #1911 ?v0!11)
-#1913 := (f15 #1912)
-#2441 := (+ #1913 #1921)
-#1906 := (f19 f25 ?v1!10)
-#2442 := (+ #1906 #2441)
-#2445 := (>= #2442 0::Int)
-#1914 := (* -1::Int #1913)
-#1915 := (+ f14 #1914)
-#1916 := (<= #1915 0::Int)
-#1907 := (* -1::Int #1906)
-#1908 := (+ f14 #1907)
-#1909 := (<= #1908 0::Int)
-#2843 := (or #1909 #1916 #2445)
-#2848 := (not #2843)
-#3885 := (or #2848 #3882)
-#3888 := (not #3885)
-#3848 := (pattern #153)
-decl ?v1!9 :: (-> S2 S2)
-#1880 := (?v1!9 #11)
-#1885 := (f6 f7 #1880)
-#1886 := (f5 #1885 #11)
-#1887 := (f15 #1886)
-#2424 := (* -1::Int #1887)
-#1881 := (f19 f25 #1880)
-#2407 := (* -1::Int #1881)
-#2425 := (+ #2407 #2424)
-#2426 := (+ #153 #2425)
-#2427 := (= #2426 0::Int)
-#2813 := (not #2427)
-#2408 := (+ #153 #2407)
-#2409 := (<= #2408 0::Int)
-#2814 := (or #2409 #2813)
-#2815 := (not #2814)
-#66 := (= #11 f16)
-#2821 := (or #66 #1138 #2815)
-#3863 := (forall (vars (?v0 S2)) (:pat #3848) #2821)
-#3868 := (not #3863)
-#3891 := (or #3868 #3888)
-#3894 := (not #3891)
-decl ?v0!8 :: S2
-#1840 := ?v0!8
-#1853 := (f5 #91 ?v0!8)
-#1854 := (f15 #1853)
-#1843 := (f19 f25 ?v0!8)
-#1844 := (* -1::Int #1843)
-#2377 := (+ #1844 #1854)
-#2378 := (+ #153 #2377)
-#2381 := (= #2378 0::Int)
-#2777 := (not #2381)
-#1850 := (+ #153 #1844)
-#1851 := (>= #1850 0::Int)
-#2778 := (or #1851 #2777)
-#3849 := (forall (vars (?v1 S2)) (:pat #3848 #3782) #2778)
-#3854 := (not #3849)
-#1845 := (+ f14 #1844)
-#1846 := (<= #1845 0::Int)
-#1841 := (= ?v0!8 f16)
-#3857 := (or #1841 #1846 #3854)
-#3860 := (not #3857)
-#3897 := (or #3860 #3894)
-#3900 := (not #3897)
-decl f27 :: S11
-#151 := f27
-decl f26 :: S11
-#150 := f26
-#152 := (= f26 f27)
-#522 := (not #152)
-#149 := (= f25 f20)
-#531 := (not #149)
-decl f24 :: S2
-#146 := f24
-decl f23 :: S2
-#145 := f23
-#147 := (= f23 f24)
-#540 := (not #147)
-decl f22 :: S7
-#143 := f22
-#144 := (= f22 f21)
-#549 := (not #144)
-#1091 := (* -1::Int #112)
-#1092 := (+ f14 #1091)
-#1093 := (<= #1092 0::Int)
-#2763 := (or #117 #1093)
-#3840 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #2763)
-#3845 := (not #3840)
-#3903 := (or #3845 #549 #540 #531 #522 #3900)
-#3906 := (not #3903)
-#4063 := (or #3906 #4060)
-#4066 := (not #4063)
-#1796 := (?v1!7 #11)
-#1803 := (f6 f7 #1796)
-#1804 := (f5 #1803 #11)
-#1805 := (f15 #1804)
-#2350 := (* -1::Int #1805)
-#1797 := (f19 f20 #1796)
-#2333 := (* -1::Int #1797)
-#2351 := (+ #2333 #2350)
-#2352 := (+ #112 #2351)
-#2353 := (= #2352 0::Int)
-#2747 := (not #2353)
-#1801 := (f9 f21 #1796)
-#1802 := (= #1801 f1)
-#2746 := (not #1802)
-#2334 := (+ #112 #2333)
-#2335 := (<= #2334 0::Int)
-#2748 := (or #2335 #2746 #2747)
-#2749 := (not #2748)
-#2755 := (or #66 #1093 #2749)
-#3831 := (forall (vars (?v0 S2)) (:pat #3805) #2755)
-#3836 := (not #3831)
-#122 := (f19 f20 #9)
-#1105 := (* -1::Int #122)
-#1106 := (+ #112 #1105)
-#1107 := (+ #93 #1106)
-#1460 := (>= #1107 0::Int)
-#118 := (not #117)
-#2727 := (or #118 #1029 #1460)
-#3823 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2727)
-#3828 := (not #3823)
-#119 := (f9 f21 #9)
-#3814 := (pattern #116 #119)
-#1109 := (>= #1106 0::Int)
-#120 := (= #119 f1)
-#2690 := (not #120)
-#2705 := (or #117 #2690 #1109)
-#3815 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3814) #2705)
-#3820 := (not #3815)
-#1483 := (>= #112 0::Int)
-#3806 := (forall (vars (?v0 S2)) (:pat #3805) #1483)
-#3811 := (not #3806)
-#110 := (f19 f20 f16)
-#111 := (= #110 0::Int)
-#878 := (not #111)
-decl f17 :: (-> S2 Int)
-#67 := (f17 #11)
-#3736 := (pattern #67)
-decl ?v1!6 :: (-> S2 S2)
-#1743 := (?v1!6 #11)
-#1750 := (f6 f7 #1743)
-#1751 := (f5 #1750 #11)
-#1752 := (f15 #1751)
-#2308 := (* -1::Int #1752)
-#1744 := (f17 #1743)
-#2291 := (* -1::Int #1744)
-#2309 := (+ #2291 #2308)
-#2310 := (+ #67 #2309)
-#2311 := (= #2310 0::Int)
-#2674 := (not #2311)
-decl f18 :: S7
-#75 := f18
-#1748 := (f9 f18 #1743)
-#1749 := (= #1748 f1)
-#2673 := (not #1749)
-#2292 := (+ #67 #2291)
-#2293 := (<= #2292 0::Int)
-#2675 := (or #2293 #2673 #2674)
-#2676 := (not #2675)
-#1053 := (* -1::Int #67)
-#1054 := (+ f14 #1053)
-#1055 := (<= #1054 0::Int)
-#2682 := (or #66 #1055 #2676)
-#3797 := (forall (vars (?v0 S2)) (:pat #3736) #2682)
-#3802 := (not #3797)
-#4069 := (or #3802 #878 #3811 #3820 #3828 #3836 #4066)
-#4072 := (not #4069)
-#76 := (f9 f18 #11)
-#3749 := (pattern #76)
-decl ?v0!5 :: S2
-#1702 := ?v0!5
-#1715 := (f5 #91 ?v0!5)
-#1716 := (f15 #1715)
-#1705 := (f17 ?v0!5)
-#1706 := (* -1::Int #1705)
-#1717 := (+ #1706 #1716)
-#1718 := (+ #67 #1717)
-#1719 := (= #1718 0::Int)
-#2637 := (not #1719)
-#77 := (= #76 f1)
-#78 := (not #77)
-#1712 := (+ #67 #1706)
-#1713 := (>= #1712 0::Int)
-#2638 := (or #1713 #78 #2637)
-#3783 := (forall (vars (?v1 S2)) (:pat #3736 #3749 #3782) #2638)
-#3788 := (not #3783)
-#1707 := (+ f14 #1706)
-#1708 := (<= #1707 0::Int)
-#1703 := (= ?v0!5 f16)
-#3791 := (or #1703 #1708 #3788)
-#6181 := (= f14 #1705)
-#6178 := (= #1705 f14)
-#6207 := (iff #6178 #6181)
-#6203 := (iff #6181 #6178)
-#6186 := [commutativity]: #6203
-#6185 := [symm #6186]: #6207
-#1704 := (not #1703)
-#3794 := (not #3791)
-#6196 := [hypothesis]: #3794
-#3351 := (or #3791 #1704)
-#3352 := [def-axiom]: #3351
-#6201 := [unit-resolution #3352 #6196]: #1704
-#72 := (= #67 f14)
-#364 := (or #66 #72)
-#3743 := (forall (vars (?v0 S2)) (:pat #3736) #364)
-#367 := (forall (vars (?v0 S2)) #364)
-#3746 := (iff #367 #3743)
-#3744 := (iff #364 #364)
-#3745 := [refl]: #3744
-#3747 := [quant-intro #3745]: #3746
-#1589 := (~ #367 #367)
-#1619 := (~ #364 #364)
-#1620 := [refl]: #1619
-#1590 := [nnf-pos #1620]: #1589
-#1318 := (= #1296 0::Int)
-#1321 := (not #1274)
-#1330 := (and #1321 #218 #1318)
-#1335 := (exists (vars (?v1 S2)) #1330)
-#1307 := (+ f14 #1255)
-#1308 := (<= #1307 0::Int)
-#1309 := (not #1308)
-#71 := (not #66)
-#1312 := (and #71 #1309)
-#1315 := (not #1312)
-#1338 := (or #1315 #1335)
-#1341 := (forall (vars (?v0 S2)) #1338)
-#1030 := (not #1029)
-#1288 := (and #218 #1030)
-#1291 := (not #1288)
-#1298 := (or #1291 #1294)
-#1301 := (forall (vars (?v0 S2) (?v1 S2)) #1298)
-#1304 := (not #1301)
-#1344 := (or #1304 #1341)
-#1347 := (and #1301 #1344)
-#228 := (and #225 #227)
-#609 := (not #228)
-#1279 := (or #609 #1274)
-#1282 := (forall (vars (?v0 S2) (?v1 S2)) #1279)
-#1285 := (not #1282)
-#1350 := (or #1285 #1347)
-#1353 := (and #1282 #1350)
-#1268 := (forall (vars (?v0 S2)) #1265)
-#1271 := (not #1268)
-#1356 := (or #1271 #1353)
-#1359 := (and #1268 #1356)
-#1362 := (or #713 #1359)
-#1365 := (and #222 #1362)
-#606 := (forall (vars (?v0 S2)) #603)
-#736 := (not #606)
-#1368 := (or #736 #1365)
-#1371 := (and #606 #1368)
-#1259 := (forall (vars (?v0 S2)) #1254)
-#1262 := (not #1259)
-#1374 := (or #1262 #1371)
-#1377 := (and #1259 #1374)
-#1239 := (not #1238)
-#1232 := (not #1231)
-#1242 := (and #1232 #1239)
-#1245 := (or #1242 #212)
-#1248 := (forall (vars (?v0 S2)) #1245)
-#1251 := (not #1248)
-#1380 := (not #1242)
-#1388 := (or #1380 #1383)
-#1391 := (forall (vars (?v0 S2)) #1388)
-#1394 := (not #1391)
-#1404 := (forall (vars (?v0 S2)) #1401)
-#1407 := (not #1404)
-#1094 := (not #1093)
-#1203 := (and #118 #1094)
-#1206 := (exists (vars (?v0 S2)) #1203)
-#1422 := (not #1206)
-#1446 := (or #1422 #188 #1411 #1407 #778 #1394 #1251 #1377)
-#1139 := (not #1138)
-#1173 := (and #1139 #1030)
-#1176 := (not #1173)
-#1182 := (or #1176 #1179)
-#1185 := (forall (vars (?v0 S2) (?v1 S2)) #1182)
-#1188 := (not #1185)
-#1191 := (or #1188 #169)
-#1194 := (and #1185 #1191)
-#1154 := (= #1156 0::Int)
-#1148 := (>= #1150 0::Int)
-#1151 := (not #1148)
-#1158 := (and #1151 #1154)
-#1161 := (exists (vars (?v1 S2)) #1158)
-#1142 := (and #71 #1139)
-#1145 := (not #1142)
-#1164 := (or #1145 #1161)
-#1167 := (forall (vars (?v0 S2)) #1164)
-#1170 := (not #1167)
-#1197 := (or #1170 #1194)
-#1200 := (and #1167 #1197)
-#1224 := (or #1206 #549 #540 #531 #522 #1200)
-#1451 := (and #1224 #1446)
-#1103 := (= #1107 0::Int)
-#1110 := (not #1109)
-#1119 := (and #1110 #117 #1103)
-#1124 := (exists (vars (?v1 S2)) #1119)
-#1097 := (and #71 #1094)
-#1100 := (not #1097)
-#1127 := (or #1100 #1124)
-#1130 := (forall (vars (?v0 S2)) #1127)
-#1133 := (not #1130)
-#1454 := (and #117 #1030)
-#1457 := (not #1454)
-#1463 := (or #1457 #1460)
-#1466 := (forall (vars (?v0 S2) (?v1 S2)) #1463)
-#1469 := (not #1466)
-#121 := (and #118 #120)
-#391 := (not #121)
-#1474 := (or #391 #1109)
-#1477 := (forall (vars (?v0 S2) (?v1 S2)) #1474)
-#1480 := (not #1477)
-#1486 := (forall (vars (?v0 S2)) #1483)
-#1489 := (not #1486)
-#87 := (f17 #9)
-#1015 := (* -1::Int #87)
-#1042 := (+ #1015 #93)
-#1043 := (+ #67 #1042)
-#1065 := (= #1043 0::Int)
-#1016 := (+ #67 #1015)
-#1014 := (>= #1016 0::Int)
-#1068 := (not #1014)
-#1077 := (and #1068 #77 #1065)
-#1082 := (exists (vars (?v1 S2)) #1077)
-#1056 := (not #1055)
-#1059 := (and #71 #1056)
-#1062 := (not #1059)
-#1085 := (or #1062 #1082)
-#1088 := (forall (vars (?v0 S2)) #1085)
-#1492 := (not #1088)
-#1513 := (or #1492 #878 #1489 #1480 #1469 #1133 #1451)
-#1518 := (and #1088 #1513)
-#1040 := (>= #1043 0::Int)
-#1033 := (and #77 #1030)
-#1036 := (not #1033)
-#1044 := (or #1036 #1040)
-#1047 := (forall (vars (?v0 S2) (?v1 S2)) #1044)
-#1050 := (not #1047)
-#1521 := (or #1050 #1518)
-#1524 := (and #1047 #1521)
-#84 := (f9 f18 #9)
-#85 := (= #84 f1)
-#86 := (and #78 #85)
-#370 := (not #86)
-#1018 := (or #370 #1014)
-#1021 := (forall (vars (?v0 S2) (?v1 S2)) #1018)
-#1024 := (not #1021)
-#1527 := (or #1024 #1524)
-#1530 := (and #1021 #1527)
-#1005 := (>= #67 0::Int)
-#1006 := (forall (vars (?v0 S2)) #1005)
-#1009 := (not #1006)
-#1533 := (or #1009 #1530)
-#1536 := (and #1006 #1533)
-#80 := (f17 f16)
-#81 := (= #80 0::Int)
-#946 := (not #81)
-#1539 := (or #946 #1536)
-#1542 := (and #81 #1539)
-#79 := (forall (vars (?v0 S2)) #78)
-#965 := (not #79)
-#974 := (not #367)
-#68 := (= #67 0::Int)
-#358 := (or #71 #68)
-#361 := (forall (vars (?v0 S2)) #358)
-#983 := (not #361)
-#1554 := (or #983 #974 #965 #1542)
-#1559 := (not #1554)
-#247 := (implies false true)
-#234 := (+ #207 #93)
-#241 := (= #229 #234)
-#242 := (and #218 #241)
-#240 := (< #207 #229)
-#243 := (and #240 #242)
-#244 := (exists (vars (?v1 S2)) #243)
-#238 := (< #207 f14)
-#239 := (and #71 #238)
-#245 := (implies #239 #244)
-#246 := (forall (vars (?v0 S2)) #245)
-#248 := (implies #246 #247)
-#249 := (and #246 #248)
-#235 := (<= #229 #234)
-#94 := (< #93 f14)
-#233 := (and #218 #94)
-#236 := (implies #233 #235)
-#237 := (forall (vars (?v0 S2) (?v1 S2)) #236)
-#250 := (implies #237 #249)
-#251 := (and #237 #250)
-#230 := (<= #229 #207)
-#231 := (implies #228 #230)
-#232 := (forall (vars (?v0 S2) (?v1 S2)) #231)
-#252 := (implies #232 #251)
-#253 := (and #232 #252)
-#223 := (<= 0::Int #207)
-#224 := (forall (vars (?v0 S2)) #223)
-#254 := (implies #224 #253)
-#255 := (and #224 #254)
-#256 := (implies #222 #255)
-#257 := (and #222 #256)
-#258 := (implies true #257)
-#259 := (implies true #258)
-#219 := (implies #218 #212)
-#220 := (forall (vars (?v0 S2)) #219)
-#260 := (implies #220 #259)
-#261 := (and #220 #260)
-#215 := (<= #207 #112)
-#216 := (forall (vars (?v0 S2)) #215)
-#262 := (implies #216 #261)
-#263 := (and #216 #262)
-#204 := (+ #190 #202)
-#205 := (< #204 #112)
-#203 := (< #202 f14)
-#206 := (and #203 #205)
-#211 := (not #206)
-#213 := (implies #211 #212)
-#214 := (forall (vars (?v0 S2)) #213)
-#264 := (implies #214 #263)
-#208 := (= #207 #204)
-#209 := (implies #206 #208)
-#210 := (forall (vars (?v0 S2)) #209)
-#265 := (implies #210 #264)
-#266 := (implies #199 #265)
-#192 := (<= #190 #112)
-#193 := (implies #118 #192)
-#194 := (forall (vars (?v0 S2)) #193)
-#267 := (implies #194 #266)
-#191 := (< #190 f14)
-#268 := (implies #191 #267)
-#189 := (not #188)
-#269 := (implies #189 #268)
-#131 := (< #112 f14)
-#140 := (and #118 #131)
-#141 := (exists (vars (?v0 S2)) #140)
-#270 := (implies #141 #269)
-#271 := (implies true #270)
-#272 := (implies true #271)
-#170 := (implies #169 true)
-#171 := (and #169 #170)
-#158 := (+ #153 #93)
-#165 := (<= #156 #158)
-#154 := (< #153 f14)
-#164 := (and #154 #94)
-#166 := (implies #164 #165)
-#167 := (forall (vars (?v0 S2) (?v1 S2)) #166)
-#172 := (implies #167 #171)
-#173 := (and #167 #172)
-#159 := (= #156 #158)
-#157 := (< #153 #156)
-#160 := (and #157 #159)
-#161 := (exists (vars (?v1 S2)) #160)
-#155 := (and #71 #154)
-#162 := (implies #155 #161)
-#163 := (forall (vars (?v0 S2)) #162)
-#174 := (implies #163 #173)
-#175 := (and #163 #174)
-#176 := (implies true #175)
-#177 := (implies #152 #176)
-#178 := (implies #149 #177)
-#179 := (implies #147 #178)
-#180 := (implies #144 #179)
-#181 := (implies true #180)
-#182 := (implies true #181)
-#142 := (not #141)
-#183 := (implies #142 #182)
-#184 := (implies true #183)
-#185 := (implies true #184)
-#273 := (and #185 #272)
-#274 := (implies true #273)
-#127 := (+ #112 #93)
-#134 := (= #122 #127)
-#135 := (and #117 #134)
-#133 := (< #112 #122)
-#136 := (and #133 #135)
-#137 := (exists (vars (?v1 S2)) #136)
-#132 := (and #71 #131)
-#138 := (implies #132 #137)
-#139 := (forall (vars (?v0 S2)) #138)
-#275 := (implies #139 #274)
-#128 := (<= #122 #127)
-#126 := (and #117 #94)
-#129 := (implies #126 #128)
-#130 := (forall (vars (?v0 S2) (?v1 S2)) #129)
-#276 := (implies #130 #275)
-#123 := (<= #122 #112)
-#124 := (implies #121 #123)
-#125 := (forall (vars (?v0 S2) (?v1 S2)) #124)
-#277 := (implies #125 #276)
-#113 := (<= 0::Int #112)
-#114 := (forall (vars (?v0 S2)) #113)
-#278 := (implies #114 #277)
-#279 := (implies #111 #278)
-#280 := (implies true #279)
-#281 := (implies true #280)
-#96 := (+ #67 #93)
-#103 := (= #87 #96)
-#104 := (and #77 #103)
-#102 := (< #67 #87)
-#105 := (and #102 #104)
-#106 := (exists (vars (?v1 S2)) #105)
-#100 := (< #67 f14)
-#101 := (and #71 #100)
-#107 := (implies #101 #106)
-#108 := (forall (vars (?v0 S2)) #107)
-#282 := (implies #108 #281)
-#283 := (and #108 #282)
-#97 := (<= #87 #96)
-#95 := (and #77 #94)
-#98 := (implies #95 #97)
-#99 := (forall (vars (?v0 S2) (?v1 S2)) #98)
-#284 := (implies #99 #283)
-#285 := (and #99 #284)
-#88 := (<= #87 #67)
-#89 := (implies #86 #88)
-#90 := (forall (vars (?v0 S2) (?v1 S2)) #89)
-#286 := (implies #90 #285)
-#287 := (and #90 #286)
-#82 := (<= 0::Int #67)
-#83 := (forall (vars (?v0 S2)) #82)
-#288 := (implies #83 #287)
-#289 := (and #83 #288)
-#290 := (implies #81 #289)
-#291 := (and #81 #290)
-#292 := (implies true #291)
-#293 := (implies #79 #292)
-#73 := (implies #71 #72)
-#74 := (forall (vars (?v0 S2)) #73)
-#294 := (implies #74 #293)
-#69 := (implies #66 #68)
-#70 := (forall (vars (?v0 S2)) #69)
-#295 := (implies #70 #294)
-#296 := (implies true #295)
-#297 := (implies true #296)
-#298 := (not #297)
-#1562 := (iff #298 #1559)
-#616 := (+ #93 #207)
-#634 := (= #229 #616)
-#637 := (and #218 #634)
-#640 := (and #240 #637)
-#643 := (exists (vars (?v1 S2)) #640)
-#649 := (not #239)
-#650 := (or #649 #643)
-#655 := (forall (vars (?v0 S2)) #650)
-#619 := (<= #229 #616)
-#625 := (not #233)
-#626 := (or #625 #619)
-#631 := (forall (vars (?v0 S2) (?v1 S2)) #626)
-#677 := (not #631)
-#678 := (or #677 #655)
-#683 := (and #631 #678)
-#610 := (or #609 #230)
-#613 := (forall (vars (?v0 S2) (?v1 S2)) #610)
-#689 := (not #613)
-#690 := (or #689 #683)
-#695 := (and #613 #690)
-#701 := (not #224)
-#702 := (or #701 #695)
-#707 := (and #224 #702)
-#714 := (or #713 #707)
-#719 := (and #222 #714)
-#737 := (or #736 #719)
-#742 := (and #606 #737)
-#748 := (not #216)
-#749 := (or #748 #742)
-#754 := (and #216 #749)
-#597 := (or #206 #212)
-#600 := (forall (vars (?v0 S2)) #597)
-#760 := (not #600)
-#761 := (or #760 #754)
-#591 := (or #211 #208)
-#594 := (forall (vars (?v0 S2)) #591)
-#769 := (not #594)
-#770 := (or #769 #761)
-#779 := (or #778 #770)
-#585 := (or #117 #192)
-#588 := (forall (vars (?v0 S2)) #585)
-#787 := (not #588)
-#788 := (or #787 #779)
-#796 := (not #191)
-#797 := (or #796 #788)
-#805 := (or #188 #797)
-#813 := (or #142 #805)
-#440 := (+ #93 #153)
-#464 := (<= #156 #440)
-#470 := (not #164)
-#471 := (or #470 #464)
-#476 := (forall (vars (?v0 S2) (?v1 S2)) #471)
-#491 := (not #476)
-#492 := (or #491 #169)
-#497 := (and #476 #492)
-#443 := (= #156 #440)
-#446 := (and #157 #443)
-#449 := (exists (vars (?v1 S2)) #446)
-#455 := (not #155)
-#456 := (or #455 #449)
-#461 := (forall (vars (?v0 S2)) #456)
-#503 := (not #461)
-#504 := (or #503 #497)
-#509 := (and #461 #504)
-#523 := (or #522 #509)
-#532 := (or #531 #523)
-#541 := (or #540 #532)
-#550 := (or #549 #541)
-#569 := (or #141 #550)
-#829 := (and #569 #813)
-#398 := (+ #93 #112)
-#416 := (= #122 #398)
-#419 := (and #117 #416)
-#422 := (and #133 #419)
-#425 := (exists (vars (?v1 S2)) #422)
-#431 := (not #132)
-#432 := (or #431 #425)
-#437 := (forall (vars (?v0 S2)) #432)
-#842 := (not #437)
-#843 := (or #842 #829)
-#401 := (<= #122 #398)
-#407 := (not #126)
-#408 := (or #407 #401)
-#413 := (forall (vars (?v0 S2) (?v1 S2)) #408)
-#851 := (not #413)
-#852 := (or #851 #843)
-#392 := (or #391 #123)
-#395 := (forall (vars (?v0 S2) (?v1 S2)) #392)
-#860 := (not #395)
-#861 := (or #860 #852)
-#869 := (not #114)
-#870 := (or #869 #861)
-#879 := (or #878 #870)
-#384 := (not #101)
-#385 := (or #384 #106)
-#388 := (forall (vars (?v0 S2)) #385)
-#898 := (not #388)
-#899 := (or #898 #879)
-#904 := (and #388 #899)
-#377 := (not #95)
-#378 := (or #377 #97)
-#381 := (forall (vars (?v0 S2) (?v1 S2)) #378)
-#910 := (not #381)
-#911 := (or #910 #904)
-#916 := (and #381 #911)
-#371 := (or #370 #88)
-#374 := (forall (vars (?v0 S2) (?v1 S2)) #371)
-#922 := (not #374)
-#923 := (or #922 #916)
-#928 := (and #374 #923)
-#934 := (not #83)
-#935 := (or #934 #928)
-#940 := (and #83 #935)
-#947 := (or #946 #940)
-#952 := (and #81 #947)
-#966 := (or #965 #952)
-#975 := (or #974 #966)
-#984 := (or #983 #975)
-#1000 := (not #984)
-#1560 := (iff #1000 #1559)
-#1557 := (iff #984 #1554)
-#1545 := (or #965 #1542)
-#1548 := (or #974 #1545)
-#1551 := (or #983 #1548)
-#1555 := (iff #1551 #1554)
-#1556 := [rewrite]: #1555
-#1552 := (iff #984 #1551)
-#1549 := (iff #975 #1548)
-#1546 := (iff #966 #1545)
-#1543 := (iff #952 #1542)
-#1540 := (iff #947 #1539)
-#1537 := (iff #940 #1536)
-#1534 := (iff #935 #1533)
-#1531 := (iff #928 #1530)
-#1528 := (iff #923 #1527)
-#1525 := (iff #916 #1524)
-#1522 := (iff #911 #1521)
-#1519 := (iff #904 #1518)
-#1516 := (iff #899 #1513)
-#1495 := (or #1133 #1451)
-#1498 := (or #1469 #1495)
-#1501 := (or #1480 #1498)
-#1504 := (or #1489 #1501)
-#1507 := (or #878 #1504)
-#1510 := (or #1492 #1507)
-#1514 := (iff #1510 #1513)
-#1515 := [rewrite]: #1514
-#1511 := (iff #899 #1510)
-#1508 := (iff #879 #1507)
-#1505 := (iff #870 #1504)
-#1502 := (iff #861 #1501)
-#1499 := (iff #852 #1498)
-#1496 := (iff #843 #1495)
-#1452 := (iff #829 #1451)
-#1449 := (iff #813 #1446)
-#1425 := (or #1251 #1377)
-#1428 := (or #1394 #1425)
-#1431 := (or #778 #1428)
-#1434 := (or #1407 #1431)
-#1437 := (or #1411 #1434)
-#1440 := (or #188 #1437)
-#1443 := (or #1422 #1440)
-#1447 := (iff #1443 #1446)
-#1448 := [rewrite]: #1447
-#1444 := (iff #813 #1443)
-#1441 := (iff #805 #1440)
-#1438 := (iff #797 #1437)
-#1435 := (iff #788 #1434)
-#1432 := (iff #779 #1431)
-#1429 := (iff #770 #1428)
-#1426 := (iff #761 #1425)
-#1378 := (iff #754 #1377)
-#1375 := (iff #749 #1374)
-#1372 := (iff #742 #1371)
-#1369 := (iff #737 #1368)
-#1366 := (iff #719 #1365)
-#1363 := (iff #714 #1362)
-#1360 := (iff #707 #1359)
-#1357 := (iff #702 #1356)
-#1354 := (iff #695 #1353)
-#1351 := (iff #690 #1350)
-#1348 := (iff #683 #1347)
-#1345 := (iff #678 #1344)
-#1342 := (iff #655 #1341)
-#1339 := (iff #650 #1338)
-#1336 := (iff #643 #1335)
-#1333 := (iff #640 #1330)
-#1324 := (and #218 #1318)
-#1327 := (and #1321 #1324)
-#1331 := (iff #1327 #1330)
-#1332 := [rewrite]: #1331
-#1328 := (iff #640 #1327)
-#1325 := (iff #637 #1324)
-#1319 := (iff #634 #1318)
-#1320 := [rewrite]: #1319
-#1326 := [monotonicity #1320]: #1325
-#1322 := (iff #240 #1321)
-#1323 := [rewrite]: #1322
-#1329 := [monotonicity #1323 #1326]: #1328
-#1334 := [trans #1329 #1332]: #1333
-#1337 := [quant-intro #1334]: #1336
-#1316 := (iff #649 #1315)
-#1313 := (iff #239 #1312)
-#1310 := (iff #238 #1309)
-#1311 := [rewrite]: #1310
-#1314 := [monotonicity #1311]: #1313
-#1317 := [monotonicity #1314]: #1316
-#1340 := [monotonicity #1317 #1337]: #1339
-#1343 := [quant-intro #1340]: #1342
-#1305 := (iff #677 #1304)
-#1302 := (iff #631 #1301)
-#1299 := (iff #626 #1298)
-#1295 := (iff #619 #1294)
-#1297 := [rewrite]: #1295
-#1292 := (iff #625 #1291)
-#1289 := (iff #233 #1288)
-#1031 := (iff #94 #1030)
-#1032 := [rewrite]: #1031
-#1290 := [monotonicity #1032]: #1289
-#1293 := [monotonicity #1290]: #1292
-#1300 := [monotonicity #1293 #1297]: #1299
-#1303 := [quant-intro #1300]: #1302
-#1306 := [monotonicity #1303]: #1305
-#1346 := [monotonicity #1306 #1343]: #1345
-#1349 := [monotonicity #1303 #1346]: #1348
-#1286 := (iff #689 #1285)
-#1283 := (iff #613 #1282)
-#1280 := (iff #610 #1279)
-#1277 := (iff #230 #1274)
-#1278 := [rewrite]: #1277
-#1281 := [monotonicity #1278]: #1280
-#1284 := [quant-intro #1281]: #1283
-#1287 := [monotonicity #1284]: #1286
-#1352 := [monotonicity #1287 #1349]: #1351
-#1355 := [monotonicity #1284 #1352]: #1354
-#1272 := (iff #701 #1271)
-#1269 := (iff #224 #1268)
-#1266 := (iff #223 #1265)
-#1267 := [rewrite]: #1266
-#1270 := [quant-intro #1267]: #1269
-#1273 := [monotonicity #1270]: #1272
-#1358 := [monotonicity #1273 #1355]: #1357
-#1361 := [monotonicity #1270 #1358]: #1360
-#1364 := [monotonicity #1361]: #1363
-#1367 := [monotonicity #1364]: #1366
-#1370 := [monotonicity #1367]: #1369
-#1373 := [monotonicity #1370]: #1372
-#1263 := (iff #748 #1262)
-#1260 := (iff #216 #1259)
-#1257 := (iff #215 #1254)
-#1258 := [rewrite]: #1257
-#1261 := [quant-intro #1258]: #1260
-#1264 := [monotonicity #1261]: #1263
-#1376 := [monotonicity #1264 #1373]: #1375
-#1379 := [monotonicity #1261 #1376]: #1378
-#1252 := (iff #760 #1251)
-#1249 := (iff #600 #1248)
-#1246 := (iff #597 #1245)
-#1243 := (iff #206 #1242)
-#1240 := (iff #205 #1239)
-#1241 := [rewrite]: #1240
-#1233 := (iff #203 #1232)
-#1234 := [rewrite]: #1233
-#1244 := [monotonicity #1234 #1241]: #1243
-#1247 := [monotonicity #1244]: #1246
-#1250 := [quant-intro #1247]: #1249
-#1253 := [monotonicity #1250]: #1252
-#1427 := [monotonicity #1253 #1379]: #1426
-#1395 := (iff #769 #1394)
-#1392 := (iff #594 #1391)
-#1389 := (iff #591 #1388)
-#1384 := (iff #208 #1383)
-#1387 := [rewrite]: #1384
-#1381 := (iff #211 #1380)
-#1382 := [monotonicity #1244]: #1381
-#1390 := [monotonicity #1382 #1387]: #1389
-#1393 := [quant-intro #1390]: #1392
-#1396 := [monotonicity #1393]: #1395
-#1430 := [monotonicity #1396 #1427]: #1429
-#1433 := [monotonicity #1430]: #1432
-#1408 := (iff #787 #1407)
-#1405 := (iff #588 #1404)
-#1402 := (iff #585 #1401)
-#1399 := (iff #192 #1397)
-#1400 := [rewrite]: #1399
-#1403 := [monotonicity #1400]: #1402
-#1406 := [quant-intro #1403]: #1405
-#1409 := [monotonicity #1406]: #1408
-#1436 := [monotonicity #1409 #1433]: #1435
-#1420 := (iff #796 #1411)
-#1412 := (not #1411)
-#1415 := (not #1412)
-#1418 := (iff #1415 #1411)
-#1419 := [rewrite]: #1418
-#1416 := (iff #796 #1415)
-#1413 := (iff #191 #1412)
-#1414 := [rewrite]: #1413
-#1417 := [monotonicity #1414]: #1416
-#1421 := [trans #1417 #1419]: #1420
-#1439 := [monotonicity #1421 #1436]: #1438
-#1442 := [monotonicity #1439]: #1441
-#1423 := (iff #142 #1422)
-#1207 := (iff #141 #1206)
-#1204 := (iff #140 #1203)
-#1095 := (iff #131 #1094)
-#1096 := [rewrite]: #1095
-#1205 := [monotonicity #1096]: #1204
-#1208 := [quant-intro #1205]: #1207
-#1424 := [monotonicity #1208]: #1423
-#1445 := [monotonicity #1424 #1442]: #1444
-#1450 := [trans #1445 #1448]: #1449
-#1227 := (iff #569 #1224)
-#1209 := (or #522 #1200)
-#1212 := (or #531 #1209)
-#1215 := (or #540 #1212)
-#1218 := (or #549 #1215)
-#1221 := (or #1206 #1218)
-#1225 := (iff #1221 #1224)
-#1226 := [rewrite]: #1225
-#1222 := (iff #569 #1221)
-#1219 := (iff #550 #1218)
-#1216 := (iff #541 #1215)
-#1213 := (iff #532 #1212)
-#1210 := (iff #523 #1209)
-#1201 := (iff #509 #1200)
-#1198 := (iff #504 #1197)
-#1195 := (iff #497 #1194)
-#1192 := (iff #492 #1191)
-#1189 := (iff #491 #1188)
-#1186 := (iff #476 #1185)
-#1183 := (iff #471 #1182)
-#1180 := (iff #464 #1179)
-#1181 := [rewrite]: #1180
-#1177 := (iff #470 #1176)
-#1174 := (iff #164 #1173)
-#1140 := (iff #154 #1139)
-#1141 := [rewrite]: #1140
-#1175 := [monotonicity #1141 #1032]: #1174
-#1178 := [monotonicity #1175]: #1177
-#1184 := [monotonicity #1178 #1181]: #1183
-#1187 := [quant-intro #1184]: #1186
-#1190 := [monotonicity #1187]: #1189
-#1193 := [monotonicity #1190]: #1192
-#1196 := [monotonicity #1187 #1193]: #1195
-#1171 := (iff #503 #1170)
-#1168 := (iff #461 #1167)
-#1165 := (iff #456 #1164)
-#1162 := (iff #449 #1161)
-#1159 := (iff #446 #1158)
-#1155 := (iff #443 #1154)
-#1157 := [rewrite]: #1155
-#1152 := (iff #157 #1151)
-#1153 := [rewrite]: #1152
-#1160 := [monotonicity #1153 #1157]: #1159
-#1163 := [quant-intro #1160]: #1162
-#1146 := (iff #455 #1145)
-#1143 := (iff #155 #1142)
-#1144 := [monotonicity #1141]: #1143
-#1147 := [monotonicity #1144]: #1146
-#1166 := [monotonicity #1147 #1163]: #1165
-#1169 := [quant-intro #1166]: #1168
-#1172 := [monotonicity #1169]: #1171
-#1199 := [monotonicity #1172 #1196]: #1198
-#1202 := [monotonicity #1169 #1199]: #1201
-#1211 := [monotonicity #1202]: #1210
-#1214 := [monotonicity #1211]: #1213
-#1217 := [monotonicity #1214]: #1216
-#1220 := [monotonicity #1217]: #1219
-#1223 := [monotonicity #1208 #1220]: #1222
-#1228 := [trans #1223 #1226]: #1227
-#1453 := [monotonicity #1228 #1450]: #1452
-#1134 := (iff #842 #1133)
-#1131 := (iff #437 #1130)
-#1128 := (iff #432 #1127)
-#1125 := (iff #425 #1124)
-#1122 := (iff #422 #1119)
-#1113 := (and #117 #1103)
-#1116 := (and #1110 #1113)
-#1120 := (iff #1116 #1119)
-#1121 := [rewrite]: #1120
-#1117 := (iff #422 #1116)
-#1114 := (iff #419 #1113)
-#1104 := (iff #416 #1103)
-#1108 := [rewrite]: #1104
-#1115 := [monotonicity #1108]: #1114
-#1111 := (iff #133 #1110)
-#1112 := [rewrite]: #1111
-#1118 := [monotonicity #1112 #1115]: #1117
-#1123 := [trans #1118 #1121]: #1122
-#1126 := [quant-intro #1123]: #1125
-#1101 := (iff #431 #1100)
-#1098 := (iff #132 #1097)
-#1099 := [monotonicity #1096]: #1098
-#1102 := [monotonicity #1099]: #1101
-#1129 := [monotonicity #1102 #1126]: #1128
-#1132 := [quant-intro #1129]: #1131
-#1135 := [monotonicity #1132]: #1134
-#1497 := [monotonicity #1135 #1453]: #1496
-#1470 := (iff #851 #1469)
-#1467 := (iff #413 #1466)
-#1464 := (iff #408 #1463)
-#1461 := (iff #401 #1460)
-#1462 := [rewrite]: #1461
-#1458 := (iff #407 #1457)
-#1455 := (iff #126 #1454)
-#1456 := [monotonicity #1032]: #1455
-#1459 := [monotonicity #1456]: #1458
-#1465 := [monotonicity #1459 #1462]: #1464
-#1468 := [quant-intro #1465]: #1467
-#1471 := [monotonicity #1468]: #1470
-#1500 := [monotonicity #1471 #1497]: #1499
-#1481 := (iff #860 #1480)
-#1478 := (iff #395 #1477)
-#1475 := (iff #392 #1474)
-#1472 := (iff #123 #1109)
-#1473 := [rewrite]: #1472
-#1476 := [monotonicity #1473]: #1475
-#1479 := [quant-intro #1476]: #1478
-#1482 := [monotonicity #1479]: #1481
-#1503 := [monotonicity #1482 #1500]: #1502
-#1490 := (iff #869 #1489)
-#1487 := (iff #114 #1486)
-#1484 := (iff #113 #1483)
-#1485 := [rewrite]: #1484
-#1488 := [quant-intro #1485]: #1487
-#1491 := [monotonicity #1488]: #1490
-#1506 := [monotonicity #1491 #1503]: #1505
-#1509 := [monotonicity #1506]: #1508
-#1493 := (iff #898 #1492)
-#1089 := (iff #388 #1088)
-#1086 := (iff #385 #1085)
-#1083 := (iff #106 #1082)
-#1080 := (iff #105 #1077)
-#1071 := (and #77 #1065)
-#1074 := (and #1068 #1071)
-#1078 := (iff #1074 #1077)
-#1079 := [rewrite]: #1078
-#1075 := (iff #105 #1074)
-#1072 := (iff #104 #1071)
-#1066 := (iff #103 #1065)
-#1067 := [rewrite]: #1066
-#1073 := [monotonicity #1067]: #1072
-#1069 := (iff #102 #1068)
-#1070 := [rewrite]: #1069
-#1076 := [monotonicity #1070 #1073]: #1075
-#1081 := [trans #1076 #1079]: #1080
-#1084 := [quant-intro #1081]: #1083
-#1063 := (iff #384 #1062)
-#1060 := (iff #101 #1059)
-#1057 := (iff #100 #1056)
-#1058 := [rewrite]: #1057
-#1061 := [monotonicity #1058]: #1060
-#1064 := [monotonicity #1061]: #1063
-#1087 := [monotonicity #1064 #1084]: #1086
-#1090 := [quant-intro #1087]: #1089
-#1494 := [monotonicity #1090]: #1493
-#1512 := [monotonicity #1494 #1509]: #1511
-#1517 := [trans #1512 #1515]: #1516
-#1520 := [monotonicity #1090 #1517]: #1519
-#1051 := (iff #910 #1050)
-#1048 := (iff #381 #1047)
-#1045 := (iff #378 #1044)
-#1039 := (iff #97 #1040)
-#1041 := [rewrite]: #1039
-#1037 := (iff #377 #1036)
-#1034 := (iff #95 #1033)
-#1035 := [monotonicity #1032]: #1034
-#1038 := [monotonicity #1035]: #1037
-#1046 := [monotonicity #1038 #1041]: #1045
-#1049 := [quant-intro #1046]: #1048
-#1052 := [monotonicity #1049]: #1051
-#1523 := [monotonicity #1052 #1520]: #1522
-#1526 := [monotonicity #1049 #1523]: #1525
-#1025 := (iff #922 #1024)
-#1022 := (iff #374 #1021)
-#1019 := (iff #371 #1018)
-#1013 := (iff #88 #1014)
-#1017 := [rewrite]: #1013
-#1020 := [monotonicity #1017]: #1019
-#1023 := [quant-intro #1020]: #1022
-#1026 := [monotonicity #1023]: #1025
-#1529 := [monotonicity #1026 #1526]: #1528
-#1532 := [monotonicity #1023 #1529]: #1531
-#1010 := (iff #934 #1009)
-#1007 := (iff #83 #1006)
-#1003 := (iff #82 #1005)
-#1004 := [rewrite]: #1003
-#1008 := [quant-intro #1004]: #1007
-#1011 := [monotonicity #1008]: #1010
-#1535 := [monotonicity #1011 #1532]: #1534
-#1538 := [monotonicity #1008 #1535]: #1537
-#1541 := [monotonicity #1538]: #1540
-#1544 := [monotonicity #1541]: #1543
-#1547 := [monotonicity #1544]: #1546
-#1550 := [monotonicity #1547]: #1549
-#1553 := [monotonicity #1550]: #1552
-#1558 := [trans #1553 #1556]: #1557
-#1561 := [monotonicity #1558]: #1560
-#1001 := (iff #298 #1000)
-#998 := (iff #297 #984)
-#989 := (implies true #984)
-#992 := (iff #989 #984)
-#993 := [rewrite]: #992
-#996 := (iff #297 #989)
-#994 := (iff #296 #984)
-#990 := (iff #296 #989)
-#987 := (iff #295 #984)
-#980 := (implies #361 #975)
-#985 := (iff #980 #984)
-#986 := [rewrite]: #985
-#981 := (iff #295 #980)
-#978 := (iff #294 #975)
-#971 := (implies #367 #966)
-#976 := (iff #971 #975)
-#977 := [rewrite]: #976
-#972 := (iff #294 #971)
-#969 := (iff #293 #966)
-#962 := (implies #79 #952)
-#967 := (iff #962 #966)
-#968 := [rewrite]: #967
-#963 := (iff #293 #962)
-#960 := (iff #292 #952)
-#955 := (implies true #952)
-#958 := (iff #955 #952)
-#959 := [rewrite]: #958
-#956 := (iff #292 #955)
-#953 := (iff #291 #952)
-#950 := (iff #290 #947)
-#943 := (implies #81 #940)
-#948 := (iff #943 #947)
-#949 := [rewrite]: #948
-#944 := (iff #290 #943)
-#941 := (iff #289 #940)
-#938 := (iff #288 #935)
-#931 := (implies #83 #928)
-#936 := (iff #931 #935)
-#937 := [rewrite]: #936
-#932 := (iff #288 #931)
-#929 := (iff #287 #928)
-#926 := (iff #286 #923)
-#919 := (implies #374 #916)
-#924 := (iff #919 #923)
-#925 := [rewrite]: #924
-#920 := (iff #286 #919)
-#917 := (iff #285 #916)
-#914 := (iff #284 #911)
-#907 := (implies #381 #904)
-#912 := (iff #907 #911)
-#913 := [rewrite]: #912
-#908 := (iff #284 #907)
-#905 := (iff #283 #904)
-#902 := (iff #282 #899)
-#895 := (implies #388 #879)
-#900 := (iff #895 #899)
-#901 := [rewrite]: #900
-#896 := (iff #282 #895)
-#893 := (iff #281 #879)
-#884 := (implies true #879)
-#887 := (iff #884 #879)
-#888 := [rewrite]: #887
-#891 := (iff #281 #884)
-#889 := (iff #280 #879)
-#885 := (iff #280 #884)
-#882 := (iff #279 #879)
-#875 := (implies #111 #870)
-#880 := (iff #875 #879)
-#881 := [rewrite]: #880
-#876 := (iff #279 #875)
-#873 := (iff #278 #870)
-#866 := (implies #114 #861)
-#871 := (iff #866 #870)
-#872 := [rewrite]: #871
-#867 := (iff #278 #866)
-#864 := (iff #277 #861)
-#857 := (implies #395 #852)
-#862 := (iff #857 #861)
-#863 := [rewrite]: #862
-#858 := (iff #277 #857)
-#855 := (iff #276 #852)
-#848 := (implies #413 #843)
-#853 := (iff #848 #852)
-#854 := [rewrite]: #853
-#849 := (iff #276 #848)
-#846 := (iff #275 #843)
-#839 := (implies #437 #829)
-#844 := (iff #839 #843)
-#845 := [rewrite]: #844
-#840 := (iff #275 #839)
-#837 := (iff #274 #829)
-#832 := (implies true #829)
-#835 := (iff #832 #829)
-#836 := [rewrite]: #835
-#833 := (iff #274 #832)
-#830 := (iff #273 #829)
-#827 := (iff #272 #813)
-#818 := (implies true #813)
-#821 := (iff #818 #813)
-#822 := [rewrite]: #821
-#825 := (iff #272 #818)
-#823 := (iff #271 #813)
-#819 := (iff #271 #818)
-#816 := (iff #270 #813)
-#810 := (implies #141 #805)
-#814 := (iff #810 #813)
-#815 := [rewrite]: #814
-#811 := (iff #270 #810)
-#808 := (iff #269 #805)
-#802 := (implies #189 #797)
-#806 := (iff #802 #805)
-#807 := [rewrite]: #806
-#803 := (iff #269 #802)
-#800 := (iff #268 #797)
-#793 := (implies #191 #788)
-#798 := (iff #793 #797)
-#799 := [rewrite]: #798
-#794 := (iff #268 #793)
-#791 := (iff #267 #788)
-#784 := (implies #588 #779)
-#789 := (iff #784 #788)
-#790 := [rewrite]: #789
-#785 := (iff #267 #784)
-#782 := (iff #266 #779)
-#775 := (implies #199 #770)
-#780 := (iff #775 #779)
-#781 := [rewrite]: #780
-#776 := (iff #266 #775)
-#773 := (iff #265 #770)
-#766 := (implies #594 #761)
-#771 := (iff #766 #770)
-#772 := [rewrite]: #771
-#767 := (iff #265 #766)
-#764 := (iff #264 #761)
-#757 := (implies #600 #754)
-#762 := (iff #757 #761)
-#763 := [rewrite]: #762
-#758 := (iff #264 #757)
-#755 := (iff #263 #754)
-#752 := (iff #262 #749)
-#745 := (implies #216 #742)
-#750 := (iff #745 #749)
-#751 := [rewrite]: #750
-#746 := (iff #262 #745)
-#743 := (iff #261 #742)
-#740 := (iff #260 #737)
-#733 := (implies #606 #719)
-#738 := (iff #733 #737)
-#739 := [rewrite]: #738
-#734 := (iff #260 #733)
-#731 := (iff #259 #719)
-#722 := (implies true #719)
-#725 := (iff #722 #719)
-#726 := [rewrite]: #725
-#729 := (iff #259 #722)
-#727 := (iff #258 #719)
-#723 := (iff #258 #722)
-#720 := (iff #257 #719)
-#717 := (iff #256 #714)
-#710 := (implies #222 #707)
-#715 := (iff #710 #714)
-#716 := [rewrite]: #715
-#711 := (iff #256 #710)
-#708 := (iff #255 #707)
-#705 := (iff #254 #702)
-#698 := (implies #224 #695)
-#703 := (iff #698 #702)
-#704 := [rewrite]: #703
-#699 := (iff #254 #698)
-#696 := (iff #253 #695)
-#693 := (iff #252 #690)
-#686 := (implies #613 #683)
-#691 := (iff #686 #690)
-#692 := [rewrite]: #691
-#687 := (iff #252 #686)
-#684 := (iff #251 #683)
-#681 := (iff #250 #678)
-#674 := (implies #631 #655)
-#679 := (iff #674 #678)
-#680 := [rewrite]: #679
-#675 := (iff #250 #674)
-#672 := (iff #249 #655)
-#667 := (and #655 true)
-#670 := (iff #667 #655)
-#671 := [rewrite]: #670
-#668 := (iff #249 #667)
-#665 := (iff #248 true)
-#660 := (implies #655 true)
-#663 := (iff #660 true)
-#664 := [rewrite]: #663
-#661 := (iff #248 #660)
-#658 := (iff #247 true)
-#659 := [rewrite]: #658
-#656 := (iff #246 #655)
-#653 := (iff #245 #650)
-#646 := (implies #239 #643)
-#651 := (iff #646 #650)
-#652 := [rewrite]: #651
-#647 := (iff #245 #646)
-#644 := (iff #244 #643)
-#641 := (iff #243 #640)
-#638 := (iff #242 #637)
-#635 := (iff #241 #634)
-#617 := (= #234 #616)
-#618 := [rewrite]: #617
-#636 := [monotonicity #618]: #635
-#639 := [monotonicity #636]: #638
-#642 := [monotonicity #639]: #641
-#645 := [quant-intro #642]: #644
-#648 := [monotonicity #645]: #647
-#654 := [trans #648 #652]: #653
-#657 := [quant-intro #654]: #656
-#662 := [monotonicity #657 #659]: #661
-#666 := [trans #662 #664]: #665
-#669 := [monotonicity #657 #666]: #668
-#673 := [trans #669 #671]: #672
-#632 := (iff #237 #631)
-#629 := (iff #236 #626)
-#622 := (implies #233 #619)
-#627 := (iff #622 #626)
-#628 := [rewrite]: #627
-#623 := (iff #236 #622)
-#620 := (iff #235 #619)
-#621 := [monotonicity #618]: #620
-#624 := [monotonicity #621]: #623
-#630 := [trans #624 #628]: #629
-#633 := [quant-intro #630]: #632
-#676 := [monotonicity #633 #673]: #675
-#682 := [trans #676 #680]: #681
-#685 := [monotonicity #633 #682]: #684
-#614 := (iff #232 #613)
-#611 := (iff #231 #610)
-#612 := [rewrite]: #611
-#615 := [quant-intro #612]: #614
-#688 := [monotonicity #615 #685]: #687
-#694 := [trans #688 #692]: #693
-#697 := [monotonicity #615 #694]: #696
-#700 := [monotonicity #697]: #699
-#706 := [trans #700 #704]: #705
-#709 := [monotonicity #706]: #708
-#712 := [monotonicity #709]: #711
-#718 := [trans #712 #716]: #717
-#721 := [monotonicity #718]: #720
-#724 := [monotonicity #721]: #723
-#728 := [trans #724 #726]: #727
-#730 := [monotonicity #728]: #729
-#732 := [trans #730 #726]: #731
-#607 := (iff #220 #606)
-#604 := (iff #219 #603)
-#605 := [rewrite]: #604
-#608 := [quant-intro #605]: #607
-#735 := [monotonicity #608 #732]: #734
-#741 := [trans #735 #739]: #740
-#744 := [monotonicity #608 #741]: #743
-#747 := [monotonicity #744]: #746
-#753 := [trans #747 #751]: #752
-#756 := [monotonicity #753]: #755
-#601 := (iff #214 #600)
-#598 := (iff #213 #597)
-#599 := [rewrite]: #598
-#602 := [quant-intro #599]: #601
-#759 := [monotonicity #602 #756]: #758
-#765 := [trans #759 #763]: #764
-#595 := (iff #210 #594)
-#592 := (iff #209 #591)
-#593 := [rewrite]: #592
-#596 := [quant-intro #593]: #595
-#768 := [monotonicity #596 #765]: #767
-#774 := [trans #768 #772]: #773
-#777 := [monotonicity #774]: #776
-#783 := [trans #777 #781]: #782
-#589 := (iff #194 #588)
-#586 := (iff #193 #585)
-#587 := [rewrite]: #586
-#590 := [quant-intro #587]: #589
-#786 := [monotonicity #590 #783]: #785
-#792 := [trans #786 #790]: #791
-#795 := [monotonicity #792]: #794
-#801 := [trans #795 #799]: #800
-#804 := [monotonicity #801]: #803
-#809 := [trans #804 #807]: #808
-#812 := [monotonicity #809]: #811
-#817 := [trans #812 #815]: #816
-#820 := [monotonicity #817]: #819
-#824 := [trans #820 #822]: #823
-#826 := [monotonicity #824]: #825
-#828 := [trans #826 #822]: #827
-#583 := (iff #185 #569)
-#574 := (implies true #569)
-#577 := (iff #574 #569)
-#578 := [rewrite]: #577
-#581 := (iff #185 #574)
-#579 := (iff #184 #569)
-#575 := (iff #184 #574)
-#572 := (iff #183 #569)
-#566 := (implies #142 #550)
-#570 := (iff #566 #569)
-#571 := [rewrite]: #570
-#567 := (iff #183 #566)
-#564 := (iff #182 #550)
-#555 := (implies true #550)
-#558 := (iff #555 #550)
-#559 := [rewrite]: #558
-#562 := (iff #182 #555)
-#560 := (iff #181 #550)
-#556 := (iff #181 #555)
-#553 := (iff #180 #550)
-#546 := (implies #144 #541)
-#551 := (iff #546 #550)
-#552 := [rewrite]: #551
-#547 := (iff #180 #546)
-#544 := (iff #179 #541)
-#537 := (implies #147 #532)
-#542 := (iff #537 #541)
-#543 := [rewrite]: #542
-#538 := (iff #179 #537)
-#535 := (iff #178 #532)
-#528 := (implies #149 #523)
-#533 := (iff #528 #532)
-#534 := [rewrite]: #533
-#529 := (iff #178 #528)
-#526 := (iff #177 #523)
-#519 := (implies #152 #509)
-#524 := (iff #519 #523)
-#525 := [rewrite]: #524
-#520 := (iff #177 #519)
-#517 := (iff #176 #509)
-#512 := (implies true #509)
-#515 := (iff #512 #509)
-#516 := [rewrite]: #515
-#513 := (iff #176 #512)
-#510 := (iff #175 #509)
-#507 := (iff #174 #504)
-#500 := (implies #461 #497)
-#505 := (iff #500 #504)
-#506 := [rewrite]: #505
-#501 := (iff #174 #500)
-#498 := (iff #173 #497)
-#495 := (iff #172 #492)
-#488 := (implies #476 #169)
-#493 := (iff #488 #492)
-#494 := [rewrite]: #493
-#489 := (iff #172 #488)
-#486 := (iff #171 #169)
-#481 := (and #169 true)
-#484 := (iff #481 #169)
-#485 := [rewrite]: #484
-#482 := (iff #171 #481)
-#479 := (iff #170 true)
-#480 := [rewrite]: #479
-#483 := [monotonicity #480]: #482
-#487 := [trans #483 #485]: #486
-#477 := (iff #167 #476)
-#474 := (iff #166 #471)
-#467 := (implies #164 #464)
-#472 := (iff #467 #471)
-#473 := [rewrite]: #472
-#468 := (iff #166 #467)
-#465 := (iff #165 #464)
-#441 := (= #158 #440)
-#442 := [rewrite]: #441
-#466 := [monotonicity #442]: #465
-#469 := [monotonicity #466]: #468
-#475 := [trans #469 #473]: #474
-#478 := [quant-intro #475]: #477
-#490 := [monotonicity #478 #487]: #489
-#496 := [trans #490 #494]: #495
-#499 := [monotonicity #478 #496]: #498
-#462 := (iff #163 #461)
-#459 := (iff #162 #456)
-#452 := (implies #155 #449)
-#457 := (iff #452 #456)
-#458 := [rewrite]: #457
-#453 := (iff #162 #452)
-#450 := (iff #161 #449)
-#447 := (iff #160 #446)
-#444 := (iff #159 #443)
-#445 := [monotonicity #442]: #444
-#448 := [monotonicity #445]: #447
-#451 := [quant-intro #448]: #450
-#454 := [monotonicity #451]: #453
-#460 := [trans #454 #458]: #459
-#463 := [quant-intro #460]: #462
-#502 := [monotonicity #463 #499]: #501
-#508 := [trans #502 #506]: #507
-#511 := [monotonicity #463 #508]: #510
-#514 := [monotonicity #511]: #513
-#518 := [trans #514 #516]: #517
-#521 := [monotonicity #518]: #520
-#527 := [trans #521 #525]: #526
-#530 := [monotonicity #527]: #529
-#536 := [trans #530 #534]: #535
-#539 := [monotonicity #536]: #538
-#545 := [trans #539 #543]: #544
-#548 := [monotonicity #545]: #547
-#554 := [trans #548 #552]: #553
-#557 := [monotonicity #554]: #556
-#561 := [trans #557 #559]: #560
-#563 := [monotonicity #561]: #562
-#565 := [trans #563 #559]: #564
-#568 := [monotonicity #565]: #567
-#573 := [trans #568 #571]: #572
-#576 := [monotonicity #573]: #575
-#580 := [trans #576 #578]: #579
-#582 := [monotonicity #580]: #581
-#584 := [trans #582 #578]: #583
-#831 := [monotonicity #584 #828]: #830
-#834 := [monotonicity #831]: #833
-#838 := [trans #834 #836]: #837
-#438 := (iff #139 #437)
-#435 := (iff #138 #432)
-#428 := (implies #132 #425)
-#433 := (iff #428 #432)
-#434 := [rewrite]: #433
-#429 := (iff #138 #428)
-#426 := (iff #137 #425)
-#423 := (iff #136 #422)
-#420 := (iff #135 #419)
-#417 := (iff #134 #416)
-#399 := (= #127 #398)
-#400 := [rewrite]: #399
-#418 := [monotonicity #400]: #417
-#421 := [monotonicity #418]: #420
-#424 := [monotonicity #421]: #423
-#427 := [quant-intro #424]: #426
-#430 := [monotonicity #427]: #429
-#436 := [trans #430 #434]: #435
-#439 := [quant-intro #436]: #438
-#841 := [monotonicity #439 #838]: #840
-#847 := [trans #841 #845]: #846
-#414 := (iff #130 #413)
-#411 := (iff #129 #408)
-#404 := (implies #126 #401)
-#409 := (iff #404 #408)
-#410 := [rewrite]: #409
-#405 := (iff #129 #404)
-#402 := (iff #128 #401)
-#403 := [monotonicity #400]: #402
-#406 := [monotonicity #403]: #405
-#412 := [trans #406 #410]: #411
-#415 := [quant-intro #412]: #414
-#850 := [monotonicity #415 #847]: #849
-#856 := [trans #850 #854]: #855
-#396 := (iff #125 #395)
-#393 := (iff #124 #392)
-#394 := [rewrite]: #393
-#397 := [quant-intro #394]: #396
-#859 := [monotonicity #397 #856]: #858
-#865 := [trans #859 #863]: #864
-#868 := [monotonicity #865]: #867
-#874 := [trans #868 #872]: #873
-#877 := [monotonicity #874]: #876
-#883 := [trans #877 #881]: #882
-#886 := [monotonicity #883]: #885
-#890 := [trans #886 #888]: #889
-#892 := [monotonicity #890]: #891
-#894 := [trans #892 #888]: #893
-#389 := (iff #108 #388)
-#386 := (iff #107 #385)
-#387 := [rewrite]: #386
-#390 := [quant-intro #387]: #389
-#897 := [monotonicity #390 #894]: #896
-#903 := [trans #897 #901]: #902
-#906 := [monotonicity #390 #903]: #905
-#382 := (iff #99 #381)
-#379 := (iff #98 #378)
-#380 := [rewrite]: #379
-#383 := [quant-intro #380]: #382
-#909 := [monotonicity #383 #906]: #908
-#915 := [trans #909 #913]: #914
-#918 := [monotonicity #383 #915]: #917
-#375 := (iff #90 #374)
-#372 := (iff #89 #371)
-#373 := [rewrite]: #372
-#376 := [quant-intro #373]: #375
-#921 := [monotonicity #376 #918]: #920
-#927 := [trans #921 #925]: #926
-#930 := [monotonicity #376 #927]: #929
-#933 := [monotonicity #930]: #932
-#939 := [trans #933 #937]: #938
-#942 := [monotonicity #939]: #941
-#945 := [monotonicity #942]: #944
-#951 := [trans #945 #949]: #950
-#954 := [monotonicity #951]: #953
-#957 := [monotonicity #954]: #956
-#961 := [trans #957 #959]: #960
-#964 := [monotonicity #961]: #963
-#970 := [trans #964 #968]: #969
-#368 := (iff #74 #367)
-#365 := (iff #73 #364)
-#366 := [rewrite]: #365
-#369 := [quant-intro #366]: #368
-#973 := [monotonicity #369 #970]: #972
-#979 := [trans #973 #977]: #978
-#362 := (iff #70 #361)
-#359 := (iff #69 #358)
-#360 := [rewrite]: #359
-#363 := [quant-intro #360]: #362
-#982 := [monotonicity #363 #979]: #981
-#988 := [trans #982 #986]: #987
-#991 := [monotonicity #988]: #990
-#995 := [trans #991 #993]: #994
-#997 := [monotonicity #995]: #996
-#999 := [trans #997 #993]: #998
-#1002 := [monotonicity #999]: #1001
-#1563 := [trans #1002 #1561]: #1562
-#357 := [asserted]: #298
-#1564 := [mp #357 #1563]: #1559
-#1566 := [not-or-elim #1564]: #367
-#1621 := [mp~ #1566 #1590]: #367
-#3748 := [mp #1621 #3747]: #3743
-#3348 := (not #3743)
-#6198 := (or #3348 #1703 #6178)
-#6194 := (or #1703 #6178)
-#6199 := (or #3348 #6194)
-#6202 := (iff #6199 #6198)
-#6174 := [rewrite]: #6202
-#6200 := [quant-inst #1702]: #6199
-#6180 := [mp #6200 #6174]: #6198
-#6206 := [unit-resolution #6180 #3748 #6201]: #6178
-#6208 := [mp #6206 #6185]: #6181
-#6219 := (not #6181)
-#1709 := (not #1708)
-#3684 := (or #3791 #1709)
-#3685 := [def-axiom]: #3684
-#6197 := [unit-resolution #3685 #6196]: #1709
-#6214 := (or #6219 #1708)
-#6220 := [th-lemma arith triangle-eq]: #6214
-#6221 := [unit-resolution #6220 #6197]: #6219
-#6209 := [unit-resolution #6221 #6208]: false
-#6210 := [lemma #6209]: #3791
-#4075 := (or #3794 #4072)
-#4078 := (not #4075)
-#2629 := (or #78 #1029 #1040)
-#3774 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2629)
-#3779 := (not #3774)
-#4081 := (or #3779 #4078)
-#4084 := (not #4081)
-decl ?v0!4 :: S2
-#1671 := ?v0!4
-#1684 := (f17 ?v0!4)
-#1685 := (* -1::Int #1684)
-decl ?v1!3 :: S2
-#1670 := ?v1!3
-#1683 := (f17 ?v1!3)
-#2262 := (+ #1683 #1685)
-#1674 := (f6 f7 ?v1!3)
-#1675 := (f5 #1674 ?v0!4)
-#1676 := (f15 #1675)
-#2263 := (+ #1676 #2262)
-#2266 := (>= #2263 0::Int)
-#1677 := (* -1::Int #1676)
-#1678 := (+ f14 #1677)
-#1679 := (<= #1678 0::Int)
-#1672 := (f9 f18 ?v1!3)
-#1673 := (= #1672 f1)
-#2592 := (not #1673)
-#2607 := (or #2592 #1679 #2266)
-#2612 := (not #2607)
-#4087 := (or #2612 #4084)
-#4090 := (not #4087)
-#3764 := (pattern #67 #87)
-#1760 := (not #85)
-#2584 := (or #77 #1760 #1014)
-#3765 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3764) #2584)
-#3770 := (not #3765)
-#4093 := (or #3770 #4090)
-#4096 := (not #4093)
-decl ?v0!2 :: S2
-#1644 := ?v0!2
-#1653 := (f17 ?v0!2)
-#1654 := (* -1::Int #1653)
-decl ?v1!1 :: S2
-#1643 := ?v1!1
-#1652 := (f17 ?v1!1)
-#1655 := (+ #1652 #1654)
-#1656 := (>= #1655 0::Int)
-#1648 := (f9 f18 ?v0!2)
-#1649 := (= #1648 f1)
-#2035 := (not #1649)
-#1645 := (f9 f18 ?v1!1)
-#1646 := (= #1645 f1)
-#2083 := (or #1646 #2035 #1656)
-#5518 := [hypothesis]: #1649
-#3750 := (forall (vars (?v0 S2)) (:pat #3749) #78)
-#3753 := (iff #79 #3750)
-#3751 := (iff #78 #78)
-#3752 := [refl]: #3751
-#3754 := [quant-intro #3752]: #3753
-#1591 := (~ #79 #79)
-#1622 := (~ #78 #78)
-#1623 := [refl]: #1622
-#1592 := [nnf-pos #1623]: #1591
-#1567 := [not-or-elim #1564]: #79
-#1624 := [mp~ #1567 #1592]: #79
-#3755 := [mp #1624 #3754]: #3750
-#7029 := (not #3750)
-#4457 := (or #7029 #2035)
-#4481 := [quant-inst #1644]: #4457
-#5558 := [unit-resolution #4481 #3755 #5518]: false
-#6078 := [lemma #5558]: #2035
-#3275 := (or #2083 #1649)
-#3361 := [def-axiom]: #3275
-#7086 := [unit-resolution #3361 #6078]: #2083
-#1634 := (not #2083)
-#4099 := (or #1634 #4096)
-#4102 := (not #4099)
-#3756 := (forall (vars (?v0 S2)) (:pat #3736) #1005)
-#3761 := (not #3756)
-#4105 := (or #3761 #4102)
-#4108 := (not #4105)
-decl ?v0!0 :: S2
-#1628 := ?v0!0
-#1629 := (f17 ?v0!0)
-#1630 := (>= #1629 0::Int)
-#1631 := (not #1630)
-#3358 := [hypothesis]: #1631
-#3357 := (<= #1629 0::Int)
-#4162 := (or #3357 #1630)
-#4163 := [th-lemma arith farkas 1 1]: #4162
-#4164 := [unit-resolution #4163 #3358]: #3357
-#4139 := (not #3357)
-#4158 := (or #4139 #1630)
-#3325 := (= f14 #1629)
-#3384 := (= #1629 f14)
-#4135 := (iff #3384 #3325)
-#3302 := (iff #3325 #3384)
-#4134 := [commutativity]: #3302
-#4136 := [symm #4134]: #4135
-#3398 := (= ?v0!0 f16)
-#3392 := (not #3398)
-#3393 := (= #1629 0::Int)
-#3356 := (not #3393)
-#3312 := (or #3356 #1630)
-#3311 := [th-lemma arith triangle-eq]: #3312
-#3317 := [unit-resolution #3311 #3358]: #3356
-#3737 := (forall (vars (?v0 S2)) (:pat #3736) #358)
-#3740 := (iff #361 #3737)
-#3738 := (iff #358 #358)
-#3739 := [refl]: #3738
-#3741 := [quant-intro #3739]: #3740
-#1587 := (~ #361 #361)
-#1616 := (~ #358 #358)
-#1617 := [refl]: #1616
-#1588 := [nnf-pos #1617]: #1587
-#1565 := [not-or-elim #1564]: #361
-#1618 := [mp~ #1565 #1588]: #361
-#3742 := [mp #1618 #3741]: #3737
-#3375 := (not #3737)
-#3379 := (or #3375 #3392 #3393)
-#3383 := (or #3392 #3393)
-#3370 := (or #3375 #3383)
-#3380 := (iff #3370 #3379)
-#3347 := [rewrite]: #3380
-#3378 := [quant-inst #1628]: #3370
-#3349 := [mp #3378 #3347]: #3379
-#3292 := [unit-resolution #3349 #3742 #3317]: #3392
-#3359 := (or #3348 #3398 #3384)
-#3394 := (or #3398 #3384)
-#3342 := (or #3348 #3394)
-#3335 := (iff #3342 #3359)
-#3333 := [rewrite]: #3335
-#3334 := [quant-inst #1628]: #3342
-#3336 := [mp #3334 #3333]: #3359
-#3297 := [unit-resolution #3336 #3748 #3292]: #3384
-#4137 := [mp #3297 #4136]: #3325
-#3405 := (* -1::Int #1629)
-#3337 := (+ f14 #3405)
-#3313 := (<= #3337 0::Int)
-#4133 := (not #3313)
-#326 := (<= f14 0::Int)
-#327 := (not #326)
-#55 := (< 0::Int f14)
-#328 := (iff #55 #327)
-#329 := [rewrite]: #328
-#323 := [asserted]: #55
-#330 := [mp #323 #329]: #327
-#4138 := [hypothesis]: #3357
-#4140 := (or #4133 #326 #4139)
-#4141 := [th-lemma arith assign-bounds 1 1]: #4140
-#4142 := [unit-resolution #4141 #4138 #330]: #4133
-#4143 := (not #3325)
-#4157 := (or #4143 #3313)
-#4159 := [th-lemma arith triangle-eq]: #4157
-#4160 := [unit-resolution #4159 #4142 #4137]: false
-#4161 := [lemma #4160]: #4158
-#4165 := [unit-resolution #4161 #4164 #3358]: false
-#4166 := [lemma #4165]: #1630
-#4111 := (or #1631 #4108)
-#4114 := (not #4111)
-#4117 := (or #946 #4114)
-#4120 := (not #4117)
-#4240 := [hypothesis]: #946
-#4232 := (or #3375 #81)
-#6915 := (= f16 f16)
-#6988 := (not #6915)
-#4242 := (or #6988 #81)
-#4233 := (or #3375 #4242)
-#4235 := (iff #4233 #4232)
-#4234 := (iff #4232 #4232)
-#4237 := [rewrite]: #4234
-#4248 := (iff #4242 #81)
-#4214 := (or false #81)
-#4243 := (iff #4214 #81)
-#4247 := [rewrite]: #4243
-#4244 := (iff #4242 #4214)
-#6996 := (iff #6988 false)
-#6991 := (not true)
-#6994 := (iff #6991 false)
-#6995 := [rewrite]: #6994
-#6992 := (iff #6988 #6991)
-#6918 := (iff #6915 true)
-#6919 := [rewrite]: #6918
-#6993 := [monotonicity #6919]: #6992
-#6997 := [trans #6993 #6995]: #6996
-#4245 := [monotonicity #6997]: #4244
-#4246 := [trans #4245 #4247]: #4248
-#4236 := [monotonicity #4246]: #4235
-#4238 := [trans #4236 #4237]: #4235
-#4249 := [quant-inst #65]: #4233
-#4231 := [mp #4249 #4238]: #4232
-#4241 := [unit-resolution #4231 #3742 #4240]: false
-#4239 := [lemma #4241]: #81
-#4123 := (or #946 #4120)
-#3042 := (forall (vars (?v1 S2)) #3031)
-#3049 := (not #3042)
-#3027 := (forall (vars (?v0 S2) (?v1 S2)) #3022)
-#3048 := (not #3027)
-#3050 := (or #3048 #2124 #2129 #3049)
-#3051 := (not #3050)
-#3056 := (or #3005 #3051)
-#3063 := (not #3056)
-#2982 := (forall (vars (?v0 S2) (?v1 S2)) #2977)
-#3062 := (not #2982)
-#3064 := (or #3062 #3063)
-#3065 := (not #3064)
-#3070 := (or #2959 #3065)
-#3076 := (not #3070)
-#3077 := (or #1271 #3076)
-#3078 := (not #3077)
-#3083 := (or #2052 #3078)
-#3089 := (not #3083)
-#3090 := (or #713 #3089)
-#3091 := (not #3090)
-#3096 := (or #713 #3091)
-#3102 := (not #3096)
-#3103 := (or #736 #3102)
-#3104 := (not #3103)
-#3109 := (or #2032 #3104)
-#3115 := (not #3109)
-#3116 := (or #1262 #3115)
-#3117 := (not #3116)
-#3122 := (or #2012 #3117)
-#3130 := (not #3122)
-#2936 := (forall (vars (?v0 S2)) #2933)
-#3129 := (not #2936)
-#2930 := (forall (vars (?v0 S2)) #2925)
-#3128 := (not #2930)
-#3131 := (or #1963 #1968 #188 #1411 #1407 #778 #3128 #3129 #3130)
-#3132 := (not #3131)
-#2870 := (forall (vars (?v0 S2) (?v1 S2)) #2865)
-#2876 := (not #2870)
-#2877 := (or #2876 #169)
-#2878 := (not #2877)
-#2883 := (or #2848 #2878)
-#2890 := (not #2883)
-#2826 := (forall (vars (?v0 S2)) #2821)
-#2889 := (not #2826)
-#2891 := (or #2889 #2890)
-#2892 := (not #2891)
-#2789 := (forall (vars (?v1 S2)) #2778)
-#2795 := (not #2789)
-#2796 := (or #1841 #1846 #2795)
-#2797 := (not #2796)
-#2897 := (or #2797 #2892)
-#2904 := (not #2897)
-#2774 := (forall (vars (?v0 S2)) #2763)
-#2903 := (not #2774)
-#2905 := (or #2903 #549 #540 #531 #522 #2904)
-#2906 := (not #2905)
-#3137 := (or #2906 #3132)
-#3147 := (not #3137)
-#2760 := (forall (vars (?v0 S2)) #2755)
-#3146 := (not #2760)
-#2732 := (forall (vars (?v0 S2) (?v1 S2)) #2727)
-#3145 := (not #2732)
-#2710 := (forall (vars (?v0 S2) (?v1 S2)) #2705)
-#3144 := (not #2710)
-#2687 := (forall (vars (?v0 S2)) #2682)
-#3143 := (not #2687)
-#3148 := (or #3143 #878 #1489 #3144 #3145 #3146 #3147)
-#3149 := (not #3148)
-#2649 := (forall (vars (?v1 S2)) #2638)
-#2655 := (not #2649)
-#2656 := (or #1703 #1708 #2655)
-#2657 := (not #2656)
-#3154 := (or #2657 #3149)
-#3161 := (not #3154)
-#2634 := (forall (vars (?v0 S2) (?v1 S2)) #2629)
-#3160 := (not #2634)
-#3162 := (or #3160 #3161)
-#3163 := (not #3162)
-#3168 := (or #2612 #3163)
-#3175 := (not #3168)
-#2589 := (forall (vars (?v0 S2) (?v1 S2)) #2584)
-#3174 := (not #2589)
-#3176 := (or #3174 #3175)
-#3177 := (not #3176)
-#3182 := (or #1634 #3177)
-#3188 := (not #3182)
-#3189 := (or #1009 #3188)
-#3190 := (not #3189)
-#3195 := (or #1631 #3190)
-#3201 := (not #3195)
-#3202 := (or #946 #3201)
-#3203 := (not #3202)
-#3208 := (or #946 #3203)
-#4124 := (iff #3208 #4123)
-#4121 := (iff #3203 #4120)
-#4118 := (iff #3202 #4117)
-#4115 := (iff #3201 #4114)
-#4112 := (iff #3195 #4111)
-#4109 := (iff #3190 #4108)
-#4106 := (iff #3189 #4105)
-#4103 := (iff #3188 #4102)
-#4100 := (iff #3182 #4099)
-#4097 := (iff #3177 #4096)
-#4094 := (iff #3176 #4093)
-#4091 := (iff #3175 #4090)
-#4088 := (iff #3168 #4087)
-#4085 := (iff #3163 #4084)
-#4082 := (iff #3162 #4081)
-#4079 := (iff #3161 #4078)
-#4076 := (iff #3154 #4075)
-#4073 := (iff #3149 #4072)
-#4070 := (iff #3148 #4069)
-#4067 := (iff #3147 #4066)
-#4064 := (iff #3137 #4063)
-#4061 := (iff #3132 #4060)
-#4058 := (iff #3131 #4057)
-#4055 := (iff #3130 #4054)
-#4052 := (iff #3122 #4051)
-#4049 := (iff #3117 #4048)
-#4046 := (iff #3116 #4045)
-#4043 := (iff #3115 #4042)
-#4040 := (iff #3109 #4039)
-#4037 := (iff #3104 #4036)
-#4034 := (iff #3103 #4033)
-#4031 := (iff #3102 #4030)
-#4028 := (iff #3096 #4027)
-#4025 := (iff #3091 #4024)
-#4022 := (iff #3090 #4021)
-#4019 := (iff #3089 #4018)
-#4016 := (iff #3083 #4015)
-#4013 := (iff #3078 #4012)
-#4010 := (iff #3077 #4009)
-#4007 := (iff #3076 #4006)
-#4004 := (iff #3070 #4003)
-#4001 := (iff #3065 #4000)
-#3998 := (iff #3064 #3997)
-#3995 := (iff #3063 #3994)
-#3992 := (iff #3056 #3991)
-#3989 := (iff #3051 #3988)
-#3986 := (iff #3050 #3985)
-#3983 := (iff #3049 #3982)
-#3980 := (iff #3042 #3977)
-#3978 := (iff #3031 #3031)
-#3979 := [refl]: #3978
-#3981 := [quant-intro #3979]: #3980
-#3984 := [monotonicity #3981]: #3983
-#3975 := (iff #3048 #3974)
-#3972 := (iff #3027 #3969)
-#3970 := (iff #3022 #3022)
-#3971 := [refl]: #3970
-#3973 := [quant-intro #3971]: #3972
-#3976 := [monotonicity #3973]: #3975
-#3987 := [monotonicity #3976 #3984]: #3986
-#3990 := [monotonicity #3987]: #3989
-#3993 := [monotonicity #3990]: #3992
-#3996 := [monotonicity #3993]: #3995
-#3967 := (iff #3062 #3966)
-#3964 := (iff #2982 #3961)
-#3962 := (iff #2977 #2977)
-#3963 := [refl]: #3962
-#3965 := [quant-intro #3963]: #3964
-#3968 := [monotonicity #3965]: #3967
-#3999 := [monotonicity #3968 #3996]: #3998
-#4002 := [monotonicity #3999]: #4001
-#4005 := [monotonicity #4002]: #4004
-#4008 := [monotonicity #4005]: #4007
-#3958 := (iff #1271 #3957)
-#3955 := (iff #1268 #3952)
-#3953 := (iff #1265 #1265)
-#3954 := [refl]: #3953
-#3956 := [quant-intro #3954]: #3955
-#3959 := [monotonicity #3956]: #3958
-#4011 := [monotonicity #3959 #4008]: #4010
-#4014 := [monotonicity #4011]: #4013
-#4017 := [monotonicity #4014]: #4016
-#4020 := [monotonicity #4017]: #4019
-#4023 := [monotonicity #4020]: #4022
-#4026 := [monotonicity #4023]: #4025
-#4029 := [monotonicity #4026]: #4028
-#4032 := [monotonicity #4029]: #4031
-#3950 := (iff #736 #3949)
-#3947 := (iff #606 #3944)
-#3945 := (iff #603 #603)
-#3946 := [refl]: #3945
-#3948 := [quant-intro #3946]: #3947
-#3951 := [monotonicity #3948]: #3950
-#4035 := [monotonicity #3951 #4032]: #4034
-#4038 := [monotonicity #4035]: #4037
-#4041 := [monotonicity #4038]: #4040
-#4044 := [monotonicity #4041]: #4043
-#3941 := (iff #1262 #3940)
-#3938 := (iff #1259 #3935)
-#3936 := (iff #1254 #1254)
-#3937 := [refl]: #3936
-#3939 := [quant-intro #3937]: #3938
-#3942 := [monotonicity #3939]: #3941
-#4047 := [monotonicity #3942 #4044]: #4046
-#4050 := [monotonicity #4047]: #4049
-#4053 := [monotonicity #4050]: #4052
-#4056 := [monotonicity #4053]: #4055
-#3933 := (iff #3129 #3932)
-#3930 := (iff #2936 #3927)
-#3928 := (iff #2933 #2933)
-#3929 := [refl]: #3928
-#3931 := [quant-intro #3929]: #3930
-#3934 := [monotonicity #3931]: #3933
-#3925 := (iff #3128 #3924)
-#3922 := (iff #2930 #3919)
-#3920 := (iff #2925 #2925)
-#3921 := [refl]: #3920
-#3923 := [quant-intro #3921]: #3922
-#3926 := [monotonicity #3923]: #3925
-#3915 := (iff #1407 #3914)
-#3912 := (iff #1404 #3909)
-#3910 := (iff #1401 #1401)
-#3911 := [refl]: #3910
-#3913 := [quant-intro #3911]: #3912
-#3916 := [monotonicity #3913]: #3915
-#4059 := [monotonicity #3916 #3926 #3934 #4056]: #4058
-#4062 := [monotonicity #4059]: #4061
-#3907 := (iff #2906 #3906)
-#3904 := (iff #2905 #3903)
-#3901 := (iff #2904 #3900)
-#3898 := (iff #2897 #3897)
-#3895 := (iff #2892 #3894)
-#3892 := (iff #2891 #3891)
-#3889 := (iff #2890 #3888)
-#3886 := (iff #2883 #3885)
-#3883 := (iff #2878 #3882)
-#3880 := (iff #2877 #3879)
-#3877 := (iff #2876 #3876)
-#3874 := (iff #2870 #3871)
-#3872 := (iff #2865 #2865)
-#3873 := [refl]: #3872
-#3875 := [quant-intro #3873]: #3874
-#3878 := [monotonicity #3875]: #3877
-#3881 := [monotonicity #3878]: #3880
-#3884 := [monotonicity #3881]: #3883
-#3887 := [monotonicity #3884]: #3886
-#3890 := [monotonicity #3887]: #3889
-#3869 := (iff #2889 #3868)
-#3866 := (iff #2826 #3863)
-#3864 := (iff #2821 #2821)
-#3865 := [refl]: #3864
-#3867 := [quant-intro #3865]: #3866
-#3870 := [monotonicity #3867]: #3869
-#3893 := [monotonicity #3870 #3890]: #3892
-#3896 := [monotonicity #3893]: #3895
-#3861 := (iff #2797 #3860)
-#3858 := (iff #2796 #3857)
-#3855 := (iff #2795 #3854)
-#3852 := (iff #2789 #3849)
-#3850 := (iff #2778 #2778)
-#3851 := [refl]: #3850
-#3853 := [quant-intro #3851]: #3852
-#3856 := [monotonicity #3853]: #3855
-#3859 := [monotonicity #3856]: #3858
-#3862 := [monotonicity #3859]: #3861
-#3899 := [monotonicity #3862 #3896]: #3898
-#3902 := [monotonicity #3899]: #3901
-#3846 := (iff #2903 #3845)
-#3843 := (iff #2774 #3840)
-#3841 := (iff #2763 #2763)
-#3842 := [refl]: #3841
-#3844 := [quant-intro #3842]: #3843
-#3847 := [monotonicity #3844]: #3846
-#3905 := [monotonicity #3847 #3902]: #3904
-#3908 := [monotonicity #3905]: #3907
-#4065 := [monotonicity #3908 #4062]: #4064
-#4068 := [monotonicity #4065]: #4067
-#3837 := (iff #3146 #3836)
-#3834 := (iff #2760 #3831)
-#3832 := (iff #2755 #2755)
-#3833 := [refl]: #3832
-#3835 := [quant-intro #3833]: #3834
-#3838 := [monotonicity #3835]: #3837
-#3829 := (iff #3145 #3828)
-#3826 := (iff #2732 #3823)
-#3824 := (iff #2727 #2727)
-#3825 := [refl]: #3824
-#3827 := [quant-intro #3825]: #3826
-#3830 := [monotonicity #3827]: #3829
-#3821 := (iff #3144 #3820)
-#3818 := (iff #2710 #3815)
-#3816 := (iff #2705 #2705)
-#3817 := [refl]: #3816
-#3819 := [quant-intro #3817]: #3818
-#3822 := [monotonicity #3819]: #3821
-#3812 := (iff #1489 #3811)
-#3809 := (iff #1486 #3806)
-#3807 := (iff #1483 #1483)
-#3808 := [refl]: #3807
-#3810 := [quant-intro #3808]: #3809
-#3813 := [monotonicity #3810]: #3812
-#3803 := (iff #3143 #3802)
-#3800 := (iff #2687 #3797)
-#3798 := (iff #2682 #2682)
-#3799 := [refl]: #3798
-#3801 := [quant-intro #3799]: #3800
-#3804 := [monotonicity #3801]: #3803
-#4071 := [monotonicity #3804 #3813 #3822 #3830 #3838 #4068]: #4070
-#4074 := [monotonicity #4071]: #4073
-#3795 := (iff #2657 #3794)
-#3792 := (iff #2656 #3791)
-#3789 := (iff #2655 #3788)
-#3786 := (iff #2649 #3783)
-#3784 := (iff #2638 #2638)
-#3785 := [refl]: #3784
-#3787 := [quant-intro #3785]: #3786
-#3790 := [monotonicity #3787]: #3789
-#3793 := [monotonicity #3790]: #3792
-#3796 := [monotonicity #3793]: #3795
-#4077 := [monotonicity #3796 #4074]: #4076
-#4080 := [monotonicity #4077]: #4079
-#3780 := (iff #3160 #3779)
-#3777 := (iff #2634 #3774)
-#3775 := (iff #2629 #2629)
-#3776 := [refl]: #3775
-#3778 := [quant-intro #3776]: #3777
-#3781 := [monotonicity #3778]: #3780
-#4083 := [monotonicity #3781 #4080]: #4082
-#4086 := [monotonicity #4083]: #4085
-#4089 := [monotonicity #4086]: #4088
-#4092 := [monotonicity #4089]: #4091
-#3771 := (iff #3174 #3770)
-#3768 := (iff #2589 #3765)
-#3766 := (iff #2584 #2584)
-#3767 := [refl]: #3766
-#3769 := [quant-intro #3767]: #3768
-#3772 := [monotonicity #3769]: #3771
-#4095 := [monotonicity #3772 #4092]: #4094
-#4098 := [monotonicity #4095]: #4097
-#4101 := [monotonicity #4098]: #4100
-#4104 := [monotonicity #4101]: #4103
-#3762 := (iff #1009 #3761)
-#3759 := (iff #1006 #3756)
-#3757 := (iff #1005 #1005)
-#3758 := [refl]: #3757
-#3760 := [quant-intro #3758]: #3759
-#3763 := [monotonicity #3760]: #3762
-#4107 := [monotonicity #3763 #4104]: #4106
-#4110 := [monotonicity #4107]: #4109
-#4113 := [monotonicity #4110]: #4112
-#4116 := [monotonicity #4113]: #4115
-#4119 := [monotonicity #4116]: #4118
-#4122 := [monotonicity #4119]: #4121
-#4125 := [monotonicity #4122]: #4124
-#2135 := (not #2134)
-#2479 := (and #2135 #218 #2476)
-#2482 := (not #2479)
-#2485 := (forall (vars (?v1 S2)) #2482)
-#2130 := (not #2129)
-#2125 := (not #2124)
-#2494 := (and #1301 #2125 #2130 #2485)
-#2101 := (not #2100)
-#2102 := (and #2094 #2101)
-#2103 := (not #2102)
-#2110 := (or #2103 #2109)
-#2111 := (not #2110)
-#2499 := (or #2111 #2494)
-#2502 := (and #1282 #2499)
-#2068 := (not #2067)
-#2071 := (and #2068 #2070)
-#2072 := (not #2071)
-#2078 := (or #2072 #2077)
-#2079 := (not #2078)
-#2505 := (or #2079 #2502)
-#2508 := (and #1268 #2505)
-#2511 := (or #2052 #2508)
-#2514 := (and #222 #2511)
-#2517 := (or #713 #2514)
-#2520 := (and #606 #2517)
-#2523 := (or #2032 #2520)
-#2526 := (and #1259 #2523)
-#2529 := (or #2012 #2526)
-#1969 := (not #1968)
-#1964 := (not #1963)
-#2535 := (and #1964 #1969 #189 #1412 #1404 #199 #1391 #1248 #2529)
-#1938 := (not #169)
-#1941 := (and #1185 #1938)
-#1917 := (not #1916)
-#1910 := (not #1909)
-#1918 := (and #1910 #1917)
-#1919 := (not #1918)
-#2448 := (or #1919 #2445)
-#2451 := (not #2448)
-#2454 := (or #2451 #1941)
-#2414 := (not #2409)
-#2432 := (and #2414 #2427)
-#2435 := (or #1145 #2432)
-#2438 := (forall (vars (?v0 S2)) #2435)
-#2457 := (and #2438 #2454)
-#1852 := (not #1851)
-#2384 := (and #1852 #2381)
-#2387 := (not #2384)
-#2390 := (forall (vars (?v1 S2)) #2387)
-#1847 := (not #1846)
-#1842 := (not #1841)
-#2396 := (and #1842 #1847 #2390)
-#2460 := (or #2396 #2457)
-#1822 := (not #1203)
-#1825 := (forall (vars (?v0 S2)) #1822)
-#2463 := (and #1825 #144 #147 #149 #152 #2460)
-#2540 := (or #2463 #2535)
-#2340 := (not #2335)
-#2358 := (and #2340 #1802 #2353)
-#2361 := (or #1100 #2358)
-#2364 := (forall (vars (?v0 S2)) #2361)
-#2298 := (not #2293)
-#2316 := (and #2298 #1749 #2311)
-#2319 := (or #1062 #2316)
-#2322 := (forall (vars (?v0 S2)) #2319)
-#2543 := (and #2322 #111 #1486 #1477 #1466 #2364 #2540)
-#1714 := (not #1713)
-#1720 := (and #1714 #77 #1719)
-#1729 := (not #1720)
-#1732 := (forall (vars (?v1 S2)) #1729)
-#2280 := (and #1704 #1709 #1732)
-#2546 := (or #2280 #2543)
-#2549 := (and #1047 #2546)
-#1680 := (not #1679)
-#1681 := (and #1673 #1680)
-#1682 := (not #1681)
-#2269 := (or #1682 #2266)
-#2272 := (not #2269)
-#2552 := (or #2272 #2549)
-#2555 := (and #1021 #2552)
-#1647 := (not #1646)
-#1650 := (and #1647 #1649)
-#1651 := (not #1650)
-#1657 := (or #1651 #1656)
-#1658 := (not #1657)
-#2558 := (or #1658 #2555)
-#2561 := (and #1006 #2558)
-#2564 := (or #1631 #2561)
-#2567 := (and #81 #2564)
-#2570 := (or #946 #2567)
-#3209 := (iff #2570 #3208)
-#3206 := (iff #2567 #3203)
-#3198 := (and #81 #3195)
-#3204 := (iff #3198 #3203)
-#3205 := [rewrite]: #3204
-#3199 := (iff #2567 #3198)
-#3196 := (iff #2564 #3195)
-#3193 := (iff #2561 #3190)
-#3185 := (and #1006 #3182)
-#3191 := (iff #3185 #3190)
-#3192 := [rewrite]: #3191
-#3186 := (iff #2561 #3185)
-#3183 := (iff #2558 #3182)
-#3180 := (iff #2555 #3177)
-#3171 := (and #2589 #3168)
-#3178 := (iff #3171 #3177)
-#3179 := [rewrite]: #3178
-#3172 := (iff #2555 #3171)
-#3169 := (iff #2552 #3168)
-#3166 := (iff #2549 #3163)
-#3157 := (and #2634 #3154)
-#3164 := (iff #3157 #3163)
-#3165 := [rewrite]: #3164
-#3158 := (iff #2549 #3157)
-#3155 := (iff #2546 #3154)
-#3152 := (iff #2543 #3149)
-#3140 := (and #2687 #111 #1486 #2710 #2732 #2760 #3137)
-#3150 := (iff #3140 #3149)
-#3151 := [rewrite]: #3150
-#3141 := (iff #2543 #3140)
-#3138 := (iff #2540 #3137)
-#3135 := (iff #2535 #3132)
-#3125 := (and #1964 #1969 #189 #1412 #1404 #199 #2930 #2936 #3122)
-#3133 := (iff #3125 #3132)
-#3134 := [rewrite]: #3133
-#3126 := (iff #2535 #3125)
-#3123 := (iff #2529 #3122)
-#3120 := (iff #2526 #3117)
-#3112 := (and #1259 #3109)
-#3118 := (iff #3112 #3117)
-#3119 := [rewrite]: #3118
-#3113 := (iff #2526 #3112)
-#3110 := (iff #2523 #3109)
-#3107 := (iff #2520 #3104)
-#3099 := (and #606 #3096)
-#3105 := (iff #3099 #3104)
-#3106 := [rewrite]: #3105
-#3100 := (iff #2520 #3099)
-#3097 := (iff #2517 #3096)
-#3094 := (iff #2514 #3091)
-#3086 := (and #222 #3083)
-#3092 := (iff #3086 #3091)
-#3093 := [rewrite]: #3092
-#3087 := (iff #2514 #3086)
-#3084 := (iff #2511 #3083)
-#3081 := (iff #2508 #3078)
-#3073 := (and #1268 #3070)
-#3079 := (iff #3073 #3078)
-#3080 := [rewrite]: #3079
-#3074 := (iff #2508 #3073)
-#3071 := (iff #2505 #3070)
-#3068 := (iff #2502 #3065)
-#3059 := (and #2982 #3056)
-#3066 := (iff #3059 #3065)
-#3067 := [rewrite]: #3066
-#3060 := (iff #2502 #3059)
-#3057 := (iff #2499 #3056)
-#3054 := (iff #2494 #3051)
-#3045 := (and #3027 #2125 #2130 #3042)
-#3052 := (iff #3045 #3051)
-#3053 := [rewrite]: #3052
-#3046 := (iff #2494 #3045)
-#3043 := (iff #2485 #3042)
-#3040 := (iff #2482 #3031)
-#3032 := (not #3031)
-#3035 := (not #3032)
-#3038 := (iff #3035 #3031)
-#3039 := [rewrite]: #3038
-#3036 := (iff #2482 #3035)
-#3033 := (iff #2479 #3032)
-#3034 := [rewrite]: #3033
-#3037 := [monotonicity #3034]: #3036
-#3041 := [trans #3037 #3039]: #3040
-#3044 := [quant-intro #3041]: #3043
-#3028 := (iff #1301 #3027)
-#3025 := (iff #1298 #3022)
-#3008 := (or #225 #1029)
-#3019 := (or #3008 #1294)
-#3023 := (iff #3019 #3022)
-#3024 := [rewrite]: #3023
-#3020 := (iff #1298 #3019)
-#3017 := (iff #1291 #3008)
-#3009 := (not #3008)
-#3012 := (not #3009)
-#3015 := (iff #3012 #3008)
-#3016 := [rewrite]: #3015
-#3013 := (iff #1291 #3012)
-#3010 := (iff #1288 #3009)
-#3011 := [rewrite]: #3010
-#3014 := [monotonicity #3011]: #3013
-#3018 := [trans #3014 #3016]: #3017
-#3021 := [monotonicity #3018]: #3020
-#3026 := [trans #3021 #3024]: #3025
-#3029 := [quant-intro #3026]: #3028
-#3047 := [monotonicity #3029 #3044]: #3046
-#3055 := [trans #3047 #3053]: #3054
-#3006 := (iff #2111 #3005)
-#3003 := (iff #2110 #3000)
-#2986 := (or #2985 #2100)
-#2997 := (or #2986 #2109)
-#3001 := (iff #2997 #3000)
-#3002 := [rewrite]: #3001
-#2998 := (iff #2110 #2997)
-#2995 := (iff #2103 #2986)
-#2987 := (not #2986)
-#2990 := (not #2987)
-#2993 := (iff #2990 #2986)
-#2994 := [rewrite]: #2993
-#2991 := (iff #2103 #2990)
-#2988 := (iff #2102 #2987)
-#2989 := [rewrite]: #2988
-#2992 := [monotonicity #2989]: #2991
-#2996 := [trans #2992 #2994]: #2995
-#2999 := [monotonicity #2996]: #2998
-#3004 := [trans #2999 #3002]: #3003
-#3007 := [monotonicity #3004]: #3006
-#3058 := [monotonicity #3007 #3055]: #3057
-#2983 := (iff #1282 #2982)
-#2980 := (iff #1279 #2977)
-#2963 := (or #218 #2962)
-#2974 := (or #2963 #1274)
-#2978 := (iff #2974 #2977)
-#2979 := [rewrite]: #2978
-#2975 := (iff #1279 #2974)
-#2972 := (iff #609 #2963)
-#2964 := (not #2963)
-#2967 := (not #2964)
-#2970 := (iff #2967 #2963)
-#2971 := [rewrite]: #2970
-#2968 := (iff #609 #2967)
-#2965 := (iff #228 #2964)
-#2966 := [rewrite]: #2965
-#2969 := [monotonicity #2966]: #2968
-#2973 := [trans #2969 #2971]: #2972
-#2976 := [monotonicity #2973]: #2975
-#2981 := [trans #2976 #2979]: #2980
-#2984 := [quant-intro #2981]: #2983
-#3061 := [monotonicity #2984 #3058]: #3060
-#3069 := [trans #3061 #3067]: #3068
-#2960 := (iff #2079 #2959)
-#2957 := (iff #2078 #2954)
-#2940 := (or #2067 #2939)
-#2951 := (or #2940 #2077)
-#2955 := (iff #2951 #2954)
-#2956 := [rewrite]: #2955
-#2952 := (iff #2078 #2951)
-#2949 := (iff #2072 #2940)
-#2941 := (not #2940)
-#2944 := (not #2941)
-#2947 := (iff #2944 #2940)
-#2948 := [rewrite]: #2947
-#2945 := (iff #2072 #2944)
-#2942 := (iff #2071 #2941)
-#2943 := [rewrite]: #2942
-#2946 := [monotonicity #2943]: #2945
-#2950 := [trans #2946 #2948]: #2949
-#2953 := [monotonicity #2950]: #2952
-#2958 := [trans #2953 #2956]: #2957
-#2961 := [monotonicity #2958]: #2960
-#3072 := [monotonicity #2961 #3069]: #3071
-#3075 := [monotonicity #3072]: #3074
-#3082 := [trans #3075 #3080]: #3081
-#3085 := [monotonicity #3082]: #3084
-#3088 := [monotonicity #3085]: #3087
-#3095 := [trans #3088 #3093]: #3094
-#3098 := [monotonicity #3095]: #3097
-#3101 := [monotonicity #3098]: #3100
-#3108 := [trans #3101 #3106]: #3107
-#3111 := [monotonicity #3108]: #3110
-#3114 := [monotonicity #3111]: #3113
-#3121 := [trans #3114 #3119]: #3120
-#3124 := [monotonicity #3121]: #3123
-#2937 := (iff #1248 #2936)
-#2934 := (iff #1245 #2933)
-#2913 := (iff #1242 #2912)
-#2914 := [rewrite]: #2913
-#2935 := [monotonicity #2914]: #2934
-#2938 := [quant-intro #2935]: #2937
-#2931 := (iff #1391 #2930)
-#2928 := (iff #1388 #2925)
-#2922 := (or #2911 #1383)
-#2926 := (iff #2922 #2925)
-#2927 := [rewrite]: #2926
-#2923 := (iff #1388 #2922)
-#2920 := (iff #1380 #2911)
-#2915 := (not #2912)
-#2918 := (iff #2915 #2911)
-#2919 := [rewrite]: #2918
-#2916 := (iff #1380 #2915)
-#2917 := [monotonicity #2914]: #2916
-#2921 := [trans #2917 #2919]: #2920
-#2924 := [monotonicity #2921]: #2923
-#2929 := [trans #2924 #2927]: #2928
-#2932 := [quant-intro #2929]: #2931
-#3127 := [monotonicity #2932 #2938 #3124]: #3126
-#3136 := [trans #3127 #3134]: #3135
-#2909 := (iff #2463 #2906)
-#2900 := (and #2774 #144 #147 #149 #152 #2897)
-#2907 := (iff #2900 #2906)
-#2908 := [rewrite]: #2907
-#2901 := (iff #2463 #2900)
-#2898 := (iff #2460 #2897)
-#2895 := (iff #2457 #2892)
-#2886 := (and #2826 #2883)
-#2893 := (iff #2886 #2892)
-#2894 := [rewrite]: #2893
-#2887 := (iff #2457 #2886)
-#2884 := (iff #2454 #2883)
-#2881 := (iff #1941 #2878)
-#2873 := (and #2870 #1938)
-#2879 := (iff #2873 #2878)
-#2880 := [rewrite]: #2879
-#2874 := (iff #1941 #2873)
-#2871 := (iff #1185 #2870)
-#2868 := (iff #1182 #2865)
-#2851 := (or #1138 #1029)
-#2862 := (or #2851 #1179)
-#2866 := (iff #2862 #2865)
-#2867 := [rewrite]: #2866
-#2863 := (iff #1182 #2862)
-#2860 := (iff #1176 #2851)
-#2852 := (not #2851)
-#2855 := (not #2852)
-#2858 := (iff #2855 #2851)
-#2859 := [rewrite]: #2858
-#2856 := (iff #1176 #2855)
-#2853 := (iff #1173 #2852)
-#2854 := [rewrite]: #2853
-#2857 := [monotonicity #2854]: #2856
-#2861 := [trans #2857 #2859]: #2860
-#2864 := [monotonicity #2861]: #2863
-#2869 := [trans #2864 #2867]: #2868
-#2872 := [quant-intro #2869]: #2871
-#2875 := [monotonicity #2872]: #2874
-#2882 := [trans #2875 #2880]: #2881
-#2849 := (iff #2451 #2848)
-#2846 := (iff #2448 #2843)
-#2829 := (or #1909 #1916)
-#2840 := (or #2829 #2445)
-#2844 := (iff #2840 #2843)
-#2845 := [rewrite]: #2844
-#2841 := (iff #2448 #2840)
-#2838 := (iff #1919 #2829)
-#2830 := (not #2829)
-#2833 := (not #2830)
-#2836 := (iff #2833 #2829)
-#2837 := [rewrite]: #2836
-#2834 := (iff #1919 #2833)
-#2831 := (iff #1918 #2830)
-#2832 := [rewrite]: #2831
-#2835 := [monotonicity #2832]: #2834
-#2839 := [trans #2835 #2837]: #2838
-#2842 := [monotonicity #2839]: #2841
-#2847 := [trans #2842 #2845]: #2846
-#2850 := [monotonicity #2847]: #2849
-#2885 := [monotonicity #2850 #2882]: #2884
-#2827 := (iff #2438 #2826)
-#2824 := (iff #2435 #2821)
-#2802 := (or #66 #1138)
-#2818 := (or #2802 #2815)
-#2822 := (iff #2818 #2821)
-#2823 := [rewrite]: #2822
-#2819 := (iff #2435 #2818)
-#2816 := (iff #2432 #2815)
-#2817 := [rewrite]: #2816
-#2811 := (iff #1145 #2802)
-#2803 := (not #2802)
-#2806 := (not #2803)
-#2809 := (iff #2806 #2802)
-#2810 := [rewrite]: #2809
-#2807 := (iff #1145 #2806)
-#2804 := (iff #1142 #2803)
-#2805 := [rewrite]: #2804
-#2808 := [monotonicity #2805]: #2807
-#2812 := [trans #2808 #2810]: #2811
-#2820 := [monotonicity #2812 #2817]: #2819
-#2825 := [trans #2820 #2823]: #2824
-#2828 := [quant-intro #2825]: #2827
-#2888 := [monotonicity #2828 #2885]: #2887
-#2896 := [trans #2888 #2894]: #2895
-#2800 := (iff #2396 #2797)
-#2792 := (and #1842 #1847 #2789)
-#2798 := (iff #2792 #2797)
-#2799 := [rewrite]: #2798
-#2793 := (iff #2396 #2792)
-#2790 := (iff #2390 #2789)
-#2787 := (iff #2387 #2778)
-#2779 := (not #2778)
-#2782 := (not #2779)
-#2785 := (iff #2782 #2778)
-#2786 := [rewrite]: #2785
-#2783 := (iff #2387 #2782)
-#2780 := (iff #2384 #2779)
-#2781 := [rewrite]: #2780
-#2784 := [monotonicity #2781]: #2783
-#2788 := [trans #2784 #2786]: #2787
-#2791 := [quant-intro #2788]: #2790
-#2794 := [monotonicity #2791]: #2793
-#2801 := [trans #2794 #2799]: #2800
-#2899 := [monotonicity #2801 #2896]: #2898
-#2775 := (iff #1825 #2774)
-#2772 := (iff #1822 #2763)
-#2764 := (not #2763)
-#2767 := (not #2764)
-#2770 := (iff #2767 #2763)
-#2771 := [rewrite]: #2770
-#2768 := (iff #1822 #2767)
-#2765 := (iff #1203 #2764)
-#2766 := [rewrite]: #2765
-#2769 := [monotonicity #2766]: #2768
-#2773 := [trans #2769 #2771]: #2772
-#2776 := [quant-intro #2773]: #2775
-#2902 := [monotonicity #2776 #2899]: #2901
-#2910 := [trans #2902 #2908]: #2909
-#3139 := [monotonicity #2910 #3136]: #3138
-#2761 := (iff #2364 #2760)
-#2758 := (iff #2361 #2755)
-#2735 := (or #66 #1093)
-#2752 := (or #2735 #2749)
-#2756 := (iff #2752 #2755)
-#2757 := [rewrite]: #2756
-#2753 := (iff #2361 #2752)
-#2750 := (iff #2358 #2749)
-#2751 := [rewrite]: #2750
-#2744 := (iff #1100 #2735)
-#2736 := (not #2735)
-#2739 := (not #2736)
-#2742 := (iff #2739 #2735)
-#2743 := [rewrite]: #2742
-#2740 := (iff #1100 #2739)
-#2737 := (iff #1097 #2736)
-#2738 := [rewrite]: #2737
-#2741 := [monotonicity #2738]: #2740
-#2745 := [trans #2741 #2743]: #2744
-#2754 := [monotonicity #2745 #2751]: #2753
-#2759 := [trans #2754 #2757]: #2758
-#2762 := [quant-intro #2759]: #2761
-#2733 := (iff #1466 #2732)
-#2730 := (iff #1463 #2727)
-#2713 := (or #118 #1029)
-#2724 := (or #2713 #1460)
-#2728 := (iff #2724 #2727)
-#2729 := [rewrite]: #2728
-#2725 := (iff #1463 #2724)
-#2722 := (iff #1457 #2713)
-#2714 := (not #2713)
-#2717 := (not #2714)
-#2720 := (iff #2717 #2713)
-#2721 := [rewrite]: #2720
-#2718 := (iff #1457 #2717)
-#2715 := (iff #1454 #2714)
-#2716 := [rewrite]: #2715
-#2719 := [monotonicity #2716]: #2718
-#2723 := [trans #2719 #2721]: #2722
-#2726 := [monotonicity #2723]: #2725
-#2731 := [trans #2726 #2729]: #2730
-#2734 := [quant-intro #2731]: #2733
-#2711 := (iff #1477 #2710)
-#2708 := (iff #1474 #2705)
-#2691 := (or #117 #2690)
-#2702 := (or #2691 #1109)
-#2706 := (iff #2702 #2705)
-#2707 := [rewrite]: #2706
-#2703 := (iff #1474 #2702)
-#2700 := (iff #391 #2691)
-#2692 := (not #2691)
-#2695 := (not #2692)
-#2698 := (iff #2695 #2691)
-#2699 := [rewrite]: #2698
-#2696 := (iff #391 #2695)
-#2693 := (iff #121 #2692)
-#2694 := [rewrite]: #2693
-#2697 := [monotonicity #2694]: #2696
-#2701 := [trans #2697 #2699]: #2700
-#2704 := [monotonicity #2701]: #2703
-#2709 := [trans #2704 #2707]: #2708
-#2712 := [quant-intro #2709]: #2711
-#2688 := (iff #2322 #2687)
-#2685 := (iff #2319 #2682)
-#2662 := (or #66 #1055)
-#2679 := (or #2662 #2676)
-#2683 := (iff #2679 #2682)
-#2684 := [rewrite]: #2683
-#2680 := (iff #2319 #2679)
-#2677 := (iff #2316 #2676)
-#2678 := [rewrite]: #2677
-#2671 := (iff #1062 #2662)
-#2663 := (not #2662)
-#2666 := (not #2663)
-#2669 := (iff #2666 #2662)
-#2670 := [rewrite]: #2669
-#2667 := (iff #1062 #2666)
-#2664 := (iff #1059 #2663)
-#2665 := [rewrite]: #2664
-#2668 := [monotonicity #2665]: #2667
-#2672 := [trans #2668 #2670]: #2671
-#2681 := [monotonicity #2672 #2678]: #2680
-#2686 := [trans #2681 #2684]: #2685
-#2689 := [quant-intro #2686]: #2688
-#3142 := [monotonicity #2689 #2712 #2734 #2762 #3139]: #3141
-#3153 := [trans #3142 #3151]: #3152
-#2660 := (iff #2280 #2657)
-#2652 := (and #1704 #1709 #2649)
-#2658 := (iff #2652 #2657)
-#2659 := [rewrite]: #2658
-#2653 := (iff #2280 #2652)
-#2650 := (iff #1732 #2649)
-#2647 := (iff #1729 #2638)
-#2639 := (not #2638)
-#2642 := (not #2639)
-#2645 := (iff #2642 #2638)
-#2646 := [rewrite]: #2645
-#2643 := (iff #1729 #2642)
-#2640 := (iff #1720 #2639)
-#2641 := [rewrite]: #2640
-#2644 := [monotonicity #2641]: #2643
-#2648 := [trans #2644 #2646]: #2647
-#2651 := [quant-intro #2648]: #2650
-#2654 := [monotonicity #2651]: #2653
-#2661 := [trans #2654 #2659]: #2660
-#3156 := [monotonicity #2661 #3153]: #3155
-#2635 := (iff #1047 #2634)
-#2632 := (iff #1044 #2629)
-#2615 := (or #78 #1029)
-#2626 := (or #2615 #1040)
-#2630 := (iff #2626 #2629)
-#2631 := [rewrite]: #2630
-#2627 := (iff #1044 #2626)
-#2624 := (iff #1036 #2615)
-#2616 := (not #2615)
-#2619 := (not #2616)
-#2622 := (iff #2619 #2615)
-#2623 := [rewrite]: #2622
-#2620 := (iff #1036 #2619)
-#2617 := (iff #1033 #2616)
-#2618 := [rewrite]: #2617
-#2621 := [monotonicity #2618]: #2620
-#2625 := [trans #2621 #2623]: #2624
-#2628 := [monotonicity #2625]: #2627
-#2633 := [trans #2628 #2631]: #2632
-#2636 := [quant-intro #2633]: #2635
-#3159 := [monotonicity #2636 #3156]: #3158
-#3167 := [trans #3159 #3165]: #3166
-#2613 := (iff #2272 #2612)
-#2610 := (iff #2269 #2607)
-#2593 := (or #2592 #1679)
-#2604 := (or #2593 #2266)
-#2608 := (iff #2604 #2607)
-#2609 := [rewrite]: #2608
-#2605 := (iff #2269 #2604)
-#2602 := (iff #1682 #2593)
-#2594 := (not #2593)
-#2597 := (not #2594)
-#2600 := (iff #2597 #2593)
-#2601 := [rewrite]: #2600
-#2598 := (iff #1682 #2597)
-#2595 := (iff #1681 #2594)
-#2596 := [rewrite]: #2595
-#2599 := [monotonicity #2596]: #2598
-#2603 := [trans #2599 #2601]: #2602
-#2606 := [monotonicity #2603]: #2605
-#2611 := [trans #2606 #2609]: #2610
-#2614 := [monotonicity #2611]: #2613
-#3170 := [monotonicity #2614 #3167]: #3169
-#2590 := (iff #1021 #2589)
-#2587 := (iff #1018 #2584)
-#1661 := (or #77 #1760)
-#2581 := (or #1661 #1014)
-#2585 := (iff #2581 #2584)
-#2586 := [rewrite]: #2585
-#2582 := (iff #1018 #2581)
-#2579 := (iff #370 #1661)
-#1662 := (not #1661)
-#2574 := (not #1662)
-#2577 := (iff #2574 #1661)
-#2578 := [rewrite]: #2577
-#2575 := (iff #370 #2574)
-#2259 := (iff #86 #1662)
-#2573 := [rewrite]: #2259
-#2576 := [monotonicity #2573]: #2575
-#2580 := [trans #2576 #2578]: #2579
-#2583 := [monotonicity #2580]: #2582
-#2588 := [trans #2583 #2586]: #2587
-#2591 := [quant-intro #2588]: #2590
-#3173 := [monotonicity #2591 #3170]: #3172
-#3181 := [trans #3173 #3179]: #3180
-#1635 := (iff #1658 #1634)
-#1973 := (iff #1657 #2083)
-#2036 := (or #1646 #2035)
-#2114 := (or #2036 #1656)
-#2015 := (iff #2114 #2083)
-#2016 := [rewrite]: #2015
-#2115 := (iff #1657 #2114)
-#1811 := (iff #1651 #2036)
-#1893 := (not #2036)
-#1694 := (not #1893)
-#1929 := (iff #1694 #2036)
-#1930 := [rewrite]: #1929
-#2055 := (iff #1651 #1694)
-#1894 := (iff #1650 #1893)
-#1693 := [rewrite]: #1894
-#2056 := [monotonicity #1693]: #2055
-#1812 := [trans #2056 #1930]: #1811
-#2082 := [monotonicity #1812]: #2115
-#1974 := [trans #2082 #2016]: #1973
-#1759 := [monotonicity #1974]: #1635
-#3184 := [monotonicity #1759 #3181]: #3183
-#3187 := [monotonicity #3184]: #3186
-#3194 := [trans #3187 #3192]: #3193
-#3197 := [monotonicity #3194]: #3196
-#3200 := [monotonicity #3197]: #3199
-#3207 := [trans #3200 #3205]: #3206
-#3210 := [monotonicity #3207]: #3209
-#2138 := (+ #2137 #2133)
-#2139 := (= #2138 0::Int)
-#2140 := (and #2135 #218 #2139)
-#2150 := (not #2140)
-#2153 := (forall (vars (?v1 S2)) #2150)
-#2131 := (and #2125 #2130)
-#2132 := (not #2131)
-#2147 := (not #2132)
-#2157 := (and #2147 #2153)
-#2162 := (and #1301 #2157)
-#2166 := (or #2111 #2162)
-#2170 := (and #1282 #2166)
-#2174 := (or #2079 #2170)
-#2178 := (and #1268 #2174)
-#2182 := (or #2052 #2178)
-#2046 := (not #713)
-#2186 := (and #2046 #2182)
-#2190 := (or #713 #2186)
-#2194 := (and #606 #2190)
-#2198 := (or #2032 #2194)
-#2202 := (and #1259 #2198)
-#2206 := (or #2012 #2202)
-#1989 := (not #778)
-#1970 := (and #1964 #1969)
-#2210 := (and #1970 #189 #1412 #1404 #1989 #1391 #1248 #2206)
-#1922 := (+ #1906 #1921)
-#1923 := (+ #1913 #1922)
-#1924 := (>= #1923 0::Int)
-#1925 := (or #1919 #1924)
-#1926 := (not #1925)
-#1945 := (or #1926 #1941)
-#1882 := (+ #1881 #1136)
-#1888 := (+ #1887 #1882)
-#1889 := (= #1888 0::Int)
-#1883 := (>= #1882 0::Int)
-#1884 := (not #1883)
-#1890 := (and #1884 #1889)
-#1895 := (or #1145 #1890)
-#1898 := (forall (vars (?v0 S2)) #1895)
-#1949 := (and #1898 #1945)
-#1855 := (+ #1854 #1850)
-#1856 := (= #1855 0::Int)
-#1857 := (and #1852 #1856)
-#1866 := (not #1857)
-#1869 := (forall (vars (?v1 S2)) #1866)
-#1848 := (and #1842 #1847)
-#1849 := (not #1848)
-#1863 := (not #1849)
-#1873 := (and #1863 #1869)
-#1953 := (or #1873 #1949)
-#1837 := (not #522)
-#1834 := (not #531)
-#1831 := (not #540)
-#1828 := (not #549)
-#1957 := (and #1825 #1828 #1831 #1834 #1837 #1953)
-#2214 := (or #1957 #2210)
-#1798 := (+ #1797 #1091)
-#1806 := (+ #1805 #1798)
-#1807 := (= #1806 0::Int)
-#1799 := (>= #1798 0::Int)
-#1800 := (not #1799)
-#1808 := (and #1800 #1802 #1807)
-#1813 := (or #1100 #1808)
-#1816 := (forall (vars (?v0 S2)) #1813)
-#1770 := (not #878)
-#1753 := (+ #1053 #1752)
-#1754 := (+ #1744 #1753)
-#1755 := (= #1754 0::Int)
-#1745 := (+ #1744 #1053)
-#1746 := (>= #1745 0::Int)
-#1747 := (not #1746)
-#1756 := (and #1747 #1749 #1755)
-#1761 := (or #1062 #1756)
-#1764 := (forall (vars (?v0 S2)) #1761)
-#2218 := (and #1764 #1770 #1486 #1477 #1466 #1816 #2214)
-#1710 := (and #1704 #1709)
-#1711 := (not #1710)
-#1726 := (not #1711)
-#1736 := (and #1726 #1732)
-#2222 := (or #1736 #2218)
-#2226 := (and #1047 #2222)
-#1686 := (+ #1685 #1676)
-#1687 := (+ #1683 #1686)
-#1688 := (>= #1687 0::Int)
-#1689 := (or #1682 #1688)
-#1690 := (not #1689)
-#2230 := (or #1690 #2226)
-#2234 := (and #1021 #2230)
-#2238 := (or #1658 #2234)
-#2242 := (and #1006 #2238)
-#2246 := (or #1631 #2242)
-#1593 := (not #946)
-#2250 := (and #1593 #2246)
-#2254 := (or #946 #2250)
-#2571 := (iff #2254 #2570)
-#2568 := (iff #2250 #2567)
-#2565 := (iff #2246 #2564)
-#2562 := (iff #2242 #2561)
-#2559 := (iff #2238 #2558)
-#2556 := (iff #2234 #2555)
-#2553 := (iff #2230 #2552)
-#2550 := (iff #2226 #2549)
-#2547 := (iff #2222 #2546)
-#2544 := (iff #2218 #2543)
-#2541 := (iff #2214 #2540)
-#2538 := (iff #2210 #2535)
-#2532 := (and #1970 #189 #1412 #1404 #199 #1391 #1248 #2529)
-#2536 := (iff #2532 #2535)
-#2537 := [rewrite]: #2536
-#2533 := (iff #2210 #2532)
-#2530 := (iff #2206 #2529)
-#2527 := (iff #2202 #2526)
-#2524 := (iff #2198 #2523)
-#2521 := (iff #2194 #2520)
-#2518 := (iff #2190 #2517)
-#2515 := (iff #2186 #2514)
-#2512 := (iff #2182 #2511)
-#2509 := (iff #2178 #2508)
-#2506 := (iff #2174 #2505)
-#2503 := (iff #2170 #2502)
-#2500 := (iff #2166 #2499)
-#2497 := (iff #2162 #2494)
-#2488 := (and #2131 #2485)
-#2491 := (and #1301 #2488)
-#2495 := (iff #2491 #2494)
-#2496 := [rewrite]: #2495
-#2492 := (iff #2162 #2491)
-#2489 := (iff #2157 #2488)
-#2486 := (iff #2153 #2485)
-#2483 := (iff #2150 #2482)
-#2480 := (iff #2140 #2479)
-#2477 := (iff #2139 #2476)
-#2474 := (= #2138 #2473)
-#2475 := [rewrite]: #2474
-#2478 := [monotonicity #2475]: #2477
-#2481 := [monotonicity #2478]: #2480
-#2484 := [monotonicity #2481]: #2483
-#2487 := [quant-intro #2484]: #2486
-#2470 := (iff #2147 #2131)
-#2471 := [rewrite]: #2470
-#2490 := [monotonicity #2471 #2487]: #2489
-#2493 := [monotonicity #2490]: #2492
-#2498 := [trans #2493 #2496]: #2497
-#2501 := [monotonicity #2498]: #2500
-#2504 := [monotonicity #2501]: #2503
-#2507 := [monotonicity #2504]: #2506
-#2510 := [monotonicity #2507]: #2509
-#2513 := [monotonicity #2510]: #2512
-#2468 := (iff #2046 #222)
-#2469 := [rewrite]: #2468
-#2516 := [monotonicity #2469 #2513]: #2515
-#2519 := [monotonicity #2516]: #2518
-#2522 := [monotonicity #2519]: #2521
-#2525 := [monotonicity #2522]: #2524
-#2528 := [monotonicity #2525]: #2527
-#2531 := [monotonicity #2528]: #2530
-#2466 := (iff #1989 #199)
-#2467 := [rewrite]: #2466
-#2534 := [monotonicity #2467 #2531]: #2533
-#2539 := [trans #2534 #2537]: #2538
-#2464 := (iff #1957 #2463)
-#2461 := (iff #1953 #2460)
-#2458 := (iff #1949 #2457)
-#2455 := (iff #1945 #2454)
-#2452 := (iff #1926 #2451)
-#2449 := (iff #1925 #2448)
-#2446 := (iff #1924 #2445)
-#2443 := (= #1923 #2442)
-#2444 := [rewrite]: #2443
-#2447 := [monotonicity #2444]: #2446
-#2450 := [monotonicity #2447]: #2449
-#2453 := [monotonicity #2450]: #2452
-#2456 := [monotonicity #2453]: #2455
-#2439 := (iff #1898 #2438)
-#2436 := (iff #1895 #2435)
-#2433 := (iff #1890 #2432)
-#2430 := (iff #1889 #2427)
-#2417 := (+ #1881 #1887)
-#2418 := (+ #1136 #2417)
-#2421 := (= #2418 0::Int)
-#2428 := (iff #2421 #2427)
-#2429 := [rewrite]: #2428
-#2422 := (iff #1889 #2421)
-#2419 := (= #1888 #2418)
-#2420 := [rewrite]: #2419
-#2423 := [monotonicity #2420]: #2422
-#2431 := [trans #2423 #2429]: #2430
-#2415 := (iff #1884 #2414)
-#2412 := (iff #1883 #2409)
-#2401 := (+ #1136 #1881)
-#2404 := (>= #2401 0::Int)
-#2410 := (iff #2404 #2409)
-#2411 := [rewrite]: #2410
-#2405 := (iff #1883 #2404)
-#2402 := (= #1882 #2401)
-#2403 := [rewrite]: #2402
-#2406 := [monotonicity #2403]: #2405
-#2413 := [trans #2406 #2411]: #2412
-#2416 := [monotonicity #2413]: #2415
-#2434 := [monotonicity #2416 #2431]: #2433
-#2437 := [monotonicity #2434]: #2436
-#2440 := [quant-intro #2437]: #2439
-#2459 := [monotonicity #2440 #2456]: #2458
-#2399 := (iff #1873 #2396)
-#2393 := (and #1848 #2390)
-#2397 := (iff #2393 #2396)
-#2398 := [rewrite]: #2397
-#2394 := (iff #1873 #2393)
-#2391 := (iff #1869 #2390)
-#2388 := (iff #1866 #2387)
-#2385 := (iff #1857 #2384)
-#2382 := (iff #1856 #2381)
-#2379 := (= #1855 #2378)
-#2380 := [rewrite]: #2379
-#2383 := [monotonicity #2380]: #2382
-#2386 := [monotonicity #2383]: #2385
-#2389 := [monotonicity #2386]: #2388
-#2392 := [quant-intro #2389]: #2391
-#2375 := (iff #1863 #1848)
-#2376 := [rewrite]: #2375
-#2395 := [monotonicity #2376 #2392]: #2394
-#2400 := [trans #2395 #2398]: #2399
-#2462 := [monotonicity #2400 #2459]: #2461
-#2373 := (iff #1837 #152)
-#2374 := [rewrite]: #2373
-#2371 := (iff #1834 #149)
-#2372 := [rewrite]: #2371
-#2369 := (iff #1831 #147)
-#2370 := [rewrite]: #2369
-#2367 := (iff #1828 #144)
-#2368 := [rewrite]: #2367
-#2465 := [monotonicity #2368 #2370 #2372 #2374 #2462]: #2464
-#2542 := [monotonicity #2465 #2539]: #2541
-#2365 := (iff #1816 #2364)
-#2362 := (iff #1813 #2361)
-#2359 := (iff #1808 #2358)
-#2356 := (iff #1807 #2353)
-#2343 := (+ #1797 #1805)
-#2344 := (+ #1091 #2343)
-#2347 := (= #2344 0::Int)
-#2354 := (iff #2347 #2353)
-#2355 := [rewrite]: #2354
-#2348 := (iff #1807 #2347)
-#2345 := (= #1806 #2344)
-#2346 := [rewrite]: #2345
-#2349 := [monotonicity #2346]: #2348
-#2357 := [trans #2349 #2355]: #2356
-#2341 := (iff #1800 #2340)
-#2338 := (iff #1799 #2335)
-#2327 := (+ #1091 #1797)
-#2330 := (>= #2327 0::Int)
-#2336 := (iff #2330 #2335)
-#2337 := [rewrite]: #2336
-#2331 := (iff #1799 #2330)
-#2328 := (= #1798 #2327)
-#2329 := [rewrite]: #2328
-#2332 := [monotonicity #2329]: #2331
-#2339 := [trans #2332 #2337]: #2338
-#2342 := [monotonicity #2339]: #2341
-#2360 := [monotonicity #2342 #2357]: #2359
-#2363 := [monotonicity #2360]: #2362
-#2366 := [quant-intro #2363]: #2365
-#2325 := (iff #1770 #111)
-#2326 := [rewrite]: #2325
-#2323 := (iff #1764 #2322)
-#2320 := (iff #1761 #2319)
-#2317 := (iff #1756 #2316)
-#2314 := (iff #1755 #2311)
-#2301 := (+ #1744 #1752)
-#2302 := (+ #1053 #2301)
-#2305 := (= #2302 0::Int)
-#2312 := (iff #2305 #2311)
-#2313 := [rewrite]: #2312
-#2306 := (iff #1755 #2305)
-#2303 := (= #1754 #2302)
-#2304 := [rewrite]: #2303
-#2307 := [monotonicity #2304]: #2306
-#2315 := [trans #2307 #2313]: #2314
-#2299 := (iff #1747 #2298)
-#2296 := (iff #1746 #2293)
-#2285 := (+ #1053 #1744)
-#2288 := (>= #2285 0::Int)
-#2294 := (iff #2288 #2293)
-#2295 := [rewrite]: #2294
-#2289 := (iff #1746 #2288)
-#2286 := (= #1745 #2285)
-#2287 := [rewrite]: #2286
-#2290 := [monotonicity #2287]: #2289
-#2297 := [trans #2290 #2295]: #2296
-#2300 := [monotonicity #2297]: #2299
-#2318 := [monotonicity #2300 #2315]: #2317
-#2321 := [monotonicity #2318]: #2320
-#2324 := [quant-intro #2321]: #2323
-#2545 := [monotonicity #2324 #2326 #2366 #2542]: #2544
-#2283 := (iff #1736 #2280)
-#2277 := (and #1710 #1732)
-#2281 := (iff #2277 #2280)
-#2282 := [rewrite]: #2281
-#2278 := (iff #1736 #2277)
-#2275 := (iff #1726 #1710)
-#2276 := [rewrite]: #2275
-#2279 := [monotonicity #2276]: #2278
-#2284 := [trans #2279 #2282]: #2283
-#2548 := [monotonicity #2284 #2545]: #2547
-#2551 := [monotonicity #2548]: #2550
-#2273 := (iff #1690 #2272)
-#2270 := (iff #1689 #2269)
-#2267 := (iff #1688 #2266)
-#2264 := (= #1687 #2263)
-#2265 := [rewrite]: #2264
-#2268 := [monotonicity #2265]: #2267
-#2271 := [monotonicity #2268]: #2270
-#2274 := [monotonicity #2271]: #2273
-#2554 := [monotonicity #2274 #2551]: #2553
-#2557 := [monotonicity #2554]: #2556
-#2560 := [monotonicity #2557]: #2559
-#2563 := [monotonicity #2560]: #2562
-#2566 := [monotonicity #2563]: #2565
-#2260 := (iff #1593 #81)
-#2261 := [rewrite]: #2260
-#2569 := [monotonicity #2261 #2566]: #2568
-#2572 := [monotonicity #2569]: #2571
-#1568 := (not #1542)
-#2255 := (~ #1568 #2254)
-#2251 := (not #1539)
-#2252 := (~ #2251 #2250)
-#2247 := (not #1536)
-#2248 := (~ #2247 #2246)
-#2243 := (not #1533)
-#2244 := (~ #2243 #2242)
-#2239 := (not #1530)
-#2240 := (~ #2239 #2238)
-#2235 := (not #1527)
-#2236 := (~ #2235 #2234)
-#2231 := (not #1524)
-#2232 := (~ #2231 #2230)
-#2227 := (not #1521)
-#2228 := (~ #2227 #2226)
-#2223 := (not #1518)
-#2224 := (~ #2223 #2222)
-#2219 := (not #1513)
-#2220 := (~ #2219 #2218)
-#2215 := (not #1451)
-#2216 := (~ #2215 #2214)
-#2211 := (not #1446)
-#2212 := (~ #2211 #2210)
-#2207 := (not #1377)
-#2208 := (~ #2207 #2206)
-#2203 := (not #1374)
-#2204 := (~ #2203 #2202)
-#2199 := (not #1371)
-#2200 := (~ #2199 #2198)
-#2195 := (not #1368)
-#2196 := (~ #2195 #2194)
-#2191 := (not #1365)
-#2192 := (~ #2191 #2190)
-#2187 := (not #1362)
-#2188 := (~ #2187 #2186)
-#2183 := (not #1359)
-#2184 := (~ #2183 #2182)
-#2179 := (not #1356)
-#2180 := (~ #2179 #2178)
-#2175 := (not #1353)
-#2176 := (~ #2175 #2174)
-#2171 := (not #1350)
-#2172 := (~ #2171 #2170)
-#2167 := (not #1347)
-#2168 := (~ #2167 #2166)
-#2163 := (not #1344)
-#2164 := (~ #2163 #2162)
-#2144 := (not #1341)
-#2160 := (~ #2144 #2157)
-#2141 := (exists (vars (?v1 S2)) #2140)
-#2142 := (or #2132 #2141)
-#2143 := (not #2142)
-#2158 := (~ #2143 #2157)
-#2154 := (not #2141)
-#2155 := (~ #2154 #2153)
-#2151 := (~ #2150 #2150)
-#2152 := [refl]: #2151
-#2156 := [nnf-neg #2152]: #2155
-#2148 := (~ #2147 #2147)
-#2149 := [refl]: #2148
-#2159 := [nnf-neg #2149 #2156]: #2158
-#2145 := (~ #2144 #2143)
-#2146 := [sk]: #2145
-#2161 := [trans #2146 #2159]: #2160
-#2120 := (not #1304)
-#2121 := (~ #2120 #1301)
-#2118 := (~ #1301 #1301)
-#2116 := (~ #1298 #1298)
-#2117 := [refl]: #2116
-#2119 := [nnf-pos #2117]: #2118
-#2122 := [nnf-neg #2119]: #2121
-#2165 := [nnf-neg #2122 #2161]: #2164
-#2112 := (~ #1304 #2111)
-#2113 := [sk]: #2112
-#2169 := [nnf-neg #2113 #2165]: #2168
-#2088 := (not #1285)
-#2089 := (~ #2088 #1282)
-#2086 := (~ #1282 #1282)
-#2084 := (~ #1279 #1279)
-#2085 := [refl]: #2084
-#2087 := [nnf-pos #2085]: #2086
-#2090 := [nnf-neg #2087]: #2089
-#2173 := [nnf-neg #2090 #2169]: #2172
-#2080 := (~ #1285 #2079)
-#2081 := [sk]: #2080
-#2177 := [nnf-neg #2081 #2173]: #2176
-#2061 := (not #1271)
-#2062 := (~ #2061 #1268)
-#2059 := (~ #1268 #1268)
-#2057 := (~ #1265 #1265)
-#2058 := [refl]: #2057
-#2060 := [nnf-pos #2058]: #2059
-#2063 := [nnf-neg #2060]: #2062
-#2181 := [nnf-neg #2063 #2177]: #2180
-#2053 := (~ #1271 #2052)
-#2054 := [sk]: #2053
-#2185 := [nnf-neg #2054 #2181]: #2184
-#2047 := (~ #2046 #2046)
-#2048 := [refl]: #2047
-#2189 := [nnf-neg #2048 #2185]: #2188
-#2044 := (~ #713 #713)
-#2045 := [refl]: #2044
-#2193 := [nnf-neg #2045 #2189]: #2192
-#2041 := (not #736)
-#2042 := (~ #2041 #606)
-#2039 := (~ #606 #606)
-#2037 := (~ #603 #603)
-#2038 := [refl]: #2037
-#2040 := [nnf-pos #2038]: #2039
-#2043 := [nnf-neg #2040]: #2042
-#2197 := [nnf-neg #2043 #2193]: #2196
-#2033 := (~ #736 #2032)
-#2034 := [sk]: #2033
-#2201 := [nnf-neg #2034 #2197]: #2200
-#2021 := (not #1262)
-#2022 := (~ #2021 #1259)
-#2019 := (~ #1259 #1259)
-#2017 := (~ #1254 #1254)
-#2018 := [refl]: #2017
-#2020 := [nnf-pos #2018]: #2019
-#2023 := [nnf-neg #2020]: #2022
-#2205 := [nnf-neg #2023 #2201]: #2204
-#2013 := (~ #1262 #2012)
-#2014 := [sk]: #2013
-#2209 := [nnf-neg #2014 #2205]: #2208
-#2003 := (not #1251)
-#2004 := (~ #2003 #1248)
-#2001 := (~ #1248 #1248)
-#1999 := (~ #1245 #1245)
-#2000 := [refl]: #1999
-#2002 := [nnf-pos #2000]: #2001
-#2005 := [nnf-neg #2002]: #2004
-#1996 := (not #1394)
-#1997 := (~ #1996 #1391)
-#1994 := (~ #1391 #1391)
-#1992 := (~ #1388 #1388)
-#1993 := [refl]: #1992
-#1995 := [nnf-pos #1993]: #1994
-#1998 := [nnf-neg #1995]: #1997
-#1990 := (~ #1989 #1989)
-#1991 := [refl]: #1990
-#1986 := (not #1407)
-#1987 := (~ #1986 #1404)
-#1984 := (~ #1404 #1404)
-#1982 := (~ #1401 #1401)
-#1983 := [refl]: #1982
-#1985 := [nnf-pos #1983]: #1984
-#1988 := [nnf-neg #1985]: #1987
-#1980 := (~ #1412 #1412)
-#1981 := [refl]: #1980
-#1978 := (~ #189 #189)
-#1979 := [refl]: #1978
-#1975 := (not #1422)
-#1976 := (~ #1975 #1970)
-#1971 := (~ #1206 #1970)
-#1972 := [sk]: #1971
-#1977 := [nnf-neg #1972]: #1976
-#2213 := [nnf-neg #1977 #1979 #1981 #1988 #1991 #1998 #2005 #2209]: #2212
-#1958 := (not #1224)
-#1959 := (~ #1958 #1957)
-#1954 := (not #1200)
-#1955 := (~ #1954 #1953)
-#1950 := (not #1197)
-#1951 := (~ #1950 #1949)
-#1946 := (not #1194)
-#1947 := (~ #1946 #1945)
-#1942 := (not #1191)
-#1943 := (~ #1942 #1941)
-#1939 := (~ #1938 #1938)
-#1940 := [refl]: #1939
-#1935 := (not #1188)
-#1936 := (~ #1935 #1185)
-#1933 := (~ #1185 #1185)
-#1931 := (~ #1182 #1182)
-#1932 := [refl]: #1931
-#1934 := [nnf-pos #1932]: #1933
-#1937 := [nnf-neg #1934]: #1936
-#1944 := [nnf-neg #1937 #1940]: #1943
-#1927 := (~ #1188 #1926)
-#1928 := [sk]: #1927
-#1948 := [nnf-neg #1928 #1944]: #1947
-#1901 := (not #1170)
-#1902 := (~ #1901 #1898)
-#1899 := (~ #1167 #1898)
-#1896 := (~ #1164 #1895)
-#1891 := (~ #1161 #1890)
-#1892 := [sk]: #1891
-#1878 := (~ #1145 #1145)
-#1879 := [refl]: #1878
-#1897 := [monotonicity #1879 #1892]: #1896
-#1900 := [nnf-pos #1897]: #1899
-#1903 := [nnf-neg #1900]: #1902
-#1952 := [nnf-neg #1903 #1948]: #1951
-#1876 := (~ #1170 #1873)
-#1858 := (exists (vars (?v1 S2)) #1857)
-#1859 := (or #1849 #1858)
-#1860 := (not #1859)
-#1874 := (~ #1860 #1873)
-#1870 := (not #1858)
-#1871 := (~ #1870 #1869)
-#1867 := (~ #1866 #1866)
-#1868 := [refl]: #1867
-#1872 := [nnf-neg #1868]: #1871
-#1864 := (~ #1863 #1863)
-#1865 := [refl]: #1864
-#1875 := [nnf-neg #1865 #1872]: #1874
-#1861 := (~ #1170 #1860)
-#1862 := [sk]: #1861
-#1877 := [trans #1862 #1875]: #1876
-#1956 := [nnf-neg #1877 #1952]: #1955
-#1838 := (~ #1837 #1837)
-#1839 := [refl]: #1838
-#1835 := (~ #1834 #1834)
-#1836 := [refl]: #1835
-#1832 := (~ #1831 #1831)
-#1833 := [refl]: #1832
-#1829 := (~ #1828 #1828)
-#1830 := [refl]: #1829
-#1826 := (~ #1422 #1825)
-#1823 := (~ #1822 #1822)
-#1824 := [refl]: #1823
-#1827 := [nnf-neg #1824]: #1826
-#1960 := [nnf-neg #1827 #1830 #1833 #1836 #1839 #1956]: #1959
-#2217 := [nnf-neg #1960 #2213]: #2216
-#1819 := (not #1133)
-#1820 := (~ #1819 #1816)
-#1817 := (~ #1130 #1816)
-#1814 := (~ #1127 #1813)
-#1809 := (~ #1124 #1808)
-#1810 := [sk]: #1809
-#1794 := (~ #1100 #1100)
-#1795 := [refl]: #1794
-#1815 := [monotonicity #1795 #1810]: #1814
-#1818 := [nnf-pos #1815]: #1817
-#1821 := [nnf-neg #1818]: #1820
-#1791 := (not #1469)
-#1792 := (~ #1791 #1466)
-#1789 := (~ #1466 #1466)
-#1787 := (~ #1463 #1463)
-#1788 := [refl]: #1787
-#1790 := [nnf-pos #1788]: #1789
-#1793 := [nnf-neg #1790]: #1792
-#1784 := (not #1480)
-#1785 := (~ #1784 #1477)
-#1782 := (~ #1477 #1477)
-#1780 := (~ #1474 #1474)
-#1781 := [refl]: #1780
-#1783 := [nnf-pos #1781]: #1782
-#1786 := [nnf-neg #1783]: #1785
-#1777 := (not #1489)
-#1778 := (~ #1777 #1486)
-#1775 := (~ #1486 #1486)
-#1773 := (~ #1483 #1483)
-#1774 := [refl]: #1773
-#1776 := [nnf-pos #1774]: #1775
-#1779 := [nnf-neg #1776]: #1778
-#1771 := (~ #1770 #1770)
-#1772 := [refl]: #1771
-#1767 := (not #1492)
-#1768 := (~ #1767 #1764)
-#1765 := (~ #1088 #1764)
-#1762 := (~ #1085 #1761)
-#1757 := (~ #1082 #1756)
-#1758 := [sk]: #1757
-#1741 := (~ #1062 #1062)
-#1742 := [refl]: #1741
-#1763 := [monotonicity #1742 #1758]: #1762
-#1766 := [nnf-pos #1763]: #1765
-#1769 := [nnf-neg #1766]: #1768
-#2221 := [nnf-neg #1769 #1772 #1779 #1786 #1793 #1821 #2217]: #2220
-#1739 := (~ #1492 #1736)
-#1721 := (exists (vars (?v1 S2)) #1720)
-#1722 := (or #1711 #1721)
-#1723 := (not #1722)
-#1737 := (~ #1723 #1736)
-#1733 := (not #1721)
-#1734 := (~ #1733 #1732)
-#1730 := (~ #1729 #1729)
-#1731 := [refl]: #1730
-#1735 := [nnf-neg #1731]: #1734
-#1727 := (~ #1726 #1726)
-#1728 := [refl]: #1727
-#1738 := [nnf-neg #1728 #1735]: #1737
-#1724 := (~ #1492 #1723)
-#1725 := [sk]: #1724
-#1740 := [trans #1725 #1738]: #1739
-#2225 := [nnf-neg #1740 #2221]: #2224
-#1699 := (not #1050)
-#1700 := (~ #1699 #1047)
-#1697 := (~ #1047 #1047)
-#1695 := (~ #1044 #1044)
-#1696 := [refl]: #1695
-#1698 := [nnf-pos #1696]: #1697
-#1701 := [nnf-neg #1698]: #1700
-#2229 := [nnf-neg #1701 #2225]: #2228
-#1691 := (~ #1050 #1690)
-#1692 := [sk]: #1691
-#2233 := [nnf-neg #1692 #2229]: #2232
-#1667 := (not #1024)
-#1668 := (~ #1667 #1021)
-#1665 := (~ #1021 #1021)
-#1663 := (~ #1018 #1018)
-#1664 := [refl]: #1663
-#1666 := [nnf-pos #1664]: #1665
-#1669 := [nnf-neg #1666]: #1668
-#2237 := [nnf-neg #1669 #2233]: #2236
-#1659 := (~ #1024 #1658)
-#1660 := [sk]: #1659
-#2241 := [nnf-neg #1660 #2237]: #2240
-#1640 := (not #1009)
-#1641 := (~ #1640 #1006)
-#1638 := (~ #1006 #1006)
-#1636 := (~ #1005 #1005)
-#1637 := [refl]: #1636
-#1639 := [nnf-pos #1637]: #1638
-#1642 := [nnf-neg #1639]: #1641
-#2245 := [nnf-neg #1642 #2241]: #2244
-#1632 := (~ #1009 #1631)
-#1633 := [sk]: #1632
-#2249 := [nnf-neg #1633 #2245]: #2248
-#1594 := (~ #1593 #1593)
-#1627 := [refl]: #1594
-#2253 := [nnf-neg #1627 #2249]: #2252
-#1625 := (~ #946 #946)
-#1626 := [refl]: #1625
-#2256 := [nnf-neg #1626 #2253]: #2255
-#1569 := [not-or-elim #1564]: #1568
-#2257 := [mp~ #1569 #2256]: #2254
-#2258 := [mp #2257 #2572]: #2570
-#3211 := [mp #2258 #3210]: #3208
-#4126 := [mp #3211 #4125]: #4123
-#7087 := [unit-resolution #4126 #4239]: #4120
-#3450 := (or #4117 #4111)
-#3440 := [def-axiom]: #3450
-#7088 := [unit-resolution #3440 #7087]: #4111
-#3446 := (or #4114 #1631 #4108)
-#3448 := [def-axiom]: #3446
-#7089 := [unit-resolution #3448 #7088 #4166]: #4108
-#3444 := (or #4105 #4099)
-#3447 := [def-axiom]: #3444
-#7090 := [unit-resolution #3447 #7089]: #4099
-#3306 := (or #4102 #1634 #4096)
-#3464 := [def-axiom]: #3306
-#7091 := [unit-resolution #3464 #7090]: #4099
-#7092 := [unit-resolution #7091 #7086]: #4096
-#3486 := (or #4093 #4087)
-#3456 := [def-axiom]: #3486
-#7093 := [unit-resolution #3456 #7092]: #4087
-#7095 := (or #4090 #4084)
-#6151 := [hypothesis]: #1673
-#4285 := (or #7029 #2592)
-#4289 := [quant-inst #1670]: #4285
-#6152 := [unit-resolution #4289 #3755 #6151]: false
-#6170 := [lemma #6152]: #2592
-#3366 := (or #2607 #1673)
-#3363 := [def-axiom]: #3366
-#7094 := [unit-resolution #3363 #6170]: #2607
-#3483 := (or #4090 #2612 #4084)
-#3484 := [def-axiom]: #3483
-#7096 := [unit-resolution #3484 #7094]: #7095
-#7097 := [unit-resolution #7096 #7093]: #4084
-#3467 := (or #4081 #4075)
-#3474 := [def-axiom]: #3467
-#7098 := [unit-resolution #3474 #7097]: #4075
-#3504 := (or #4078 #3794 #4072)
-#3489 := [def-axiom]: #3504
-#7099 := [unit-resolution #3489 #7098 #6210]: #4072
-#3496 := (or #4069 #4063)
-#3497 := [def-axiom]: #3496
-#8263 := [unit-resolution #3497 #7099]: #4063
-#6420 := (f19 f20 ?v0!8)
-#6418 := (* -1::Int #6420)
-#6421 := (+ f14 #6418)
-#6440 := (<= #6421 0::Int)
-#6559 := (?v1!7 ?v0!8)
-#6669 := (f6 f7 #6559)
-#6677 := (f5 #6669 ?v0!8)
-#6678 := (f15 #6677)
-#6676 := (* -1::Int #6678)
-#6561 := (f19 f20 #6559)
-#6563 := (* -1::Int #6561)
-#6673 := (+ #6563 #6676)
-#6661 := (+ #6420 #6673)
-#6662 := (= #6661 0::Int)
-#6715 := (not #6662)
-#6565 := (f9 f21 #6559)
-#6571 := (= #6565 f1)
-#6660 := (not #6571)
-#6564 := (+ #6420 #6563)
-#6562 := (<= #6564 0::Int)
-#6716 := (or #6562 #6660 #6715)
-#7070 := [hypothesis]: #3906
-#3648 := (or #3903 #149)
-#3643 := [def-axiom]: #3648
-#7106 := [unit-resolution #3643 #7070]: #149
-#3491 := (or #3903 #3897)
-#3492 := [def-axiom]: #3491
-#7107 := [unit-resolution #3492 #7070]: #3897
-#3520 := (or #4069 #111)
-#3521 := [def-axiom]: #3520
-#7324 := [unit-resolution #3521 #7099]: #111
-#4279 := (or #531 #169 #878)
-#4208 := [hypothesis]: #111
-#4276 := (= #168 #110)
-#4275 := [hypothesis]: #149
-#4274 := [monotonicity #4275]: #4276
-#4277 := [trans #4274 #4208]: #169
-#4174 := [hypothesis]: #1938
-#4278 := [unit-resolution #4174 #4277]: false
-#4292 := [lemma #4278]: #4279
-#7108 := [unit-resolution #4292 #7106 #7324]: #169
-#3387 := (or #3879 #1938)
-#3388 := [def-axiom]: #3387
-#7066 := [unit-resolution #3388 #7108]: #3879
-#3644 := (or #3903 #3840)
-#3645 := [def-axiom]: #3644
-#7069 := [unit-resolution #3645 #7070]: #3840
-#7013 := (or #2843 #3845 #531)
-#6412 := (f19 f20 ?v0!11)
-#6414 := (* -1::Int #6412)
-#6787 := (+ #1920 #6414)
-#6788 := (<= #6787 0::Int)
-#6785 := (= #1920 #6412)
-#6862 := (= #6412 #1920)
-#6860 := (= f20 f25)
-#6861 := [symm #4275]: #6860
-#6895 := [monotonicity #6861]: #6862
-#6896 := [symm #6895]: #6785
-#6897 := (not #6785)
-#6898 := (or #6897 #6788)
-#6854 := [th-lemma arith triangle-eq]: #6898
-#6855 := [unit-resolution #6854 #6896]: #6788
-#6195 := (f19 f20 ?v1!10)
-#6193 := (* -1::Int #6195)
-#6285 := (+ #1906 #6193)
-#6781 := (>= #6285 0::Int)
-#6295 := (= #1906 #6195)
-#6853 := (= #6195 #1906)
-#6856 := [monotonicity #6861]: #6853
-#6857 := [symm #6856]: #6295
-#6852 := (not #6295)
-#4251 := (or #6852 #6781)
-#4280 := [th-lemma arith triangle-eq]: #4251
-#4281 := [unit-resolution #4280 #6857]: #6781
-#3675 := (not #2445)
-#4345 := [hypothesis]: #2848
-#3673 := (or #2843 #3675)
-#3676 := [def-axiom]: #3673
-#4346 := [unit-resolution #3676 #4345]: #3675
-#7082 := [hypothesis]: #3840
-#3314 := (or #2843 #1917)
-#3315 := [def-axiom]: #3314
-#4379 := [unit-resolution #3315 #4345]: #1917
-#6179 := (+ f14 #6193)
-#6184 := (<= #6179 0::Int)
-#7080 := (not #6184)
-#3672 := (or #2843 #1910)
-#3674 := [def-axiom]: #3672
-#4380 := [unit-resolution #3674 #4345]: #1910
-#7076 := (not #6781)
-#4409 := (or #7080 #1909 #7076)
-#4410 := [th-lemma arith assign-bounds -1 -1]: #4409
-#7011 := [unit-resolution #4410 #4380 #4281]: #7080
-#7075 := (not #6788)
-#7104 := (or #6184 #1916 #3845 #2445 #7076 #7075)
-#6667 := (+ #6195 #6414)
-#6670 := (+ #1913 #6667)
-#6694 := (>= #6670 0::Int)
-#7074 := (not #6694)
-#7071 := [hypothesis]: #6788
-#7072 := [hypothesis]: #6781
-#7073 := [hypothesis]: #3675
-#7077 := (or #7074 #7075 #2445 #7076)
-#7078 := [th-lemma arith assign-bounds -1 -1 1]: #7077
-#7079 := [unit-resolution #7078 #7073 #7072 #7071]: #7074
-#6164 := (f9 f21 ?v1!10)
-#4586 := (= #6164 f1)
-#7081 := [hypothesis]: #7080
-#6183 := (or #4586 #6184)
-#6211 := (or #3845 #4586 #6184)
-#6212 := (or #3845 #6183)
-#6286 := (iff #6212 #6211)
-#6287 := [rewrite]: #6286
-#6280 := [quant-inst #1904]: #6212
-#6288 := [mp #6280 #6287]: #6211
-#7083 := [unit-resolution #6288 #7082]: #6183
-#7084 := [unit-resolution #7083 #7081]: #4586
-#6476 := (not #4586)
-#7101 := (or #6476 #6694)
-#7085 := [hypothesis]: #1917
-#3488 := (or #4069 #3823)
-#3493 := [def-axiom]: #3488
-#7100 := [unit-resolution #3493 #7099]: #3823
-#6719 := (or #3828 #6476 #1916 #6694)
-#6695 := (or #6476 #1916 #6694)
-#6714 := (or #3828 #6695)
-#6721 := (iff #6714 #6719)
-#6722 := [rewrite]: #6721
-#6720 := [quant-inst #1905 #1904]: #6714
-#6723 := [mp #6720 #6722]: #6719
-#7102 := [unit-resolution #6723 #7100 #7085]: #7101
-#7103 := [unit-resolution #7102 #7084 #7079]: false
-#7105 := [lemma #7103]: #7104
-#7012 := [unit-resolution #7105 #7011 #4379 #7082 #4346 #4281 #6855]: false
-#7019 := [lemma #7012]: #7013
-#7109 := [unit-resolution #7019 #7069 #7106]: #2843
-#3660 := (or #3888 #2848 #3882)
-#3657 := [def-axiom]: #3660
-#7110 := [unit-resolution #3657 #7109 #7066]: #3888
-#3372 := (or #3891 #3885)
-#3373 := [def-axiom]: #3372
-#7111 := [unit-resolution #3373 #7110]: #3891
-#3651 := (or #3900 #3860 #3894)
-#3655 := [def-axiom]: #3651
-#7112 := [unit-resolution #3655 #7111 #7107]: #3860
-#3323 := (or #3857 #3849)
-#3664 := [def-axiom]: #3323
-#7113 := [unit-resolution #3664 #7112]: #3849
-#7512 := (or #6716 #3854 #531)
-#6821 := (f19 f25 #6559)
-#7034 := (* -1::Int #6821)
-#7035 := (+ #1843 #7034)
-#7036 := (<= #7035 0::Int)
-#7057 := (+ #6676 #7034)
-#7058 := (+ #1843 #7057)
-#7059 := (= #7058 0::Int)
-#7307 := (+ #6561 #7034)
-#7253 := (>= #7307 0::Int)
-#7306 := (= #6561 #6821)
-#7446 := (= #6821 #6561)
-#7447 := [monotonicity #4275]: #7446
-#7448 := [symm #7447]: #7306
-#7449 := (not #7306)
-#7450 := (or #7449 #7253)
-#7451 := [th-lemma arith triangle-eq]: #7450
-#7452 := [unit-resolution #7451 #7448]: #7253
-#6279 := (+ #1843 #6418)
-#6798 := (>= #6279 0::Int)
-#5095 := (= #1843 #6420)
-#7453 := (= #6420 #1843)
-#7438 := [monotonicity #6861]: #7453
-#7439 := [symm #7438]: #5095
-#7437 := (not #5095)
-#7440 := (or #7437 #6798)
-#7441 := [th-lemma arith triangle-eq]: #7440
-#7442 := [unit-resolution #7441 #7439]: #6798
-#6767 := (>= #6661 0::Int)
-#6490 := (not #6716)
-#7455 := [hypothesis]: #6490
-#6120 := (or #6716 #6662)
-#6113 := [def-axiom]: #6120
-#7456 := [unit-resolution #6113 #7455]: #6662
-#7476 := (or #6715 #6767)
-#7477 := [th-lemma arith triangle-eq]: #7476
-#7478 := [unit-resolution #7477 #7456]: #6767
-#7252 := (<= #7307 0::Int)
-#7479 := (or #7449 #7252)
-#7480 := [th-lemma arith triangle-eq]: #7479
-#7475 := [unit-resolution #7480 #7448]: #7252
-#6792 := (<= #6279 0::Int)
-#7481 := (or #7437 #6792)
-#7482 := [th-lemma arith triangle-eq]: #7481
-#7483 := [unit-resolution #7482 #7439]: #6792
-#6766 := (<= #6661 0::Int)
-#7484 := (or #6715 #6766)
-#7485 := [th-lemma arith triangle-eq]: #7484
-#7506 := [unit-resolution #7485 #7456]: #6766
-#7400 := (not #7253)
-#7405 := (not #6798)
-#7404 := (not #6767)
-#7553 := (not #7252)
-#7337 := (not #6792)
-#7552 := (not #6766)
-#7410 := (or #7059 #7552 #7337 #7553 #7404 #7405 #7400)
-#7550 := [hypothesis]: #7252
-#7330 := [hypothesis]: #6792
-#7551 := [hypothesis]: #6766
-#6858 := (not #7059)
-#7548 := [hypothesis]: #6858
-#7185 := (>= #7058 0::Int)
-#7401 := [hypothesis]: #7253
-#7402 := [hypothesis]: #6798
-#7403 := [hypothesis]: #6767
-#7406 := (or #7185 #7404 #7405 #7400)
-#7407 := [th-lemma arith assign-bounds -1 -1 -1]: #7406
-#7408 := [unit-resolution #7407 #7403 #7402 #7401]: #7185
-#7558 := (not #7185)
-#7562 := (or #7558 #7059 #7552 #7337 #7553)
-#7549 := [hypothesis]: #7185
-#7184 := (<= #7058 0::Int)
-#7554 := (or #7184 #7552 #7337 #7553)
-#7555 := [th-lemma arith assign-bounds -1 -1 -1]: #7554
-#7556 := [unit-resolution #7555 #7551 #7330 #7550]: #7184
-#7557 := (not #7184)
-#7559 := (or #7059 #7557 #7558)
-#7560 := [th-lemma arith triangle-eq]: #7559
-#7561 := [unit-resolution #7560 #7556 #7549 #7548]: false
-#7563 := [lemma #7561]: #7562
-#7409 := [unit-resolution #7563 #7408 #7548 #7551 #7330 #7550]: false
-#7445 := [lemma #7409]: #7410
-#7507 := [unit-resolution #7445 #7506 #7483 #7475 #7478 #7442 #7452]: #7059
-#4250 := (or #7036 #6858)
-#7508 := [hypothesis]: #3849
-#7148 := (or #3854 #7036 #6858)
-#6893 := (+ #1844 #6678)
-#6894 := (+ #6821 #6893)
-#6886 := (= #6894 0::Int)
-#6904 := (not #6886)
-#6822 := (+ #6821 #1844)
-#6278 := (>= #6822 0::Int)
-#6907 := (or #6278 #6904)
-#7149 := (or #3854 #6907)
-#7182 := (iff #7149 #7148)
-#7158 := (or #3854 #4250)
-#7180 := (iff #7158 #7148)
-#7181 := [rewrite]: #7180
-#7159 := (iff #7149 #7158)
-#7060 := (iff #6907 #4250)
-#6859 := (iff #6904 #6858)
-#7067 := (iff #6886 #7059)
-#7045 := (+ #6678 #6821)
-#7048 := (+ #1844 #7045)
-#7055 := (= #7048 0::Int)
-#7063 := (iff #7055 #7059)
-#7064 := [rewrite]: #7063
-#7056 := (iff #6886 #7055)
-#7049 := (= #6894 #7048)
-#7050 := [rewrite]: #7049
-#7054 := [monotonicity #7050]: #7056
-#7068 := [trans #7054 #7064]: #7067
-#4217 := [monotonicity #7068]: #6859
-#7046 := (iff #6278 #7036)
-#7021 := (+ #1844 #6821)
-#7026 := (>= #7021 0::Int)
-#7037 := (iff #7026 #7036)
-#7038 := [rewrite]: #7037
-#7033 := (iff #6278 #7026)
-#7022 := (= #6822 #7021)
-#7025 := [rewrite]: #7022
-#6959 := [monotonicity #7025]: #7033
-#7047 := [trans #6959 #7038]: #7046
-#7065 := [monotonicity #7047 #4217]: #7060
-#7179 := [monotonicity #7065]: #7159
-#7183 := [trans #7179 #7181]: #7182
-#7145 := [quant-inst #6559]: #7149
-#7178 := [mp #7145 #7183]: #7148
-#7509 := [unit-resolution #7178 #7508]: #4250
-#7510 := [unit-resolution #7509 #7507]: #7036
-#6768 := (not #6562)
-#6392 := (or #6716 #6768)
-#6778 := [def-axiom]: #6392
-#7505 := [unit-resolution #6778 #7455]: #6768
-#7511 := [th-lemma arith farkas -1 -1 -1 1 #7442 #7505 #7452 #7510]: false
-#7513 := [lemma #7511]: #7512
-#7151 := [unit-resolution #7513 #7113 #7106]: #6716
-#7153 := (or #6440 #6490)
-#3678 := (or #3857 #1842)
-#3343 := [def-axiom]: #3678
-#7152 := [unit-resolution #3343 #7112]: #1842
-#3494 := (or #4069 #3831)
-#3495 := [def-axiom]: #3494
-#7150 := [unit-resolution #3495 #7099]: #3831
-#6491 := (or #3836 #1841 #6440 #6490)
-#6489 := (or #1841 #6440 #6490)
-#6492 := (or #3836 #6489)
-#6718 := (iff #6492 #6491)
-#6381 := [rewrite]: #6718
-#6717 := [quant-inst #1840]: #6492
-#6724 := [mp #6717 #6381]: #6491
-#7154 := [unit-resolution #6724 #7150 #7152]: #7153
-#7155 := [unit-resolution #7154 #7151]: #6440
-#3338 := (or #3857 #1847)
-#3680 := [def-axiom]: #3338
-#7156 := [unit-resolution #3680 #7112]: #1847
-#7141 := [symm #7106]: #6860
-#7142 := [monotonicity #7141]: #7453
-#7140 := [symm #7142]: #5095
-#7143 := [unit-resolution #7441 #7140]: #6798
-#7144 := [th-lemma arith farkas -1 -1 1 #7143 #7156 #7155]: false
-#7216 := [lemma #7144]: #3903
-#3508 := (or #4066 #3906 #4060)
-#3510 := [def-axiom]: #3508
-#8264 := [unit-resolution #3510 #7216 #8263]: #4060
-#3548 := (or #4057 #199)
-#3553 := [def-axiom]: #3548
-#9701 := [unit-resolution #3553 #8264]: #199
-#9297 := [symm #9701]: #9268
-#16690 := [monotonicity #9297]: #16482
-#16476 := [monotonicity #16690]: #16582
-#16737 := [symm #16476]: #15124
-#15539 := [monotonicity #16737]: #15122
-#19098 := (not #5176)
-#15519 := [hypothesis]: #19098
-#5179 := (or #4630 #5176)
-#7694 := (f5 #200 ?v0!14)
-#7695 := (f15 #7694)
-#7647 := (* -1::Int #2029)
-#7713 := (+ #7647 #7695)
-#7714 := (+ #190 #7713)
-#7715 := (>= #7714 0::Int)
-#8867 := (not #7715)
-#7696 := (* -1::Int #7695)
-#7697 := (+ f14 #7696)
-#7698 := (<= #7697 0::Int)
-#7746 := (or #7698 #7715)
-#7749 := (not #7746)
-#3637 := (not #2030)
-#10219 := [hypothesis]: #2032
-#3631 := (or #2031 #3637)
-#3638 := [def-axiom]: #3631
-#10218 := [unit-resolution #3638 #10219]: #3637
-#7752 := (or #7749 #2030)
-#7911 := [hypothesis]: #7746
-#8011 := [hypothesis]: #3637
-#3534 := (or #4057 #3927)
-#3515 := [def-axiom]: #3534
-#8861 := [unit-resolution #3515 #8264]: #3927
-#7814 := (or #3932 #7749 #2030)
-#7699 := (+ #1235 #7696)
-#7700 := (+ #2029 #7699)
-#7701 := (<= #7700 0::Int)
-#7743 := (or #7698 #7701)
-#7744 := (not #7743)
-#7745 := (or #7744 #2030)
-#7816 := (or #3932 #7745)
-#7852 := (iff #7816 #7814)
-#7842 := (or #3932 #7752)
-#7846 := (iff #7842 #7814)
-#7850 := [rewrite]: #7846
-#7813 := (iff #7816 #7842)
-#7753 := (iff #7745 #7752)
-#7750 := (iff #7744 #7749)
-#7747 := (iff #7743 #7746)
-#7718 := (iff #7701 #7715)
-#7706 := (+ #2029 #7696)
-#7707 := (+ #1235 #7706)
-#7710 := (<= #7707 0::Int)
-#7716 := (iff #7710 #7715)
-#7717 := [rewrite]: #7716
-#7711 := (iff #7701 #7710)
-#7708 := (= #7700 #7707)
-#7709 := [rewrite]: #7708
-#7712 := [monotonicity #7709]: #7711
-#7719 := [trans #7712 #7717]: #7718
-#7748 := [monotonicity #7719]: #7747
-#7751 := [monotonicity #7748]: #7750
-#7754 := [monotonicity #7751]: #7753
-#7843 := [monotonicity #7754]: #7813
-#7853 := [trans #7843 #7850]: #7852
-#7817 := [quant-inst #2024]: #7816
-#7881 := [mp #7817 #7853]: #7814
-#7907 := [unit-resolution #7881 #8861 #8011 #7911]: false
-#7918 := [lemma #7907]: #7752
-#10226 := [unit-resolution #7918 #10218]: #7749
-#7767 := (or #7746 #8867)
-#7768 := [def-axiom]: #7767
-#10265 := [unit-resolution #7768 #10226]: #8867
-#7674 := (+ #190 #7647)
-#7981 := (>= #7674 0::Int)
-#7663 := (f9 f21 ?v0!14)
-#7664 := (= #7663 f1)
-#7818 := (= ?v0!14 f28)
-#7841 := (not #7818)
-#9402 := (or #7841 #2030)
-#8045 := (= #190 #2029)
-#8033 := (= #2029 #190)
-#8023 := [hypothesis]: #7818
-#9294 := [monotonicity #8023]: #8033
-#9295 := [symm #9294]: #8045
-#8124 := (= #2028 #190)
-#4167 := (f30 f28)
-#4220 := (= #4167 #190)
-#4171 := (f5 #200 f28)
-#4172 := (f15 #4171)
-#4190 := (>= #4172 0::Int)
-#4175 := (* -1::Int #4172)
-#4176 := (+ f14 #4175)
-#4177 := (<= #4176 0::Int)
-#4222 := (or #4177 #4190)
-#7990 := (= #4172 0::Int)
-#8751 := (not #7990)
-#8752 := [hypothesis]: #8751
-#10 := (f6 f7 #9)
-#12 := (f5 #10 #11)
-#3689 := (pattern #12)
-#57 := (f15 #12)
-#58 := (= #57 0::Int)
-#56 := (= #9 #11)
-#61 := (not #56)
-#325 := (or #61 #58)
-#3724 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #325)
-#333 := (forall (vars (?v0 S2) (?v1 S2)) #325)
-#3727 := (iff #333 #3724)
-#3725 := (iff #325 #325)
-#3726 := [refl]: #3725
-#3728 := [quant-intro #3726]: #3727
-#1581 := (~ #333 #333)
-#1612 := (~ #325 #325)
-#1613 := [refl]: #1612
-#1582 := [nnf-pos #1613]: #1581
-#59 := (implies #56 #58)
-#60 := (forall (vars (?v0 S2) (?v1 S2)) #59)
-#334 := (iff #60 #333)
-#331 := (iff #59 #325)
-#332 := [rewrite]: #331
-#335 := [quant-intro #332]: #334
-#324 := [asserted]: #60
-#338 := [mp #324 #335]: #333
-#1583 := [mp~ #338 #1582]: #333
-#3729 := [mp #1583 #3728]: #3724
-#6738 := (not #3724)
-#8741 := (or #6738 #7990)
-#4492 := (= f28 f28)
-#7989 := (not #4492)
-#7997 := (or #7989 #7990)
-#8742 := (or #6738 #7997)
-#8744 := (iff #8742 #8741)
-#8746 := (iff #8741 #8741)
-#8747 := [rewrite]: #8746
-#8007 := (iff #7997 #7990)
-#8002 := (or false #7990)
-#8005 := (iff #8002 #7990)
-#8006 := [rewrite]: #8005
-#8003 := (iff #7997 #8002)
-#8000 := (iff #7989 false)
-#7998 := (iff #7989 #6991)
-#4495 := (iff #4492 true)
-#4496 := [rewrite]: #4495
-#7999 := [monotonicity #4496]: #7998
-#8001 := [trans #7999 #6995]: #8000
-#8004 := [monotonicity #8001]: #8003
-#8008 := [trans #8004 #8006]: #8007
-#8745 := [monotonicity #8008]: #8744
-#8748 := [trans #8745 #8747]: #8744
-#8743 := [quant-inst #186 #186]: #8742
-#8749 := [mp #8743 #8748]: #8741
-#8757 := [unit-resolution #8749 #3729 #8752]: false
-#8758 := [lemma #8757]: #7990
-#9347 := (or #8751 #4190)
-#9298 := [th-lemma arith triangle-eq]: #9347
-#8814 := [unit-resolution #9298 #8758]: #4190
-#7298 := (not #4190)
-#7299 := (or #4222 #7298)
-#7300 := [def-axiom]: #7299
-#8812 := [unit-resolution #7300 #8814]: #4222
-#4225 := (not #4222)
-#4228 := (or #4225 #4220)
-#7231 := (or #3932 #4225 #4220)
-#4178 := (+ #1235 #4175)
-#4179 := (+ #190 #4178)
-#4180 := (<= #4179 0::Int)
-#4218 := (or #4177 #4180)
-#4219 := (not #4218)
-#4221 := (or #4219 #4220)
-#7236 := (or #3932 #4221)
-#7240 := (iff #7236 #7231)
-#7237 := (or #3932 #4228)
-#7239 := (iff #7237 #7231)
-#7186 := [rewrite]: #7239
-#7235 := (iff #7236 #7237)
-#4229 := (iff #4221 #4228)
-#4226 := (iff #4219 #4225)
-#4223 := (iff #4218 #4222)
-#4193 := (iff #4180 #4190)
-#4187 := (<= #4175 0::Int)
-#4191 := (iff #4187 #4190)
-#4192 := [rewrite]: #4191
-#4188 := (iff #4180 #4187)
-#4185 := (= #4179 #4175)
-#4186 := [rewrite]: #4185
-#4189 := [monotonicity #4186]: #4188
-#4194 := [trans #4189 #4192]: #4193
-#4224 := [monotonicity #4194]: #4223
-#4227 := [monotonicity #4224]: #4226
-#4230 := [monotonicity #4227]: #4229
-#7238 := [monotonicity #4230]: #7235
-#7244 := [trans #7238 #7186]: #7240
-#7187 := [quant-inst #186]: #7236
-#7245 := [mp #7187 #7244]: #7231
-#8876 := [unit-resolution #7245 #8861]: #4228
-#9179 := [unit-resolution #8876 #8812]: #4220
-#8016 := (= #2028 #4167)
-#9174 := [monotonicity #8023]: #8016
-#9263 := [trans #9174 #9179]: #8124
-#9301 := [trans #9263 #9295]: #2030
-#9380 := [unit-resolution #8011 #9301]: false
-#9334 := [lemma #9380]: #9402
-#10264 := [unit-resolution #9334 #10218]: #7841
-#7824 := (or #7818 #7664)
-#3636 := (or #2031 #2026)
-#3632 := [def-axiom]: #3636
-#10266 := [unit-resolution #3632 #10219]: #2026
-#8848 := (or #2027 #7824)
-#7797 := (f9 #198 ?v0!14)
-#7815 := (= #7797 f1)
-#9264 := [hypothesis]: #2026
-#7840 := (= #7797 #2025)
-#7882 := [monotonicity #9297]: #7840
-#8403 := [trans #7882 #9264]: #7815
-#9164 := (not #7815)
-#7829 := (iff #7815 #7824)
-#8915 := (or #7628 #7829)
-#7819 := (if #7818 #4146 #7664)
-#7820 := (iff #7815 #7819)
-#8856 := (or #7628 #7820)
-#9309 := (iff #8856 #8915)
-#9313 := (iff #8915 #8915)
-#9314 := [rewrite]: #9313
-#7830 := (iff #7820 #7829)
-#7827 := (iff #7819 #7824)
-#7821 := (if #7818 true #7664)
-#7825 := (iff #7821 #7824)
-#7826 := [rewrite]: #7825
-#7822 := (iff #7819 #7821)
-#7823 := [monotonicity #4149]: #7822
-#7828 := [trans #7823 #7826]: #7827
-#7831 := [monotonicity #7828]: #7830
-#9244 := [monotonicity #7831]: #9309
-#8881 := [trans #9244 #9314]: #9309
-#9311 := [quant-inst #115 #186 #3 #2024]: #8856
-#8878 := [mp #9311 #8881]: #8915
-#9183 := [unit-resolution #8878 #3723]: #7829
-#8883 := (not #7829)
-#9266 := (or #8883 #9164)
-#7847 := (not #7824)
-#9239 := [hypothesis]: #7847
-#8857 := (or #8883 #9164 #7824)
-#8858 := [def-axiom]: #8857
-#9241 := [unit-resolution #8858 #9239]: #9266
-#9302 := [unit-resolution #9241 #9183]: #9164
-#8636 := [unit-resolution #9302 #8403]: false
-#8809 := [lemma #8636]: #8848
-#10473 := [unit-resolution #8809 #10266]: #7824
-#7848 := (or #7847 #7818 #7664)
-#7849 := [def-axiom]: #7848
-#10408 := [unit-resolution #7849 #10473 #10264]: #7664
-#7844 := (not #7664)
-#9165 := (or #7844 #7981)
-#8853 := [hypothesis]: #7664
-#8272 := (not #7981)
-#8886 := [hypothesis]: #8272
-#3545 := (or #4057 #189)
-#3546 := [def-axiom]: #3545
-#8131 := [unit-resolution #3546 #8264]: #189
-#3532 := (or #4069 #3815)
-#3487 := [def-axiom]: #3532
-#8132 := [unit-resolution #3487 #7099]: #3815
-#7991 := (or #3820 #188 #7844 #7981)
-#7982 := (or #188 #7844 #7981)
-#7996 := (or #3820 #7982)
-#8203 := (iff #7996 #7991)
-#8204 := [rewrite]: #8203
-#8202 := [quant-inst #2024 #186]: #7996
-#8205 := [mp #8202 #8204]: #7991
-#8936 := [unit-resolution #8205 #8132 #8131 #8886 #8853]: false
-#9170 := [lemma #8936]: #9165
-#10474 := [unit-resolution #9170 #10408]: #7981
-#10516 := (or #7715 #8272)
-#8693 := (>= #7695 0::Int)
-#7897 := (= #7695 0::Int)
-#9389 := (not #7897)
-#9660 := (not #8693)
-#9386 := [hypothesis]: #9660
-#9403 := (or #9389 #8693)
-#9379 := [th-lemma arith triangle-eq]: #9403
-#9404 := [unit-resolution #9379 #9386]: #9389
-#7892 := (= f28 ?v0!14)
-#7893 := (<= #7695 0::Int)
-#9385 := (or #8693 #7893)
-#9405 := [th-lemma arith farkas 1 1]: #9385
-#9406 := [unit-resolution #9405 #9386]: #7893
-#7894 := (not #7893)
-#7895 := (or #7892 #7894)
-#344 := (<= #57 0::Int)
-#345 := (not #344)
-#348 := (or #56 #345)
-#3730 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #348)
-#351 := (forall (vars (?v0 S2) (?v1 S2)) #348)
-#3733 := (iff #351 #3730)
-#3731 := (iff #348 #348)
-#3732 := [refl]: #3731
-#3734 := [quant-intro #3732]: #3733
-#1585 := (~ #351 #351)
-#1584 := (~ #348 #348)
-#1614 := [refl]: #1584
-#1586 := [nnf-pos #1614]: #1585
-#62 := (< 0::Int #57)
-#63 := (implies #61 #62)
-#64 := (forall (vars (?v0 S2) (?v1 S2)) #63)
-#354 := (iff #64 #351)
-#337 := (or #56 #62)
-#341 := (forall (vars (?v0 S2) (?v1 S2)) #337)
-#352 := (iff #341 #351)
-#349 := (iff #337 #348)
-#346 := (iff #62 #345)
-#347 := [rewrite]: #346
-#350 := [monotonicity #347]: #349
-#353 := [quant-intro #350]: #352
-#342 := (iff #64 #341)
-#339 := (iff #63 #337)
-#340 := [rewrite]: #339
-#343 := [quant-intro #340]: #342
-#355 := [trans #343 #353]: #354
-#336 := [asserted]: #64
-#356 := [mp #336 #355]: #351
-#1615 := [mp~ #356 #1586]: #351
-#3735 := [mp #1615 #3734]: #3730
-#6342 := (not #3730)
-#8933 := (or #6342 #7892 #7894)
-#8931 := (or #6342 #7895)
-#8940 := (iff #8931 #8933)
-#8941 := [rewrite]: #8940
-#8926 := [quant-inst #186 #2024]: #8931
-#8934 := [mp #8926 #8941]: #8933
-#9408 := [unit-resolution #8934 #3735]: #7895
-#9410 := [unit-resolution #9408 #9406]: #7892
-#7896 := (not #7892)
-#7904 := (or #7896 #7897)
-#8960 := (or #6738 #7896 #7897)
-#8945 := (or #6738 #7904)
-#8665 := (iff #8945 #8960)
-#8668 := [rewrite]: #8665
-#8954 := [quant-inst #186 #2024]: #8945
-#8958 := [mp #8954 #8668]: #8960
-#9411 := [unit-resolution #8958 #3729]: #7904
-#9400 := [unit-resolution #9411 #9410 #9404]: false
-#9401 := [lemma #9400]: #8693
-#9661 := (or #9660 #7715 #8272)
-#8269 := [hypothesis]: #7981
-#9623 := [hypothesis]: #8867
-#9624 := [hypothesis]: #8693
-#9659 := [th-lemma arith farkas 1 -1 1 #9624 #9623 #8269]: false
-#9662 := [lemma #9659]: #9661
-#10513 := [unit-resolution #9662 #9401]: #10516
-#10254 := [unit-resolution #10513 #10474 #10265]: false
-#10267 := [lemma #10254]: #2031
-#3539 := (or #4057 #4051)
-#3540 := [def-axiom]: #3539
-#9888 := [unit-resolution #3540 #8264]: #4051
-#3533 := (or #4057 #3919)
-#3479 := [def-axiom]: #3533
-#8832 := [unit-resolution #3479 #8264]: #3919
-#4211 := (or #2011 #3932 #3924)
-#5422 := [hypothesis]: #3919
-#5349 := [hypothesis]: #3927
-#5149 := [hypothesis]: #2012
-#4951 := (<= #2010 0::Int)
-#4210 := (or #4951 #2011)
-#4205 := [th-lemma arith farkas 1 1]: #4210
-#4212 := [unit-resolution #4205 #5149]: #4951
-#5428 := (not #4951)
-#5460 := (or #5428 #3924 #3932 #2011)
-#4742 := (f5 #200 ?v0!13)
-#4743 := (f15 #4742)
-#4824 := (+ #2009 #4743)
-#4825 := (+ #190 #4824)
-#4953 := (>= #4825 0::Int)
-#4826 := (= #4825 0::Int)
-#4764 := (* -1::Int #4743)
-#4765 := (+ f14 #4764)
-#4766 := (<= #4765 0::Int)
-#4886 := (not #4766)
-#4685 := (* -1::Int #2007)
-#4797 := (+ #4685 #4743)
-#4798 := (+ #190 #4797)
-#4799 := (>= #4798 0::Int)
-#4959 := (or #4766 #4799)
-#4964 := (not #4959)
-#4960 := (= #2008 #2007)
-#5304 := (not #4960)
-#4946 := (= #2007 #2008)
-#5150 := (not #4946)
-#5348 := (iff #5150 #5304)
-#5128 := (iff #4946 #4960)
-#5347 := [commutativity]: #5128
-#5343 := [monotonicity #5347]: #5348
-#5151 := (or #5150 #2011)
-#5345 := [th-lemma arith triangle-eq]: #5151
-#5346 := [unit-resolution #5345 #5149]: #5150
-#5127 := [mp #5346 #5343]: #5304
-#4968 := (or #4964 #4960)
-#4973 := (or #3932 #4964 #4960)
-#4767 := (+ #1235 #4764)
-#4762 := (+ #2007 #4767)
-#4763 := (<= #4762 0::Int)
-#4954 := (or #4766 #4763)
-#4955 := (not #4954)
-#4961 := (or #4955 #4960)
-#4978 := (or #3932 #4961)
-#4878 := (iff #4978 #4973)
-#4880 := (or #3932 #4968)
-#4882 := (iff #4880 #4973)
-#4883 := [rewrite]: #4882
-#4881 := (iff #4978 #4880)
-#4971 := (iff #4961 #4968)
-#4969 := (iff #4955 #4964)
-#4962 := (iff #4954 #4959)
-#4822 := (iff #4763 #4799)
-#4772 := (+ #2007 #4764)
-#4793 := (+ #1235 #4772)
-#4796 := (<= #4793 0::Int)
-#4800 := (iff #4796 #4799)
-#4801 := [rewrite]: #4800
-#4791 := (iff #4763 #4796)
-#4794 := (= #4762 #4793)
-#4795 := [rewrite]: #4794
-#4792 := [monotonicity #4795]: #4791
-#4823 := [trans #4792 #4801]: #4822
-#4963 := [monotonicity #4823]: #4962
-#4970 := [monotonicity #4963]: #4969
-#4972 := [monotonicity #4970]: #4971
-#4879 := [monotonicity #4972]: #4881
-#4884 := [trans #4879 #4883]: #4878
-#4979 := [quant-inst #2006]: #4978
-#4885 := [mp #4979 #4884]: #4973
-#5350 := [unit-resolution #4885 #5349]: #4968
-#5351 := [unit-resolution #5350 #5127]: #4964
-#4980 := (or #4959 #4886)
-#4943 := [def-axiom]: #4980
-#5420 := [unit-resolution #4943 #5351]: #4886
-#4941 := (not #4799)
-#4942 := (or #4959 #4941)
-#4944 := [def-axiom]: #4942
-#5421 := [unit-resolution #4944 #5351]: #4941
-#4829 := (or #4766 #4799 #4826)
-#4852 := (or #3924 #4766 #4799 #4826)
-#4768 := (+ #4743 #2009)
-#4769 := (+ #190 #4768)
-#4770 := (= #4769 0::Int)
-#4771 := (or #4766 #4763 #4770)
-#4853 := (or #3924 #4771)
-#4858 := (iff #4853 #4852)
-#4849 := (or #3924 #4829)
-#4856 := (iff #4849 #4852)
-#4857 := [rewrite]: #4856
-#4850 := (iff #4853 #4849)
-#4830 := (iff #4771 #4829)
-#4827 := (iff #4770 #4826)
-#4820 := (= #4769 #4825)
-#4821 := [rewrite]: #4820
-#4828 := [monotonicity #4821]: #4827
-#4851 := [monotonicity #4823 #4828]: #4830
-#4855 := [monotonicity #4851]: #4850
-#4859 := [trans #4855 #4857]: #4858
-#4854 := [quant-inst #2006]: #4853
-#4887 := [mp #4854 #4859]: #4852
-#5423 := [unit-resolution #4887 #5422]: #4829
-#5418 := [unit-resolution #5423 #5421 #5420]: #4826
-#5424 := (not #4826)
-#5395 := (or #5424 #4953)
-#5419 := [th-lemma arith triangle-eq]: #5395
-#5425 := [unit-resolution #5419 #5418]: #4953
-#5426 := [hypothesis]: #4951
-#5427 := [th-lemma arith farkas 1 -1 1 #5426 #5421 #5425]: false
-#5480 := [lemma #5427]: #5460
-#4213 := [unit-resolution #5480 #4212 #5149 #5349 #5422]: false
-#4215 := [lemma #4213]: #4211
-#9889 := [unit-resolution #4215 #8861 #8832]: #2011
-#3538 := (or #4054 #2012 #4048)
-#3431 := [def-axiom]: #3538
-#9893 := [unit-resolution #3431 #9889 #9888]: #4048
-#3559 := (or #4045 #4039)
-#3560 := [def-axiom]: #3559
-#18769 := [unit-resolution #3560 #9893]: #4039
-#3558 := (or #4042 #2032 #4036)
-#3554 := [def-axiom]: #3558
-#18770 := [unit-resolution #3554 #18769]: #4039
-#18771 := [unit-resolution #18770 #10267]: #4036
-#3586 := (or #4033 #3944)
-#3564 := [def-axiom]: #3586
-#18772 := [unit-resolution #3564 #18771]: #3944
-#11863 := (or #3949 #4630 #5176)
-#11888 := (or #3949 #5179)
-#11865 := (iff #11888 #11863)
-#11884 := [rewrite]: #11865
-#11905 := [quant-inst #2123]: #11888
-#11867 := [mp #11905 #11884]: #11863
-#10037 := [unit-resolution #11867 #18772]: #5179
-#15919 := [unit-resolution #10037 #15519]: #4630
-#15588 := [mp #15919 #15539]: #15284
-#15473 := (not #14478)
-#15461 := (or #15473 #14450 #15350)
-#15360 := [def-axiom]: #15461
-#15572 := [unit-resolution #15360 #15588 #16371]: #15350
-#15307 := (or #14460 #15274)
-#15417 := [def-axiom]: #15307
-#15639 := [unit-resolution #15417 #15572]: #15274
-#15258 := [mp #15639 #14829]: #19613
-#5210 := (f5 #200 ?v0!20)
-#5211 := (f15 #5210)
-#19610 := (<= #5211 0::Int)
-#19614 := (= #5211 0::Int)
-#5267 := (+ #2127 #5211)
-#5268 := (+ #190 #5267)
-#14690 := (<= #5268 0::Int)
-#5271 := (= #5268 0::Int)
-#5228 := (+ #5194 #5211)
-#5229 := (+ #190 #5228)
-#5230 := (>= #5229 0::Int)
-#5212 := (* -1::Int #5211)
-#5213 := (+ f14 #5212)
-#5214 := (<= #5213 0::Int)
-#5235 := (or #5214 #5230)
-#5238 := (not #5235)
-#5241 := (or #5238 #5176)
-#11930 := (or #3932 #5238 #5176)
-#5215 := (+ #1235 #5212)
-#5216 := (+ #5169 #5215)
-#5217 := (<= #5216 0::Int)
-#5218 := (or #5214 #5217)
-#5219 := (not #5218)
-#5220 := (or #5219 #5176)
-#11948 := (or #3932 #5220)
-#11916 := (iff #11948 #11930)
-#11956 := (or #3932 #5241)
-#11947 := (iff #11956 #11930)
-#11957 := [rewrite]: #11947
-#11952 := (iff #11948 #11956)
-#5242 := (iff #5220 #5241)
-#5239 := (iff #5219 #5238)
-#5236 := (iff #5218 #5235)
-#5233 := (iff #5217 #5230)
-#5221 := (+ #5169 #5212)
-#5222 := (+ #1235 #5221)
-#5225 := (<= #5222 0::Int)
-#5231 := (iff #5225 #5230)
-#5232 := [rewrite]: #5231
-#5226 := (iff #5217 #5225)
-#5223 := (= #5216 #5222)
-#5224 := [rewrite]: #5223
-#5227 := [monotonicity #5224]: #5226
-#5234 := [trans #5227 #5232]: #5233
-#5237 := [monotonicity #5234]: #5236
-#5240 := [monotonicity #5237]: #5239
-#5243 := [monotonicity #5240]: #5242
-#11958 := [monotonicity #5243]: #11952
-#11917 := [trans #11958 #11957]: #11916
-#11951 := [quant-inst #2123]: #11948
-#11918 := [mp #11951 #11917]: #11930
-#14638 := [unit-resolution #11918 #8861]: #5241
-#15554 := [unit-resolution #14638 #15519]: #5238
-#19224 := (or #5235 #5271)
-#19170 := (not #5271)
-#19168 := [hypothesis]: #19170
-#11915 := (not #5214)
-#19162 := [hypothesis]: #5238
-#11961 := (or #5235 #11915)
-#11877 := [def-axiom]: #11961
-#19173 := [unit-resolution #11877 #19162]: #11915
-#11896 := (not #5230)
-#11943 := (or #5235 #11896)
-#11880 := [def-axiom]: #11943
-#19184 := [unit-resolution #11880 #19162]: #11896
-#5274 := (or #5214 #5230 #5271)
-#11968 := (or #3924 #5214 #5230 #5271)
-#5263 := (+ #5211 #2127)
-#5264 := (+ #190 #5263)
-#5265 := (= #5264 0::Int)
-#5266 := (or #5214 #5217 #5265)
-#11881 := (or #3924 #5266)
-#11987 := (iff #11881 #11968)
-#11986 := (or #3924 #5274)
-#11985 := (iff #11986 #11968)
-#11984 := [rewrite]: #11985
-#11929 := (iff #11881 #11986)
-#5275 := (iff #5266 #5274)
-#5272 := (iff #5265 #5271)
-#5269 := (= #5264 #5268)
-#5270 := [rewrite]: #5269
-#5273 := [monotonicity #5270]: #5272
-#5276 := [monotonicity #5234 #5273]: #5275
-#11965 := [monotonicity #5276]: #11929
-#11971 := [trans #11965 #11984]: #11987
-#11962 := [quant-inst #2123]: #11881
-#11989 := [mp #11962 #11971]: #11968
-#19203 := [unit-resolution #11989 #8832]: #5274
-#19204 := [unit-resolution #19203 #19184 #19173 #19168]: false
-#19220 := [lemma #19204]: #19224
-#15563 := [unit-resolution #19220 #15554]: #5271
-#14689 := (or #19170 #14690)
-#14714 := [th-lemma arith triangle-eq]: #14689
-#15571 := [unit-resolution #14714 #15563]: #14690
-#14679 := (>= #5268 0::Int)
-#14688 := (or #19170 #14679)
-#12799 := [th-lemma arith triangle-eq]: #14688
-#15545 := [unit-resolution #12799 #15563]: #14679
-#4168 := (* -1::Int #4167)
-#4169 := (+ #190 #4168)
-#7297 := (<= #4169 0::Int)
-#7302 := (= #190 #4167)
-#18257 := (iff #4220 #7302)
-#18255 := (iff #7302 #4220)
-#18256 := [commutativity]: #18255
-#18258 := [symm #18256]: #18257
-#18259 := [mp #9179 #18258]: #7302
-#18260 := (not #7302)
-#18261 := (or #18260 #7297)
-#18262 := [th-lemma arith triangle-eq]: #18261
-#18263 := [unit-resolution #18262 #18259]: #7297
-#4170 := (>= #4169 0::Int)
-#3555 := (or #4045 #3935)
-#3556 := [def-axiom]: #3555
-#9894 := [unit-resolution #3556 #9893]: #3935
-#7218 := (or #3940 #4170)
-#7219 := [quant-inst #186]: #7218
-#10752 := [unit-resolution #7219 #9894]: #4170
-#5157 := (+ #2126 #4168)
-#5318 := (<= #5157 0::Int)
-#5330 := (+ #4168 #5212)
-#5331 := (+ #2126 #5330)
-#5332 := (= #5331 0::Int)
-#14652 := (>= #5331 0::Int)
-#14681 := (not #14690)
-#15108 := (or #14681 #14652)
-#10393 := (not #4170)
-#15550 := (or #14681 #10393 #14652)
-#15472 := [th-lemma arith assign-bounds -1 1]: #15550
-#15621 := [unit-resolution #15472 #10752]: #15108
-#15637 := [unit-resolution #15621 #15571]: #14652
-#14720 := (<= #5331 0::Int)
-#12661 := (not #7297)
-#14678 := (not #14679)
-#15123 := (or #14720 #14678 #12661)
-#15620 := [th-lemma arith assign-bounds 1 -1]: #15123
-#13505 := [unit-resolution #15620 #15545 #18263]: #14720
-#19121 := (not #14652)
-#12624 := (not #14720)
-#15596 := (or #5332 #12624 #19121)
-#15676 := [th-lemma arith triangle-eq]: #15596
-#15984 := [unit-resolution #15676 #13505 #15637]: #5332
-#5337 := (not #5332)
-#15716 := (or #5318 #5337)
-#4518 := (f9 f29 f28)
-#4519 := (= #4518 f1)
-#4144 := (f9 #198 f28)
-#4145 := (= #4144 f1)
-#31 := (:var 0 S1)
-#28 := (:var 2 S7)
-#29 := (f12 f13 #28)
-#30 := (f11 #29 #9)
-#32 := (f10 #30 #31)
-#3710 := (pattern #32)
-#35 := (= #31 f1)
-#33 := (f9 #32 #9)
-#34 := (= #33 f1)
-#36 := (iff #34 #35)
-#3711 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) (:pat #3710) #36)
-#37 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) #36)
-#3714 := (iff #37 #3711)
-#3712 := (iff #36 #36)
-#3713 := [refl]: #3712
-#3715 := [quant-intro #3713]: #3714
-#1577 := (~ #37 #37)
-#1606 := (~ #36 #36)
-#1607 := [refl]: #1606
-#1578 := [nnf-pos #1607]: #1577
-#321 := [asserted]: #37
-#1608 := [mp~ #321 #1578]: #37
-#3716 := [mp #1608 #3715]: #3711
-#6379 := (not #3711)
-#6555 := (or #6379 #4145)
-#4147 := (iff #4145 #4146)
-#6775 := (or #6379 #4147)
-#7023 := (iff #6775 #6555)
-#7024 := (iff #6555 #6555)
-#3437 := [rewrite]: #7024
-#4155 := (iff #4147 #4145)
-#4150 := (iff #4145 true)
-#4153 := (iff #4150 #4145)
-#4154 := [rewrite]: #4153
-#4151 := (iff #4147 #4150)
-#4152 := [monotonicity #4149]: #4151
-#4156 := [trans #4152 #4154]: #4155
-#7020 := [monotonicity #4156]: #7023
-#3310 := [trans #7020 #3437]: #7023
-#7010 := [quant-inst #115 #186 #3]: #6775
-#6101 := [mp #7010 #3310]: #6555
-#12643 := [unit-resolution #6101 #3716]: #4145
-#12662 := (= #4518 #4144)
-#12669 := [monotonicity #9701]: #12662
-#12665 := [trans #12669 #12643]: #4519
-#4447 := (= #221 #110)
-#8042 := (= #190 #110)
-#7927 := (= #110 #190)
-#4428 := (+ #110 #1235)
-#4429 := (>= #4428 0::Int)
-#4424 := (f9 f21 f16)
-#4425 := (= #4424 f1)
-#7254 := (not #4425)
-#4381 := (= ?v0!12 f16)
-#4382 := (?v1!7 ?v0!12)
-#4390 := (f6 f7 #4382)
-#4391 := (f5 #4390 ?v0!12)
-#4392 := (f15 #4391)
-#4393 := (* -1::Int #4392)
-#4383 := (f19 f20 #4382)
-#4384 := (* -1::Int #4383)
-#4394 := (+ #4384 #4393)
-#4395 := (+ #1965 #4394)
-#4396 := (= #4395 0::Int)
-#4397 := (not #4396)
-#4387 := (f9 f21 #4382)
-#4388 := (= #4387 f1)
-#4389 := (not #4388)
-#4385 := (+ #1965 #4384)
-#4386 := (<= #4385 0::Int)
-#4398 := (or #4386 #4389 #4397)
-#4252 := (= f28 f16)
-#4431 := (f5 #200 f16)
-#4432 := (f15 #4431)
-#4439 := (* -1::Int #4432)
-#4442 := (+ #1235 #4439)
-#4443 := (+ #110 #4442)
-#4444 := (<= #4443 0::Int)
-#7610 := (not #4444)
-#4440 := (+ f14 #4439)
-#4441 := (<= #4440 0::Int)
-#4445 := (or #4441 #4444)
-#4446 := (not #4445)
-#9205 := (not #4447)
-#5924 := (iff #713 #9205)
-#5922 := (iff #222 #4447)
-#5921 := (iff #4447 #222)
-#5919 := [monotonicity #7324]: #5921
-#5923 := [symm #5919]: #5922
-#6064 := [monotonicity #5923]: #5924
-#5920 := [hypothesis]: #713
-#6065 := [mp #5920 #6064]: #9205
-#4448 := (or #4446 #4447)
-#7601 := (or #3932 #4446 #4447)
-#7602 := (or #3932 #4448)
-#7604 := (iff #7602 #7601)
-#7605 := [rewrite]: #7604
-#7603 := [quant-inst #65]: #7602
-#7606 := [mp #7603 #7605]: #7601
-#6066 := [unit-resolution #7606 #8861]: #4448
-#9900 := [unit-resolution #6066 #6065]: #4446
-#7611 := (or #4445 #7610)
-#7612 := [def-axiom]: #7611
-#9807 := [unit-resolution #7612 #9900]: #7610
-#8599 := (or #4444 #4252)
-#8514 := (<= #4432 0::Int)
-#8515 := (not #8514)
-#8195 := (not #4252)
-#8549 := [hypothesis]: #8195
-#8513 := (or #6342 #4252 #8515)
-#8516 := (or #4252 #8515)
-#8519 := (or #6342 #8516)
-#8521 := (iff #8519 #8513)
-#8522 := [rewrite]: #8521
-#8520 := [quant-inst #186 #65]: #8519
-#8523 := [mp #8520 #8522]: #8513
-#8552 := [unit-resolution #8523 #3735 #8549]: #8515
-#4483 := (<= #110 0::Int)
-#7325 := (or #878 #4483)
-#7328 := [th-lemma arith triangle-eq]: #7325
-#7329 := [unit-resolution #7328 #7324]: #4483
-#4253 := (?v1!7 f28)
-#4254 := (f19 f20 #4253)
-#4255 := (* -1::Int #4254)
-#4256 := (+ #190 #4255)
-#7963 := (>= #4256 0::Int)
-#4257 := (<= #4256 0::Int)
-#7326 := (not #4257)
-#4261 := (f6 f7 #4253)
-#4262 := (f5 #4261 f28)
-#4263 := (f15 #4262)
-#4264 := (* -1::Int #4263)
-#4265 := (+ #4255 #4264)
-#4266 := (+ #190 #4265)
-#4267 := (= #4266 0::Int)
-#4268 := (not #4267)
-#4258 := (f9 f21 #4253)
-#4259 := (= #4258 f1)
-#4260 := (not #4259)
-#4269 := (or #4257 #4260 #4268)
-#4270 := (not #4269)
-#8572 := (or #4252 #4270)
-#3547 := (or #4057 #1412)
-#3550 := [def-axiom]: #3547
-#8267 := [unit-resolution #3550 #8264]: #1412
-#7305 := (or #3836 #4252 #1411 #4270)
-#4271 := (or #4252 #1411 #4270)
-#7316 := (or #3836 #4271)
-#7315 := (iff #7316 #7305)
-#7317 := [rewrite]: #7315
-#7314 := [quant-inst #186]: #7316
-#7318 := [mp #7314 #7317]: #7305
-#8573 := [unit-resolution #7318 #7150 #8267]: #8572
-#8574 := [unit-resolution #8573 #8549]: #4270
-#7322 := (or #4269 #7326)
-#7327 := [def-axiom]: #7322
-#8575 := [unit-resolution #7327 #8574]: #7326
-#8570 := (or #7963 #4257)
-#8576 := [th-lemma arith farkas 1 1]: #8570
-#8577 := [unit-resolution #8576 #8575]: #7963
-#8444 := (>= #4254 0::Int)
-#3531 := (or #4069 #3806)
-#3511 := [def-axiom]: #3531
-#8408 := [unit-resolution #3511 #7099]: #3806
-#7889 := (or #3811 #8444)
-#7890 := [quant-inst #4253]: #7889
-#8578 := [unit-resolution #7890 #8408]: #8444
-#8579 := [hypothesis]: #7610
-#8580 := [th-lemma arith farkas 1 1 1 1 1 #8579 #8578 #8577 #7329 #8552]: false
-#8600 := [lemma #8580]: #8599
-#9903 := [unit-resolution #8600 #9807]: #4252
-#11140 := (or #4398 #8195)
-#4399 := (not #4398)
-#11053 := [hypothesis]: #4399
-#7585 := (or #4398 #4388)
-#7586 := [def-axiom]: #7585
-#11054 := [unit-resolution #7586 #11053]: #4388
-#11117 := (= #187 #4387)
-#8916 := (= f28 #4382)
-#10478 := (= f16 #4382)
-#8133 := (= #4382 f16)
-#8136 := (?v1!7 #4382)
-#8144 := (f6 f7 #8136)
-#8145 := (f5 #8144 #4382)
-#8146 := (f15 #8145)
-#8147 := (* -1::Int #8146)
-#8137 := (f19 f20 #8136)
-#8138 := (* -1::Int #8137)
-#8148 := (+ #8138 #8147)
-#8149 := (+ #4383 #8148)
-#8150 := (= #8149 0::Int)
-#8151 := (not #8150)
-#8141 := (f9 f21 #8136)
-#8142 := (= #8141 f1)
-#8143 := (not #8142)
-#8139 := (+ #4383 #8138)
-#8140 := (<= #8139 0::Int)
-#8152 := (or #8140 #8143 #8151)
-#9559 := (+ #110 #4384)
-#9591 := (>= #9559 0::Int)
-#8009 := [hypothesis]: #4252
-#8040 := [monotonicity #8009]: #8042
-#8044 := [symm #8040]: #7927
-#7986 := (not #7927)
-#7987 := (or #7986 #4429)
-#7985 := [th-lemma arith triangle-eq]: #7987
-#8266 := [unit-resolution #7985 #8044]: #4429
-#8029 := (+ #190 #4384)
-#8030 := (>= #8029 0::Int)
-#9838 := (or #3820 #188 #4389 #8030)
-#8037 := (or #188 #4389 #8030)
-#9839 := (or #3820 #8037)
-#9884 := (iff #9839 #9838)
-#9885 := [rewrite]: #9884
-#9597 := [quant-inst #4382 #186]: #9839
-#9897 := [mp #9597 #9885]: #9838
-#11049 := [unit-resolution #9897 #8132 #8131 #11054]: #8030
-#8411 := (not #4429)
-#11055 := (not #8030)
-#11056 := (or #9591 #11055 #8411)
-#11057 := [th-lemma arith assign-bounds -1 -1]: #11056
-#11058 := [unit-resolution #11057 #11049 #8266]: #9591
-#10720 := (not #9591)
-#11080 := (or #10720 #8140)
-#9223 := (>= #8137 0::Int)
-#10115 := (not #9223)
-#10116 := [hypothesis]: #10115
-#10093 := (or #3811 #9223)
-#10094 := [quant-inst #8136]: #10093
-#10134 := [unit-resolution #10094 #8408 #10116]: false
-#10135 := [lemma #10134]: #9223
-#7335 := (not #4483)
-#11059 := (or #10720 #7335 #10115 #8140)
-#11079 := [th-lemma arith assign-bounds -1 1 1]: #11059
-#11081 := [unit-resolution #11079 #10135 #7329]: #11080
-#11082 := [unit-resolution #11081 #11058]: #8140
-#10256 := (not #8140)
-#10257 := (or #8152 #10256)
-#10263 := [def-axiom]: #10257
-#11083 := [unit-resolution #10263 #11082]: #8152
-#8153 := (not #8152)
-#11107 := (or #8133 #8153)
-#8134 := (+ f14 #4384)
-#8135 := (<= #8134 0::Int)
-#11087 := (not #8135)
-#8025 := (>= #4385 0::Int)
-#7582 := (not #4386)
-#7583 := (or #4398 #7582)
-#7584 := [def-axiom]: #7583
-#11078 := [unit-resolution #7584 #11053]: #7582
-#11084 := (or #8025 #4386)
-#11085 := [th-lemma arith farkas 1 1]: #11084
-#11086 := [unit-resolution #11085 #11078]: #8025
-#11088 := (not #8025)
-#11110 := (or #11087 #11088)
-#3544 := (or #4057 #1969)
-#3549 := [def-axiom]: #3544
-#9691 := [unit-resolution #3549 #8264]: #1969
-#11108 := (or #11087 #1968 #11088)
-#11109 := [th-lemma arith assign-bounds 1 1]: #11108
-#11111 := [unit-resolution #11109 #9691]: #11110
-#11112 := [unit-resolution #11111 #11086]: #11087
-#10255 := (or #3836 #8133 #8135 #8153)
-#8154 := (or #8133 #8135 #8153)
-#10258 := (or #3836 #8154)
-#10260 := (iff #10258 #10255)
-#10261 := [rewrite]: #10260
-#10259 := [quant-inst #4382]: #10258
-#10262 := [mp #10259 #10261]: #10255
-#11113 := [unit-resolution #10262 #7150 #11112]: #11107
-#11114 := [unit-resolution #11113 #11083]: #8133
-#11115 := [symm #11114]: #10478
-#11116 := [trans #8009 #11115]: #8916
-#11137 := [monotonicity #11116]: #11117
-#11138 := [trans #11137 #11054]: #188
-#11139 := [unit-resolution #8131 #11138]: false
-#11141 := [lemma #11139]: #11140
-#9883 := [unit-resolution #11141 #9903]: #4398
-#8305 := (or #4381 #4399)
-#7574 := (or #3836 #4381 #1968 #4399)
-#4400 := (or #4381 #1968 #4399)
-#7575 := (or #3836 #4400)
-#7577 := (iff #7575 #7574)
-#7578 := [rewrite]: #7577
-#7576 := [quant-inst #1961]: #7575
-#7579 := [mp #7576 #7578]: #7574
-#8780 := [unit-resolution #7579 #7150 #9691]: #8305
-#18251 := [unit-resolution #8780 #9883]: #4381
-#9007 := (not #4381)
-#9005 := (or #9007 #7254)
-#7350 := [hypothesis]: #4425
-#8961 := (= #1962 #4424)
-#8959 := [hypothesis]: #4381
-#8962 := [monotonicity #8959]: #8961
-#9006 := [trans #8962 #7350]: #1963
-#3542 := (or #4057 #1964)
-#3543 := [def-axiom]: #3542
-#8944 := [unit-resolution #3543 #8264]: #1964
-#8888 := [unit-resolution #8944 #9006]: false
-#9008 := [lemma #8888]: #9005
-#9652 := [unit-resolution #9008 #18251]: #7254
-#4430 := (or #4425 #4429)
-#3551 := (or #4057 #3909)
-#3552 := [def-axiom]: #3551
-#8603 := [unit-resolution #3552 #8264]: #3909
-#7595 := (or #3914 #4425 #4429)
-#7596 := (or #3914 #4430)
-#7598 := (iff #7596 #7595)
-#7599 := [rewrite]: #7598
-#7597 := [quant-inst #65]: #7596
-#7600 := [mp #7597 #7599]: #7595
-#9803 := [unit-resolution #7600 #8603]: #4430
-#9901 := [unit-resolution #9803 #9652]: #4429
-#9733 := (or #7927 #8411)
-#8590 := (<= #4428 0::Int)
-#4272 := (>= #190 0::Int)
-#7146 := (or #3811 #4272)
-#7514 := [quant-inst #186]: #7146
-#7845 := [unit-resolution #7514 #8408]: #4272
-#8544 := (not #8590)
-#7810 := [hypothesis]: #8544
-#7888 := [th-lemma arith farkas 1 -1 1 #7810 #7329 #7845]: false
-#7759 := [lemma #7888]: #8590
-#9935 := (or #7927 #8544 #8411)
-#9936 := [th-lemma arith triangle-eq]: #9935
-#9606 := [unit-resolution #9936 #7759]: #9733
-#9645 := [unit-resolution #9606 #9901]: #7927
-#9892 := [symm #9645]: #8042
-#9902 := (= #221 #190)
-#8871 := (= #221 #4167)
-#8010 := (= f16 f28)
-#9669 := [symm #9903]: #8010
-#9549 := [monotonicity #9669]: #8871
-#9612 := [trans #9549 #9179]: #9902
-#9668 := [trans #9612 #9892]: #4447
-#9570 := [trans #9668 #7324]: #222
-#9595 := [unit-resolution #5920 #9570]: false
-#9632 := [lemma #9595]: #222
-#3565 := (or #4033 #4027)
-#3567 := [def-axiom]: #3565
-#14028 := [unit-resolution #3567 #18771]: #4027
-#3585 := (or #4030 #713 #4024)
-#3575 := [def-axiom]: #3585
-#14128 := [unit-resolution #3575 #14028]: #4027
-#14105 := [unit-resolution #14128 #9632]: #4024
-#3577 := (or #4021 #4015)
-#3578 := [def-axiom]: #3577
-#14080 := [unit-resolution #3578 #14105]: #4015
-#14243 := (or #4018 #4012)
-#8617 := (or #8544 #2051)
-#6626 := (f5 #200 ?v0!15)
-#6627 := (f15 #6626)
-#9520 := (= #6627 0::Int)
-#8602 := (not #9520)
-#9750 := (>= #6627 0::Int)
-#8541 := (not #9750)
-#8393 := [hypothesis]: #8590
-#6707 := [hypothesis]: #2052
-#3322 := (>= #110 0::Int)
-#6072 := (or #3811 #3322)
-#6127 := [quant-inst #65]: #6072
-#8487 := [unit-resolution #6127 #8408]: #3322
-#4577 := (* -1::Int #2050)
-#6683 := (+ #4577 #6627)
-#6684 := (+ #190 #6683)
-#9543 := (<= #6684 0::Int)
-#6687 := (= #6684 0::Int)
-#6628 := (* -1::Int #6627)
-#6629 := (+ f14 #6628)
-#6630 := (<= #6629 0::Int)
-#9343 := (not #6630)
-#6585 := (f19 f20 ?v0!15)
-#6610 := (* -1::Int #6585)
-#6644 := (+ #6610 #6627)
-#6645 := (+ #190 #6644)
-#6646 := (>= #6645 0::Int)
-#6651 := (or #6630 #6646)
-#6654 := (not #6651)
-#6586 := (= #2050 #6585)
-#9841 := (not #6586)
-#6611 := (+ #2050 #6610)
-#9310 := (>= #6611 0::Int)
-#9745 := (not #9310)
-#9746 := (or #9745 #2051)
-#9740 := [hypothesis]: #9310
-#9233 := (>= #6585 0::Int)
-#9593 := (or #3811 #9233)
-#9579 := [quant-inst #2049]: #9593
-#9741 := [unit-resolution #9579 #8408]: #9233
-#9744 := [th-lemma arith farkas -1 1 1 #6707 #9741 #9740]: false
-#9747 := [lemma #9744]: #9746
-#9587 := [unit-resolution #9747 #6707]: #9745
-#9589 := (or #9841 #9310)
-#9611 := [th-lemma arith triangle-eq]: #9589
-#8492 := [unit-resolution #9611 #9587]: #9841
-#9172 := (or #3932 #6654 #6586)
-#6631 := (+ #1235 #6628)
-#6632 := (+ #6585 #6631)
-#6633 := (<= #6632 0::Int)
-#6634 := (or #6630 #6633)
-#6635 := (not #6634)
-#6636 := (or #6635 #6586)
-#9240 := (or #3932 #6636)
-#9341 := (iff #9240 #9172)
-#6657 := (or #6654 #6586)
-#8908 := (or #3932 #6657)
-#9265 := (iff #8908 #9172)
-#9339 := [rewrite]: #9265
-#8877 := (iff #9240 #8908)
-#6658 := (iff #6636 #6657)
-#6655 := (iff #6635 #6654)
-#6652 := (iff #6634 #6651)
-#6649 := (iff #6633 #6646)
-#6637 := (+ #6585 #6628)
-#6638 := (+ #1235 #6637)
-#6641 := (<= #6638 0::Int)
-#6647 := (iff #6641 #6646)
-#6648 := [rewrite]: #6647
-#6642 := (iff #6633 #6641)
-#6639 := (= #6632 #6638)
-#6640 := [rewrite]: #6639
-#6643 := [monotonicity #6640]: #6642
-#6650 := [trans #6643 #6648]: #6649
-#6653 := [monotonicity #6650]: #6652
-#6656 := [monotonicity #6653]: #6655
-#6659 := [monotonicity #6656]: #6658
-#8889 := [monotonicity #6659]: #8877
-#9337 := [trans #8889 #9339]: #9341
-#8828 := [quant-inst #2049]: #9240
-#9342 := [mp #8828 #9337]: #9172
-#8493 := [unit-resolution #9342 #8861 #8492]: #6654
-#9344 := (or #6651 #9343)
-#9299 := [def-axiom]: #9344
-#8494 := [unit-resolution #9299 #8493]: #9343
-#9330 := (not #6646)
-#8854 := (or #6651 #9330)
-#8855 := [def-axiom]: #8854
-#8307 := [unit-resolution #8855 #8493]: #9330
-#6690 := (or #6630 #6646 #6687)
-#9368 := (or #3924 #6630 #6646 #6687)
-#6679 := (+ #6627 #4577)
-#6680 := (+ #190 #6679)
-#6681 := (= #6680 0::Int)
-#6682 := (or #6630 #6633 #6681)
-#8704 := (or #3924 #6682)
-#9540 := (iff #8704 #9368)
-#9390 := (or #3924 #6690)
-#9425 := (iff #9390 #9368)
-#9539 := [rewrite]: #9425
-#9413 := (iff #8704 #9390)
-#6691 := (iff #6682 #6690)
-#6688 := (iff #6681 #6687)
-#6685 := (= #6680 #6684)
-#6686 := [rewrite]: #6685
-#6689 := [monotonicity #6686]: #6688
-#6692 := [monotonicity #6650 #6689]: #6691
-#9423 := [monotonicity #6692]: #9413
-#9536 := [trans #9423 #9539]: #9540
-#9412 := [quant-inst #2049]: #8704
-#9541 := [mp #9412 #9536]: #9368
-#9868 := [unit-resolution #9541 #8832]: #6690
-#8535 := [unit-resolution #9868 #8307 #8494]: #6687
-#9870 := (not #6687)
-#9871 := (or #9870 #9543)
-#9872 := [th-lemma arith triangle-eq]: #9871
-#8540 := [unit-resolution #9872 #8535]: #9543
-#8548 := (not #3322)
-#9874 := (not #9543)
-#8539 := (or #8541 #2051 #9874 #8544 #8548)
-#8530 := [th-lemma arith assign-bounds -1 -1 -1 1]: #8539
-#8601 := [unit-resolution #8530 #8540 #8487 #6707 #8393]: #8541
-#8604 := (or #8602 #9750)
-#8571 := [th-lemma arith triangle-eq]: #8604
-#8605 := [unit-resolution #8571 #8601]: #8602
-#9672 := (= f28 ?v0!15)
-#9673 := (<= #6627 0::Int)
-#8598 := (or #9673 #2051 #9874 #8544 #8548)
-#8613 := [th-lemma arith assign-bounds 1 1 1 1]: #8598
-#8611 := [unit-resolution #8613 #8540 #8487 #6707 #8393]: #9673
-#9674 := (not #9673)
-#9609 := (or #6342 #9672 #9674)
-#9675 := (or #9672 #9674)
-#9610 := (or #6342 #9675)
-#9622 := (iff #9610 #9609)
-#9618 := [rewrite]: #9622
-#9604 := [quant-inst #186 #2049]: #9610
-#9619 := [mp #9604 #9618]: #9609
-#8607 := [unit-resolution #9619 #3735 #8611]: #9672
-#9676 := (not #9672)
-#8402 := (or #6738 #9676 #9520)
-#9726 := (or #9676 #9520)
-#8488 := (or #6738 #9726)
-#8484 := (iff #8488 #8402)
-#8485 := [rewrite]: #8484
-#8489 := [quant-inst #186 #2049]: #8488
-#8486 := [mp #8489 #8485]: #8402
-#8619 := [unit-resolution #8486 #3729 #8607 #8605]: false
-#8618 := [lemma #8619]: #8617
-#14242 := [unit-resolution #8618 #7759]: #2051
-#3593 := (or #4018 #2052 #4012)
-#3573 := [def-axiom]: #3593
-#14109 := [unit-resolution #3573 #14242]: #14243
-#14124 := [unit-resolution #14109 #14080]: #4012
-#3596 := (or #4009 #4003)
-#3601 := [def-axiom]: #3596
-#14006 := [unit-resolution #3601 #14124]: #4003
-#14245 := (or #4006 #4000)
-#6060 := [hypothesis]: #2959
-#3627 := (not #2077)
-#3630 := (or #2954 #3627)
-#3514 := [def-axiom]: #3630
-#6061 := [unit-resolution #3514 #6060]: #3627
-#10344 := (or #2954 #2077)
-#5944 := (f19 f20 ?v1!16)
-#5961 := (* -1::Int #5944)
-#5013 := (+ #190 #5961)
-#5014 := (<= #5013 0::Int)
-#5817 := (f9 f21 ?v1!16)
-#5818 := (= #5817 f1)
-#10018 := (not #5818)
-#5816 := (= ?v1!16 f28)
-#5824 := (or #5816 #5818)
-#10022 := (not #5824)
-#5814 := (f9 #198 ?v1!16)
-#5815 := (= #5814 f1)
-#5829 := (iff #5815 #5824)
-#9980 := (or #7628 #5829)
-#5819 := (if #5816 #4146 #5818)
-#5820 := (iff #5815 #5819)
-#9981 := (or #7628 #5820)
-#10002 := (iff #9981 #9980)
-#10009 := (iff #9980 #9980)
-#10010 := [rewrite]: #10009
-#5830 := (iff #5820 #5829)
-#5827 := (iff #5819 #5824)
-#5821 := (if #5816 true #5818)
-#5825 := (iff #5821 #5824)
-#5826 := [rewrite]: #5825
-#5822 := (iff #5819 #5821)
-#5823 := [monotonicity #4149]: #5822
-#5828 := [trans #5823 #5826]: #5827
-#5831 := [monotonicity #5828]: #5830
-#10008 := [monotonicity #5831]: #10002
-#10011 := [trans #10008 #10010]: #10002
-#10007 := [quant-inst #115 #186 #3 #2064]: #9981
-#10012 := [mp #10007 #10011]: #9980
-#10496 := [unit-resolution #10012 #3723]: #5829
-#10031 := (not #5815)
-#10269 := (iff #2068 #10031)
-#10268 := (iff #2067 #5815)
-#10548 := (iff #5815 #2067)
-#10495 := (= #5814 #2066)
-#10497 := [monotonicity #9297]: #10495
-#10549 := [monotonicity #10497]: #10548
-#10526 := [symm #10549]: #10268
-#10270 := [monotonicity #10526]: #10269
-#3625 := (or #2954 #2068)
-#3628 := [def-axiom]: #3625
-#6063 := [unit-resolution #3628 #6060]: #2068
-#10271 := [mp #6063 #10270]: #10031
-#10024 := (not #5829)
-#10025 := (or #10024 #5815 #10022)
-#10026 := [def-axiom]: #10025
-#10272 := [unit-resolution #10026 #10271 #10496]: #10022
-#10019 := (or #5824 #10018)
-#10020 := [def-axiom]: #10019
-#10273 := [unit-resolution #10020 #10272]: #10018
-#5037 := (or #5818 #5014)
-#10145 := (or #3914 #5818 #5014)
-#4981 := (+ #5944 #1235)
-#4982 := (>= #4981 0::Int)
-#5007 := (or #5818 #4982)
-#10146 := (or #3914 #5007)
-#10172 := (iff #10146 #10145)
-#10167 := (or #3914 #5037)
-#10170 := (iff #10167 #10145)
-#10171 := [rewrite]: #10170
-#10168 := (iff #10146 #10167)
-#5038 := (iff #5007 #5037)
-#5035 := (iff #4982 #5014)
-#5008 := (+ #1235 #5944)
-#5011 := (>= #5008 0::Int)
-#5015 := (iff #5011 #5014)
-#5016 := [rewrite]: #5015
-#5006 := (iff #4982 #5011)
-#5009 := (= #4981 #5008)
-#5010 := [rewrite]: #5009
-#5012 := [monotonicity #5010]: #5006
-#5036 := [trans #5012 #5016]: #5035
-#5039 := [monotonicity #5036]: #5038
-#10169 := [monotonicity #5039]: #10168
-#10173 := [trans #10169 #10171]: #10172
-#10166 := [quant-inst #2064]: #10146
-#10174 := [mp #10166 #10173]: #10145
-#10537 := [unit-resolution #10174 #8603]: #5037
-#10535 := [unit-resolution #10537 #10273]: #5014
-#5741 := (f19 f20 ?v0!17)
-#5634 := (* -1::Int #5741)
-#5694 := (+ #2074 #5634)
-#5699 := (<= #5694 0::Int)
-#10122 := (or #3940 #5699)
-#5671 := (+ #5741 #2075)
-#5684 := (>= #5671 0::Int)
-#10124 := (or #3940 #5684)
-#10127 := (iff #10124 #10122)
-#10130 := (iff #10122 #10122)
-#10131 := [rewrite]: #10130
-#5701 := (iff #5684 #5699)
-#5685 := (+ #2075 #5741)
-#5689 := (>= #5685 0::Int)
-#5700 := (iff #5689 #5699)
-#5698 := [rewrite]: #5700
-#5692 := (iff #5684 #5689)
-#5690 := (= #5671 #5685)
-#5691 := [rewrite]: #5690
-#5693 := [monotonicity #5691]: #5692
-#5702 := [trans #5693 #5698]: #5701
-#10128 := [monotonicity #5702]: #10127
-#10132 := [trans #10128 #10131]: #10127
-#10126 := [quant-inst #2065]: #10124
-#10133 := [mp #10126 #10132]: #10122
-#10770 := [unit-resolution #10133 #9894]: #5699
-#10716 := [hypothesis]: #3627
-#5629 := (+ #190 #5634)
-#10727 := (>= #5629 0::Int)
-#5771 := (f9 f21 ?v0!17)
-#5772 := (= #5771 f1)
-#5770 := (= ?v0!17 f28)
-#5778 := (or #5770 #5772)
-#5760 := (f9 #198 ?v0!17)
-#5761 := (= #5760 f1)
-#5783 := (iff #5761 #5778)
-#10038 := (or #7628 #5783)
-#5773 := (if #5770 #4146 #5772)
-#5774 := (iff #5761 #5773)
-#10036 := (or #7628 #5774)
-#10046 := (iff #10036 #10038)
-#10028 := (iff #10038 #10038)
-#10048 := [rewrite]: #10028
-#5784 := (iff #5774 #5783)
-#5781 := (iff #5773 #5778)
-#5775 := (if #5770 true #5772)
-#5779 := (iff #5775 #5778)
-#5780 := [rewrite]: #5779
-#5776 := (iff #5773 #5775)
-#5777 := [monotonicity #4149]: #5776
-#5782 := [trans #5777 #5780]: #5781
-#5785 := [monotonicity #5782]: #5784
-#10047 := [monotonicity #5785]: #10046
-#10049 := [trans #10047 #10048]: #10046
-#10045 := [quant-inst #115 #186 #3 #2065]: #10036
-#10050 := [mp #10045 #10049]: #10038
-#10530 := [unit-resolution #10050 #3723]: #5783
-#3626 := (or #2954 #2070)
-#3629 := [def-axiom]: #3626
-#6062 := [unit-resolution #3629 #6060]: #2070
-#10538 := (= #5760 #2069)
-#10540 := [monotonicity #9297]: #10538
-#10544 := [trans #10540 #6062]: #5761
-#10058 := (not #5761)
-#10073 := (not #5783)
-#10059 := (or #10073 #10058 #5778)
-#10060 := [def-axiom]: #10059
-#10536 := [unit-resolution #10060 #10544 #10530]: #5778
-#10051 := (not #5770)
-#10683 := (= #2074 #4167)
-#10731 := (not #10683)
-#6074 := (+ #2074 #4168)
-#10684 := (<= #6074 0::Int)
-#10570 := (not #10684)
-#5977 := (f5 #200 ?v1!16)
-#5978 := (f15 #5977)
-#10503 := (<= #5978 0::Int)
-#10504 := (not #10503)
-#10502 := (= f28 ?v1!16)
-#10419 := (not #10502)
-#10016 := (not #5816)
-#10017 := (or #5824 #10016)
-#10015 := [def-axiom]: #10017
-#10374 := [unit-resolution #10015 #10272]: #10016
-#10357 := (or #10419 #5816)
-#10399 := [hypothesis]: #10502
-#10410 := [symm #10399]: #5816
-#10367 := [hypothesis]: #10016
-#10417 := [unit-resolution #10367 #10410]: false
-#10416 := [lemma #10417]: #10357
-#10418 := [unit-resolution #10416 #10374]: #10419
-#10343 := (or #10504 #10502)
-#10409 := [hypothesis]: #10419
-#10318 := [hypothesis]: #10503
-#10322 := (or #6342 #10502 #10504)
-#10505 := (or #10502 #10504)
-#10338 := (or #6342 #10505)
-#10339 := (iff #10338 #10322)
-#10340 := [rewrite]: #10339
-#10295 := [quant-inst #186 #2064]: #10338
-#10341 := [mp #10295 #10340]: #10322
-#10422 := [unit-resolution #10341 #3735 #10318 #10409]: false
-#10472 := [lemma #10422]: #10343
-#10405 := [unit-resolution #10472 #10418]: #10504
-#10571 := (not #5014)
-#10467 := (or #10570 #10503 #2077 #10571)
-#4581 := (* -1::Int #2073)
-#6036 := (+ #4581 #5978)
-#6037 := (+ #190 #6036)
-#6040 := (= #6037 0::Int)
-#10441 := (not #6040)
-#10120 := (<= #6037 0::Int)
-#10719 := (not #10120)
-#10714 := [hypothesis]: #10504
-#10567 := [hypothesis]: #10684
-#10406 := (or #10503 #2077 #10719 #10570 #10393)
-#10337 := [th-lemma arith assign-bounds 1 1 1 1]: #10406
-#10342 := [unit-resolution #10337 #10567 #10714 #10752 #10716]: #10719
-#10420 := (or #10441 #10120)
-#10421 := [th-lemma arith triangle-eq]: #10420
-#10378 := [unit-resolution #10421 #10342]: #10441
-#5996 := (+ #5961 #5978)
-#5997 := (+ #190 #5996)
-#5998 := (>= #5997 0::Int)
-#5979 := (* -1::Int #5978)
-#5980 := (+ f14 #5979)
-#5981 := (<= #5980 0::Int)
-#6003 := (or #5981 #5998)
-#6006 := (not #6003)
-#5987 := (= #2073 #5944)
-#10379 := (not #5987)
-#5962 := (+ #2073 #5961)
-#10107 := (>= #5962 0::Int)
-#10569 := (not #10107)
-#10566 := [hypothesis]: #5014
-#10572 := (or #10569 #2077 #10570 #10571)
-#10562 := [hypothesis]: #10107
-#10568 := [th-lemma arith farkas -1 1 1 -1 1 #10562 #10716 #10567 #10752 #10566]: false
-#10576 := [lemma #10568]: #10572
-#10358 := [unit-resolution #10576 #10567 #10716 #10566]: #10569
-#10380 := (or #10379 #10107)
-#10381 := [th-lemma arith triangle-eq]: #10380
-#10359 := [unit-resolution #10381 #10358]: #10379
-#6009 := (or #6006 #5987)
-#10077 := (or #3932 #6006 #5987)
-#5982 := (+ #1235 #5979)
-#5983 := (+ #5944 #5982)
-#5984 := (<= #5983 0::Int)
-#5985 := (or #5981 #5984)
-#5986 := (not #5985)
-#5988 := (or #5986 #5987)
-#10078 := (or #3932 #5988)
-#10096 := (iff #10078 #10077)
-#10079 := (or #3932 #6009)
-#10075 := (iff #10079 #10077)
-#10095 := [rewrite]: #10075
-#10080 := (iff #10078 #10079)
-#6010 := (iff #5988 #6009)
-#6007 := (iff #5986 #6006)
-#6004 := (iff #5985 #6003)
-#6001 := (iff #5984 #5998)
-#5989 := (+ #5944 #5979)
-#5990 := (+ #1235 #5989)
-#5993 := (<= #5990 0::Int)
-#5999 := (iff #5993 #5998)
-#6000 := [rewrite]: #5999
-#5994 := (iff #5984 #5993)
-#5991 := (= #5983 #5990)
-#5992 := [rewrite]: #5991
-#5995 := [monotonicity #5992]: #5994
-#6002 := [trans #5995 #6000]: #6001
-#6005 := [monotonicity #6002]: #6004
-#6008 := [monotonicity #6005]: #6007
-#6011 := [monotonicity #6008]: #6010
-#10081 := [monotonicity #6011]: #10080
-#10097 := [trans #10081 #10095]: #10096
-#10076 := [quant-inst #2064]: #10078
-#10098 := [mp #10076 #10097]: #10077
-#10377 := [unit-resolution #10098 #8861]: #6009
-#10383 := [unit-resolution #10377 #10359]: #6006
-#10564 := (or #6003 #6040)
-#10442 := [hypothesis]: #10441
-#10074 := (not #5981)
-#10558 := [hypothesis]: #6006
-#10099 := (or #6003 #10074)
-#10100 := [def-axiom]: #10099
-#10559 := [unit-resolution #10100 #10558]: #10074
-#10101 := (not #5998)
-#10102 := (or #6003 #10101)
-#10103 := [def-axiom]: #10102
-#10560 := [unit-resolution #10103 #10558]: #10101
-#6043 := (or #5981 #5998 #6040)
-#10108 := (or #3924 #5981 #5998 #6040)
-#6032 := (+ #5978 #4581)
-#6033 := (+ #190 #6032)
-#6034 := (= #6033 0::Int)
-#6035 := (or #5981 #5984 #6034)
-#10109 := (or #3924 #6035)
-#10118 := (iff #10109 #10108)
-#10110 := (or #3924 #6043)
-#10113 := (iff #10110 #10108)
-#10114 := [rewrite]: #10113
-#10111 := (iff #10109 #10110)
-#6044 := (iff #6035 #6043)
-#6041 := (iff #6034 #6040)
-#6038 := (= #6033 #6037)
-#6039 := [rewrite]: #6038
-#6042 := [monotonicity #6039]: #6041
-#6045 := [monotonicity #6002 #6042]: #6044
-#10112 := [monotonicity #6045]: #10111
-#10119 := [trans #10112 #10114]: #10118
-#10104 := [quant-inst #2064]: #10109
-#10117 := [mp #10104 #10119]: #10108
-#10561 := [unit-resolution #10117 #8832]: #6043
-#10563 := [unit-resolution #10561 #10560 #10559 #10442]: false
-#10565 := [lemma #10563]: #10564
-#10382 := [unit-resolution #10565 #10383 #10378]: false
-#10471 := [lemma #10382]: #10467
-#10423 := [unit-resolution #10471 #10405 #10716 #10535]: #10570
-#10738 := (or #10731 #10684)
-#10737 := [th-lemma arith triangle-eq]: #10738
-#10531 := [unit-resolution #10737 #10423]: #10731
-#10368 := (or #10051 #10683)
-#10401 := [hypothesis]: #5770
-#10400 := [monotonicity #10401]: #10683
-#10370 := [hypothesis]: #10731
-#10402 := [unit-resolution #10370 #10400]: false
-#10369 := [lemma #10402]: #10368
-#10426 := [unit-resolution #10369 #10531]: #10051
-#10070 := (not #5778)
-#10071 := (or #10070 #5770 #5772)
-#10072 := [def-axiom]: #10071
-#10427 := [unit-resolution #10072 #10426 #10536]: #5772
-#10067 := (not #5772)
-#10803 := (or #10067 #10727)
-#10782 := (not #10727)
-#10800 := [hypothesis]: #10782
-#10801 := [hypothesis]: #5772
-#10785 := (or #3820 #188 #10067 #10727)
-#10728 := (or #188 #10067 #10727)
-#10786 := (or #3820 #10728)
-#10788 := (iff #10786 #10785)
-#10789 := [rewrite]: #10788
-#10787 := [quant-inst #2065 #186]: #10786
-#10790 := [mp #10787 #10789]: #10785
-#10802 := [unit-resolution #10790 #8132 #8131 #10801 #10800]: false
-#10804 := [lemma #10802]: #10803
-#10428 := [unit-resolution #10804 #10427]: #10727
-#10429 := (not #5699)
-#10276 := (or #10782 #2077 #10719 #10503 #10429)
-#10278 := [th-lemma arith assign-bounds 1 1 1 1]: #10276
-#10279 := [unit-resolution #10278 #10428 #10770 #10405 #10716]: #10719
-#10280 := [unit-resolution #10421 #10279]: #10441
-#10275 := [unit-resolution #10565 #10280]: #6003
-#10281 := [unit-resolution #10377 #10275]: #5987
-#10277 := [unit-resolution #10381 #10281]: #10107
-#10282 := [th-lemma arith farkas -1 -1 1 1 1 #10277 #10428 #10716 #10770 #10535]: false
-#10345 := [lemma #10282]: #10344
-#11340 := [unit-resolution #10345 #6061 #6060]: false
-#11363 := [lemma #11340]: #2954
-#3597 := (or #4006 #2959 #4000)
-#3598 := [def-axiom]: #3597
-#14089 := [unit-resolution #3598 #11363]: #14245
-#14298 := [unit-resolution #14089 #14006]: #4000
-#3606 := (or #3997 #3991)
-#3607 := [def-axiom]: #3606
-#17543 := [unit-resolution #3607 #14298]: #3991
-#16954 := [hypothesis]: #3005
-#3619 := (or #3000 #2101)
-#3622 := [def-axiom]: #3619
-#16970 := [unit-resolution #3622 #16954]: #2101
-#6572 := (f5 #200 ?v0!19)
-#6570 := (f15 #6572)
-#6573 := (* -1::Int #6570)
-#16948 := (+ #2097 #6573)
-#16952 := (>= #16948 0::Int)
-#16938 := (= #2097 #6570)
-#17002 := (= #2096 #6572)
-#16996 := (= #2095 #200)
-#5496 := (= ?v1!18 f28)
-#5497 := (f9 f21 ?v1!18)
-#5498 := (= #5497 f1)
-#6712 := (not #5498)
-#6463 := (f19 f20 ?v0!19)
-#6534 := (* -1::Int #6463)
-#5451 := (f19 f20 ?v1!18)
-#6728 := (+ #5451 #6534)
-#6729 := (+ #2097 #6728)
-#6730 := (>= #6729 0::Int)
-#16957 := (not #6730)
-#3507 := (not #2109)
-#3522 := (or #3000 #3507)
-#3524 := [def-axiom]: #3522
-#16955 := [unit-resolution #3524 #16954]: #3507
-#5548 := (* -1::Int #5451)
-#5549 := (+ #2104 #5548)
-#12637 := (>= #5549 0::Int)
-#5469 := (= #2104 #5451)
-#3523 := (or #3000 #2094)
-#3618 := [def-axiom]: #3523
-#16956 := [unit-resolution #3618 #16954]: #2094
-#16334 := (or #3949 #2985 #5469)
-#5472 := (or #2985 #5469)
-#16340 := (or #3949 #5472)
-#16341 := (iff #16340 #16334)
-#16068 := [rewrite]: #16341
-#16335 := [quant-inst #2091]: #16340
-#16150 := [mp #16335 #16068]: #16334
-#16959 := [unit-resolution #16150 #18772 #16956]: #5469
-#16963 := (not #5469)
-#16964 := (or #16963 #12637)
-#16966 := [th-lemma arith triangle-eq]: #16964
-#16967 := [unit-resolution #16966 #16959]: #12637
-#16961 := (not #12637)
-#12548 := (or #16957 #16961 #2109)
-#6535 := (+ #2105 #6534)
-#6536 := (<= #6535 0::Int)
-#18328 := (not #6536)
-#18338 := [hypothesis]: #18328
-#17088 := (or #3940 #6536)
-#6478 := (+ #6463 #2106)
-#6488 := (>= #6478 0::Int)
-#17089 := (or #3940 #6488)
-#18276 := (iff #17089 #17088)
-#18278 := (iff #17088 #17088)
-#18289 := [rewrite]: #18278
-#6557 := (iff #6488 #6536)
-#6529 := (+ #2106 #6463)
-#6532 := (>= #6529 0::Int)
-#6537 := (iff #6532 #6536)
-#6556 := [rewrite]: #6537
-#6527 := (iff #6488 #6532)
-#6530 := (= #6478 #6529)
-#6531 := [rewrite]: #6530
-#6533 := [monotonicity #6531]: #6527
-#6558 := [trans #6533 #6556]: #6557
-#18277 := [monotonicity #6558]: #18276
-#18290 := [trans #18277 #18289]: #18276
-#18275 := [quant-inst #2092]: #17089
-#18291 := [mp #18275 #18290]: #17088
-#18339 := [unit-resolution #18291 #9894 #18338]: false
-#18340 := [lemma #18339]: #6536
-#16962 := (or #16957 #16961 #18328 #2109)
-#16968 := [th-lemma arith assign-bounds 1 -1 -1]: #16962
-#12549 := [unit-resolution #16968 #18340]: #12548
-#12627 := [unit-resolution #12549 #16967 #16955]: #16957
-#16932 := (or #6712 #6730)
-#16777 := (or #3828 #6712 #2100 #6730)
-#6731 := (or #6712 #2100 #6730)
-#16782 := (or #3828 #6731)
-#16783 := (iff #16782 #16777)
-#16775 := [rewrite]: #16783
-#16780 := [quant-inst #2092 #2091]: #16782
-#16784 := [mp #16780 #16775]: #16777
-#16975 := [unit-resolution #16784 #7100 #16970]: #16932
-#12604 := [unit-resolution #16975 #12627]: #6712
-#5504 := (or #5496 #5498)
-#5486 := (f9 #198 ?v1!18)
-#5487 := (= #5486 f1)
-#5509 := (iff #5487 #5504)
-#16182 := (or #7628 #5509)
-#5499 := (if #5496 #4146 #5498)
-#5500 := (iff #5487 #5499)
-#16247 := (or #7628 #5500)
-#16275 := (iff #16247 #16182)
-#16296 := (iff #16182 #16182)
-#15136 := [rewrite]: #16296
-#5510 := (iff #5500 #5509)
-#5507 := (iff #5499 #5504)
-#5501 := (if #5496 true #5498)
-#5505 := (iff #5501 #5504)
-#5506 := [rewrite]: #5505
-#5502 := (iff #5499 #5501)
-#5503 := [monotonicity #4149]: #5502
-#5508 := [trans #5503 #5506]: #5507
-#5511 := [monotonicity #5508]: #5510
-#15135 := [monotonicity #5511]: #16275
-#15137 := [trans #15135 #15136]: #16275
-#16092 := [quant-inst #115 #186 #3 #2091]: #16247
-#16292 := [mp #16092 #15137]: #16182
-#16991 := [unit-resolution #16292 #3723]: #5509
-#16993 := (= #5486 #2093)
-#16994 := [monotonicity #9297]: #16993
-#16974 := [trans #16994 #16956]: #5487
-#16337 := (not #5487)
-#15281 := (not #5509)
-#16421 := (or #15281 #16337 #5504)
-#16336 := [def-axiom]: #16421
-#16992 := [unit-resolution #16336 #16974 #16991]: #5504
-#16342 := (not #5504)
-#16264 := (or #16342 #5496 #5498)
-#15134 := [def-axiom]: #16264
-#12567 := [unit-resolution #15134 #16992 #12604]: #5496
-#12652 := [monotonicity #12567]: #16996
-#12545 := [monotonicity #12652]: #17002
-#12613 := [monotonicity #12545]: #16938
-#16983 := (not #16938)
-#16973 := (or #16983 #16952)
-#16987 := [th-lemma arith triangle-eq]: #16973
-#12610 := [unit-resolution #16987 #12613]: #16952
-#6574 := (+ f14 #6573)
-#6575 := (<= #6574 0::Int)
-#6600 := (+ #6534 #6570)
-#6598 := (+ #190 #6600)
-#6601 := (>= #6598 0::Int)
-#12029 := (not #6601)
-#6452 := (+ #2104 #4168)
-#6453 := (>= #6452 0::Int)
-#5573 := (+ #190 #5548)
-#5574 := (<= #5573 0::Int)
-#16786 := (or #3914 #5498 #5574)
-#5564 := (+ #5451 #1235)
-#5565 := (>= #5564 0::Int)
-#5566 := (or #5498 #5565)
-#16796 := (or #3914 #5566)
-#16822 := (iff #16796 #16786)
-#5579 := (or #5498 #5574)
-#16815 := (or #3914 #5579)
-#16827 := (iff #16815 #16786)
-#16821 := [rewrite]: #16827
-#16825 := (iff #16796 #16815)
-#5580 := (iff #5566 #5579)
-#5577 := (iff #5565 #5574)
-#5567 := (+ #1235 #5451)
-#5570 := (>= #5567 0::Int)
-#5575 := (iff #5570 #5574)
-#5576 := [rewrite]: #5575
-#5571 := (iff #5565 #5570)
-#5568 := (= #5564 #5567)
-#5569 := [rewrite]: #5568
-#5572 := [monotonicity #5569]: #5571
-#5578 := [trans #5572 #5576]: #5577
-#5581 := [monotonicity #5578]: #5580
-#16826 := [monotonicity #5581]: #16825
-#16820 := [trans #16826 #16821]: #16822
-#16817 := [quant-inst #2091]: #16796
-#16823 := [mp #16817 #16820]: #16786
-#12620 := [unit-resolution #16823 #8603 #12604]: #5574
-#16986 := (not #5574)
-#12638 := (or #6453 #16986 #16961)
-#16989 := (or #6453 #16986 #16961 #10393)
-#16990 := [th-lemma arith assign-bounds 1 -1 -1]: #16989
-#12605 := [unit-resolution #16990 #10752]: #12638
-#12619 := [unit-resolution #12605 #12620 #16967]: #6453
-#12634 := (not #16952)
-#12636 := (not #6453)
-#12622 := (or #12029 #18328 #2109 #12636 #12661 #12634)
-#12656 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #12622
-#12623 := [unit-resolution #12656 #12619 #18340 #18263 #16955 #12610]: #12029
-#6617 := (or #6575 #6601)
-#6699 := (+ #2106 #6570)
-#6700 := (+ #190 #6699)
-#6703 := (= #6700 0::Int)
-#11657 := (not #6703)
-#12480 := (>= #6700 0::Int)
-#17015 := (not #12480)
-#17017 := (or #3000 #17015)
-#16969 := [unit-resolution #16968 #16967 #18340 #16955]: #16957
-#16976 := [unit-resolution #16975 #16969]: #6712
-#16995 := [unit-resolution #15134 #16992 #16976]: #5496
-#16997 := [monotonicity #16995]: #16996
-#16981 := [monotonicity #16997]: #17002
-#16982 := [monotonicity #16981]: #16938
-#16980 := [unit-resolution #16987 #16982]: #16952
-#16988 := [unit-resolution #16823 #8603 #16976]: #5574
-#17010 := [unit-resolution #16990 #16967 #10752 #16988]: #6453
-#17013 := [hypothesis]: #12480
-#17014 := [th-lemma arith farkas 1 -1 1 -1 1 #17013 #16955 #17010 #18263 #16980]: false
-#17018 := [lemma #17014]: #17017
-#12641 := [unit-resolution #17018 #16954]: #17015
-#11714 := (or #11657 #12480)
-#12635 := [th-lemma arith triangle-eq]: #11714
-#12017 := [unit-resolution #12635 #12641]: #11657
-#12092 := (or #3924 #6575 #6601 #6703)
-#6696 := (+ #6570 #2106)
-#6697 := (+ #190 #6696)
-#6698 := (= #6697 0::Int)
-#6580 := (+ #1235 #6573)
-#6581 := (+ #6463 #6580)
-#6579 := (<= #6581 0::Int)
-#6693 := (or #6575 #6579 #6698)
-#12098 := (or #3924 #6693)
-#12143 := (iff #12098 #12092)
-#5162 := (or #6575 #6601 #6703)
-#12058 := (or #3924 #5162)
-#12141 := (iff #12058 #12092)
-#12147 := [rewrite]: #12141
-#12060 := (iff #12098 #12058)
-#5352 := (iff #6693 #5162)
-#5122 := (iff #6698 #6703)
-#6701 := (= #6697 #6700)
-#6702 := [rewrite]: #6701
-#5123 := [monotonicity #6702]: #5122
-#6618 := (iff #6579 #6601)
-#6588 := (+ #6463 #6573)
-#6589 := (+ #1235 #6588)
-#6591 := (<= #6589 0::Int)
-#6602 := (iff #6591 #6601)
-#6603 := [rewrite]: #6602
-#6592 := (iff #6579 #6591)
-#6587 := (= #6581 #6589)
-#6590 := [rewrite]: #6587
-#6599 := [monotonicity #6590]: #6592
-#6619 := [trans #6599 #6603]: #6618
-#5353 := [monotonicity #6619 #5123]: #5352
-#12148 := [monotonicity #5353]: #12060
-#12142 := [trans #12148 #12147]: #12143
-#12130 := [quant-inst #2092]: #12098
-#12144 := [mp #12130 #12142]: #12092
-#12644 := [unit-resolution #12144 #8832 #12017]: #6617
-#11750 := [unit-resolution #12644 #12623]: #6575
-#12020 := [th-lemma arith farkas -1 1 1 #11750 #12610 #16970]: false
-#12047 := [lemma #12020]: #3000
-#3615 := (or #3994 #3005 #3988)
-#3616 := [def-axiom]: #3615
-#17550 := [unit-resolution #3616 #12047 #17543]: #3988
-#3620 := (or #3985 #3977)
-#3624 := [def-axiom]: #3620
-#14729 := [unit-resolution #3624 #17550]: #3977
-#4520 := (not #4519)
-#9879 := (or #3982 #5318 #4520 #5337)
-#5308 := (+ #4167 #5267)
-#5309 := (= #5308 0::Int)
-#5310 := (not #5309)
-#5298 := (+ #4167 #2127)
-#5299 := (>= #5298 0::Int)
-#5311 := (or #5299 #4520 #5310)
-#9846 := (or #3982 #5311)
-#3396 := (iff #9846 #9879)
-#5340 := (or #5318 #4520 #5337)
-#9859 := (or #3982 #5340)
-#8772 := (iff #9859 #9879)
-#8417 := [rewrite]: #8772
-#7921 := (iff #9846 #9859)
-#5341 := (iff #5311 #5340)
-#5338 := (iff #5310 #5337)
-#5335 := (iff #5309 #5332)
-#5323 := (+ #4167 #5211)
-#5324 := (+ #2127 #5323)
-#5327 := (= #5324 0::Int)
-#5333 := (iff #5327 #5332)
-#5334 := [rewrite]: #5333
-#5328 := (iff #5309 #5327)
-#5325 := (= #5308 #5324)
-#5326 := [rewrite]: #5325
-#5329 := [monotonicity #5326]: #5328
-#5336 := [trans #5329 #5334]: #5335
-#5339 := [monotonicity #5336]: #5338
-#5321 := (iff #5299 #5318)
-#5312 := (+ #2127 #4167)
-#5315 := (>= #5312 0::Int)
-#5319 := (iff #5315 #5318)
-#5320 := [rewrite]: #5319
-#5316 := (iff #5299 #5315)
-#5313 := (= #5298 #5312)
-#5314 := [rewrite]: #5313
-#5317 := [monotonicity #5314]: #5316
-#5322 := [trans #5317 #5320]: #5321
-#5342 := [monotonicity #5322 #5339]: #5341
-#7809 := [monotonicity #5342]: #7921
-#9848 := [trans #7809 #8417]: #3396
-#9851 := [quant-inst #186]: #9846
-#9882 := [mp #9851 #9848]: #9879
-#14657 := [unit-resolution #9882 #14729 #12665]: #15716
-#13744 := [unit-resolution #14657 #15984]: #5318
-#5158 := (>= #5157 0::Int)
-#15624 := (or #4623 #5158)
-#3612 := (or #3997 #3961)
-#3617 := [def-axiom]: #3612
-#14246 := [unit-resolution #3617 #14298]: #3961
-#11761 := (or #3966 #4623 #4520 #5158)
-#5159 := (or #4623 #4520 #5158)
-#10607 := (or #3966 #5159)
-#11378 := (iff #10607 #11761)
-#11392 := [rewrite]: #11378
-#10887 := [quant-inst #186 #2123]: #10607
-#11762 := [mp #10887 #11392]: #11761
-#15544 := [unit-resolution #11762 #14246 #12665]: #15624
-#13741 := [unit-resolution #15544 #15919]: #5158
-#13599 := [th-lemma arith eq-propagate 1 1 -1 -1 1 1 #13741 #13744 #10752 #18263 #15545 #15571]: #19614
-#13366 := (not #19614)
-#15910 := (or #13366 #19610)
-#15852 := [th-lemma arith triangle-eq]: #15910
-#12478 := [unit-resolution #15852 #13599]: #19610
-#19611 := (not #19610)
-#19612 := (or #19609 #19611)
-#12798 := (or #6342 #19609 #19611)
-#14603 := (or #6342 #19612)
-#14654 := (iff #14603 #12798)
-#14656 := [rewrite]: #14654
-#14666 := [quant-inst #186 #2123]: #14603
-#14616 := [mp #14666 #14656]: #12798
-#13305 := [unit-resolution #14616 #3735]: #19612
-#16503 := [unit-resolution #13305 #12478]: #19609
-#15534 := [unit-resolution #16503 #15258]: false
-#16669 := [lemma #15534]: #5176
-#19122 := (or #19098 #17503)
-#17519 := (not #17503)
-#19187 := [hypothesis]: #17519
-#19192 := [hypothesis]: #5176
-#19097 := [th-lemma arith triangle-eq]: #19122
-#19172 := [unit-resolution #19097 #19192 #19187]: false
-#19096 := [lemma #19172]: #19122
-#24633 := [unit-resolution #19096 #16669]: #17503
-#17541 := (or #17547 #17519)
-#3530 := (or #3985 #2130)
-#3623 := [def-axiom]: #3530
-#17522 := [unit-resolution #3623 #17550]: #2130
-#17561 := [hypothesis]: #17503
-#17545 := [hypothesis]: #5430
-#17548 := [th-lemma arith farkas -1 1 1 #17545 #17561 #17522]: false
-#17521 := [lemma #17548]: #17541
-#24634 := [unit-resolution #17521 #24633]: #17547
-#21003 := (or #5430 #5448)
-#3528 := (or #3985 #2125)
-#3529 := [def-axiom]: #3528
-#21002 := [unit-resolution #3529 #17550]: #2125
-#11823 := (or #3836 #2124 #5430 #5448)
-#5449 := (or #2124 #5430 #5448)
-#11543 := (or #3836 #5449)
-#11822 := (iff #11543 #11823)
-#11793 := [rewrite]: #11822
-#11827 := [quant-inst #2123]: #11543
-#11829 := [mp #11827 #11793]: #11823
-#21004 := [unit-resolution #11829 #7150 #21002]: #21003
-#24635 := [unit-resolution #21004 #24634]: #5448
-#10444 := (or #5447 #5445)
-#11271 := [def-axiom]: #10444
-#20098 := [unit-resolution #11271 #24635]: #5445
-#20099 := (or #5446 #11830)
-#20097 := [th-lemma arith triangle-eq]: #20099
-#20088 := [unit-resolution #20097 #20098]: #11830
-#18274 := (+ #5432 #17799)
-#18321 := (>= #18274 0::Int)
-#15420 := (or #3940 #18321)
-#15369 := [quant-inst #5431]: #15420
-#19872 := [unit-resolution #15369 #9894]: #18321
-#20100 := (not #18321)
-#19873 := (not #11830)
-#20101 := (or #15418 #19873 #17519 #20100)
-#20102 := [th-lemma arith assign-bounds -1 -1 -1]: #20101
-#20082 := [unit-resolution #20102 #24633 #19872 #20088]: #15418
-#18473 := (<= #18529 0::Int)
-#18450 := (+ f14 #5442)
-#18526 := (<= #18450 0::Int)
-#19955 := (not #18526)
-#18451 := (>= #5432 0::Int)
-#15358 := (or #3811 #18451)
-#15465 := [quant-inst #5431]: #15358
-#21016 := [unit-resolution #15465 #8408]: #18451
-#21023 := (not #18451)
-#19947 := (or #19955 #2129 #17519 #21023 #19873)
-#19948 := [th-lemma arith assign-bounds -1 -1 -1 -1]: #19947
-#19989 := [unit-resolution #19948 #21016 #24633 #20088 #17522]: #19955
-#18253 := (f9 f29 #5431)
-#17861 := (= #18253 f1)
-#24578 := (f9 #198 #5431)
-#24579 := (= #24578 f1)
-#24590 := (= #5431 f28)
-#24596 := (or #24590 #5437)
-#24601 := (iff #24579 #24596)
-#24604 := (or #7628 #24601)
-#24591 := (if #24590 #4146 #5437)
-#24592 := (iff #24579 #24591)
-#24605 := (or #7628 #24592)
-#24607 := (iff #24605 #24604)
-#24609 := (iff #24604 #24604)
-#24610 := [rewrite]: #24609
-#24602 := (iff #24592 #24601)
-#24599 := (iff #24591 #24596)
-#24593 := (if #24590 true #5437)
-#24597 := (iff #24593 #24596)
-#24598 := [rewrite]: #24597
-#24594 := (iff #24591 #24593)
-#24595 := [monotonicity #4149]: #24594
-#24600 := [trans #24595 #24598]: #24599
-#24603 := [monotonicity #24600]: #24602
-#24608 := [monotonicity #24603]: #24607
-#24611 := [trans #24608 #24610]: #24607
-#24606 := [quant-inst #115 #186 #3 #5431]: #24605
-#24612 := [mp #24606 #24611]: #24604
-#24632 := [unit-resolution #24612 #3723]: #24601
-#24621 := (not #24601)
-#24638 := (or #24621 #24579)
-#12006 := (or #5447 #5437)
-#12000 := [def-axiom]: #12006
-#24636 := [unit-resolution #12000 #24635]: #5437
-#24616 := (or #24596 #5438)
-#24617 := [def-axiom]: #24616
-#24637 := [unit-resolution #24617 #24636]: #24596
-#24618 := (not #24596)
-#24622 := (or #24621 #24579 #24618)
-#24623 := [def-axiom]: #24622
-#24639 := [unit-resolution #24623 #24637]: #24638
-#24640 := [unit-resolution #24639 #24632]: #24579
-#24641 := (= #18253 #24578)
-#24642 := [monotonicity #9701]: #24641
-#24643 := [trans #24642 #24640]: #17861
-#17862 := (not #17861)
-#24631 := [hypothesis]: #17862
-#24644 := [unit-resolution #24631 #24643]: false
-#24645 := [lemma #24644]: #17861
-#12615 := (or #17862 #18526 #18473)
-#3526 := (or #3985 #3969)
-#3527 := [def-axiom]: #3526
-#22006 := [unit-resolution #3527 #17550]: #3969
-#16736 := (or #3974 #17862 #18526 #18473)
-#18522 := (+ #18254 #2127)
-#18507 := (+ #5441 #18522)
-#18515 := (>= #18507 0::Int)
-#18516 := (or #17862 #18526 #18515)
-#16729 := (or #3974 #18516)
-#15322 := (iff #16729 #16736)
-#16781 := (or #3974 #12615)
-#16766 := (iff #16781 #16736)
-#16787 := [rewrite]: #16766
-#16771 := (iff #16729 #16781)
-#13633 := (iff #18516 #12615)
-#14647 := (iff #18515 #18473)
-#18513 := (+ #5441 #18254)
-#18523 := (+ #2127 #18513)
-#18470 := (>= #18523 0::Int)
-#18472 := (iff #18470 #18473)
-#18530 := [rewrite]: #18472
-#18514 := (iff #18515 #18470)
-#18525 := (= #18507 #18523)
-#18520 := [rewrite]: #18525
-#18527 := [monotonicity #18520]: #18514
-#12281 := [trans #18527 #18530]: #14647
-#14300 := [monotonicity #12281]: #13633
-#15106 := [monotonicity #14300]: #16771
-#16805 := [trans #15106 #16787]: #15322
-#16779 := [quant-inst #2123 #5431]: #16729
-#15127 := [mp #16779 #16805]: #16736
-#20083 := [unit-resolution #15127 #22006]: #12615
-#19946 := [unit-resolution #20083 #24645 #19989]: #18473
-#18690 := (= #18529 0::Int)
-#18704 := (not #18690)
-#18651 := (+ #2126 #17799)
-#18655 := (<= #18651 0::Int)
-#18872 := (not #18655)
-#11828 := (not #5435)
-#11949 := (or #5447 #11828)
-#11796 := [def-axiom]: #11949
-#19950 := [unit-resolution #11796 #24635]: #11828
-#18977 := (or #18872 #5435 #17519 #20100)
-#18978 := [th-lemma arith assign-bounds -1 -1 -1]: #18977
-#18953 := [unit-resolution #18978 #24633 #19872 #19950]: #18872
-#18707 := (or #18655 #17862 #18704)
-#16901 := (or #3982 #18655 #17862 #18704)
-#18650 := (+ #2127 #5441)
-#18592 := (+ #18254 #18650)
-#18638 := (= #18592 0::Int)
-#18644 := (not #18638)
-#18662 := (>= #18522 0::Int)
-#18615 := (or #18662 #17862 #18644)
-#16863 := (or #3982 #18615)
-#12904 := (iff #16863 #16901)
-#16890 := (or #3982 #18707)
-#16885 := (iff #16890 #16901)
-#15516 := [rewrite]: #16885
-#15161 := (iff #16863 #16890)
-#18708 := (iff #18615 #18707)
-#18692 := (iff #18644 #18704)
-#18691 := (iff #18638 #18690)
-#18658 := (= #18523 0::Int)
-#18654 := (iff #18658 #18690)
-#18693 := [rewrite]: #18654
-#18673 := (iff #18638 #18658)
-#18649 := (= #18592 #18523)
-#18653 := [rewrite]: #18649
-#18674 := [monotonicity #18653]: #18673
-#18694 := [trans #18674 #18693]: #18691
-#18689 := [monotonicity #18694]: #18692
-#18659 := (iff #18662 #18655)
-#18581 := (+ #2127 #18254)
-#18641 := (>= #18581 0::Int)
-#18666 := (iff #18641 #18655)
-#18665 := [rewrite]: #18666
-#18646 := (iff #18662 #18641)
-#18645 := (= #18522 #18581)
-#18596 := [rewrite]: #18645
-#18647 := [monotonicity #18596]: #18646
-#18664 := [trans #18647 #18665]: #18659
-#18709 := [monotonicity #18664 #18689]: #18708
-#15308 := [monotonicity #18709]: #15161
-#16914 := [trans #15308 #15516]: #12904
-#16811 := [quant-inst #5431]: #16863
-#15485 := [mp #16811 #16914]: #16901
-#19077 := [unit-resolution #15485 #14729]: #18707
-#19169 := [unit-resolution #19077 #24645 #18953]: #18704
-#19090 := (not #15418)
-#19243 := (not #18473)
-#19996 := (or #18690 #19243 #19090)
-#19953 := [th-lemma arith triangle-eq]: #19996
-[unit-resolution #19953 #19169 #19946 #20082]: false
-unsat
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs2	Thu May 01 22:57:38 2014 +0200
@@ -0,0 +1,3139 @@
+4130cc2c7db4aedd246ade86526a1512dc2d3ec1 3138 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!19 () B_Vertex$)
+(declare-fun ?v1!18 () B_Vertex$)
+(declare-fun ?v0!20 () B_Vertex$)
+(declare-fun ?v0!17 () B_Vertex$)
+(declare-fun ?v1!16 () B_Vertex$)
+(declare-fun ?v0!15 () B_Vertex$)
+(declare-fun ?v0!14 () B_Vertex$)
+(declare-fun ?v0!13 () B_Vertex$)
+(declare-fun ?v0!12 () B_Vertex$)
+(declare-fun ?v0!11 () B_Vertex$)
+(declare-fun ?v1!10 () B_Vertex$)
+(declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
+(declare-fun ?v0!8 () B_Vertex$)
+(declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
+(declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
+(declare-fun ?v0!5 () B_Vertex$)
+(declare-fun ?v0!4 () B_Vertex$)
+(declare-fun ?v1!3 () B_Vertex$)
+(declare-fun ?v0!2 () B_Vertex$)
+(declare-fun ?v1!1 () B_Vertex$)
+(declare-fun ?v0!0 () B_Vertex$)
+(proof
+(let ((?x2200 (* (- 1) (v_b_SP_G_2$ ?v0!19))))
+(let ((?x2198 (v_b_SP_G_2$ ?v1!18)))
+(let ((?x2191 (b_G$ (pair$ ?v1!18 ?v0!19))))
+(let (($x2202 (>= (+ ?x2191 ?x2198 ?x2200) 0)))
+(let (($x2194 (<= (+ b_Infinity$ (* (- 1) ?x2191)) 0)))
+(let (($x2189 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
+(let (($x3065 (not $x2189)))
+(let (($x3080 (or $x3065 $x2194 $x2202)))
+(let (($x3085 (not $x3080)))
+(let (($x3977 (forall ((?v1 B_Vertex$) )(!(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) )))
+))
+(let (($x3982 (not $x3977)))
+(let (($x2220 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
+(let (($x2215 (= ?v0!20 b_Source$)))
+(let (($x3968 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(or $x247 $x1303 $x1621))))))) :pattern ( (pair$ ?v1 ?v0) )))
+))
+(let (($x3973 (not $x3968)))
+(let (($x3985 (or $x3973 $x2215 $x2220 $x3982)))
+(let (($x3988 (not $x3985)))
+(let (($x3991 (or $x3085 $x3988)))
+(let (($x3994 (not $x3991)))
+(let (($x3960 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) )))
+))
+(let (($x3997 (or (not $x3960) $x3994)))
+(let (($x4000 (not $x3997)))
+(let (($x2175 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
+(let (($x2168 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
+(let (($x3019 (not $x2168)))
+(let (($x2166 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
+(let (($x3034 (or $x2166 $x3019 $x2175)))
+(let (($x3943 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x247 (not $x238)))
+(or $x247 $x225)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
+))
+(let (($x3039 (not $x3034)))
+(let (($x4003 (or $x3039 $x4000)))
+(let (($x4006 (not $x4003)))
+(let (($x3951 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(>= ?x220 0)) :pattern ( (v_b_SP_G_2$ ?v0) )))
+))
+(let (($x4009 (or (not $x3951) $x4006)))
+(let (($x4012 (not $x4009)))
+(let ((?x2152 (v_b_SP_G_2$ ?v0!15)))
+(let (($x2153 (>= ?x2152 0)))
+(let (($x2154 (not $x2153)))
+(let ((?x243 (v_b_SP_G_2$ b_Source$)))
+(let (($x244 (= ?x243 0)))
+(let (($x913 (not $x244)))
+(let (($x4015 (or $x913 $x2154 $x4012)))
+(let (($x4018 (not $x4015)))
+(let (($x3948 (not $x3943)))
+(let (($x4021 (or $x3948 $x4018)))
+(let (($x4024 (not $x4021)))
+(let ((?x2136 (fun_app$c v_b_SP_G_1$ ?v0!14)))
+(let ((?x2135 (v_b_SP_G_2$ ?v0!14)))
+(let (($x2137 (= ?x2135 ?x2136)))
+(let (($x2133 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
+(let (($x2134 (not $x2133)))
+(let (($x2138 (or $x2134 $x2137)))
+(let ((@x8891 (unit-resolution (def-axiom (or $x2138 $x2133)) (hypothesis (not $x2138)) $x2133)))
+(let (($x3646 (not $x2137)))
+(let ((@x8820 (unit-resolution (def-axiom (or $x2138 $x3646)) (hypothesis (not $x2138)) $x3646)))
+(let ((?x212 (fun_app$a (fun_app$b (fun_upd$ v_b_Visited_G_1$) v_b_v_G_1$) true)))
+(let (($x213 (= v_b_Visited_G_2$ ?x212)))
+(let (($x2139 (not $x2138)))
+(let (($x4027 (or $x2139 $x4024)))
+(let (($x4030 (not $x4027)))
+(let (($x3934 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
+))
+(let (($x3939 (not $x3934)))
+(let (($x4033 (or $x3939 $x4030)))
+(let (($x4036 (not $x4033)))
+(let (($x2121 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!13) (* (- 1) (v_b_SP_G_2$ ?v0!13))) 0)))
+(let (($x2122 (not $x2121)))
+(let (($x4039 (or $x2122 $x4036)))
+(let (($x4042 (not $x4039)))
+(let (($x3926 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x2991 (or $x1540 $x1547)))
+(let (($x2992 (not $x2991)))
+(or $x2992 $x225)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
+))
+(let (($x3931 (not $x3926)))
+(let (($x3918 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let ((?x1560 (* (- 1) ?x220)))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
+(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
+(or $x1540 $x1547 $x1559)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
+))
+(let (($x3923 (not $x3918)))
+(let (($x3196 (not $x213)))
+(let (($x3908 (forall ((?v0 B_Vertex$) )(!(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x125 (>= (+ ?x121 ?x1520) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
+))
+(let (($x3913 (not $x3908)))
+(let (($x1522 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) 0)))
+(let (($x202 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
+(let (($x2087 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!12))) 0)))
+(let (($x2082 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
+(let (($x4045 (or $x2082 $x2087 $x202 $x1522 $x3913 $x3196 $x3923 $x3931 $x4042)))
+(let (($x4048 (not $x4045)))
+(let (($x193 (= (fun_app$c v_b_SP_G_3$ b_Source$) 0)))
+(let (($x3870 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(or $x1448 $x1303 $x1493)))))) :pattern ( (pair$ ?v1 ?v0) )))
+))
+(let (($x3878 (or (not $x3870) $x193)))
+(let (($x3881 (not $x3878)))
+(let ((?x2036 (b_G$ (pair$ ?v1!10 ?v0!11))))
+(let ((?x2030 (fun_app$c v_b_SP_G_3$ ?v1!10)))
+(let (($x2497 (>= (+ ?x2030 ?x2036 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0)))
+(let (($x2039 (<= (+ b_Infinity$ (* (- 1) ?x2036)) 0)))
+(let (($x2033 (<= (+ b_Infinity$ (* (- 1) ?x2030)) 0)))
+(let (($x2919 (or $x2033 $x2039 $x2497)))
+(let (($x2924 (not $x2919)))
+(let (($x3884 (or $x2924 $x3881)))
+(let (($x3887 (not $x3884)))
+(let (($x3862 (forall ((?v0 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2480 (= ?x2479 0)))
+(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2891 (not (or $x2464 (not $x2480)))))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1448 $x2891)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) )))
+))
+(let (($x3890 (or (not $x3862) $x3887)))
+(let (($x3893 (not $x3890)))
+(let (($x3848 (forall ((?v1 B_Vertex$) )(!(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(or (>= (+ ?x177 ?x1971) 0) (not $x2436)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) )))
+))
+(let (($x3853 (not $x3848)))
+(let (($x1973 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0)))
+(let (($x1968 (= ?v0!8 b_Source$)))
+(let (($x3856 (or $x1968 $x1973 $x3853)))
+(let (($x3859 (not $x3856)))
+(let (($x3896 (or $x3859 $x3893)))
+(let (($x3899 (not $x3896)))
+(let (($x164 (= v_b_SP_G_3$ v_b_SP_G_1$)))
+(let (($x2982 (not $x164)))
+(let (($x3838 (forall ((?v0 B_Vertex$) )(!(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x125 $x1395))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
+))
+(let (($x3843 (not $x3838)))
+(let (($x3902 (or $x3843 (not (= v_b_Visited_G_3$ v_b_Visited_G_1$)) (not (= v_b_v_G_2$ v_b_v_G_0$)) $x2982 (not (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)) $x3899)))
+(let (($x5759 (>= (+ ?x2030 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!10))) 0)))
+(let ((?x4698 (fun_app$c v_b_SP_G_1$ ?v1!10)))
+(let (($x6220 (= ?x2030 ?x4698)))
+(let (($x3905 (not $x3902)))
+(let ((@x5698 (hypothesis $x3905)))
+(let ((@x5699 (unit-resolution (def-axiom (or $x3902 $x164)) @x5698 $x164)))
+(let ((@x7384 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6220) $x5759)) (monotonicity @x5699 $x6220) $x5759)))
+(let (($x3668 (not $x2497)))
+(let (($x4677 (>= (+ ?x2036 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11)) ?x4698) 0)))
+(let (($x4697 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
+(let (($x4492 (<= (+ b_Infinity$ (* (- 1) ?x4698)) 0)))
+(let (($x5659 (not $x4492)))
+(let (($x2034 (not $x2033)))
+(let ((?x119 (fun_app$c v_b_SP_G_1$ b_Source$)))
+(let (($x120 (= ?x119 0)))
+(let (($x4051 (or $x3905 $x4048)))
+(let (($x4054 (not $x4051)))
+(let (($x3829 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2417 (= ?x2416 0)))
+(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
+(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417)))))
+(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1395 $x2825)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
+))
+(let (($x3834 (not $x3829)))
+(let (($x3821 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x126 (not $x125)))
+(or $x126 $x1303 $x1384))))))) :pattern ( (pair$ ?v1 ?v0) )))
+))
+(let (($x3826 (not $x3821)))
+(let (($x3813 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) )))
+))
+(let (($x3818 (not $x3813)))
+(let (($x3804 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(>= ?x121 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
+))
+(let (($x3809 (not $x3804)))
+(let (($x3213 (not $x120)))
+(let (($x3795 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2379 (= ?x2378 0)))
+(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
+(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379)))))
+(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1330 $x2752)))))))) :pattern ( (v_b_SP_G_0$ ?v0) )))
+))
+(let (($x4057 (or (not $x3795) $x3213 $x3809 $x3818 $x3826 $x3834 $x4054)))
+(let (($x4060 (not $x4057)))
+(let (($x3781 (forall ((?v1 B_Vertex$) )(!(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1850 (* (- 1) ?x1849)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) )))
+))
+(let (($x1852 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0)))
+(let (($x1847 (= ?v0!5 b_Source$)))
+(let (($x3789 (or $x1847 $x1852 (not $x3781))))
+(let (($x3792 (not $x3789)))
+(let (($x4063 (or $x3792 $x4060)))
+(let (($x4066 (not $x4063)))
+(let (($x3772 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(or $x84 $x1303 $x1316))))))) :pattern ( (pair$ ?v1 ?v0) )))
+))
+(let (($x4069 (or (not $x3772) $x4066)))
+(let (($x4072 (not $x4069)))
+(let ((?x1823 (b_G$ (pair$ ?v1!3 ?v0!4))))
+(let (($x2336 (>= (+ ?x1823 (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4))) 0)))
+(let (($x1826 (<= (+ b_Infinity$ (* (- 1) ?x1823)) 0)))
+(let (($x1821 (v_b_Visited_G_0$ ?v1!3)))
+(let (($x2668 (not $x1821)))
+(let (($x2683 (or $x2668 $x1826 $x2336)))
+(let (($x3748 (forall ((?v0 B_Vertex$) )(!(let (($x83 (v_b_Visited_G_0$ ?v0)))
+(not $x83)) :pattern ( (v_b_Visited_G_0$ ?v0) )))
+))
+(let (($x85 (forall ((?v0 B_Vertex$) )(let (($x83 (v_b_Visited_G_0$ ?v0)))
+(not $x83)))
+))
+(let ((@x3752 (quant-intro (refl (= (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (= $x85 $x3748))))
+(let ((@x1779 (nnf-pos (refl (~ (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (~ $x85 $x85))))
+(let (($x343 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
+(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))
+))
+(let (($x337 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(or $x79 (= (v_b_SP_G_0$ ?v0) 0)))))
+))
+(let (($x354 (and $x337 $x343 $x85)))
+(let (($x850 (forall ((?v0 B_Vertex$) )(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x262 (= ?x250 ?x255)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x827 (not $x251)))
+(and $x827 $x238 $x262))))))))))
+))
+(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x824 (and $x79 $x821)))
+(let (($x844 (not $x824)))
+(or $x844 $x838))))))))
+))
+(let (($x817 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x256 (<= ?x250 ?x255)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x805 (and $x238 $x378)))
+(let (($x811 (not $x805)))
+(or $x811 $x256)))))))))))
+))
+(let (($x878 (or (not $x817) $x850)))
+(let (($x883 (and $x817 $x878)))
+(let (($x802 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
+(let (($x798 (not $x249)))
+(or $x798 $x251)))))))))
+))
+(let (($x889 (not $x802)))
+(let (($x890 (or $x889 $x883)))
+(let (($x895 (and $x802 $x890)))
+(let (($x246 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(<= 0 ?x220)))
+))
+(let (($x901 (not $x246)))
+(let (($x902 (or $x901 $x895)))
+(let (($x907 (and $x246 $x902)))
+(let (($x914 (or $x913 $x907)))
+(let (($x919 (and $x244 $x914)))
+(let (($x786 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x247 (not $x238)))
+(or $x247 $x225)))))))
+))
+(let (($x925 (not $x786)))
+(let (($x926 (or $x925 $x919)))
+(let (($x931 (and $x786 $x926)))
+(let (($x237 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(<= ?x220 ?x121))))
+))
+(let (($x937 (not $x237)))
+(let (($x938 (or $x937 $x931)))
+(let (($x943 (and $x237 $x938)))
+(let (($x726 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x217 (+ ?x204 ?x215)))
+(let (($x698 (not (<= ?x121 ?x217))))
+(let (($x694 (not (<= b_Infinity$ ?x215))))
+(let (($x701 (and $x694 $x698)))
+(or $x701 $x225)))))))))))
+))
+(let (($x713 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x217 (+ ?x204 ?x215)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x221 (= ?x220 ?x217)))
+(let (($x698 (not (<= (fun_app$c v_b_SP_G_1$ ?v0) ?x217))))
+(let (($x694 (not (<= b_Infinity$ ?x215))))
+(let (($x701 (and $x694 $x698)))
+(let (($x707 (not $x701)))
+(or $x707 $x221)))))))))))
+))
+(let (($x690 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x206 (<= ?x204 ?x121)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x125 $x206))))))
+))
+(let (($x684 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))))
+(let (($x203 (not $x202)))
+(let (($x540 (exists ((?v0 B_Vertex$) )(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0)))))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x126 (not $x125)))
+(and $x126 $x452)))))
+))
+(let (($x767 (and $x540 $x203 $x684 $x690 $x213 $x713 $x726)))
+(let (($x949 (not $x767)))
+(let (($x950 (or $x949 $x943)))
+(let (($x638 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x189 (<= ?x180 ?x182)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x598 (not (<= b_Infinity$ ?x177))))
+(let (($x626 (and $x598 $x378)))
+(let (($x632 (not $x626)))
+(or $x632 $x189)))))))))))
+))
+(let (($x654 (or (not $x638) $x193)))
+(let (($x659 (and $x638 $x654)))
+(let (($x623 (forall ((?v0 B_Vertex$) )(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x183 (= ?x180 ?x182)))
+(let (($x605 (not (<= ?x180 ?x177))))
+(and $x605 $x183))))))))
+))
+(let (($x598 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_3$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x601 (and $x79 $x598)))
+(let (($x617 (not $x601)))
+(or $x617 $x611))))))))
+))
+(let (($x666 (or (not $x623) $x659)))
+(let (($x671 (and $x623 $x666)))
+(let (($x167 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
+(let (($x162 (= v_b_v_G_2$ v_b_v_G_0$)))
+(let (($x159 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
+(let (($x543 (not $x540)))
+(let (($x581 (and $x543 $x159 $x162 $x164 $x167)))
+(let (($x677 (not $x581)))
+(let (($x678 (or $x677 $x671)))
+(let (($x955 (and $x678 $x950)))
+(let (($x481 (forall ((?v0 B_Vertex$) )(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x141 (= ?x129 ?x134)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x458 (not $x130)))
+(and $x458 $x125 $x141))))))))))
+))
+(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x455 (and $x79 $x452)))
+(let (($x475 (not $x455)))
+(or $x475 $x469))))))))
+))
+(let (($x448 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x135 (<= ?x129 ?x134)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x436 (and $x125 $x378)))
+(let (($x442 (not $x436)))
+(or $x442 $x135)))))))))))
+))
+(let (($x433 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x126 (not $x125)))
+(let (($x128 (and $x126 $x127)))
+(let (($x429 (not $x128)))
+(or $x429 $x130))))))))))
+))
+(let (($x123 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(<= 0 ?x121)))
+))
+(let (($x426 (forall ((?v0 B_Vertex$) )(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x98 (<= ?x97 ?x75)))
+(let (($x403 (not $x98)))
+(and $x403 $x83 $x112))))))))
+))
+(let (($x397 (not (<= b_Infinity$ (v_b_SP_G_0$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x400 (and $x79 $x397)))
+(or (not $x400) $x414)))))))
+))
+(let (($x532 (and $x426 $x120 $x123 $x433 $x448 $x481)))
+(let (($x961 (not $x532)))
+(let (($x962 (or $x961 $x955)))
+(let (($x967 (and $x426 $x962)))
+(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let (($x378 (not (<= b_Infinity$ (b_G$ (pair$ ?v1 ?v0))))))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x381 (and $x83 $x378)))
+(or (not $x381) $x106)))))))
+))
+(let (($x973 (not $x393)))
+(let (($x974 (or $x973 $x967)))
+(let (($x979 (and $x393 $x974)))
+(let (($x374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x98 (<= ?x97 ?x75)))
+(let (($x95 (v_b_Visited_G_0$ ?v0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(let (($x96 (and $x84 $x95)))
+(let (($x370 (not $x96)))
+(or $x370 $x98))))))))))
+))
+(let (($x985 (not $x374)))
+(let (($x986 (or $x985 $x979)))
+(let (($x991 (and $x374 $x986)))
+(let (($x94 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(<= 0 ?x75)))
+))
+(let (($x997 (not $x94)))
+(let (($x998 (or $x997 $x991)))
+(let (($x1003 (and $x94 $x998)))
+(let (($x92 (= (v_b_SP_G_0$ b_Source$) 0)))
+(let (($x1009 (not $x92)))
+(let (($x1010 (or $x1009 $x1003)))
+(let (($x1015 (and $x92 $x1010)))
+(let (($x1022 (or (not $x354) $x1015)))
+(let (($x267 (forall ((?v0 B_Vertex$) )(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x262 (= ?x250 ?x255)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (< ?x220 ?x250) (and $x238 $x262)))))))))
+))
+(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_2$ ?v0) b_Infinity$)) $x265)))
+))
+(let (($x268 (and $x267 false)))
+(let (($x269 (=> $x268 true)))
+(let (($x270 (and $x267 $x269)))
+(let (($x258 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x256 (<= ?x250 ?x255)))
+(=> (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x102 b_Infinity$)) $x256)))))))
+))
+(let (($x271 (=> $x258 $x270)))
+(let (($x253 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
+(=> $x249 $x251))))))))
+))
+(let (($x273 (=> $x253 (and $x258 $x271))))
+(let (($x275 (=> $x246 (and $x253 $x273))))
+(let (($x277 (=> $x244 (and $x246 $x275))))
+(let (($x240 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(=> $x238 $x225))))))
+))
+(let (($x242 (and $x240 (and true true))))
+(let (($x279 (=> $x242 (and $x244 $x277))))
+(let (($x281 (=> $x237 (and $x240 $x279))))
+(let (($x227 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x217 (+ ?x204 ?x215)))
+(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121))))
+(=> (not $x219) $x225)))))))))
+))
+(let (($x223 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x217 (+ ?x204 ?x215)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x221 (= ?x220 ?x217)))
+(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 (fun_app$c v_b_SP_G_1$ ?v0)))))
+(=> $x219 $x221))))))))
+))
+(let (($x229 (and $x213 (and $x223 $x227))))
+(let (($x208 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x206 (<= ?x204 ?x121)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x126 (not $x125)))
+(=> $x126 $x206)))))))
+))
+(let (($x230 (and $x208 $x229)))
+(let (($x231 (and (< (fun_app$c v_b_SP_G_1$ v_b_v_G_1$) b_Infinity$) $x230)))
+(let (($x232 (and $x203 $x231)))
+(let (($x156 (exists ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x138 (< ?x121 b_Infinity$)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x126 (not $x125)))
+(and $x126 $x138))))))
+))
+(let (($x233 (and $x156 $x232)))
+(let (($x234 (and true $x233)))
+(let (($x235 (and true $x234)))
+(let (($x283 (=> $x235 (and $x237 $x281))))
+(let (($x195 (and $x193 (=> $x193 true))))
+(let (($x191 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x189 (<= ?x180 ?x182)))
+(=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189)))))))
+))
+(let (($x196 (=> $x191 $x195)))
+(let (($x187 (forall ((?v0 B_Vertex$) )(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x183 (= ?x180 ?x182)))
+(and (< ?x177 ?x180) $x183)))))))
+))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x178 (< ?x177 b_Infinity$)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(=> (and $x79 $x178) $x185)))))))
+))
+(let (($x198 (=> $x187 (and $x191 $x196))))
+(let (($x170 (and $x162 (and $x164 (and $x167 true)))))
+(let (($x171 (and $x159 $x170)))
+(let (($x172 (and true $x171)))
+(let (($x173 (and true $x172)))
+(let (($x174 (and (not $x156) $x173)))
+(let (($x175 (and true $x174)))
+(let (($x176 (and true $x175)))
+(let (($x200 (=> $x176 (and $x187 $x198))))
+(let (($x146 (forall ((?v0 B_Vertex$) )(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x141 (= ?x129 ?x134)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(and (< ?x121 ?x129) (and $x125 $x141)))))))))
+))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x138 (< ?x121 b_Infinity$)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(=> (and $x79 $x138) $x144)))))))
+))
+(let (($x147 (and $x146 true)))
+(let (($x137 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x135 (<= ?x129 ?x134)))
+(=> (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x102 b_Infinity$)) $x135)))))))
+))
+(let (($x132 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x126 (not $x125)))
+(let (($x128 (and $x126 $x127)))
+(=> $x128 $x130)))))))))
+))
+(let (($x149 (and $x132 (and $x137 $x147))))
+(let (($x150 (and $x123 $x149)))
+(let (($x151 (and $x120 $x150)))
+(let (($x152 (and true $x151)))
+(let (($x153 (and true $x152)))
+(let (($x117 (forall ((?v0 B_Vertex$) )(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112))))))
+))
+(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_0$ ?v0) b_Infinity$)) $x115)))
+))
+(let (($x154 (and $x117 $x153)))
+(let (($x285 (=> $x154 (and $x200 $x283))))
+(let (($x108 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x103 (< ?x102 b_Infinity$)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(=> (and $x83 $x103) $x106)))))))
+))
+(let (($x287 (=> $x108 (and $x117 $x285))))
+(let (($x100 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let ((?x97 (v_b_SP_G_0$ ?v0)))
+(let (($x98 (<= ?x97 ?x75)))
+(let (($x95 (v_b_Visited_G_0$ ?v0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(let (($x96 (and $x84 $x95)))
+(=> $x96 $x98)))))))))
+))
+(let (($x289 (=> $x100 (and $x108 $x287))))
+(let (($x291 (=> $x94 (and $x100 $x289))))
+(let (($x293 (=> $x92 (and $x94 $x291))))
+(let (($x82 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(=> $x79 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))))
+))
+(let (($x78 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
+(=> $x74 (= (v_b_SP_G_0$ ?v0) 0))))
+))
+(let (($x88 (and $x78 (and $x82 (and $x85 true)))))
+(let (($x89 (and true $x88)))
+(let (($x90 (and true $x89)))
+(let (($x295 (=> $x90 (and $x92 $x293))))
+(let (($x296 (not $x295)))
+(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?0)))
+(let (($x262 (= ?x250 ?x255)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x827 (not $x251)))
+(and $x827 $x238 $x262))))))))))
+))
+(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?0)))))
+(let (($x74 (= ?0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x824 (and $x79 $x821)))
+(let (($x844 (not $x824)))
+(let (($x845 (or $x844 $x838)))
+(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?0)))
+(let (($x262 (= ?x250 ?x255)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (< ?x220 ?x250) (and $x238 $x262)))))))))
+))
+(let (($x266 (=> (and $x79 (< (v_b_SP_G_2$ ?0) b_Infinity$)) $x265)))
+(let ((?x102 (b_G$ (pair$ ?0 ?1))))
+(let ((?x220 (v_b_SP_G_2$ ?0)))
+(let ((?x255 (+ ?x220 ?x102)))
+(let ((?x250 (v_b_SP_G_2$ ?1)))
+(let (($x262 (= ?x250 ?x255)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?0)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x827 (not $x251)))
+(let (($x833 (and $x827 $x238 $x262)))
+(let (($x264 (and (< ?x220 ?x250) (and $x238 $x262))))
+(let ((@x832 (monotonicity (rewrite (= (< ?x220 ?x250) $x827)) (= $x264 (and $x827 (and $x238 $x262))))))
+(let ((@x837 (trans @x832 (rewrite (= (and $x827 (and $x238 $x262)) $x833)) (= $x264 $x833))))
+(let ((@x826 (monotonicity (rewrite (= (< ?x220 b_Infinity$) $x821)) (= (and $x79 (< ?x220 b_Infinity$)) $x824))))
+(let ((@x843 (monotonicity @x826 (quant-intro @x837 (= $x265 $x838)) (= $x266 (=> $x824 $x838)))))
+(let ((@x852 (quant-intro (trans @x843 (rewrite (= (=> $x824 $x838) $x845)) (= $x266 $x845)) (= $x267 $x850))))
+(let ((@x859 (trans (monotonicity @x852 (= $x268 (and $x850 false))) (rewrite (= (and $x850 false) false)) (= $x268 false))))
+(let ((@x866 (trans (monotonicity @x859 (= $x269 (=> false true))) (rewrite (= (=> false true) true)) (= $x269 true))))
+(let ((@x873 (trans (monotonicity @x852 @x866 (= $x270 (and $x850 true))) (rewrite (= (and $x850 true) $x850)) (= $x270 $x850))))
+(let (($x256 (<= ?x250 ?x255)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x805 (and $x238 $x378)))
+(let (($x811 (not $x805)))
+(let (($x812 (or $x811 $x256)))
+(let (($x257 (=> (and $x238 (< ?x102 b_Infinity$)) $x256)))
+(let ((@x380 (rewrite (= (< ?x102 b_Infinity$) $x378))))
+(let ((@x810 (monotonicity (monotonicity @x380 (= (and $x238 (< ?x102 b_Infinity$)) $x805)) (= $x257 (=> $x805 $x256)))))
+(let ((@x819 (quant-intro (trans @x810 (rewrite (= (=> $x805 $x256) $x812)) (= $x257 $x812)) (= $x258 $x817))))
+(let ((@x882 (trans (monotonicity @x819 @x873 (= $x271 (=> $x817 $x850))) (rewrite (= (=> $x817 $x850) $x878)) (= $x271 $x878))))
+(let (($x247 (not $x238)))
+(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?1))))
+(let (($x798 (not $x249)))
+(let (($x799 (or $x798 $x251)))
+(let ((@x888 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (monotonicity @x819 @x882 (= (and $x258 $x271) $x883)) (= $x273 (=> $x802 $x883)))))
+(let ((@x897 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (trans @x888 (rewrite (= (=> $x802 $x883) $x890)) (= $x273 $x890)) (= (and $x253 $x273) $x895))))
+(let ((@x906 (trans (monotonicity @x897 (= $x275 (=> $x246 $x895))) (rewrite (= (=> $x246 $x895) $x902)) (= $x275 $x902))))
+(let ((@x912 (monotonicity (monotonicity @x906 (= (and $x246 $x275) $x907)) (= $x277 (=> $x244 $x907)))))
+(let ((@x921 (monotonicity (trans @x912 (rewrite (= (=> $x244 $x907) $x914)) (= $x277 $x914)) (= (and $x244 $x277) $x919))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?0)))
+(let (($x225 (= ?x220 ?x121)))
+(let (($x783 (or $x247 $x225)))
+(let ((@x793 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (rewrite (= (and true true) true)) (= $x242 (and $x786 true)))))
+(let ((@x924 (monotonicity (trans @x793 (rewrite (= (and $x786 true) $x786)) (= $x242 $x786)) @x921 (= $x279 (=> $x786 $x919)))))
+(let ((@x933 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (trans @x924 (rewrite (= (=> $x786 $x919) $x926)) (= $x279 $x926)) (= (and $x240 $x279) $x931))))
+(let ((@x942 (trans (monotonicity @x933 (= $x281 (=> $x237 $x931))) (rewrite (= (=> $x237 $x931) $x938)) (= $x281 $x938))))
+(let (($x759 (and $x203 $x684 $x690 $x213 $x713 $x726)))
+(let (($x751 (and $x684 $x690 $x213 $x713 $x726)))
+(let ((@x745 (rewrite (= (and $x690 (and $x213 $x713 $x726)) (and $x690 $x213 $x713 $x726)))))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x217 (+ ?x204 ?x215)))
+(let (($x698 (not (<= ?x121 ?x217))))
+(let (($x694 (not (<= b_Infinity$ ?x215))))
+(let (($x701 (and $x694 $x698)))
+(let (($x721 (or $x701 $x225)))
+(let (($x226 (=> (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) $x225)))
+(let ((@x703 (monotonicity (rewrite (= (< ?x215 b_Infinity$) $x694)) (rewrite (= (< ?x217 ?x121) $x698)) (= (and (< ?x215 b_Infinity$) (< ?x217 ?x121)) $x701))))
+(let ((@x717 (monotonicity @x703 (= (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) (not $x701)))))
+(let ((@x725 (trans (monotonicity @x717 (= $x226 (=> (not $x701) $x225))) (rewrite (= (=> (not $x701) $x225) $x721)) (= $x226 $x721))))
+(let (($x221 (= ?x220 ?x217)))
+(let (($x707 (not $x701)))
+(let (($x708 (or $x707 $x221)))
+(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121))))
+(let (($x222 (=> $x219 $x221)))
+(let ((@x712 (trans (monotonicity @x703 (= $x222 (=> $x701 $x221))) (rewrite (= (=> $x701 $x221) $x708)) (= $x222 $x708))))
+(let ((@x731 (monotonicity (quant-intro @x712 (= $x223 $x713)) (quant-intro @x725 (= $x227 $x726)) (= (and $x223 $x227) (and $x713 $x726)))))
+(let ((@x739 (trans (monotonicity @x731 (= $x229 (and $x213 (and $x713 $x726)))) (rewrite (= (and $x213 (and $x713 $x726)) (and $x213 $x713 $x726))) (= $x229 (and $x213 $x713 $x726)))))
+(let (($x206 (<= ?x204 ?x121)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?0)))
+(let (($x687 (or $x125 $x206)))
+(let ((@x692 (quant-intro (rewrite (= (=> (not $x125) $x206) $x687)) (= $x208 $x690))))
+(let ((@x747 (trans (monotonicity @x692 @x739 (= $x230 (and $x690 (and $x213 $x713 $x726)))) @x745 (= $x230 (and $x690 $x213 $x713 $x726)))))
+(let ((@x750 (monotonicity (rewrite (= (< ?x204 b_Infinity$) $x684)) @x747 (= $x231 (and $x684 (and $x690 $x213 $x713 $x726))))))
+(let ((@x755 (trans @x750 (rewrite (= (and $x684 (and $x690 $x213 $x713 $x726)) $x751)) (= $x231 $x751))))
+(let ((@x763 (trans (monotonicity @x755 (= $x232 (and $x203 $x751))) (rewrite (= (and $x203 $x751) $x759)) (= $x232 $x759))))
+(let (($x452 (not (<= b_Infinity$ ?x121))))
+(let (($x126 (not $x125)))
+(let (($x537 (and $x126 $x452)))
+(let ((@x539 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x126 (< ?x121 b_Infinity$)) $x537))))
+(let ((@x766 (monotonicity (quant-intro @x539 (= $x156 $x540)) @x763 (= $x233 (and $x540 $x759)))))
+(let ((@x774 (monotonicity (trans @x766 (rewrite (= (and $x540 $x759) $x767)) (= $x233 $x767)) (= $x234 (and true $x767)))))
+(let ((@x780 (monotonicity (trans @x774 (rewrite (= (and true $x767) $x767)) (= $x234 $x767)) (= $x235 (and true $x767)))))
+(let ((@x948 (monotonicity (trans @x780 (rewrite (= (and true $x767) $x767)) (= $x235 $x767)) (monotonicity @x942 (= (and $x237 $x281) $x943)) (= $x283 (=> $x767 $x943)))))
+(let ((@x645 (monotonicity (rewrite (= (=> $x193 true) true)) (= $x195 (and $x193 true)))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?0)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?1)))
+(let (($x189 (<= ?x180 ?x182)))
+(let (($x598 (not (<= b_Infinity$ ?x177))))
+(let (($x626 (and $x598 $x378)))
+(let (($x632 (not $x626)))
+(let (($x633 (or $x632 $x189)))
+(let (($x190 (=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189)))
+(let ((@x628 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) @x380 (= (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x626))))
+(let ((@x637 (trans (monotonicity @x628 (= $x190 (=> $x626 $x189))) (rewrite (= (=> $x626 $x189) $x633)) (= $x190 $x633))))
+(let ((@x652 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x645 (rewrite (= (and $x193 true) $x193)) (= $x195 $x193)) (= $x196 (=> $x638 $x193)))))
+(let ((@x661 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x652 (rewrite (= (=> $x638 $x193) $x654)) (= $x196 $x654)) (= (and $x191 $x196) $x659))))
+(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0)))
+(let (($x183 (= ?x180 ?x182)))
+(let (($x605 (not (<= ?x180 ?x177))))
+(and $x605 $x183))))))))
+))
+(let (($x601 (and $x79 $x598)))
+(let (($x617 (not $x601)))
+(let (($x618 (or $x617 $x611)))
+(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x182 (+ ?x177 ?x102)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0)))
+(let (($x183 (= ?x180 ?x182)))
+(and (< ?x177 ?x180) $x183)))))))
+))
+(let (($x186 (=> (and $x79 (< ?x177 b_Infinity$)) $x185)))
+(let (($x183 (= ?x180 ?x182)))
+(let (($x605 (not (<= ?x180 ?x177))))
+(let (($x608 (and $x605 $x183)))
+(let ((@x610 (monotonicity (rewrite (= (< ?x177 ?x180) $x605)) (= (and (< ?x177 ?x180) $x183) $x608))))
+(let ((@x603 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) (= (and $x79 (< ?x177 b_Infinity$)) $x601))))
+(let ((@x616 (monotonicity @x603 (quant-intro @x610 (= $x185 $x611)) (= $x186 (=> $x601 $x611)))))
+(let ((@x625 (quant-intro (trans @x616 (rewrite (= (=> $x601 $x611) $x618)) (= $x186 $x618)) (= $x187 $x623))))
+(let ((@x670 (trans (monotonicity @x625 @x661 (= $x198 (=> $x623 $x659))) (rewrite (= (=> $x623 $x659) $x666)) (= $x198 $x666))))
+(let (($x562 (and $x159 $x162 $x164 $x167)))
+(let (($x567 (and true $x562)))
+(let ((@x550 (monotonicity (rewrite (= (and $x167 true) $x167)) (= (and $x164 (and $x167 true)) (and $x164 $x167)))))
+(let ((@x558 (trans (monotonicity @x550 (= $x170 (and $x162 (and $x164 $x167)))) (rewrite (= (and $x162 (and $x164 $x167)) (and $x162 $x164 $x167))) (= $x170 (and $x162 $x164 $x167)))))
+(let ((@x566 (trans (monotonicity @x558 (= $x171 (and $x159 (and $x162 $x164 $x167)))) (rewrite (= (and $x159 (and $x162 $x164 $x167)) $x562)) (= $x171 $x562))))
+(let ((@x573 (trans (monotonicity @x566 (= $x172 $x567)) (rewrite (= $x567 $x562)) (= $x172 $x562))))
+(let ((@x577 (trans (monotonicity @x573 (= $x173 $x567)) (rewrite (= $x567 $x562)) (= $x173 $x562))))
+(let ((@x545 (monotonicity (quant-intro @x539 (= $x156 $x540)) (= (not $x156) $x543))))
+(let ((@x585 (trans (monotonicity @x545 @x577 (= $x174 (and $x543 $x562))) (rewrite (= (and $x543 $x562) $x581)) (= $x174 $x581))))
+(let ((@x592 (trans (monotonicity @x585 (= $x175 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x175 $x581))))
+(let ((@x596 (trans (monotonicity @x592 (= $x176 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x176 $x581))))
+(let ((@x676 (monotonicity @x596 (monotonicity @x625 @x670 (= (and $x187 $x198) $x671)) (= $x200 (=> $x581 $x671)))))
+(let ((@x957 (monotonicity (trans @x676 (rewrite (= (=> $x581 $x671) $x678)) (= $x200 $x678)) (trans @x948 (rewrite (= (=> $x767 $x943) $x950)) (= $x283 $x950)) (= (and $x200 $x283) $x955))))
+(let (($x513 (and $x120 $x123 $x433 $x448 $x481)))
+(let (($x518 (and true $x513)))
+(let ((@x507 (rewrite (= (and $x123 (and $x433 $x448 $x481)) (and $x123 $x433 $x448 $x481)))))
+(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0)))
+(let (($x141 (= ?x129 ?x134)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x458 (not $x130)))
+(and $x458 $x125 $x141))))))))))
+))
+(let (($x455 (and $x79 $x452)))
+(let (($x475 (not $x455)))
+(let (($x476 (or $x475 $x469)))
+(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0)))
+(let (($x141 (= ?x129 ?x134)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(and (< ?x121 ?x129) (and $x125 $x141)))))))))
+))
+(let (($x145 (=> (and $x79 (< ?x121 b_Infinity$)) $x144)))
+(let ((?x134 (+ ?x121 ?x102)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?1)))
+(let (($x141 (= ?x129 ?x134)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x458 (not $x130)))
+(let (($x464 (and $x458 $x125 $x141)))
+(let (($x143 (and (< ?x121 ?x129) (and $x125 $x141))))
+(let ((@x463 (monotonicity (rewrite (= (< ?x121 ?x129) $x458)) (= $x143 (and $x458 (and $x125 $x141))))))
+(let ((@x468 (trans @x463 (rewrite (= (and $x458 (and $x125 $x141)) $x464)) (= $x143 $x464))))
+(let ((@x457 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x79 (< ?x121 b_Infinity$)) $x455))))
+(let ((@x474 (monotonicity @x457 (quant-intro @x468 (= $x144 $x469)) (= $x145 (=> $x455 $x469)))))
+(let ((@x483 (quant-intro (trans @x474 (rewrite (= (=> $x455 $x469) $x476)) (= $x145 $x476)) (= $x146 $x481))))
+(let ((@x490 (trans (monotonicity @x483 (= $x147 (and $x481 true))) (rewrite (= (and $x481 true) $x481)) (= $x147 $x481))))
+(let (($x135 (<= ?x129 ?x134)))
+(let (($x436 (and $x125 $x378)))
+(let (($x442 (not $x436)))
+(let (($x443 (or $x442 $x135)))
+(let (($x136 (=> (and $x125 (< ?x102 b_Infinity$)) $x135)))
+(let ((@x441 (monotonicity (monotonicity @x380 (= (and $x125 (< ?x102 b_Infinity$)) $x436)) (= $x136 (=> $x436 $x135)))))
+(let ((@x450 (quant-intro (trans @x441 (rewrite (= (=> $x436 $x135) $x443)) (= $x136 $x443)) (= $x137 $x448))))
+(let (($x127 (fun_app$ v_b_Visited_G_1$ ?1)))
+(let (($x128 (and $x126 $x127)))
+(let (($x429 (not $x128)))
+(let (($x430 (or $x429 $x130)))
+(let ((@x496 (monotonicity (quant-intro (rewrite (= (=> $x128 $x130) $x430)) (= $x132 $x433)) (monotonicity @x450 @x490 (= (and $x137 $x147) (and $x448 $x481))) (= $x149 (and $x433 (and $x448 $x481))))))
+(let ((@x501 (trans @x496 (rewrite (= (and $x433 (and $x448 $x481)) (and $x433 $x448 $x481))) (= $x149 (and $x433 $x448 $x481)))))
+(let ((@x509 (trans (monotonicity @x501 (= $x150 (and $x123 (and $x433 $x448 $x481)))) @x507 (= $x150 (and $x123 $x433 $x448 $x481)))))
+(let ((@x517 (trans (monotonicity @x509 (= $x151 (and $x120 (and $x123 $x433 $x448 $x481)))) (rewrite (= (and $x120 (and $x123 $x433 $x448 $x481)) $x513)) (= $x151 $x513))))
+(let ((@x524 (trans (monotonicity @x517 (= $x152 $x518)) (rewrite (= $x518 $x513)) (= $x152 $x513))))
+(let ((@x528 (trans (monotonicity @x524 (= $x153 $x518)) (rewrite (= $x518 $x513)) (= $x153 $x513))))
+(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0)))
+(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0))))))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x98 (<= ?x97 ?x75)))
+(let (($x403 (not $x98)))
+(and $x403 $x83 $x112))))))))
+))
+(let (($x421 (or (not (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0))))) $x414)))
+(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0)))
+(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0))))))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112))))))
+))
+(let (($x116 (=> (and $x79 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x115)))
+(let (($x422 (= (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414) $x421)))
+(let (($x418 (= $x116 (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414))))
+(let ((?x97 (v_b_SP_G_0$ ?1)))
+(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?0) ?x102))))
+(let (($x83 (v_b_Visited_G_0$ ?0)))
+(let ((?x75 (v_b_SP_G_0$ ?0)))
+(let (($x98 (<= ?x97 ?x75)))
+(let (($x403 (not $x98)))
+(let (($x409 (and $x403 $x83 $x112)))
+(let (($x114 (and (< ?x75 ?x97) (and $x83 $x112))))
+(let ((@x408 (monotonicity (rewrite (= (< ?x75 ?x97) $x403)) (= $x114 (and $x403 (and $x83 $x112))))))
+(let ((@x413 (trans @x408 (rewrite (= (and $x403 (and $x83 $x112)) $x409)) (= $x114 $x409))))
+(let (($x397 (not (<= b_Infinity$ ?x75))))
+(let (($x400 (and $x79 $x397)))
+(let ((@x402 (monotonicity (rewrite (= (< ?x75 b_Infinity$) $x397)) (= (and $x79 (< ?x75 b_Infinity$)) $x400))))
+(let ((@x425 (trans (monotonicity @x402 (quant-intro @x413 (= $x115 $x414)) $x418) (rewrite $x422) (= $x116 $x421))))
+(let ((@x531 (monotonicity (quant-intro @x425 (= $x117 $x426)) @x528 (= $x154 (and $x426 $x513)))))
+(let ((@x960 (monotonicity (trans @x531 (rewrite (= (and $x426 $x513) $x532)) (= $x154 $x532)) @x957 (= $x285 (=> $x532 $x955)))))
+(let ((@x969 (monotonicity (quant-intro @x425 (= $x117 $x426)) (trans @x960 (rewrite (= (=> $x532 $x955) $x962)) (= $x285 $x962)) (= (and $x117 $x285) $x967))))
+(let (($x106 (<= ?x97 (+ ?x75 ?x102))))
+(let (($x388 (or (not (and $x83 $x378)) $x106)))
+(let (($x107 (=> (and $x83 (< ?x102 b_Infinity$)) $x106)))
+(let ((@x383 (monotonicity @x380 (= (and $x83 (< ?x102 b_Infinity$)) (and $x83 $x378)))))
+(let ((@x392 (trans (monotonicity @x383 (= $x107 (=> (and $x83 $x378) $x106))) (rewrite (= (=> (and $x83 $x378) $x106) $x388)) (= $x107 $x388))))
+(let ((@x972 (monotonicity (quant-intro @x392 (= $x108 $x393)) @x969 (= $x287 (=> $x393 $x967)))))
+(let ((@x981 (monotonicity (quant-intro @x392 (= $x108 $x393)) (trans @x972 (rewrite (= (=> $x393 $x967) $x974)) (= $x287 $x974)) (= (and $x108 $x287) $x979))))
+(let (($x95 (v_b_Visited_G_0$ ?1)))
+(let (($x84 (not $x83)))
+(let (($x96 (and $x84 $x95)))
+(let (($x370 (not $x96)))
+(let (($x371 (or $x370 $x98)))
+(let ((@x984 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) @x981 (= $x289 (=> $x374 $x979)))))
+(let ((@x993 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) (trans @x984 (rewrite (= (=> $x374 $x979) $x986)) (= $x289 $x986)) (= (and $x100 $x289) $x991))))
+(let ((@x1002 (trans (monotonicity @x993 (= $x291 (=> $x94 $x991))) (rewrite (= (=> $x94 $x991) $x998)) (= $x291 $x998))))
+(let ((@x1008 (monotonicity (monotonicity @x1002 (= (and $x94 $x291) $x1003)) (= $x293 (=> $x92 $x1003)))))
+(let ((@x1017 (monotonicity (trans @x1008 (rewrite (= (=> $x92 $x1003) $x1010)) (= $x293 $x1010)) (= (and $x92 $x293) $x1015))))
+(let (($x340 (or $x74 (= ?x75 b_Infinity$))))
+(let ((@x345 (quant-intro (rewrite (= (=> $x79 (= ?x75 b_Infinity$)) $x340)) (= $x82 $x343))))
+(let ((@x350 (monotonicity @x345 (rewrite (= (and $x85 true) $x85)) (= (and $x82 (and $x85 true)) (and $x343 $x85)))))
+(let ((@x339 (quant-intro (rewrite (= (=> $x74 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x78 $x337))))
+(let ((@x358 (trans (monotonicity @x339 @x350 (= $x88 (and $x337 (and $x343 $x85)))) (rewrite (= (and $x337 (and $x343 $x85)) $x354)) (= $x88 $x354))))
+(let ((@x365 (trans (monotonicity @x358 (= $x89 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x89 $x354))))
+(let ((@x369 (trans (monotonicity @x365 (= $x90 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x90 $x354))))
+(let ((@x1026 (trans (monotonicity @x369 @x1017 (= $x295 (=> $x354 $x1015))) (rewrite (= (=> $x354 $x1015) $x1022)) (= $x295 $x1022))))
+(let ((@x1030 (mp (asserted $x296) (monotonicity @x1026 (= $x296 (not $x1022))) (not $x1022))))
+(let ((@x1031 (not-or-elim @x1030 $x354)))
+(let ((@x1780 (mp~ (mp (and-elim @x1031 $x85) (rewrite* (= $x85 $x85)) $x85) @x1779 $x85)))
+(let ((@x4210 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3748) $x2668)) (mp @x1780 @x3752 $x3748) (hypothesis $x1821) false)))
+(let (($x2688 (not $x2683)))
+(let (($x4075 (or $x2688 $x4072)))
+(let (($x4078 (not $x4075)))
+(let (($x3763 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) )))
+))
+(let (($x4081 (or (not $x3763) $x4078)))
+(let (($x4084 (not $x4081)))
+(let (($x1807 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
+(let (($x1800 (v_b_Visited_G_0$ ?v0!2)))
+(let (($x2622 (not $x1800)))
+(let (($x1798 (v_b_Visited_G_0$ ?v1!1)))
+(let (($x2637 (or $x1798 $x2622 $x1807)))
+(let (($x2642 (not $x2637)))
+(let (($x4087 (or $x2642 $x4084)))
+(let (($x4090 (not $x4087)))
+(let (($x3754 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(>= ?x75 0)) :pattern ( (v_b_SP_G_0$ ?v0) )))
+))
+(let (($x4093 (or (not $x3754) $x4090)))
+(let (($x4096 (not $x4093)))
+(let ((?x1784 (v_b_SP_G_0$ ?v0!0)))
+(let (($x1785 (>= ?x1784 0)))
+(let (($x307 (not (<= b_Infinity$ 0))))
+(let ((@x310 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x307)) $x307)))
+(let (($x3424 (= b_Infinity$ ?x1784)))
+(let ((@x3416 (symm (commutativity (= $x3424 (= ?x1784 b_Infinity$))) (= (= ?x1784 b_Infinity$) $x3424))))
+(let (($x3481 (= ?x1784 b_Infinity$)))
+(let (($x5544 (= ?v0!0 b_Source$)))
+(let (($x5542 (not $x5544)))
+(let ((@x3411 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1784 0)) $x1785)) (hypothesis (not $x1785)) (not (= ?x1784 0)))))
+(let (($x3735 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(or $x79 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) )))
+))
+(let ((@x3739 (quant-intro (refl (= (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x337 $x3735))))
+(let ((@x1769 (nnf-pos (refl (~ (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (~ $x337 $x337))))
+(let ((@x1770 (mp~ (mp (and-elim @x1031 $x337) (rewrite* (= $x337 $x337)) $x337) @x1769 $x337)))
+(let (($x3446 (= (or (not $x3735) (or $x5542 (= ?x1784 0))) (or (not $x3735) $x5542 (= ?x1784 0)))))
+(let ((@x3448 (mp ((_ quant-inst ?v0!0) (or (not $x3735) (or $x5542 (= ?x1784 0)))) (rewrite $x3446) (or (not $x3735) $x5542 (= ?x1784 0)))))
+(let (($x3741 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$)))
+(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) )))
+))
+(let ((@x1775 (mp~ (mp (and-elim @x1031 $x343) (rewrite* (= $x343 $x343)) $x343) (nnf-pos (refl (~ $x340 $x340)) (~ $x343 $x343)) $x343)))
+(let ((@x3440 (rewrite (= (or (not $x3741) (or $x5544 $x3481)) (or (not $x3741) $x5544 $x3481)))))
+(let ((@x3430 (mp ((_ quant-inst ?v0!0) (or (not $x3741) (or $x5544 $x3481))) @x3440 (or (not $x3741) $x5544 $x3481))))
+(let ((@x3417 (unit-resolution @x3430 (mp @x1775 (quant-intro (refl (= $x340 $x340)) (= $x343 $x3741)) $x3741) (unit-resolution @x3448 (mp @x1770 @x3739 $x3735) @x3411 $x5542) $x3481)))
+(let ((@x3399 ((_ th-lemma arith triangle-eq) (or (not $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0)))))
+(let ((@x3400 (unit-resolution @x3399 (mp @x3417 @x3416 $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0))))
+(let ((@x3331 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1784 0) $x1785)) (hypothesis (not $x1785)) (<= ?x1784 0))))
+(let ((@x3301 ((_ th-lemma arith farkas 1 -1 1) @x3331 @x3400 (mp @x310 (rewrite* (= $x307 $x307)) $x307) false)))
+(let (($x3437 (not $x3735)))
+(let (($x3312 (or $x3437 $x92)))
+(let ((@x3294 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
+(let ((@x3309 (trans @x3294 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
+(let ((@x3315 (monotonicity @x3309 (= (or (not (= b_Source$ b_Source$)) $x92) (or false $x92)))))
+(let ((@x3319 (trans @x3315 (rewrite (= (or false $x92) $x92)) (= (or (not (= b_Source$ b_Source$)) $x92) $x92))))
+(let ((@x3291 (monotonicity @x3319 (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312))))
+(let ((@x3299 (trans @x3291 (rewrite (= $x3312 $x3312)) (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312))))
+(let ((@x3300 (mp ((_ quant-inst b_Source$) (or $x3437 (or (not (= b_Source$ b_Source$)) $x92))) @x3299 $x3312)))
+(let ((@x4116 (lemma (unit-resolution @x3300 (mp @x1770 @x3739 $x3735) (hypothesis $x1009) false) $x92)))
+(let (($x3122 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528)))))))))
+))
+(let (($x3107 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(or $x247 $x1303 $x1621))))))))
+))
+(let (($x3131 (not (or (not $x3107) $x2215 $x2220 (not $x3122)))))
+(let (($x3136 (or $x3085 $x3131)))
+(let (($x3062 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601))))
+))
+(let (($x3145 (not (or (not $x3062) (not $x3136)))))
+(let (($x3150 (or $x3039 $x3145)))
+(let (($x1595 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(>= ?x220 0)))
+))
+(let (($x1598 (not $x1595)))
+(let (($x3158 (not (or $x1598 (not $x3150)))))
+(let (($x3163 (or $x913 $x2154 $x3158)))
+(let (($x3171 (not (or $x925 (not $x3163)))))
+(let (($x3176 (or $x2139 $x3171)))
+(let (($x1586 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))
+))
+(let (($x1589 (not $x1586)))
+(let (($x3184 (not (or $x1589 (not $x3176)))))
+(let (($x3189 (or $x2122 $x3184)))
+(let (($x3016 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x2991 (or $x1540 $x1547)))
+(let (($x2992 (not $x2991)))
+(or $x2992 $x225)))))))))))
+))
+(let (($x3010 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let ((?x1560 (* (- 1) ?x220)))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
+(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
+(or $x1540 $x1547 $x1559)))))))))
+))
+(let (($x1535 (forall ((?v0 B_Vertex$) )(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x125 (>= (+ ?x121 ?x1520) 0)))))))
+))
+(let (($x3200 (or $x2082 $x2087 $x202 $x1522 (not $x1535) $x3196 (not $x3010) (not $x3016) (not $x3189))))
+(let (($x3201 (not $x3200)))
+(let (($x2946 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(or $x1448 $x1303 $x1493)))))))
+))
+(let (($x2954 (not (or (not $x2946) $x193))))
+(let (($x2959 (or $x2924 $x2954)))
+(let (($x2902 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2480 (= ?x2479 0)))
+(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2891 (not (or $x2464 (not $x2480)))))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1448 $x2891)))))))))
+))
+(let (($x2968 (not (or (not $x2902) (not $x2959)))))
+(let (($x2865 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(or (>= (+ ?x177 ?x1971) 0) (not $x2436)))))))
+))
+(let (($x2873 (not (or $x1968 $x1973 (not $x2865)))))
+(let (($x2973 (or $x2873 $x2968)))
+(let (($x2850 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x125 $x1395))))
+))
+(let (($x2986 (not (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973)))))
+(let (($x3206 (or $x2986 $x3201)))
+(let (($x2836 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2417 (= ?x2416 0)))
+(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
+(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417)))))
+(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1395 $x2825)))))))))
+))
+(let (($x2808 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x126 (not $x125)))
+(or $x126 $x1303 $x1384))))))))
+))
+(let (($x2786 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367)))))
+))
+(let (($x1363 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(>= ?x121 0)))
+))
+(let (($x2763 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2379 (= ?x2378 0)))
+(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
+(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379)))))
+(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
+(let (($x74 (= ?v0 b_Source$)))
+(or $x74 $x1330 $x2752)))))))))
+))
+(let (($x3219 (or (not $x2763) $x3213 (not $x1363) (not $x2786) (not $x2808) (not $x2836) (not $x3206))))
+(let (($x3220 (not $x3219)))
+(let (($x2725 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1850 (* (- 1) ?x1849)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))))
+))
+(let (($x2733 (not (or $x1847 $x1852 (not $x2725)))))
+(let (($x3225 (or $x2733 $x3220)))
+(let (($x2710 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(or $x84 $x1303 $x1316))))))))
+))
+(let (($x3234 (not (or (not $x2710) (not $x3225)))))
+(let (($x3239 (or $x2688 $x3234)))
+(let (($x2665 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288))))
+))
+(let (($x3248 (not (or (not $x2665) (not $x3239)))))
+(let (($x3253 (or $x2642 $x3248)))
+(let (($x1280 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(>= ?x75 0)))
+))
+(let (($x1283 (not $x1280)))
+(let (($x3261 (not (or $x1283 (not $x3253)))))
+(let (($x1786 (not $x1785)))
+(let (($x3266 (or $x1009 $x1786 $x3261)))
+(let (($x2528 (= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20)) (b_G$ (pair$ ?0 ?v0!20))) 0)))
+(let (($x3111 (or (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0) $x247 (not $x2528))))
+(let ((@x3984 (monotonicity (quant-intro (refl (= $x3111 $x3111)) (= $x3122 $x3977)) (= (not $x3122) $x3982))))
+(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) ?x250)) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x3102 (or $x247 $x1303 $x1621)))
+(let ((@x3975 (monotonicity (quant-intro (refl (= $x3102 $x3102)) (= $x3107 $x3968)) (= (not $x3107) $x3973))))
+(let ((@x3987 (monotonicity @x3975 @x3984 (= (or (not $x3107) $x2215 $x2220 (not $x3122)) $x3985))))
+(let ((@x3996 (monotonicity (monotonicity (monotonicity @x3987 (= $x3131 $x3988)) (= $x3136 $x3991)) (= (not $x3136) $x3994))))
+(let (($x1601 (>= (+ ?x220 (* (- 1) ?x250)) 0)))
+(let (($x3057 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1)) $x1601)))
+(let ((@x3967 (monotonicity (quant-intro (refl (= $x3057 $x3057)) (= $x3062 $x3960)) (= (not $x3062) (not $x3960)))))
+(let ((@x4002 (monotonicity (monotonicity @x3967 @x3996 (= (or (not $x3062) (not $x3136)) $x3997)) (= $x3145 $x4000))))
+(let ((@x4008 (monotonicity (monotonicity @x4002 (= $x3150 $x4003)) (= (not $x3150) $x4006))))
+(let ((@x3955 (quant-intro (refl (= (>= ?x220 0) (>= ?x220 0))) (= $x1595 $x3951))))
+(let ((@x4011 (monotonicity (monotonicity @x3955 (= $x1598 (not $x3951))) @x4008 (= (or $x1598 (not $x3150)) $x4009))))
+(let ((@x4020 (monotonicity (monotonicity (monotonicity @x4011 (= $x3158 $x4012)) (= $x3163 $x4015)) (= (not $x3163) $x4018))))
+(let ((@x3950 (monotonicity (quant-intro (refl (= $x783 $x783)) (= $x786 $x3943)) (= $x925 $x3948))))
+(let ((@x4026 (monotonicity (monotonicity @x3950 @x4020 (= (or $x925 (not $x3163)) $x4021)) (= $x3171 $x4024))))
+(let ((@x4032 (monotonicity (monotonicity @x4026 (= $x3176 $x4027)) (= (not $x3176) $x4030))))
+(let (($x1582 (>= (+ ?x121 (* (- 1) ?x220)) 0)))
+(let ((@x3941 (monotonicity (quant-intro (refl (= $x1582 $x1582)) (= $x1586 $x3934)) (= $x1589 $x3939))))
+(let ((@x4038 (monotonicity (monotonicity @x3941 @x4032 (= (or $x1589 (not $x3176)) $x4033)) (= $x3184 $x4036))))
+(let ((@x4044 (monotonicity (monotonicity @x4038 (= $x3189 $x4039)) (= (not $x3189) $x4042))))
+(let (($x1547 (<= (+ ?x121 (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
+(let (($x2991 (or $x1540 $x1547)))
+(let (($x2992 (not $x2991)))
+(let (($x3013 (or $x2992 $x225)))
+(let ((@x3933 (monotonicity (quant-intro (refl (= $x3013 $x3013)) (= $x3016 $x3926)) (= (not $x3016) $x3931))))
+(let (($x1559 (= (+ ?x204 ?x215 (* (- 1) ?x220)) 0)))
+(let (($x3005 (or $x1540 $x1547 $x1559)))
+(let ((@x3925 (monotonicity (quant-intro (refl (= $x3005 $x3005)) (= $x3010 $x3918)) (= (not $x3010) $x3923))))
+(let (($x1532 (or $x125 (>= (+ ?x121 (* (- 1) ?x204)) 0))))
+(let ((@x3915 (monotonicity (quant-intro (refl (= $x1532 $x1532)) (= $x1535 $x3908)) (= (not $x1535) $x3913))))
+(let ((@x4050 (monotonicity (monotonicity @x3915 @x3925 @x3933 @x4044 (= $x3200 $x4045)) (= $x3201 $x4048))))
+(let (($x3903 (= (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973)) $x3902)))
+(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) ?x180)) 0)))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(let (($x2941 (or $x1448 $x1303 $x1493)))
+(let ((@x3877 (monotonicity (quant-intro (refl (= $x2941 $x2941)) (= $x2946 $x3870)) (= (not $x2946) (not $x3870)))))
+(let ((@x3883 (monotonicity (monotonicity @x3877 (= (or (not $x2946) $x193) $x3878)) (= $x2954 $x3881))))
+(let ((@x3889 (monotonicity (monotonicity @x3883 (= $x2959 $x3884)) (= (not $x2959) $x3887))))
+(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
+(let (($x2480 (= ?x2479 0)))
+(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
+(let (($x2891 (not (or $x2464 (not $x2480)))))
+(let (($x2897 (or $x74 $x1448 $x2891)))
+(let ((@x3869 (monotonicity (quant-intro (refl (= $x2897 $x2897)) (= $x2902 $x3862)) (= (not $x2902) (not $x3862)))))
+(let ((@x3895 (monotonicity (monotonicity @x3869 @x3889 (= (or (not $x2902) (not $x2959)) $x3890)) (= $x2968 $x3893))))
+(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?0 ?v0!8))) 0)))
+(let (($x2854 (or (>= (+ ?x177 ?x1971) 0) (not $x2436))))
+(let ((@x3855 (monotonicity (quant-intro (refl (= $x2854 $x2854)) (= $x2865 $x3848)) (= (not $x2865) $x3853))))
+(let ((@x3861 (monotonicity (monotonicity @x3855 (= (or $x1968 $x1973 (not $x2865)) $x3856)) (= $x2873 $x3859))))
+(let ((@x3901 (monotonicity (monotonicity @x3861 @x3895 (= $x2973 $x3896)) (= (not $x2973) $x3899))))
+(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
+(let (($x2839 (or $x125 $x1395)))
+(let ((@x3845 (monotonicity (quant-intro (refl (= $x2839 $x2839)) (= $x2850 $x3838)) (= (not $x2850) $x3843))))
+(let ((@x4053 (monotonicity (monotonicity (monotonicity @x3845 @x3901 $x3903) (= $x2986 $x3905)) @x4050 (= $x3206 $x4051))))
+(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
+(let (($x2417 (= ?x2416 0)))
+(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
+(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2417)))))
+(let (($x2831 (or $x74 $x1395 $x2825)))
+(let ((@x3836 (monotonicity (quant-intro (refl (= $x2831 $x2831)) (= $x2836 $x3829)) (= (not $x2836) $x3834))))
+(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) ?x129)) 0)))
+(let (($x2803 (or $x126 $x1303 $x1384)))
+(let ((@x3828 (monotonicity (quant-intro (refl (= $x2803 $x2803)) (= $x2808 $x3821)) (= (not $x2808) $x3826))))
+(let (($x1367 (>= (+ ?x121 (* (- 1) ?x129)) 0)))
+(let (($x2781 (or $x125 (not $x127) $x1367)))
+(let ((@x3820 (monotonicity (quant-intro (refl (= $x2781 $x2781)) (= $x2786 $x3813)) (= (not $x2786) $x3818))))
+(let ((@x3808 (quant-intro (refl (= (>= ?x121 0) (>= ?x121 0))) (= $x1363 $x3804))))
+(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
+(let (($x2379 (= ?x2378 0)))
+(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
+(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2379)))))
+(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
+(let (($x2758 (or $x74 $x1330 $x2752)))
+(let ((@x3802 (monotonicity (quant-intro (refl (= $x2758 $x2758)) (= $x2763 $x3795)) (= (not $x2763) (not $x3795)))))
+(let ((@x4059 (monotonicity @x3802 (monotonicity @x3808 (= (not $x1363) $x3809)) @x3820 @x3828 @x3836 (monotonicity @x4053 (= (not $x3206) $x4054)) (= $x3219 $x4057))))
+(let (($x1862 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5)) (b_G$ (pair$ ?0 ?v0!5))) 0)))
+(let (($x2714 (or (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0) $x84 (not $x1862))))
+(let ((@x3788 (monotonicity (quant-intro (refl (= $x2714 $x2714)) (= $x2725 $x3781)) (= (not $x2725) (not $x3781)))))
+(let ((@x3794 (monotonicity (monotonicity @x3788 (= (or $x1847 $x1852 (not $x2725)) $x3789)) (= $x2733 $x3792))))
+(let ((@x4065 (monotonicity @x3794 (monotonicity @x4059 (= $x3220 $x4060)) (= $x3225 $x4063))))
+(let (($x1316 (>= (+ ?x75 (* (- 1) ?x97) ?x102) 0)))
+(let (($x2705 (or $x84 $x1303 $x1316)))
+(let ((@x3779 (monotonicity (quant-intro (refl (= $x2705 $x2705)) (= $x2710 $x3772)) (= (not $x2710) (not $x3772)))))
+(let ((@x4071 (monotonicity @x3779 (monotonicity @x4065 (= (not $x3225) $x4066)) (= (or (not $x2710) (not $x3225)) $x4069))))
+(let ((@x4080 (monotonicity (monotonicity (monotonicity @x4071 (= $x3234 $x4072)) (= $x3239 $x4075)) (= (not $x3239) $x4078))))
+(let (($x1288 (>= (+ ?x75 (* (- 1) ?x97)) 0)))
+(let (($x2660 (or $x83 (not $x95) $x1288)))
+(let ((@x3770 (monotonicity (quant-intro (refl (= $x2660 $x2660)) (= $x2665 $x3763)) (= (not $x2665) (not $x3763)))))
+(let ((@x4086 (monotonicity (monotonicity @x3770 @x4080 (= (or (not $x2665) (not $x3239)) $x4081)) (= $x3248 $x4084))))
+(let ((@x4092 (monotonicity (monotonicity @x4086 (= $x3253 $x4087)) (= (not $x3253) $x4090))))
+(let ((@x3758 (quant-intro (refl (= (>= ?x75 0) (>= ?x75 0))) (= $x1280 $x3754))))
+(let ((@x4095 (monotonicity (monotonicity @x3758 (= $x1283 (not $x3754))) @x4092 (= (or $x1283 (not $x3253)) $x4093))))
+(let ((@x4101 (monotonicity (monotonicity @x4095 (= $x3261 $x4096)) (= $x3266 (or $x1009 $x1786 $x4096)))))
+(let (($x2537 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x2531 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 $x2528)))
+(not $x2531))))))))
+))
+(let (($x2221 (not $x2220)))
+(let (($x2216 (not $x2215)))
+(let (($x1628 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1306 (not $x1303)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x1615 (and $x238 $x1306)))
+(let (($x1618 (not $x1615)))
+(or $x1618 $x1621))))))))))
+))
+(let (($x2546 (and $x1628 $x2216 $x2221 $x2537)))
+(let (($x2197 (not (and $x2189 (not $x2194)))))
+(let (($x2203 (or $x2197 $x2202)))
+(let (($x2204 (not $x2203)))
+(let (($x2551 (or $x2204 $x2546)))
+(let (($x1609 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x247 (not $x238)))
+(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
+(let (($x798 (not $x249)))
+(or $x798 $x1601)))))))
+))
+(let (($x2554 (and $x1609 $x2551)))
+(let (($x2170 (not (and (not $x2166) $x2168))))
+(let (($x2176 (or $x2170 $x2175)))
+(let (($x2177 (not $x2176)))
+(let (($x2557 (or $x2177 $x2554)))
+(let (($x2560 (and $x1595 $x2557)))
+(let (($x2563 (or $x913 $x2154 $x2560)))
+(let (($x2566 (and $x786 $x2563)))
+(let (($x2569 (or $x2139 $x2566)))
+(let (($x2572 (and $x1586 $x2569)))
+(let (($x2575 (or $x2122 $x2572)))
+(let (($x1573 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let (($x225 (= ?x220 ?x121)))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1553 (and (not $x1540) (not $x1547))))
+(or $x1553 $x225))))))))))
+))
+(let (($x1567 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
+(let ((?x1560 (* (- 1) ?x220)))
+(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
+(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
+(let (($x1553 (and (not (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)) (not $x1547))))
+(let (($x1556 (not $x1553)))
+(or $x1556 $x1559))))))))))
+))
+(let (($x1525 (not $x1522)))
+(let (($x2088 (not $x2087)))
+(let (($x2083 (not $x2082)))
+(let (($x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x1567 $x1573 $x2575)))
+(let (($x2058 (not $x193)))
+(let (($x1499 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1306 (not $x1303)))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(let (($x1451 (not $x1448)))
+(let (($x1487 (and $x1451 $x1306)))
+(let (($x1490 (not $x1487)))
+(or $x1490 $x1493)))))))))))
+))
+(let (($x2061 (and $x1499 $x2058)))
+(let (($x2042 (not (and $x2034 (not $x2039)))))
+(let (($x2500 (or $x2042 $x2497)))
+(let (($x2503 (not $x2500)))
+(let (($x2506 (or $x2503 $x2061)))
+(let (($x2491 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2480 (= ?x2479 0)))
+(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2485 (and (not $x2464) $x2480)))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
+(let (($x1451 (not $x1448)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1454 (and $x79 $x1451)))
+(let (($x1457 (not $x1454)))
+(or $x1457 $x2485)))))))))))))
+))
+(let (($x2509 (and $x2491 $x2506)))
+(let (($x2445 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436)))
+(not $x2439)))))))
+))
+(let (($x1974 (not $x1973)))
+(let (($x1969 (not $x1968)))
+(let (($x2451 (and $x1969 $x1974 $x2445)))
+(let (($x2512 (or $x2451 $x2509)))
+(let (($x1950 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1398 (not $x1395)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x126 (not $x125)))
+(let (($x1431 (and $x126 $x1398)))
+(not $x1431)))))))
+))
+(let (($x2518 (and $x1950 $x159 $x162 $x164 $x167 $x2512)))
+(let (($x2586 (or $x2518 $x2581)))
+(let (($x2428 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2417 (= ?x2416 0)))
+(let ((?x1922 (?v1!7 ?v0)))
+(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922)))
+(let (($x2422 (and (not (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1922))) 0)) $x1927 $x2417)))
+(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
+(let (($x1398 (not $x1395)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1401 (and $x79 $x1398)))
+(let (($x1404 (not $x1401)))
+(or $x1404 $x2422))))))))))))))
+))
+(let (($x1390 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1306 (not $x1303)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x1377 (and $x125 $x1306)))
+(let (($x1380 (not $x1377)))
+(or $x1380 $x1384))))))))))
+))
+(let (($x1374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x126 (not $x125)))
+(let (($x128 (and $x126 $x127)))
+(let (($x429 (not $x128)))
+(or $x429 $x1367)))))))))
+))
+(let (($x2390 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2379 (= ?x2378 0)))
+(let ((?x1887 (?v1!6 ?v0)))
+(let (($x1892 (v_b_Visited_G_0$ ?x1887)))
+(let (($x2384 (and (not (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?x1887))) 0)) $x1892 $x2379)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))))
+(let (($x1339 (not $x1336)))
+(or $x1339 $x2384))))))))))))
+))
+(let (($x2595 (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428 $x2586)))
+(let (($x1876 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1850 (* (- 1) ?x1849)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x1863 (and (not (>= (+ ?x75 ?x1850) 0)) $x83 (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
+(not $x1863)))))))
+))
+(let (($x1853 (not $x1852)))
+(let (($x1848 (not $x1847)))
+(let (($x2350 (and $x1848 $x1853 $x1876)))
+(let (($x2600 (or $x2350 $x2595)))
+(let (($x1322 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
+(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
+(let (($x1306 (not $x1303)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x1309 (and $x83 $x1306)))
+(let (($x1312 (not $x1309)))
+(or $x1312 $x1316))))))))))
+))
+(let (($x2603 (and $x1322 $x2600)))
+(let (($x1829 (not (and $x1821 (not $x1826)))))
+(let (($x2339 (or $x1829 $x2336)))
+(let (($x2342 (not $x2339)))
+(let (($x2606 (or $x2342 $x2603)))
+(let (($x1295 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x95 (v_b_Visited_G_0$ ?v0)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(let (($x84 (not $x83)))
+(let (($x96 (and $x84 $x95)))
+(let (($x370 (not $x96)))
+(or $x370 $x1288))))))))
+))
+(let (($x2609 (and $x1295 $x2606)))
+(let (($x1802 (not (and (not $x1798) $x1800))))
+(let (($x1808 (or $x1802 $x1807)))
+(let (($x1809 (not $x1808)))
+(let (($x2612 (or $x1809 $x2609)))
+(let (($x2615 (and $x1280 $x2612)))
+(let (($x2618 (or $x1009 $x1786 $x2615)))
+(let ((@x3203 (rewrite (= (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189) $x3201))))
+(let (($x2531 (and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)) $x238 $x2528)))
+(let (($x2534 (not $x2531)))
+(let ((@x3117 (monotonicity (rewrite (= $x2531 (not $x3111))) (= $x2534 (not (not $x3111))))))
+(let ((@x3124 (quant-intro (trans @x3117 (rewrite (= (not (not $x3111)) $x3111)) (= $x2534 $x3111)) (= $x2537 $x3122))))
+(let (($x1306 (not $x1303)))
+(let (($x1615 (and $x238 $x1306)))
+(let (($x1618 (not $x1615)))
+(let (($x1625 (or $x1618 $x1621)))
+(let ((@x3094 (monotonicity (rewrite (= $x1615 (not (or $x247 $x1303)))) (= $x1618 (not (not (or $x247 $x1303)))))))
+(let ((@x3098 (trans @x3094 (rewrite (= (not (not (or $x247 $x1303))) (or $x247 $x1303))) (= $x1618 (or $x247 $x1303)))))
+(let ((@x3106 (trans (monotonicity @x3098 (= $x1625 (or (or $x247 $x1303) $x1621))) (rewrite (= (or (or $x247 $x1303) $x1621) $x3102)) (= $x1625 $x3102))))
+(let ((@x3127 (monotonicity (quant-intro @x3106 (= $x1628 $x3107)) @x3124 (= $x2546 (and $x3107 $x2216 $x2221 $x3122)))))
+(let ((@x3135 (trans @x3127 (rewrite (= (and $x3107 $x2216 $x2221 $x3122) $x3131)) (= $x2546 $x3131))))
+(let ((@x3072 (monotonicity (rewrite (= (and $x2189 (not $x2194)) (not (or $x3065 $x2194)))) (= $x2197 (not (not (or $x3065 $x2194)))))))
+(let ((@x3076 (trans @x3072 (rewrite (= (not (not (or $x3065 $x2194))) (or $x3065 $x2194))) (= $x2197 (or $x3065 $x2194)))))
+(let ((@x3084 (trans (monotonicity @x3076 (= $x2203 (or (or $x3065 $x2194) $x2202))) (rewrite (= (or (or $x3065 $x2194) $x2202) $x3080)) (= $x2203 $x3080))))
+(let ((@x3138 (monotonicity (monotonicity @x3084 (= $x2204 $x3085)) @x3135 (= $x2551 $x3136))))
+(let (($x3058 (= (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601) $x3057)))
+(let (($x1606 (or $x798 $x1601)))
+(let (($x3055 (= $x1606 (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601))))
+(let (($x3043 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1)))))
+(let ((@x3049 (monotonicity (rewrite (= $x249 (not $x3043))) (= $x798 (not (not $x3043))))))
+(let ((@x3056 (monotonicity (trans @x3049 (rewrite (= (not (not $x3043)) $x3043)) (= $x798 $x3043)) $x3055)))
+(let ((@x3064 (quant-intro (trans @x3056 (rewrite $x3058) (= $x1606 $x3057)) (= $x1609 $x3062))))
+(let ((@x3149 (trans (monotonicity @x3064 @x3138 (= $x2554 (and $x3062 $x3136))) (rewrite (= (and $x3062 $x3136) $x3145)) (= $x2554 $x3145))))
+(let ((@x3026 (monotonicity (rewrite (= (and (not $x2166) $x2168) (not (or $x2166 $x3019)))) (= $x2170 (not (not (or $x2166 $x3019)))))))
+(let ((@x3030 (trans @x3026 (rewrite (= (not (not (or $x2166 $x3019))) (or $x2166 $x3019))) (= $x2170 (or $x2166 $x3019)))))
+(let ((@x3038 (trans (monotonicity @x3030 (= $x2176 (or (or $x2166 $x3019) $x2175))) (rewrite (= (or (or $x2166 $x3019) $x2175) $x3034)) (= $x2176 $x3034))))
+(let ((@x3152 (monotonicity (monotonicity @x3038 (= $x2177 $x3039)) @x3149 (= $x2557 $x3150))))
+(let ((@x3162 (trans (monotonicity @x3152 (= $x2560 (and $x1595 $x3150))) (rewrite (= (and $x1595 $x3150) $x3158)) (= $x2560 $x3158))))
+(let ((@x3168 (monotonicity (monotonicity @x3162 (= $x2563 $x3163)) (= $x2566 (and $x786 $x3163)))))
+(let ((@x3178 (monotonicity (trans @x3168 (rewrite (= (and $x786 $x3163) $x3171)) (= $x2566 $x3171)) (= $x2569 $x3176))))
+(let ((@x3188 (trans (monotonicity @x3178 (= $x2572 (and $x1586 $x3176))) (rewrite (= (and $x1586 $x3176) $x3184)) (= $x2572 $x3184))))
+(let ((@x3015 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (or (and (not $x1540) (not $x1547)) $x225) $x3013))))
+(let ((@x2997 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (not (and (not $x1540) (not $x1547))) (not $x2992)))))
+(let ((@x3001 (trans @x2997 (rewrite (= (not $x2992) $x2991)) (= (not (and (not $x1540) (not $x1547))) $x2991))))
+(let ((@x3004 (monotonicity @x3001 (= (or (not (and (not $x1540) (not $x1547))) $x1559) (or $x2991 $x1559)))))
+(let ((@x3009 (trans @x3004 (rewrite (= (or $x2991 $x1559) $x3005)) (= (or (not (and (not $x1540) (not $x1547))) $x1559) $x3005))))
+(let ((@x3194 (monotonicity (quant-intro @x3009 (= $x1567 $x3010)) (quant-intro @x3015 (= $x1573 $x3016)) (monotonicity @x3188 (= $x2575 $x3189)) (= $x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189)))))
+(let (($x1451 (not $x1448)))
+(let (($x1487 (and $x1451 $x1306)))
+(let (($x1490 (not $x1487)))
+(let (($x1496 (or $x1490 $x1493)))
+(let ((@x2933 (monotonicity (rewrite (= $x1487 (not (or $x1448 $x1303)))) (= $x1490 (not (not (or $x1448 $x1303)))))))
+(let ((@x2937 (trans @x2933 (rewrite (= (not (not (or $x1448 $x1303))) (or $x1448 $x1303))) (= $x1490 (or $x1448 $x1303)))))
+(let ((@x2945 (trans (monotonicity @x2937 (= $x1496 (or (or $x1448 $x1303) $x1493))) (rewrite (= (or (or $x1448 $x1303) $x1493) $x2941)) (= $x1496 $x2941))))
+(let ((@x2951 (monotonicity (quant-intro @x2945 (= $x1499 $x2946)) (= $x2061 (and $x2946 $x2058)))))
+(let ((@x2911 (monotonicity (rewrite (= (and $x2034 (not $x2039)) (not (or $x2033 $x2039)))) (= $x2042 (not (not (or $x2033 $x2039)))))))
+(let ((@x2915 (trans @x2911 (rewrite (= (not (not (or $x2033 $x2039))) (or $x2033 $x2039))) (= $x2042 (or $x2033 $x2039)))))
+(let ((@x2923 (trans (monotonicity @x2915 (= $x2500 (or (or $x2033 $x2039) $x2497))) (rewrite (= (or (or $x2033 $x2039) $x2497) $x2919)) (= $x2500 $x2919))))
+(let ((@x2961 (monotonicity (monotonicity @x2923 (= $x2503 $x2924)) (trans @x2951 (rewrite (= (and $x2946 $x2058) $x2954)) (= $x2061 $x2954)) (= $x2506 $x2959))))
+(let (($x2485 (and (not $x2464) $x2480)))
+(let (($x1454 (and $x79 $x1451)))
+(let (($x1457 (not $x1454)))
+(let (($x2488 (or $x1457 $x2485)))
+(let ((@x2884 (monotonicity (rewrite (= $x1454 (not (or $x74 $x1448)))) (= $x1457 (not (not (or $x74 $x1448)))))))
+(let ((@x2888 (trans @x2884 (rewrite (= (not (not (or $x74 $x1448))) (or $x74 $x1448))) (= $x1457 (or $x74 $x1448)))))
+(let ((@x2896 (monotonicity @x2888 (rewrite (= $x2485 $x2891)) (= $x2488 (or (or $x74 $x1448) $x2891)))))
+(let ((@x2901 (trans @x2896 (rewrite (= (or (or $x74 $x1448) $x2891) $x2897)) (= $x2488 $x2897))))
+(let ((@x2964 (monotonicity (quant-intro @x2901 (= $x2491 $x2902)) @x2961 (= $x2509 (and $x2902 $x2959)))))
+(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436)))
+(let (($x2442 (not $x2439)))
+(let ((@x2860 (monotonicity (rewrite (= $x2439 (not $x2854))) (= $x2442 (not (not $x2854))))))
+(let ((@x2867 (quant-intro (trans @x2860 (rewrite (= (not (not $x2854)) $x2854)) (= $x2442 $x2854)) (= $x2445 $x2865))))
+(let ((@x2877 (trans (monotonicity @x2867 (= $x2451 (and $x1969 $x1974 $x2865))) (rewrite (= (and $x1969 $x1974 $x2865) $x2873)) (= $x2451 $x2873))))
+(let ((@x2975 (monotonicity @x2877 (trans @x2964 (rewrite (= (and $x2902 $x2959) $x2968)) (= $x2509 $x2968)) (= $x2512 $x2973))))
+(let ((@x2845 (monotonicity (rewrite (= (and $x126 (not $x1395)) (not $x2839))) (= (not (and $x126 (not $x1395))) (not (not $x2839))))))
+(let ((@x2849 (trans @x2845 (rewrite (= (not (not $x2839)) $x2839)) (= (not (and $x126 (not $x1395))) $x2839))))
+(let ((@x2978 (monotonicity (quant-intro @x2849 (= $x1950 $x2850)) @x2975 (= $x2518 (and $x2850 $x159 $x162 $x164 $x167 $x2973)))))
+(let ((@x2990 (trans @x2978 (rewrite (= (and $x2850 $x159 $x162 $x164 $x167 $x2973) $x2986)) (= $x2518 $x2986))))
+(let ((?x1922 (?v1!7 ?0)))
+(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922)))
+(let (($x2422 (and (not $x2401) $x1927 $x2417)))
+(let (($x1398 (not $x1395)))
+(let (($x1401 (and $x79 $x1398)))
+(let (($x1404 (not $x1401)))
+(let (($x2425 (or $x1404 $x2422)))
+(let ((@x2817 (monotonicity (rewrite (= $x1401 (not (or $x74 $x1395)))) (= $x1404 (not (not (or $x74 $x1395)))))))
+(let ((@x2821 (trans @x2817 (rewrite (= (not (not (or $x74 $x1395))) (or $x74 $x1395))) (= $x1404 (or $x74 $x1395)))))
+(let ((@x2830 (monotonicity @x2821 (rewrite (= $x2422 $x2825)) (= $x2425 (or (or $x74 $x1395) $x2825)))))
+(let ((@x2835 (trans @x2830 (rewrite (= (or (or $x74 $x1395) $x2825) $x2831)) (= $x2425 $x2831))))
+(let ((@x2795 (monotonicity (rewrite (= (and $x125 $x1306) (not (or $x126 $x1303)))) (= (not (and $x125 $x1306)) (not (not (or $x126 $x1303)))))))
+(let ((@x2799 (trans @x2795 (rewrite (= (not (not (or $x126 $x1303))) (or $x126 $x1303))) (= (not (and $x125 $x1306)) (or $x126 $x1303)))))
+(let ((@x2802 (monotonicity @x2799 (= (or (not (and $x125 $x1306)) $x1384) (or (or $x126 $x1303) $x1384)))))
+(let ((@x2807 (trans @x2802 (rewrite (= (or (or $x126 $x1303) $x1384) $x2803)) (= (or (not (and $x125 $x1306)) $x1384) $x2803))))
+(let ((@x2775 (rewrite (= (not (not (or $x125 (not $x127)))) (or $x125 (not $x127))))))
+(let ((@x2773 (monotonicity (rewrite (= $x128 (not (or $x125 (not $x127))))) (= $x429 (not (not (or $x125 (not $x127))))))))
+(let ((@x2780 (monotonicity (trans @x2773 @x2775 (= $x429 (or $x125 (not $x127)))) (= (or $x429 $x1367) (or (or $x125 (not $x127)) $x1367)))))
+(let ((@x2785 (trans @x2780 (rewrite (= (or (or $x125 (not $x127)) $x1367) $x2781)) (= (or $x429 $x1367) $x2781))))
+(let ((?x1887 (?v1!6 ?0)))
+(let (($x1892 (v_b_Visited_G_0$ ?x1887)))
+(let (($x2384 (and (not $x2363) $x1892 $x2379)))
+(let (($x1336 (and $x79 (not $x1330))))
+(let (($x1339 (not $x1336)))
+(let (($x2387 (or $x1339 $x2384)))
+(let ((@x2744 (monotonicity (rewrite (= $x1336 (not (or $x74 $x1330)))) (= $x1339 (not (not (or $x74 $x1330)))))))
+(let ((@x2748 (trans @x2744 (rewrite (= (not (not (or $x74 $x1330))) (or $x74 $x1330))) (= $x1339 (or $x74 $x1330)))))
+(let ((@x2757 (monotonicity @x2748 (rewrite (= $x2384 $x2752)) (= $x2387 (or (or $x74 $x1330) $x2752)))))
+(let ((@x2762 (trans @x2757 (rewrite (= (or (or $x74 $x1330) $x2752) $x2758)) (= $x2387 $x2758))))
+(let ((@x3211 (monotonicity (quant-intro @x2762 (= $x2390 $x2763)) (quant-intro @x2785 (= $x1374 $x2786)) (quant-intro @x2807 (= $x1390 $x2808)) (quant-intro @x2835 (= $x2428 $x2836)) (monotonicity @x2990 (trans @x3194 @x3203 (= $x2581 $x3201)) (= $x2586 $x3206)) (= $x2595 (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206)))))
+(let ((@x3224 (trans @x3211 (rewrite (= (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206) $x3220)) (= $x2595 $x3220))))
+(let (($x1863 (and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0)) $x83 $x1862)))
+(let (($x1873 (not $x1863)))
+(let ((@x2720 (monotonicity (rewrite (= $x1863 (not $x2714))) (= $x1873 (not (not $x2714))))))
+(let ((@x2727 (quant-intro (trans @x2720 (rewrite (= (not (not $x2714)) $x2714)) (= $x1873 $x2714)) (= $x1876 $x2725))))
+(let ((@x2737 (trans (monotonicity @x2727 (= $x2350 (and $x1848 $x1853 $x2725))) (rewrite (= (and $x1848 $x1853 $x2725) $x2733)) (= $x2350 $x2733))))
+(let ((@x2697 (monotonicity (rewrite (= (and $x83 $x1306) (not (or $x84 $x1303)))) (= (not (and $x83 $x1306)) (not (not (or $x84 $x1303)))))))
+(let ((@x2701 (trans @x2697 (rewrite (= (not (not (or $x84 $x1303))) (or $x84 $x1303))) (= (not (and $x83 $x1306)) (or $x84 $x1303)))))
+(let ((@x2704 (monotonicity @x2701 (= (or (not (and $x83 $x1306)) $x1316) (or (or $x84 $x1303) $x1316)))))
+(let ((@x2709 (trans @x2704 (rewrite (= (or (or $x84 $x1303) $x1316) $x2705)) (= (or (not (and $x83 $x1306)) $x1316) $x2705))))
+(let ((@x3230 (monotonicity (quant-intro @x2709 (= $x1322 $x2710)) (monotonicity @x2737 @x3224 (= $x2600 $x3225)) (= $x2603 (and $x2710 $x3225)))))
+(let ((@x2675 (monotonicity (rewrite (= (and $x1821 (not $x1826)) (not (or $x2668 $x1826)))) (= $x1829 (not (not (or $x2668 $x1826)))))))
+(let ((@x2679 (trans @x2675 (rewrite (= (not (not (or $x2668 $x1826))) (or $x2668 $x1826))) (= $x1829 (or $x2668 $x1826)))))
+(let ((@x2687 (trans (monotonicity @x2679 (= $x2339 (or (or $x2668 $x1826) $x2336))) (rewrite (= (or (or $x2668 $x1826) $x2336) $x2683)) (= $x2339 $x2683))))
+(let ((@x3241 (monotonicity (monotonicity @x2687 (= $x2342 $x2688)) (trans @x3230 (rewrite (= (and $x2710 $x3225) $x3234)) (= $x2603 $x3234)) (= $x2606 $x3239))))
+(let ((@x2654 (rewrite (= (not (not (or $x83 (not $x95)))) (or $x83 (not $x95))))))
+(let ((@x2652 (monotonicity (rewrite (= $x96 (not (or $x83 (not $x95))))) (= $x370 (not (not (or $x83 (not $x95))))))))
+(let ((@x2659 (monotonicity (trans @x2652 @x2654 (= $x370 (or $x83 (not $x95)))) (= (or $x370 $x1288) (or (or $x83 (not $x95)) $x1288)))))
+(let ((@x2664 (trans @x2659 (rewrite (= (or (or $x83 (not $x95)) $x1288) $x2660)) (= (or $x370 $x1288) $x2660))))
+(let ((@x3244 (monotonicity (quant-intro @x2664 (= $x1295 $x2665)) @x3241 (= $x2609 (and $x2665 $x3239)))))
+(let ((@x2629 (monotonicity (rewrite (= (and (not $x1798) $x1800) (not (or $x1798 $x2622)))) (= $x1802 (not (not (or $x1798 $x2622)))))))
+(let ((@x2633 (trans @x2629 (rewrite (= (not (not (or $x1798 $x2622))) (or $x1798 $x2622))) (= $x1802 (or $x1798 $x2622)))))
+(let ((@x2641 (trans (monotonicity @x2633 (= $x1808 (or (or $x1798 $x2622) $x1807))) (rewrite (= (or (or $x1798 $x2622) $x1807) $x2637)) (= $x1808 $x2637))))
+(let ((@x3255 (monotonicity (monotonicity @x2641 (= $x1809 $x2642)) (trans @x3244 (rewrite (= (and $x2665 $x3239) $x3248)) (= $x2609 $x3248)) (= $x2612 $x3253))))
+(let ((@x3265 (trans (monotonicity @x3255 (= $x2615 (and $x1280 $x3253))) (rewrite (= (and $x1280 $x3253) $x3261)) (= $x2615 $x3261))))
+(let (($x2244 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x2231 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x220 ?x2218) 0))))
+(not $x2231)))))))
+))
+(let (($x2238 (not (not (and $x2216 $x2221)))))
+(let (($x2248 (and $x2238 $x2244)))
+(let (($x2253 (and $x1628 $x2248)))
+(let (($x2257 (or $x2204 $x2253)))
+(let (($x2261 (and $x1609 $x2257)))
+(let (($x2265 (or $x2177 $x2261)))
+(let (($x2269 (and $x1595 $x2265)))
+(let (($x2273 (or $x913 $x2154 $x2269)))
+(let (($x2277 (and $x786 $x2273)))
+(let (($x2281 (or $x2139 $x2277)))
+(let (($x2285 (and $x1586 $x2281)))
+(let (($x2289 (or $x2122 $x2285)))
+(let (($x2110 (and (and $x2083 $x2088) $x203 $x1525 $x1535 $x213 $x1567 $x1573)))
+(let (($x2293 (and $x2110 $x2289)))
+(let (($x2047 (or $x2042 (>= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0))))
+(let (($x2048 (not $x2047)))
+(let (($x2065 (or $x2048 $x2061)))
+(let (($x2022 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let ((?x1446 (* (- 1) ?x177)))
+(let ((?x2008 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))))
+(let ((?x2013 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
+(let (($x2015 (= (+ ?x2013 ?x2008 ?x1446) 0)))
+(let (($x2016 (and (not (>= (+ ?x2008 ?x1446) 0)) $x2015)))
+(let (($x1448 (<= (+ b_Infinity$ ?x1446) 0)))
+(let (($x1451 (not $x1448)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1454 (and $x79 $x1451)))
+(let (($x1457 (not $x1454)))
+(or $x1457 $x2016))))))))))))))
+))
+(let (($x2069 (and $x2022 $x2065)))
+(let (($x1996 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let (($x1984 (and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x177 ?x1971) 0))))
+(not $x1984))))))
+))
+(let (($x1990 (not (not (and $x1969 $x1974)))))
+(let (($x2000 (and $x1990 $x1996)))
+(let (($x2073 (or $x2000 $x2069)))
+(let (($x1961 (and $x1950 $x159 $x162 $x164 $x167)))
+(let (($x2077 (and $x1961 $x2073)))
+(let (($x2297 (or $x2077 $x2293)))
+(let (($x1938 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let ((?x1393 (* (- 1) ?x121)))
+(let ((?x1922 (?v1!7 ?v0)))
+(let ((?x1923 (fun_app$c v_b_SP_G_1$ ?x1922)))
+(let ((?x1929 (b_G$ (pair$ ?x1922 ?v0))))
+(let (($x1931 (= (+ ?x1929 ?x1923 ?x1393) 0)))
+(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922)))
+(let (($x1932 (and (not (>= (+ ?x1923 ?x1393) 0)) $x1927 $x1931)))
+(let (($x1395 (<= (+ b_Infinity$ ?x1393) 0)))
+(let (($x1398 (not $x1395)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1401 (and $x79 $x1398)))
+(let (($x1404 (not $x1401)))
+(or $x1404 $x1932))))))))))))))))
+))
+(let (($x1903 (forall ((?v0 B_Vertex$) )(let ((?x1894 (b_G$ (pair$ (?v1!6 ?v0) ?v0))))
+(let ((?x75 (v_b_SP_G_0$ ?v0)))
+(let ((?x1328 (* (- 1) ?x75)))
+(let ((?x1887 (?v1!6 ?v0)))
+(let ((?x1888 (v_b_SP_G_0$ ?x1887)))
+(let (($x1896 (= (+ ?x1888 ?x1328 ?x1894) 0)))
+(let (($x1892 (v_b_Visited_G_0$ ?x1887)))
+(let (($x1897 (and (not (>= (+ ?x1888 ?x1328) 0)) $x1892 $x1896)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ ?x1328) 0)))))
+(let (($x1339 (not $x1336)))
+(or $x1339 $x1897))))))))))))))
+))
+(let (($x1941 (and $x1903 $x120 $x1363 $x1374 $x1390 $x1938)))
+(let (($x2301 (and $x1941 $x2297)))
+(let (($x1870 (not (not (and $x1848 $x1853)))))
+(let (($x1880 (and $x1870 $x1876)))
+(let (($x2305 (or $x1880 $x2301)))
+(let (($x2309 (and $x1322 $x2305)))
+(let (($x1834 (>= (+ (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4)) ?x1823) 0)))
+(let (($x1836 (not (or $x1829 $x1834))))
+(let (($x2313 (or $x1836 $x2309)))
+(let (($x2317 (and $x1295 $x2313)))
+(let (($x2321 (or $x1809 $x2317)))
+(let (($x2325 (and $x1280 $x2321)))
+(let (($x2329 (or $x1009 $x1786 $x2325)))
+(let (($x2230 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
+(let (($x2231 (and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)) $x238 $x2230)))
+(let (($x2241 (not $x2231)))
+(let (($x2526 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20)) (b_G$ (pair$ ?0 ?v0!20))))))
+(let ((@x2533 (monotonicity (monotonicity (rewrite $x2526) (= $x2230 $x2528)) (= $x2231 $x2531))))
+(let ((@x2542 (monotonicity (rewrite (= $x2238 (and $x2216 $x2221))) (quant-intro (monotonicity @x2533 (= $x2241 $x2534)) (= $x2244 $x2537)) (= $x2248 (and (and $x2216 $x2221) $x2537)))))
+(let ((@x2550 (trans (monotonicity @x2542 (= $x2253 (and $x1628 (and (and $x2216 $x2221) $x2537)))) (rewrite (= (and $x1628 (and (and $x2216 $x2221) $x2537)) $x2546)) (= $x2253 $x2546))))
+(let ((@x2559 (monotonicity (monotonicity (monotonicity @x2550 (= $x2257 $x2551)) (= $x2261 $x2554)) (= $x2265 $x2557))))
+(let ((@x2568 (monotonicity (monotonicity (monotonicity @x2559 (= $x2269 $x2560)) (= $x2273 $x2563)) (= $x2277 $x2566))))
+(let ((@x2577 (monotonicity (monotonicity (monotonicity @x2568 (= $x2281 $x2569)) (= $x2285 $x2572)) (= $x2289 $x2575))))
+(let ((@x2585 (trans (monotonicity @x2577 (= $x2293 (and $x2110 $x2575))) (rewrite (= (and $x2110 $x2575) $x2581)) (= $x2293 $x2581))))
+(let (($x2498 (= (>= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0) $x2497)))
+(let (($x2495 (= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) (+ ?x2030 ?x2036 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))))))
+(let ((@x2505 (monotonicity (monotonicity (monotonicity (rewrite $x2495) $x2498) (= $x2047 $x2500)) (= $x2048 $x2503))))
+(let ((?x1446 (* (- 1) ?x177)))
+(let ((?x2008 (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))))
+(let ((?x2013 (b_G$ (pair$ (?v1!9 ?0) ?0))))
+(let (($x2015 (= (+ ?x2013 ?x2008 ?x1446) 0)))
+(let (($x2016 (and (not (>= (+ ?x2008 ?x1446) 0)) $x2015)))
+(let (($x2019 (or $x1457 $x2016)))
+(let ((@x2477 (monotonicity (rewrite (= (+ ?x2013 ?x2008 ?x1446) (+ ?x1446 ?x2008 ?x2013))) (= $x2015 (= (+ ?x1446 ?x2008 ?x2013) 0)))))
+(let ((@x2484 (trans @x2477 (rewrite (= (= (+ ?x1446 ?x2008 ?x2013) 0) $x2480)) (= $x2015 $x2480))))
+(let ((@x2461 (monotonicity (rewrite (= (+ ?x2008 ?x1446) (+ ?x1446 ?x2008))) (= (>= (+ ?x2008 ?x1446) 0) (>= (+ ?x1446 ?x2008) 0)))))
+(let ((@x2468 (trans @x2461 (rewrite (= (>= (+ ?x1446 ?x2008) 0) $x2464)) (= (>= (+ ?x2008 ?x1446) 0) $x2464))))
+(let ((@x2487 (monotonicity (monotonicity @x2468 (= (not (>= (+ ?x2008 ?x1446) 0)) (not $x2464))) @x2484 (= $x2016 $x2485))))
+(let ((@x2511 (monotonicity (quant-intro (monotonicity @x2487 (= $x2019 $x2488)) (= $x2022 $x2491)) (monotonicity @x2505 (= $x2065 $x2506)) (= $x2069 $x2509))))
+(let (($x1984 (and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) 0))))
+(let (($x1993 (not $x1984)))
+(let (($x2434 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) (+ ?x177 ?x1971 (b_G$ (pair$ ?0 ?v0!8))))))
+(let ((@x2438 (monotonicity (rewrite $x2434) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) 0) $x2436))))
+(let ((@x2447 (quant-intro (monotonicity (monotonicity @x2438 (= $x1984 $x2439)) (= $x1993 $x2442)) (= $x1996 $x2445))))
+(let ((@x2450 (monotonicity (rewrite (= $x1990 (and $x1969 $x1974))) @x2447 (= $x2000 (and (and $x1969 $x1974) $x2445)))))
+(let ((@x2455 (trans @x2450 (rewrite (= (and (and $x1969 $x1974) $x2445) $x2451)) (= $x2000 $x2451))))
+(let ((@x2517 (monotonicity (monotonicity @x2455 @x2511 (= $x2073 $x2512)) (= $x2077 (and $x1961 $x2512)))))
+(let ((@x2588 (monotonicity (trans @x2517 (rewrite (= (and $x1961 $x2512) $x2518)) (= $x2077 $x2518)) @x2585 (= $x2297 $x2586))))
+(let ((?x1393 (* (- 1) ?x121)))
+(let ((?x1923 (fun_app$c v_b_SP_G_1$ ?x1922)))
+(let ((?x1929 (b_G$ (pair$ ?x1922 ?0))))
+(let (($x1931 (= (+ ?x1929 ?x1923 ?x1393) 0)))
+(let (($x1932 (and (not (>= (+ ?x1923 ?x1393) 0)) $x1927 $x1931)))
+(let (($x1935 (or $x1404 $x1932)))
+(let ((@x2414 (monotonicity (rewrite (= (+ ?x1929 ?x1923 ?x1393) (+ ?x1393 ?x1923 ?x1929))) (= $x1931 (= (+ ?x1393 ?x1923 ?x1929) 0)))))
+(let ((@x2421 (trans @x2414 (rewrite (= (= (+ ?x1393 ?x1923 ?x1929) 0) $x2417)) (= $x1931 $x2417))))
+(let ((@x2398 (monotonicity (rewrite (= (+ ?x1923 ?x1393) (+ ?x1393 ?x1923))) (= (>= (+ ?x1923 ?x1393) 0) (>= (+ ?x1393 ?x1923) 0)))))
+(let ((@x2405 (trans @x2398 (rewrite (= (>= (+ ?x1393 ?x1923) 0) $x2401)) (= (>= (+ ?x1923 ?x1393) 0) $x2401))))
+(let ((@x2424 (monotonicity (monotonicity @x2405 (= (not (>= (+ ?x1923 ?x1393) 0)) (not $x2401))) @x2421 (= $x1932 $x2422))))
+(let (($x1896 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75) (b_G$ (pair$ ?x1887 ?0))) 0)))
+(let (($x1897 (and (not (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0)) $x1892 $x1896)))
+(let (($x1900 (or $x1339 $x1897)))
+(let (($x2374 (= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887) (b_G$ (pair$ ?x1887 ?0))) 0)))
+(let (($x2372 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75) (b_G$ (pair$ ?x1887 ?0))) (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887) (b_G$ (pair$ ?x1887 ?0))))))
+(let ((@x2383 (trans (monotonicity (rewrite $x2372) (= $x1896 $x2374)) (rewrite (= $x2374 $x2379)) (= $x1896 $x2379))))
+(let (($x2369 (= (not (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0)) (not $x2363))))
+(let (($x1890 (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0)))
+(let (($x2356 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887)))))
+(let ((@x2360 (monotonicity (rewrite $x2356) (= $x1890 (>= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887)) 0)))))
+(let ((@x2367 (trans @x2360 (rewrite (= (>= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887)) 0) $x2363)) (= $x1890 $x2363))))
+(let ((@x2389 (monotonicity (monotonicity (monotonicity @x2367 $x2369) @x2383 (= $x1897 $x2384)) (= $x1900 $x2387))))
+(let ((@x2591 (monotonicity (quant-intro @x2389 (= $x1903 $x2390)) (quant-intro (monotonicity @x2424 (= $x1935 $x2425)) (= $x1938 $x2428)) (= $x1941 (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428)))))
+(let ((@x2594 (monotonicity @x2591 @x2588 (= $x2301 (and (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428) $x2586)))))
+(let ((@x2599 (trans @x2594 (rewrite (= (and (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428) $x2586) $x2595)) (= $x2301 $x2595))))
+(let ((@x2349 (monotonicity (rewrite (= $x1870 (and $x1848 $x1853))) (= $x1880 (and (and $x1848 $x1853) $x1876)))))
+(let ((@x2354 (trans @x2349 (rewrite (= (and (and $x1848 $x1853) $x1876) $x2350)) (= $x1880 $x2350))))
+(let ((@x2605 (monotonicity (monotonicity @x2354 @x2599 (= $x2305 $x2600)) (= $x2309 $x2603))))
+(let (($x2334 (= (+ (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4)) ?x1823) (+ ?x1823 (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4))))))
+(let ((@x2341 (monotonicity (monotonicity (rewrite $x2334) (= $x1834 $x2336)) (= (or $x1829 $x1834) $x2339))))
+(let ((@x2608 (monotonicity (monotonicity @x2341 (= $x1836 $x2342)) @x2605 (= $x2313 $x2606))))
+(let ((@x2617 (monotonicity (monotonicity (monotonicity @x2608 (= $x2317 $x2609)) (= $x2321 $x2612)) (= $x2325 $x2615))))
+(let (($x1662 (forall ((?v0 B_Vertex$) )(let (($x1656 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)) $x238 (= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))))))
+))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1641 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))
+(or (not $x1641) $x1656))))))
+))
+(let (($x1631 (not $x1628)))
+(let (($x1665 (or $x1631 $x1662)))
+(let (($x1668 (and $x1628 $x1665)))
+(let (($x1612 (not $x1609)))
+(let (($x1671 (or $x1612 $x1668)))
+(let (($x1674 (and $x1609 $x1671)))
+(let (($x1677 (or $x1598 $x1674)))
+(let (($x1680 (and $x244 $x1595 $x1677)))
+(let (($x1683 (or $x925 $x1680)))
+(let (($x1686 (and $x786 $x1683)))
+(let (($x1689 (or $x1589 $x1686)))
+(let (($x1692 (and $x1586 $x1689)))
+(let (($x1434 (exists ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1398 (not $x1395)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x126 (not $x125)))
+(and $x126 $x1398))))))
+))
+(let (($x1576 (and $x1434 $x203 $x1525 $x1535 $x213 $x1567 $x1573)))
+(let (($x1579 (not $x1576)))
+(let (($x1695 (or $x1579 $x1692)))
+(let (($x1502 (not $x1499)))
+(let (($x1505 (or $x1502 $x193)))
+(let (($x1508 (and $x1499 $x1505)))
+(let (($x1481 (forall ((?v0 B_Vertex$) )(let (($x1475 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(and (not (>= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))))
+))
+(let (($x1448 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
+(let (($x1451 (not $x1448)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1454 (and $x79 $x1451)))
+(let (($x1457 (not $x1454)))
+(or $x1457 $x1475)))))))))
+))
+(let (($x1484 (not $x1481)))
+(let (($x1511 (or $x1484 $x1508)))
+(let (($x1514 (and $x1481 $x1511)))
+(let (($x1437 (not $x1434)))
+(let (($x1440 (and $x1437 $x159 $x162 $x164 $x167)))
+(let (($x1443 (not $x1440)))
+(let (($x1517 (or $x1443 $x1514)))
+(let (($x1698 (and $x1517 $x1695)))
+(let (($x1422 (forall ((?v0 B_Vertex$) )(let (($x1416 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(and (not (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)) $x125 (= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))))))
+))
+(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1398 (not $x1395)))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1401 (and $x79 $x1398)))
+(let (($x1404 (not $x1401)))
+(or $x1404 $x1416)))))))))
+))
+(let (($x1357 (forall ((?v0 B_Vertex$) )(let (($x1351 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)) $x83 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0))))))
+))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))))
+(let (($x1339 (not $x1336)))
+(or $x1339 $x1351)))))))
+))
+(let (($x1425 (and $x1357 $x120 $x1363 $x1374 $x1390 $x1422)))
+(let (($x1428 (not $x1425)))
+(let (($x1701 (or $x1428 $x1698)))
+(let (($x1704 (and $x1357 $x1701)))
+(let (($x1325 (not $x1322)))
+(let (($x1707 (or $x1325 $x1704)))
+(let (($x1710 (and $x1322 $x1707)))
+(let (($x1298 (not $x1295)))
+(let (($x1713 (or $x1298 $x1710)))
+(let (($x1716 (and $x1295 $x1713)))
+(let (($x1719 (or $x1283 $x1716)))
+(let (($x1725 (not (and $x92 $x1280 $x1719))))
+(let (($x2232 (exists ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (not (>= (+ ?x220 ?x2218) 0)) $x238 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x220 ?x2218) 0)))))))
+))
+(let ((@x2250 (nnf-neg (refl (~ $x2238 $x2238)) (nnf-neg (refl (~ $x2241 $x2241)) (~ (not $x2232) $x2244)) (~ (not (or (not (and $x2216 $x2221)) $x2232)) $x2248))))
+(let ((@x2252 (trans (sk (~ (not $x1662) (not (or (not (and $x2216 $x2221)) $x2232)))) @x2250 (~ (not $x1662) $x2248))))
+(let ((@x2213 (nnf-neg (nnf-pos (refl (~ $x1625 $x1625)) (~ $x1628 $x1628)) (~ (not $x1631) $x1628))))
+(let ((@x2260 (nnf-neg (sk (~ $x1631 $x2204)) (nnf-neg @x2213 @x2252 (~ (not $x1665) $x2253)) (~ (not $x1668) $x2257))))
+(let ((@x2186 (nnf-neg (nnf-pos (refl (~ $x1606 $x1606)) (~ $x1609 $x1609)) (~ (not $x1612) $x1609))))
+(let ((@x2268 (nnf-neg (sk (~ $x1612 $x2177)) (nnf-neg @x2186 @x2260 (~ (not $x1671) $x2261)) (~ (not $x1674) $x2265))))
+(let ((@x2163 (nnf-neg (nnf-pos (refl (~ (>= ?x220 0) (>= ?x220 0))) (~ $x1595 $x1595)) (~ (not $x1598) $x1595))))
+(let ((@x2276 (nnf-neg (refl (~ $x913 $x913)) (sk (~ $x1598 $x2154)) (nnf-neg @x2163 @x2268 (~ (not $x1677) $x2269)) (~ (not $x1680) $x2273))))
+(let ((@x2148 (nnf-neg (nnf-pos (refl (~ $x783 $x783)) (~ $x786 $x786)) (~ (not $x925) $x786))))
+(let ((@x2284 (nnf-neg (sk (~ $x925 $x2139)) (nnf-neg @x2148 @x2276 (~ (not $x1683) $x2277)) (~ (not $x1686) $x2281))))
+(let ((@x2131 (nnf-neg (nnf-pos (refl (~ $x1582 $x1582)) (~ $x1586 $x1586)) (~ (not $x1589) $x1586))))
+(let ((@x2292 (nnf-neg (sk (~ $x1589 $x2122)) (nnf-neg @x2131 @x2284 (~ (not $x1689) $x2285)) (~ (not $x1692) $x2289))))
+(let (($x1553 (and (not $x1540) (not $x1547))))
+(let (($x1570 (or $x1553 $x225)))
+(let ((@x2105 (nnf-pos (refl (~ (or (not $x1553) $x1559) (or (not $x1553) $x1559))) (~ $x1567 $x1567))))
+(let ((@x2112 (monotonicity (sk (~ $x1434 (and $x2083 $x2088))) (refl (~ $x203 $x203)) (refl (~ $x1525 $x1525)) (nnf-pos (refl (~ $x1532 $x1532)) (~ $x1535 $x1535)) (refl (~ $x213 $x213)) @x2105 (nnf-pos (refl (~ $x1570 $x1570)) (~ $x1573 $x1573)) (~ $x1576 $x2110))))
+(let ((@x2296 (nnf-neg (nnf-neg @x2112 (~ (not $x1579) $x2110)) @x2292 (~ (not $x1695) $x2293))))
+(let ((@x2057 (nnf-neg (nnf-pos (refl (~ $x1496 $x1496)) (~ $x1499 $x1499)) (~ (not $x1502) $x1499))))
+(let ((@x2068 (nnf-neg (sk (~ $x1502 $x2048)) (nnf-neg @x2057 (refl (~ $x2058 $x2058)) (~ (not $x1505) $x2061)) (~ (not $x1508) $x2065))))
+(let (($x1475 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(and (not (>= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)))))
+))
+(let (($x1478 (or $x1457 $x1475)))
+(let ((@x2024 (nnf-pos (monotonicity (refl (~ $x1457 $x1457)) (sk (~ $x1475 $x2016)) (~ $x1478 $x2019)) (~ $x1481 $x2022))))
+(let ((@x2072 (nnf-neg (nnf-neg @x2024 (~ (not $x1484) $x2022)) @x2068 (~ (not $x1511) $x2069))))
+(let (($x1985 (exists ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
+(let ((?x1971 (* (- 1) ?x1970)))
+(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x177 ?x1971) 0))))))
+))
+(let ((@x2002 (nnf-neg (refl (~ $x1990 $x1990)) (nnf-neg (refl (~ $x1993 $x1993)) (~ (not $x1985) $x1996)) (~ (not (or (not (and $x1969 $x1974)) $x1985)) $x2000))))
+(let ((@x2004 (trans (sk (~ $x1484 (not (or (not (and $x1969 $x1974)) $x1985)))) @x2002 (~ $x1484 $x2000))))
+(let ((@x1952 (nnf-neg (refl (~ (not (and $x126 $x1398)) (not (and $x126 $x1398)))) (~ $x1437 $x1950))))
+(let ((@x1963 (monotonicity @x1952 (refl (~ $x159 $x159)) (refl (~ $x162 $x162)) (refl (~ $x164 $x164)) (refl (~ $x167 $x167)) (~ $x1440 $x1961))))
+(let ((@x2080 (nnf-neg (nnf-neg @x1963 (~ (not $x1443) $x1961)) (nnf-neg @x2004 @x2072 (~ (not $x1514) $x2073)) (~ (not $x1517) $x2077))))
+(let (($x1416 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(and (not (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)) $x125 (= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0))))))
+))
+(let (($x1419 (or $x1404 $x1416)))
+(let ((@x1940 (nnf-pos (monotonicity (refl (~ $x1404 $x1404)) (sk (~ $x1416 $x1932)) (~ $x1419 $x1935)) (~ $x1422 $x1938))))
+(let ((@x1917 (refl (~ (or (not (and $x125 $x1306)) $x1384) (or (not (and $x125 $x1306)) $x1384)))))
+(let (($x1351 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?0))) 0)) $x83 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?0)) ?x102) 0))))))
+))
+(let (($x1354 (or $x1339 $x1351)))
+(let ((@x1905 (nnf-pos (monotonicity (refl (~ $x1339 $x1339)) (sk (~ $x1351 $x1897)) (~ $x1354 $x1900)) (~ $x1357 $x1903))))
+(let ((@x1943 (monotonicity @x1905 (refl (~ $x120 $x120)) (nnf-pos (refl (~ (>= ?x121 0) (>= ?x121 0))) (~ $x1363 $x1363)) (nnf-pos (refl (~ (or $x429 $x1367) (or $x429 $x1367))) (~ $x1374 $x1374)) (nnf-pos @x1917 (~ $x1390 $x1390)) @x1940 (~ $x1425 $x1941))))
+(let ((@x2304 (nnf-neg (nnf-neg @x1943 (~ (not $x1428) $x1941)) (nnf-neg @x2080 @x2296 (~ (not $x1698) $x2297)) (~ (not $x1701) $x2301))))
+(let (($x1864 (exists ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1850 (* (- 1) ?x1849)))
+(let ((?x75 (v_b_SP_G_0$ ?v1)))
+(let (($x83 (v_b_Visited_G_0$ ?v1)))
+(and (not (>= (+ ?x75 ?x1850) 0)) $x83 (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))
+))
+(let ((@x1882 (nnf-neg (refl (~ $x1870 $x1870)) (nnf-neg (refl (~ $x1873 $x1873)) (~ (not $x1864) $x1876)) (~ (not (or (not (and $x1848 $x1853)) $x1864)) $x1880))))
+(let ((@x1884 (trans (sk (~ (not $x1357) (not (or (not (and $x1848 $x1853)) $x1864)))) @x1882 (~ (not $x1357) $x1880))))
+(let ((@x1840 (refl (~ (or (not (and $x83 $x1306)) $x1316) (or (not (and $x83 $x1306)) $x1316)))))
+(let ((@x2312 (nnf-neg (nnf-neg (nnf-pos @x1840 (~ $x1322 $x1322)) (~ (not $x1325) $x1322)) (nnf-neg @x1884 @x2304 (~ (not $x1704) $x2305)) (~ (not $x1707) $x2309))))
+(let ((@x1818 (nnf-neg (nnf-pos (refl (~ (or $x370 $x1288) (or $x370 $x1288))) (~ $x1295 $x1295)) (~ (not $x1298) $x1295))))
+(let ((@x2320 (nnf-neg @x1818 (nnf-neg (sk (~ $x1325 $x1836)) @x2312 (~ (not $x1710) $x2313)) (~ (not $x1713) $x2317))))
+(let ((@x1795 (nnf-neg (nnf-pos (refl (~ (>= ?x75 0) (>= ?x75 0))) (~ $x1280 $x1280)) (~ (not $x1283) $x1280))))
+(let ((@x2328 (nnf-neg @x1795 (nnf-neg (sk (~ $x1298 $x1809)) @x2320 (~ (not $x1716) $x2321)) (~ (not $x1719) $x2325))))
+(let ((@x2331 (nnf-neg (refl (~ $x1009 $x1009)) (sk (~ $x1283 $x1786)) @x2328 (~ $x1725 $x2329))))
+(let (($x1075 (or $x949 (and $x237 (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902))))))))
+(let (($x1082 (and $x374 (or $x985 (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075)))))))))
+(let (($x1084 (not (and $x92 $x94 (or $x997 $x1082)))))
+(let (($x1211 (forall ((?v0 B_Vertex$) )(let (($x1205 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1184 (+ ?x102 ?x220)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x1199 (= ?x250 ?x1184)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x827 (not $x251)))
+(and $x827 $x238 $x1199))))))))))
+))
+(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x824 (and $x79 $x821)))
+(let (($x844 (not $x824)))
+(or $x844 $x1205))))))))
+))
+(let (($x1193 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1184 (+ ?x102 ?x220)))
+(let ((?x250 (v_b_SP_G_2$ ?v0)))
+(let (($x1187 (<= ?x250 ?x1184)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x805 (and $x238 $x378)))
+(let (($x811 (not $x805)))
+(or $x811 $x1187)))))))))))
+))
+(let (($x1196 (not $x1193)))
+(let (($x1214 (or $x1196 $x1211)))
+(let (($x1217 (and $x1193 $x1214)))
+(let (($x1220 (or $x889 $x1217)))
+(let (($x1223 (and $x802 $x1220)))
+(let (($x1226 (or $x901 $x1223)))
+(let (($x1229 (and $x244 $x246 $x1226)))
+(let (($x1232 (or $x925 $x1229)))
+(let (($x1235 (and $x786 $x1232)))
+(let (($x1238 (or $x937 $x1235)))
+(let (($x1241 (and $x237 $x1238)))
+(let (($x1244 (or $x949 $x1241)))
+(let (($x1163 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1136 (+ ?x102 ?x177)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x1157 (<= ?x180 ?x1136)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x598 (not (<= b_Infinity$ ?x177))))
+(let (($x626 (and $x598 $x378)))
+(let (($x632 (not $x626)))
+(or $x632 $x1157)))))))))))
+))
+(let (($x1166 (not $x1163)))
+(let (($x1169 (or $x1166 $x193)))
+(let (($x1172 (and $x1163 $x1169)))
+(let (($x1151 (forall ((?v0 B_Vertex$) )(let (($x1145 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1136 (+ ?x102 ?x177)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
+(let (($x1139 (= ?x180 ?x1136)))
+(let (($x605 (not (<= ?x180 ?x177))))
+(and $x605 $x1139))))))))
+))
+(let (($x598 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_3$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x601 (and $x79 $x598)))
+(let (($x617 (not $x601)))
+(or $x617 $x1145))))))))
+))
+(let (($x1154 (not $x1151)))
+(let (($x1175 (or $x1154 $x1172)))
+(let (($x1178 (and $x1151 $x1175)))
+(let (($x1181 (or $x677 $x1178)))
+(let (($x1247 (and $x1181 $x1244)))
+(let (($x1127 (forall ((?v0 B_Vertex$) )(let (($x1121 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1102 (+ ?x102 ?x121)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x1115 (= ?x129 ?x1102)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x458 (not $x130)))
+(and $x458 $x125 $x1115))))))))))
+))
+(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0)))))
+(let (($x74 (= ?v0 b_Source$)))
+(let (($x79 (not $x74)))
+(let (($x455 (and $x79 $x452)))
+(let (($x475 (not $x455)))
+(or $x475 $x1121))))))))
+))
+(let (($x1112 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x1102 (+ ?x102 ?x121)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
+(let (($x1106 (<= ?x129 ?x1102)))
+(let (($x378 (not (<= b_Infinity$ ?x102))))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x436 (and $x125 $x378)))
+(let (($x442 (not $x436)))
+(or $x442 $x1106)))))))))))
+))
+(let (($x1130 (and $x426 $x120 $x123 $x433 $x1112 $x1127)))
+(let (($x1133 (not $x1130)))
+(let (($x1250 (or $x1133 $x1247)))
+(let (($x1253 (and $x426 $x1250)))
+(let (($x1256 (or $x973 $x1253)))
+(let (($x1259 (and $x393 $x1256)))
+(let (($x1262 (or $x985 $x1259)))
+(let (($x1265 (and $x374 $x1262)))
+(let (($x1268 (or $x997 $x1265)))
+(let (($x1271 (and $x92 $x94 $x1268)))
+(let (($x1656 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?0))) 0)) $x238 (= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?0))) 0))))))
+))
+(let (($x1659 (or (not (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))) $x1656)))
+(let (($x1205 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x1184 (+ ?x102 ?x220)))
+(let ((?x250 (v_b_SP_G_2$ ?0)))
+(let (($x1199 (= ?x250 ?x1184)))
+(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x251 (<= ?x250 ?x220)))
+(let (($x827 (not $x251)))
+(and $x827 $x238 $x1199))))))))))
+))
+(let (($x1208 (or $x844 $x1205)))
+(let ((?x1184 (+ ?x102 ?x220)))
+(let (($x1199 (= ?x250 ?x1184)))
+(let (($x1202 (and $x827 $x238 $x1199)))
+(let (($x1654 (= $x1202 (and (not $x1601) $x238 (= (+ ?x102 ?x220 (* (- 1) ?x250)) 0)))))
+(let ((@x1655 (monotonicity (monotonicity (rewrite (= $x251 $x1601)) (= $x827 (not $x1601))) (rewrite (= $x1199 (= (+ ?x102 ?x220 (* (- 1) ?x250)) 0))) $x1654)))
+(let (($x1645 (= $x844 (not (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))))))
+(let (($x1642 (= $x824 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0))))))
+(let (($x1636 (= (<= b_Infinity$ ?x220) (<= (+ b_Infinity$ (* (- 1) ?x220)) 0))))
+(let ((@x1640 (monotonicity (rewrite $x1636) (= $x821 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0))))))
+(let ((@x1661 (monotonicity (monotonicity (monotonicity @x1640 $x1642) $x1645) (quant-intro @x1655 (= $x1205 $x1656)) (= $x1208 $x1659))))
+(let ((@x1308 (monotonicity (rewrite (= (<= b_Infinity$ ?x102) $x1303)) (= $x378 $x1306))))
+(let ((@x1627 (monotonicity (monotonicity (monotonicity @x1308 (= $x805 $x1615)) (= $x811 $x1618)) (rewrite (= (<= ?x250 ?x1184) $x1621)) (= (or $x811 (<= ?x250 ?x1184)) $x1625))))
+(let ((@x1667 (monotonicity (monotonicity (quant-intro @x1627 (= $x1193 $x1628)) (= $x1196 $x1631)) (quant-intro @x1661 (= $x1211 $x1662)) (= $x1214 $x1665))))
+(let ((@x1611 (quant-intro (monotonicity (rewrite (= $x251 $x1601)) (= $x799 $x1606)) (= $x802 $x1609))))
+(let ((@x1673 (monotonicity (monotonicity @x1611 (= $x889 $x1612)) (monotonicity (quant-intro @x1627 (= $x1193 $x1628)) @x1667 (= $x1217 $x1668)) (= $x1220 $x1671))))
+(let ((@x1597 (quant-intro (rewrite (= (<= 0 ?x220) (>= ?x220 0))) (= $x246 $x1595))))
+(let ((@x1679 (monotonicity (monotonicity @x1597 (= $x901 $x1598)) (monotonicity @x1611 @x1673 (= $x1223 $x1674)) (= $x1226 $x1677))))
+(let ((@x1685 (monotonicity (monotonicity @x1597 @x1679 (= $x1229 $x1680)) (= $x1232 $x1683))))
+(let ((@x1591 (monotonicity (quant-intro (rewrite (= (<= ?x220 ?x121) $x1582)) (= $x237 $x1586)) (= $x937 $x1589))))
+(let ((@x1691 (monotonicity @x1591 (monotonicity @x1685 (= $x1235 $x1686)) (= $x1238 $x1689))))
+(let ((@x1694 (monotonicity (quant-intro (rewrite (= (<= ?x220 ?x121) $x1582)) (= $x237 $x1586)) @x1691 (= $x1241 $x1692))))
+(let ((@x1552 (monotonicity (rewrite (= (<= ?x121 ?x217) $x1547)) (= $x698 (not $x1547)))))
+(let ((@x1545 (monotonicity (rewrite (= (<= b_Infinity$ ?x215) $x1540)) (= $x694 (not $x1540)))))
+(let ((@x1572 (monotonicity (monotonicity @x1545 @x1552 (= $x701 $x1553)) (= $x721 $x1570))))
+(let ((@x1558 (monotonicity (monotonicity @x1545 @x1552 (= $x701 $x1553)) (= $x707 (not $x1553)))))
+(let ((@x1566 (monotonicity @x1558 (rewrite (= $x221 $x1559)) (= $x708 (or (not $x1553) $x1559)))))
+(let ((@x1534 (monotonicity (rewrite (= $x206 (>= (+ ?x121 (* (- 1) ?x204)) 0))) (= $x687 $x1532))))
+(let ((@x1527 (monotonicity (rewrite (= (<= b_Infinity$ ?x204) $x1522)) (= $x684 $x1525))))
+(let ((@x1400 (monotonicity (rewrite (= (<= b_Infinity$ ?x121) $x1395)) (= $x452 $x1398))))
+(let ((@x1436 (quant-intro (monotonicity @x1400 (= $x537 (and $x126 $x1398))) (= $x540 $x1434))))
+(let ((@x1578 (monotonicity @x1436 @x1527 (quant-intro @x1534 (= $x690 $x1535)) (quant-intro @x1566 (= $x713 $x1567)) (quant-intro @x1572 (= $x726 $x1573)) (= $x767 $x1576))))
+(let ((@x1697 (monotonicity (monotonicity @x1578 (= $x949 $x1579)) @x1694 (= $x1244 $x1695))))
+(let ((@x1453 (monotonicity (rewrite (= (<= b_Infinity$ ?x177) $x1448)) (= $x598 $x1451))))
+(let ((@x1492 (monotonicity (monotonicity @x1453 @x1308 (= $x626 $x1487)) (= $x632 $x1490))))
+(let ((@x1498 (monotonicity @x1492 (rewrite (= (<= ?x180 (+ ?x102 ?x177)) $x1493)) (= (or $x632 (<= ?x180 (+ ?x102 ?x177))) $x1496))))
+(let ((@x1507 (monotonicity (monotonicity (quant-intro @x1498 (= $x1163 $x1499)) (= $x1166 $x1502)) (= $x1169 $x1505))))
+(let (($x1145 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x1136 (+ ?x102 ?x177)))
+(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0)))
+(let (($x1139 (= ?x180 ?x1136)))
+(let (($x605 (not (<= ?x180 ?x177))))
+(and $x605 $x1139))))))))
+))
+(let (($x1148 (or $x617 $x1145)))
+(let (($x1472 (and (not (>= (+ ?x177 (* (- 1) ?x180)) 0)) (= (+ ?x102 ?x177 (* (- 1) ?x180)) 0))))
+(let ((?x1136 (+ ?x102 ?x177)))
+(let (($x1139 (= ?x180 ?x1136)))
+(let (($x1142 (and $x605 $x1139)))
+(let ((@x1467 (monotonicity (rewrite (= (<= ?x180 ?x177) (>= (+ ?x177 (* (- 1) ?x180)) 0))) (= $x605 (not (>= (+ ?x177 (* (- 1) ?x180)) 0))))))
+(let ((@x1474 (monotonicity @x1467 (rewrite (= $x1139 (= (+ ?x102 ?x177 (* (- 1) ?x180)) 0))) (= $x1142 $x1472))))
+(let ((@x1480 (monotonicity (monotonicity (monotonicity @x1453 (= $x601 $x1454)) (= $x617 $x1457)) (quant-intro @x1474 (= $x1145 $x1475)) (= $x1148 $x1478))))
+(let ((@x1513 (monotonicity (monotonicity (quant-intro @x1480 (= $x1151 $x1481)) (= $x1154 $x1484)) (monotonicity (quant-intro @x1498 (= $x1163 $x1499)) @x1507 (= $x1172 $x1508)) (= $x1175 $x1511))))
+(let ((@x1445 (monotonicity (monotonicity (monotonicity @x1436 (= $x543 $x1437)) (= $x581 $x1440)) (= $x677 $x1443))))
+(let ((@x1519 (monotonicity @x1445 (monotonicity (quant-intro @x1480 (= $x1151 $x1481)) @x1513 (= $x1178 $x1514)) (= $x1181 $x1517))))
+(let (($x1121 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
+(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x1102 (+ ?x102 ?x121)))
+(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0)))
+(let (($x1115 (= ?x129 ?x1102)))
+(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x130 (<= ?x129 ?x121)))
+(let (($x458 (not $x130)))
+(and $x458 $x125 $x1115))))))))))
+))
+(let (($x1124 (or $x475 $x1121)))
+(let ((?x1102 (+ ?x102 ?x121)))
+(let (($x1115 (= ?x129 ?x1102)))
+(let (($x1118 (and $x458 $x125 $x1115)))
+(let (($x1414 (= $x1118 (and (not $x1367) $x125 (= (+ ?x102 ?x121 (* (- 1) ?x129)) 0)))))
+(let ((@x1415 (monotonicity (monotonicity (rewrite (= $x130 $x1367)) (= $x458 (not $x1367))) (rewrite (= $x1115 (= (+ ?x102 ?x121 (* (- 1) ?x129)) 0))) $x1414)))
+(let ((@x1421 (monotonicity (monotonicity (monotonicity @x1400 (= $x455 $x1401)) (= $x475 $x1404)) (quant-intro @x1415 (= $x1121 $x1416)) (= $x1124 $x1419))))
+(let ((@x1382 (monotonicity (monotonicity @x1308 (= $x436 (and $x125 $x1306))) (= $x442 (not (and $x125 $x1306))))))
+(let ((@x1389 (monotonicity @x1382 (rewrite (= (<= ?x129 ?x1102) $x1384)) (= (or $x442 (<= ?x129 ?x1102)) (or (not (and $x125 $x1306)) $x1384)))))
+(let ((@x1376 (quant-intro (monotonicity (rewrite (= $x130 $x1367)) (= $x430 (or $x429 $x1367))) (= $x433 $x1374))))
+(let ((@x1365 (quant-intro (rewrite (= (<= 0 ?x121) (>= ?x121 0))) (= $x123 $x1363))))
+(let (($x1349 (= $x409 (and (not $x1288) $x83 (= (+ ?x75 (* (- 1) ?x97) ?x102) 0)))))
+(let ((@x1350 (monotonicity (monotonicity (rewrite (= $x98 $x1288)) (= $x403 (not $x1288))) (rewrite (= $x112 (= (+ ?x75 (* (- 1) ?x97) ?x102) 0))) $x1349)))
+(let ((@x1335 (monotonicity (rewrite (= (<= b_Infinity$ ?x75) $x1330)) (= $x397 (not $x1330)))))
+(let ((@x1341 (monotonicity (monotonicity @x1335 (= $x400 $x1336)) (= (not $x400) $x1339))))
+(let ((@x1359 (quant-intro (monotonicity @x1341 (quant-intro @x1350 (= $x414 $x1351)) (= $x421 $x1354)) (= $x426 $x1357))))
+(let ((@x1427 (monotonicity @x1359 @x1365 @x1376 (quant-intro @x1389 (= $x1112 $x1390)) (quant-intro @x1421 (= $x1127 $x1422)) (= $x1130 $x1425))))
+(let ((@x1703 (monotonicity (monotonicity @x1427 (= $x1133 $x1428)) (monotonicity @x1519 @x1697 (= $x1247 $x1698)) (= $x1250 $x1701))))
+(let ((@x1314 (monotonicity (monotonicity @x1308 (= (and $x83 $x378) (and $x83 $x1306))) (= (not (and $x83 $x378)) (not (and $x83 $x1306))))))
+(let ((@x1321 (monotonicity @x1314 (rewrite (= $x106 $x1316)) (= $x388 (or (not (and $x83 $x1306)) $x1316)))))
+(let ((@x1709 (monotonicity (monotonicity (quant-intro @x1321 (= $x393 $x1322)) (= $x973 $x1325)) (monotonicity @x1359 @x1703 (= $x1253 $x1704)) (= $x1256 $x1707))))
+(let ((@x1297 (quant-intro (monotonicity (rewrite (= $x98 $x1288)) (= $x371 (or $x370 $x1288))) (= $x374 $x1295))))
+(let ((@x1715 (monotonicity (monotonicity @x1297 (= $x985 $x1298)) (monotonicity (quant-intro @x1321 (= $x393 $x1322)) @x1709 (= $x1259 $x1710)) (= $x1262 $x1713))))
+(let ((@x1282 (quant-intro (rewrite (= (<= 0 ?x75) (>= ?x75 0))) (= $x94 $x1280))))
+(let ((@x1721 (monotonicity (monotonicity @x1282 (= $x997 $x1283)) (monotonicity @x1297 @x1715 (= $x1265 $x1716)) (= $x1268 $x1719))))
+(let ((@x1727 (monotonicity (monotonicity @x1282 @x1721 (= $x1271 (and $x92 $x1280 $x1719))) (= (not $x1271) $x1725))))
+(let (($x1263 (= (or $x985 (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075)))))) $x1262)))
+(let (($x1260 (= (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075))))) $x1259)))
+(let (($x1242 (= (and $x237 (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902))))) $x1241)))
+(let ((@x1204 (monotonicity (monotonicity (rewrite (= ?x255 ?x1184)) (= $x262 $x1199)) (= $x833 $x1202))))
+(let ((@x1213 (quant-intro (monotonicity (quant-intro @x1204 (= $x838 $x1205)) (= $x845 $x1208)) (= $x850 $x1211))))
+(let ((@x1192 (monotonicity (monotonicity (rewrite (= ?x255 ?x1184)) (= $x256 (<= ?x250 ?x1184))) (= $x812 (or $x811 (<= ?x250 ?x1184))))))
+(let ((@x1198 (monotonicity (quant-intro @x1192 (= $x817 $x1193)) (= (not $x817) $x1196))))
+(let ((@x1219 (monotonicity (quant-intro @x1192 (= $x817 $x1193)) (monotonicity @x1198 @x1213 (= $x878 $x1214)) (= $x883 $x1217))))
+(let ((@x1228 (monotonicity (monotonicity (monotonicity @x1219 (= $x890 $x1220)) (= $x895 $x1223)) (= $x902 $x1226))))
+(let ((@x1234 (monotonicity (monotonicity @x1228 (= (and $x244 $x246 $x902) $x1229)) (= (or $x925 (and $x244 $x246 $x902)) $x1232))))
+(let ((@x1237 (monotonicity @x1234 (= (and $x786 (or $x925 (and $x244 $x246 $x902))) $x1235))))
+(let ((@x1240 (monotonicity @x1237 (= (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902)))) $x1238))))
+(let ((@x1162 (monotonicity (monotonicity (rewrite (= ?x182 ?x1136)) (= $x189 (<= ?x180 ?x1136))) (= $x633 (or $x632 (<= ?x180 ?x1136))))))
+(let ((@x1168 (monotonicity (quant-intro @x1162 (= $x638 $x1163)) (= (not $x638) $x1166))))
+(let ((@x1174 (monotonicity (quant-intro @x1162 (= $x638 $x1163)) (monotonicity @x1168 (= $x654 $x1169)) (= $x659 $x1172))))
+(let ((@x1144 (monotonicity (monotonicity (rewrite (= ?x182 ?x1136)) (= $x183 $x1139)) (= $x608 $x1142))))
+(let ((@x1153 (quant-intro (monotonicity (quant-intro @x1144 (= $x611 $x1145)) (= $x618 $x1148)) (= $x623 $x1151))))
+(let ((@x1177 (monotonicity (monotonicity @x1153 (= (not $x623) $x1154)) @x1174 (= $x666 $x1175))))
+(let ((@x1183 (monotonicity (monotonicity @x1153 @x1177 (= $x671 $x1178)) (= $x678 $x1181))))
+(let ((@x1249 (monotonicity @x1183 (monotonicity (monotonicity @x1240 $x1242) (= $x1075 $x1244)) (= (and $x678 $x1075) $x1247))))
+(let ((@x1120 (monotonicity (monotonicity (rewrite (= ?x134 ?x1102)) (= $x141 $x1115)) (= $x464 $x1118))))
+(let ((@x1129 (quant-intro (monotonicity (quant-intro @x1120 (= $x469 $x1121)) (= $x476 $x1124)) (= $x481 $x1127))))
+(let ((@x1111 (monotonicity (monotonicity (rewrite (= ?x134 ?x1102)) (= $x135 (<= ?x129 ?x1102))) (= $x443 (or $x442 (<= ?x129 ?x1102))))))
+(let ((@x1135 (monotonicity (monotonicity (quant-intro @x1111 (= $x448 $x1112)) @x1129 (= $x532 $x1130)) (= $x961 $x1133))))
+(let ((@x1255 (monotonicity (monotonicity @x1135 @x1249 (= (or $x961 (and $x678 $x1075)) $x1250)) (= (and $x426 (or $x961 (and $x678 $x1075))) $x1253))))
+(let ((@x1258 (monotonicity @x1255 (= (or $x973 (and $x426 (or $x961 (and $x678 $x1075)))) $x1256))))
+(let ((@x1267 (monotonicity (monotonicity (monotonicity @x1258 $x1260) $x1263) (= $x1082 $x1265))))
+(let ((@x1273 (monotonicity (monotonicity @x1267 (= (or $x997 $x1082) $x1268)) (= (and $x92 $x94 (or $x997 $x1082)) $x1271))))
+(let ((@x1729 (trans (monotonicity @x1273 (= $x1084 (not $x1271))) @x1727 (= $x1084 $x1725))))
+(let ((@x1088 (mp (not-or-elim @x1030 (not $x1015)) (rewrite* (= (not $x1015) $x1084)) $x1084)))
+(let ((@x2621 (mp (mp~ (mp @x1088 @x1729 $x1725) @x2331 $x2329) (monotonicity @x2617 (= $x2329 $x2618)) $x2618)))
+(let ((@x4102 (mp (mp @x2621 (monotonicity @x3265 (= $x2618 $x3266)) $x3266) @x4101 (or $x1009 $x1786 $x4096))))
+(let ((@x5459 (unit-resolution (def-axiom (or $x4093 $x4087)) (unit-resolution @x4102 @x4116 (lemma @x3301 $x1785) $x4096) $x4087)))
+(let ((@x4213 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3748) $x2622)) (mp @x1780 @x3752 $x3748) (hypothesis $x1800) false)))
+(let ((@x5512 (unit-resolution (def-axiom (or $x4090 $x2642 $x4084)) (unit-resolution (def-axiom (or $x2637 $x1800)) (lemma @x4213 $x2622) $x2637) @x5459 $x4084)))
+(let ((@x5451 (unit-resolution (def-axiom (or $x4078 $x2688 $x4072)) (unit-resolution (def-axiom (or $x4081 $x4075)) @x5512 $x4075) (unit-resolution (def-axiom (or $x2683 $x1821)) (lemma @x4210 $x2668) $x2683) $x4072)))
+(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
+(let (($x4261 (= b_Infinity$ ?x1849)))
+(let ((@x4269 (symm (commutativity (= $x4261 (= ?x1849 b_Infinity$))) (= (= ?x1849 b_Infinity$) $x4261))))
+(let (($x4170 (= ?x1849 b_Infinity$)))
+(let ((@x4259 (rewrite (= (or (not $x3741) (or $x1847 $x4170)) (or (not $x3741) $x1847 $x4170)))))
+(let ((@x4260 (mp ((_ quant-inst ?v0!5) (or (not $x3741) (or $x1847 $x4170))) @x4259 (or (not $x3741) $x1847 $x4170))))
+(let ((@x4263 (unit-resolution @x4260 (mp @x1775 (quant-intro (refl (= $x340 $x340)) (= $x343 $x3741)) $x3741) (unit-resolution (def-axiom (or $x3789 $x1848)) (hypothesis $x3792) $x1848) $x4170)))
+(let ((@x4249 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4261) $x1852)) (unit-resolution (def-axiom (or $x3789 $x1853)) (hypothesis $x3792) $x1853) (not $x4261))))
+(let ((@x5453 (unit-resolution (def-axiom (or $x4066 $x3792 $x4060)) (lemma (unit-resolution @x4249 (mp @x4263 @x4269 $x4261) false) $x3789) (unit-resolution (def-axiom (or $x4069 $x4063)) @x5451 $x4063) $x4060)))
+(let ((@x5456 (unit-resolution (def-axiom (or $x4057 $x120)) @x5453 $x120)))
+(let ((@x5702 (trans (monotonicity @x5699 (= (fun_app$c v_b_SP_G_3$ b_Source$) ?x119)) @x5456 $x193)))
+(let (($x4338 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!8))) 0)))
+(let (($x4960 (not $x4338)))
+(let (($x4484 (>= (+ ?x1970 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!8))) 0)))
+(let ((@x6411 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 (fun_app$c v_b_SP_G_1$ ?v0!8))) $x4484)) (monotonicity @x5699 (= ?x1970 (fun_app$c v_b_SP_G_1$ ?v0!8))) $x4484)))
+(let ((@x4754 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x4484) (hypothesis $x4338) (hypothesis $x1974) false) (or $x4960 (not $x4484) $x1973))))
+(let (($x5013 (<= (+ ?x1970 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)))) 0)))
+(let ((?x4355 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0!8)))))
+(let ((?x4335 (fun_app$c v_b_SP_G_1$ ?v0!8)))
+(let (($x4361 (<= (+ ?x4335 ?x4355) 0)))
+(let (($x4332 (not $x4361)))
+(let ((?x4366 (+ ?x4335 ?x4355 (* (- 1) (b_G$ (pair$ (?v1!7 ?v0!8) ?v0!8))))))
+(let (($x4371 (= ?x4366 0)))
+(let (($x4372 (not $x4371)))
+(let (($x4370 (or $x4361 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0!8))) $x4372)))
+(let (($x4373 (not $x4370)))
+(let ((@x4406 (unit-resolution (def-axiom (or $x4057 $x3829)) @x5453 $x3829)))
+(let ((@x4343 (rewrite (= (or $x3834 (or $x1968 $x4338 $x4373)) (or $x3834 $x1968 $x4338 $x4373)))))
+(let ((@x4329 (mp ((_ quant-inst ?v0!8) (or $x3834 (or $x1968 $x4338 $x4373))) @x4343 (or $x3834 $x1968 $x4338 $x4373))))
+(let ((@x4408 (unit-resolution @x4329 @x4406 (unit-resolution (def-axiom (or $x3856 $x1969)) (hypothesis $x3859) $x1969) (hypothesis $x4960) $x4373)))
+(let ((@x4463 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 ?x4335)) $x4484)) (monotonicity (hypothesis $x164) (= ?x1970 ?x4335)) $x4484)))
+(let (($x4500 (<= (+ (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)) ?x4355) 0)))
+(let ((?x4341 (?v1!7 ?v0!8)))
+(let ((?x4288 (fun_app$c v_b_SP_G_3$ ?x4341)))
+(let ((@x5080 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4500)) (monotonicity (hypothesis $x164) (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4500)))
+(let ((@x5445 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x4484) (hypothesis $x5013) (hypothesis $x4500) (hypothesis $x4332) false)))
+(let ((@x4647 (unit-resolution (lemma @x5445 (or (not $x5013) (not $x4484) (not $x4500) $x4361)) @x5080 @x4463 (unit-resolution (def-axiom (or $x4370 $x4332)) @x4408 $x4332) (not $x5013))))
+(let ((?x4700 (+ ?x1970 (* (- 1) ?x4288) (* (- 1) (b_G$ (pair$ ?x4341 ?v0!8))))))
+(let (($x4722 (= ?x4700 0)))
+(let (($x4489 (>= ?x4700 0)))
+(let (($x4331 (>= ?x4366 0)))
+(let ((@x4769 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4372 $x4331)) (unit-resolution (def-axiom (or $x4370 $x4371)) @x4408 $x4371) $x4331)))
+(let ((@x5050 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x4489 (not $x4331) (not $x4484) (not $x4500))) @x4769 @x4463 @x5080 $x4489)))
+(let (($x5088 (<= ?x4700 0)))
+(let (($x4912 (>= (+ ?x4288 ?x4355) 0)))
+(let ((@x6226 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4912)) (monotonicity (hypothesis $x164) (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4912)))
+(let (($x4483 (<= (+ ?x1970 (* (- 1) ?x4335)) 0)))
+(let ((@x4788 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 ?x4335)) $x4483)) (monotonicity (hypothesis $x164) (= ?x1970 ?x4335)) $x4483)))
+(let (($x4330 (<= ?x4366 0)))
+(let ((@x4407 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4372 $x4330)) (unit-resolution (def-axiom (or $x4370 $x4371)) @x4408 $x4371) $x4330)))
+(let ((@x5001 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x5088 (not $x4330) (not $x4483) (not $x4912))) @x4407 @x4788 @x6226 $x5088)))
+(let ((@x4974 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4722 (not $x5088) (not $x4489))) @x5001 @x5050 $x4722)))
+(let (($x5094 (not $x4722)))
+(let (($x4624 (or $x5013 $x5094)))
+(let (($x4764 (or $x3853 $x5013 $x5094)))
+(let (($x4299 (>= (+ ?x4288 ?x1971) 0)))
+(let (($x4989 (or $x3853 (or $x4299 (not (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0))))))
+(let (($x4626 (= (or $x4299 (not (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0))) $x4624)))
+(let ((@x4723 (rewrite (= (= (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8))) 0) $x4722))))
+(let (($x4286 (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0)))
+(let (($x4839 (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8))))))
+(let ((@x4695 (monotonicity (rewrite $x4839) (= $x4286 (= (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8))) 0)))))
+(let ((@x4401 (monotonicity (trans @x4695 @x4723 (= $x4286 $x4722)) (= (not $x4286) $x5094))))
+(let ((@x5263 (monotonicity (rewrite (= (+ ?x4288 ?x1971) (+ ?x1971 ?x4288))) (= $x4299 (>= (+ ?x1971 ?x4288) 0)))))
+(let ((@x4841 (trans @x5263 (rewrite (= (>= (+ ?x1971 ?x4288) 0) $x5013)) (= $x4299 $x5013))))
+(let ((@x5186 (trans (monotonicity (monotonicity @x4841 @x4401 $x4626) (= $x4989 (or $x3853 $x4624))) (rewrite (= (or $x3853 $x4624) $x4764)) (= $x4989 $x4764))))
+(let ((@x5499 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x4989) @x5186 $x4764) (unit-resolution (def-axiom (or $x3856 $x3848)) (hypothesis $x3859) $x3848) $x4624)))
+(let ((@x5708 (unit-resolution (lemma (unit-resolution @x5499 @x4974 @x4647 false) (or $x3856 $x2982 $x4338)) @x5699 (unit-resolution @x4754 @x6411 (hypothesis $x1974) $x4960) $x3856)))
+(let ((@x5837 (unit-resolution (def-axiom (or $x3899 $x3859 $x3893)) @x5708 (unit-resolution (def-axiom (or $x3902 $x3896)) @x5698 $x3896) $x3893)))
+(let ((@x5839 (unit-resolution (def-axiom (or $x3887 $x2924 $x3881)) (unit-resolution (def-axiom (or $x3890 $x3884)) @x5837 $x3884) (unit-resolution (def-axiom (or $x3878 $x2058)) @x5702 $x3878) $x2924)))
+(let ((@x5847 (monotonicity (symm @x5699 (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x4698 ?x2030))))
+(let ((@x6414 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6220) $x5759)) (symm @x5847 $x6220) $x5759)))
+(let ((@x6168 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5759) (hypothesis $x4492) (hypothesis $x2034) false) (or $x5659 (not $x5759) $x2033))))
+(let ((@x5991 (unit-resolution @x6168 @x6414 (unit-resolution (def-axiom (or $x2919 $x2034)) @x5839 $x2034) $x5659)))
+(let ((@x4386 (mp ((_ quant-inst ?v1!10) (or $x3843 (or $x4697 $x4492))) (rewrite (= (or $x3843 (or $x4697 $x4492)) (or $x3843 $x4697 $x4492))) (or $x3843 $x4697 $x4492))))
+(let ((@x5999 (unit-resolution @x4386 (unit-resolution (def-axiom (or $x3902 $x3838)) @x5698 $x3838) (or $x4697 $x4492))))
+(let ((@x6172 (unit-resolution (def-axiom (or $x4057 $x3821)) @x5453 $x3821)))
+(let (($x4384 (not $x4697)))
+(let (($x5846 (or $x3826 $x4384 $x2039 $x4677)))
+(let (($x4673 (or $x4384 $x2039 (>= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) 0))))
+(let (($x5849 (or $x3826 $x4673)))
+(let (($x4614 (= (>= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) 0) $x4677)))
+(let (($x4674 (= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) (+ ?x2036 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11)) ?x4698))))
+(let ((@x5516 (monotonicity (monotonicity (rewrite $x4674) $x4614) (= $x4673 (or $x4384 $x2039 $x4677)))))
+(let ((@x5314 (trans (monotonicity @x5516 (= $x5849 (or $x3826 (or $x4384 $x2039 $x4677)))) (rewrite (= (or $x3826 (or $x4384 $x2039 $x4677)) $x5846)) (= $x5849 $x5846))))
+(let ((@x6307 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x5849) @x5314 $x5846) @x6172 (unit-resolution (def-axiom (or $x2919 (not $x2039))) @x5839 (not $x2039)) (or $x4384 $x4677))))
+(let ((?x4518 (fun_app$c v_b_SP_G_1$ ?v0!11)))
+(let ((?x4546 (* (- 1) ?x4518)))
+(let ((?x2043 (fun_app$c v_b_SP_G_3$ ?v0!11)))
+(let ((@x6142 (monotonicity (symm @x5699 (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x4518 ?x2043))))
+(let ((@x5800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2043 ?x4518)) (<= (+ ?x2043 ?x4546) 0))) (symm @x6142 (= ?x2043 ?x4518)) (<= (+ ?x2043 ?x4546) 0))))
+(let ((@x5815 ((_ th-lemma arith farkas -1 -1 1 1) @x5800 (unit-resolution (def-axiom (or $x2919 $x3668)) @x5839 $x3668) @x6414 (unit-resolution @x6307 (unit-resolution @x5999 @x5991 $x4697) $x4677) false)))
+(let ((@x7385 (unit-resolution (def-axiom (or $x3856 $x1974)) (unit-resolution (lemma @x5815 (or $x3902 $x1973)) @x5698 $x1973) $x3856)))
+(let ((@x7411 (unit-resolution (def-axiom (or $x3899 $x3859 $x3893)) @x7385 (unit-resolution (def-axiom (or $x3902 $x3896)) @x5698 $x3896) $x3893)))
+(let ((@x7356 (unit-resolution (def-axiom (or $x3887 $x2924 $x3881)) (unit-resolution (def-axiom (or $x3878 $x2058)) @x5702 $x3878) (unit-resolution (def-axiom (or $x3890 $x3884)) @x7411 $x3884) $x2924)))
+(let ((@x7398 (unit-resolution @x6168 (unit-resolution (def-axiom (or $x2919 $x2034)) @x7356 $x2034) @x7384 $x5659)))
+(let ((@x7318 (unit-resolution @x4386 (unit-resolution (def-axiom (or $x3902 $x3838)) @x5698 $x3838) @x7398 $x4697)))
+(let ((@x5937 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x5849) @x5314 $x5846) @x6172 (unit-resolution (def-axiom (or $x2919 (not $x2039))) @x7356 (not $x2039)) @x7318 $x4677)))
+(let ((@x6020 ((_ th-lemma arith farkas 1 -1 -1 1) @x5937 @x5800 (unit-resolution (def-axiom (or $x2919 $x3668)) @x7356 $x3668) @x7384 false)))
+(let ((@x8163 (unit-resolution (def-axiom (or $x4054 $x3905 $x4048)) (unit-resolution (def-axiom (or $x4057 $x4051)) @x5453 $x4051) $x4051)))
+(let ((@x8164 (unit-resolution @x8163 (lemma @x6020 $x3902) $x4048)))
+(let ((@x8214 (unit-resolution (def-axiom (or $x4045 $x213)) @x8164 $x213)))
+(let ((@x8302 (unit-resolution (def-axiom (or $x4045 $x3926)) @x8164 $x3926)))
+(let (($x5115 (fun_app$ ?x212 ?v0!14)))
+(let ((@x7409 (monotonicity (symm (hypothesis $x213) (= ?x212 v_b_Visited_G_2$)) (= $x5115 $x2133))))
+(let (($x6262 (fun_app$ v_b_Visited_G_1$ ?v0!14)))
+(let (($x5230 (= ?v0!14 v_b_v_G_1$)))
+(let (($x7438 (or $x5230 $x6262)))
+(let (($x7443 (= $x5115 $x7438)))
+(let (($x3716 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
+))
+(let (($x1099 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
+))
+(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
+(let (($x1095 (= $x56 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0)))))
+(let (($x61 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
+))
+(let ((@x1098 (rewrite (= (= $x56 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x1095))))
+(let ((@x1104 (mp (mp (asserted $x61) (rewrite* (= $x61 $x61)) $x61) (quant-intro @x1098 (= $x61 $x1099)) $x1099)))
+(let ((@x3721 (mp (mp~ @x1104 (nnf-pos (refl (~ $x1095 $x1095)) (~ $x1099 $x1099)) $x1099) (quant-intro (refl (= $x1095 $x1095)) (= $x1099 $x3716)) $x3716)))
+(let (($x5105 (not $x3716)))
+(let (($x7445 (or $x5105 $x7443)))
+(let ((@x7444 (monotonicity (rewrite (= (ite $x5230 true $x6262) $x7438)) (= (= $x5115 (ite $x5230 true $x6262)) $x7443))))
+(let ((@x7449 (monotonicity @x7444 (= (or $x5105 (= $x5115 (ite $x5230 true $x6262))) $x7445))))
+(let ((@x7452 (trans @x7449 (rewrite (= $x7445 $x7445)) (= (or $x5105 (= $x5115 (ite $x5230 true $x6262))) $x7445))))
+(let ((@x7453 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x5105 (= $x5115 (ite $x5230 true $x6262)))) @x7452 $x7445)))
+(let (($x7425 (not $x7438)))
+(let (($x6006 (not $x6262)))
+(let (($x7455 (>= (+ ?x204 (* (- 1) ?x2136)) 0)))
+(let (($x7487 (not $x7455)))
+(let (($x5623 (>= (+ ?x204 (* (- 1) ?x2136) (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0)))
+(let (($x5890 (not $x5623)))
+(let (($x6101 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
+(let (($x5590 (or $x6101 $x5623)))
+(let (($x5624 (not $x5590)))
+(let ((@x5806 (hypothesis $x3646)))
+(let ((@x6086 (hypothesis $x3926)))
+(let (($x5930 (or $x3931 $x5624 $x2137)))
+(let ((?x6353 (b_G$ (pair$ v_b_v_G_1$ ?v0!14))))
+(let ((?x6397 (* (- 1) ?x6353)))
+(let ((?x1520 (* (- 1) ?x204)))
+(let (($x6154 (<= (+ ?x2136 ?x1520 ?x6397) 0)))
+(let (($x5925 (or $x3931 (or (not (or $x6101 $x6154)) $x2137))))
+(let ((@x5231 (monotonicity (rewrite (= (+ ?x2136 ?x1520 ?x6397) (+ ?x1520 ?x2136 ?x6397))) (= $x6154 (<= (+ ?x1520 ?x2136 ?x6397) 0)))))
+(let ((@x5207 (trans @x5231 (rewrite (= (<= (+ ?x1520 ?x2136 ?x6397) 0) $x5623)) (= $x6154 $x5623))))
+(let ((@x5636 (monotonicity (monotonicity @x5207 (= (or $x6101 $x6154) $x5590)) (= (not (or $x6101 $x6154)) $x5624))))
+(let ((@x5641 (monotonicity @x5636 (= (or (not (or $x6101 $x6154)) $x2137) (or $x5624 $x2137)))))
+(let ((@x5869 (trans (monotonicity @x5641 (= $x5925 (or $x3931 (or $x5624 $x2137)))) (rewrite (= (or $x3931 (or $x5624 $x2137)) $x5930)) (= $x5925 $x5930))))
+(let ((@x6877 (unit-resolution (def-axiom (or $x5590 $x5890)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x5925) @x5869 $x5930) @x6086 @x5806 $x5624) $x5890)))
+(let (($x5403 (= v_b_v_G_1$ ?v0!14)))
+(let (($x5399 (<= ?x6353 0)))
+(let ((@x6842 (hypothesis $x5890)))
+(let ((@x7496 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x5399 $x5623 $x7487)) (hypothesis $x7455) @x6842 $x5399)))
+(let (($x3728 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x319 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0))))
+(let (($x64 (= ?v0 ?v1)))
+(or $x64 $x319))) :pattern ( (pair$ ?v0 ?v1) )))
+))
+(let (($x330 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x319 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0))))
+(let (($x64 (= ?v0 ?v1)))
+(or $x64 $x319))))
+))
+(let (($x319 (not (<= (b_G$ (pair$ ?1 ?0)) 0))))
+(let (($x64 (= ?1 ?0)))
+(let (($x325 (or $x64 $x319)))
+(let (($x72 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1)))
+(let (($x69 (not $x64)))
+(=> $x69 (< 0 (b_G$ (pair$ ?v0 ?v1)))))))
+))
+(let (($x69 (not $x64)))
+(let (($x71 (=> $x69 (< 0 (b_G$ (pair$ ?1 ?0))))))
+(let ((@x324 (monotonicity (rewrite (= (< 0 (b_G$ (pair$ ?1 ?0))) $x319)) (= $x71 (=> $x69 $x319)))))
+(let ((@x332 (quant-intro (trans @x324 (rewrite (= (=> $x69 $x319) $x325)) (= $x71 $x325)) (= $x72 $x330))))
+(let ((@x1765 (mp~ (mp (mp (asserted $x72) @x332 $x330) (rewrite* (= $x330 $x330)) $x330) (nnf-pos (refl (~ $x325 $x325)) (~ $x330 $x330)) $x330)))
+(let ((@x3733 (mp @x1765 (quant-intro (refl (= $x325 $x325)) (= $x330 $x3728)) $x3728)))
+(let (($x7466 (= (or (not $x3728) (or $x5403 (not $x5399))) (or (not $x3728) $x5403 (not $x5399)))))
+(let ((@x7468 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3728) (or $x5403 (not $x5399)))) (rewrite $x7466) (or (not $x3728) $x5403 (not $x5399)))))
+(let ((@x7498 (unit-resolution (unit-resolution @x7468 @x3733 (or $x5403 (not $x5399))) @x7496 $x5403)))
+(let ((@x7502 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or (not (>= ?x6353 0)) $x5623 $x7487)) (hypothesis $x7455) @x6842 (not (>= ?x6353 0)))))
+(let ((@x7506 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6353 0)) (>= ?x6353 0))) @x7502 (not (= ?x6353 0)))))
+(let (($x3722 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x64 (= ?v0 ?v1)))
+(let (($x69 (not $x64)))
+(or $x69 (= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) )))
+))
+(let (($x314 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1)))
+(let (($x69 (not $x64)))
+(or $x69 (= (b_G$ (pair$ ?v0 ?v1)) 0)))))
+))
+(let (($x311 (or $x69 (= (b_G$ (pair$ ?1 ?0)) 0))))
+(let (($x68 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1)))
+(=> $x64 (= (b_G$ (pair$ ?v0 ?v1)) 0))))
+))
+(let ((@x316 (quant-intro (rewrite (= (=> $x64 (= (b_G$ (pair$ ?1 ?0)) 0)) $x311)) (= $x68 $x314))))
+(let ((@x1760 (mp~ (mp (mp (asserted $x68) @x316 $x314) (rewrite* (= $x314 $x314)) $x314) (nnf-pos (refl (~ $x311 $x311)) (~ $x314 $x314)) $x314)))
+(let ((@x3727 (mp @x1760 (quant-intro (refl (= $x311 $x311)) (= $x314 $x3722)) $x3722)))
+(let (($x7472 (= (or (not $x3722) (or (not $x5403) (= ?x6353 0))) (or (not $x3722) (not $x5403) (= ?x6353 0)))))
+(let ((@x7474 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3722) (or (not $x5403) (= ?x6353 0)))) (rewrite $x7472) (or (not $x3722) (not $x5403) (= ?x6353 0)))))
+(let ((@x7508 (unit-resolution (unit-resolution @x7474 @x3727 (or (not $x5403) (= ?x6353 0))) @x7506 @x7498 false)))
+(let ((@x6970 (unit-resolution (def-axiom (or $x4057 $x3813)) @x5453 $x3813)))
+(let ((@x7100 (rewrite (= (or $x3818 (or $x202 $x6006 $x7455)) (or $x3818 $x202 $x6006 $x7455)))))
+(let ((@x7101 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3818 (or $x202 $x6006 $x7455))) @x7100 (or $x3818 $x202 $x6006 $x7455))))
+(let ((@x5643 (unit-resolution @x7101 @x6970 (hypothesis $x203) (hypothesis $x6262) (hypothesis $x7487) false)))
+(let ((@x7476 (unit-resolution (lemma @x5643 (or $x6006 $x202 $x7455)) (unit-resolution (lemma @x7508 (or $x7487 $x5623)) @x6877 $x7487) (hypothesis $x203) $x6006)))
+(let ((?x3394 (v_b_SP_G_2$ v_b_v_G_1$)))
+(let (($x3329 (= ?x3394 ?x204)))
+(let ((?x3404 (b_G$ (pair$ v_b_v_G_1$ v_b_v_G_1$))))
+(let (($x3390 (>= ?x3404 0)))
+(let (($x4586 (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3390)))
+(let (($x4394 (= ?x3404 0)))
+(let (($x4439 (not $x3722)))
+(let (($x4440 (or $x4439 $x4394)))
+(let ((@x4427 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true)))))
+(let ((@x4447 (trans @x4427 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false))))
+(let ((@x4434 (monotonicity @x4447 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394) (or false $x4394)))))
+(let ((@x4438 (trans @x4434 (rewrite (= (or false $x4394) $x4394)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394) $x4394))))
+(let ((@x4450 (monotonicity @x4438 (= (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394)) $x4440))))
+(let ((@x4451 (trans @x4450 (rewrite (= $x4440 $x4440)) (= (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394)) $x4440))))
+(let ((@x4452 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394))) @x4451 $x4440)))
+(let ((@x4473 (lemma (unit-resolution @x4452 @x3727 (hypothesis (not $x4394)) false) $x4394)))
+(let ((@x6229 (unit-resolution (def-axiom (or $x4586 (not $x3390))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4394) $x3390)) @x4473 $x3390) $x4586)))
+(let (($x4589 (not $x4586)))
+(let (($x5387 (or $x3931 $x4589 $x3329)))
+(let (($x3393 (<= (+ ?x204 ?x1520 (* (- 1) ?x3404)) 0)))
+(let (($x3330 (or (not (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393)) $x3329)))
+(let (($x4517 (or $x3931 $x3330)))
+(let (($x4592 (= (not (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393)) $x4589)))
+(let ((@x3389 (monotonicity (rewrite (= (+ ?x204 ?x1520 (* (- 1) ?x3404)) (* (- 1) ?x3404))) (= $x3393 (<= (* (- 1) ?x3404) 0)))))
+(let ((@x3371 (trans @x3389 (rewrite (= (<= (* (- 1) ?x3404) 0) $x3390)) (= $x3393 $x3390))))
+(let ((@x5175 (monotonicity @x3371 (= (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393) $x4586))))
+(let ((@x4575 (monotonicity (monotonicity (monotonicity @x5175 $x4592) (= $x3330 (or $x4589 $x3329))) (= $x4517 (or $x3931 (or $x4589 $x3329))))))
+(let ((@x5481 (trans @x4575 (rewrite (= (or $x3931 (or $x4589 $x3329)) $x5387)) (= $x4517 $x5387))))
+(let ((@x6230 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4517) @x5481 $x5387) @x6086 @x6229 $x3329)))
+(let ((@x7480 (trans (monotonicity (hypothesis $x5230) (= ?x2135 ?x3394)) (hypothesis $x3329) (= ?x2135 ?x204))))
+(let ((@x7483 (trans @x7480 (symm (monotonicity (hypothesis $x5230) (= ?x2136 ?x204)) (= ?x204 ?x2136)) $x2137)))
+(let ((@x7489 (lemma (unit-resolution @x5806 @x7483 false) (or (not $x5230) $x2137 (not $x3329)))))
+(let ((@x7479 (unit-resolution (def-axiom (or $x7425 $x5230 $x6262)) (unit-resolution @x7489 @x5806 @x6230 (not $x5230)) (or $x7425 $x6262))))
+(let ((@x7373 (unit-resolution (def-axiom (or (not $x7443) (not $x5115) $x7438)) (unit-resolution @x7479 @x7476 $x7425) (unit-resolution @x7453 @x3721 $x7443) (not $x5115))))
+(let ((@x7491 (unit-resolution @x7373 (mp (hypothesis $x2133) (symm @x7409 (= $x2133 $x5115)) $x5115) false)))
+(let ((@x5912 (unit-resolution (lemma @x7491 (or $x2134 $x3196 $x202 $x3931 $x2137)) (unit-resolution (def-axiom (or $x4045 $x203)) @x8164 $x203) @x8302 @x8214 $x2138)))
+(let ((@x8165 (unit-resolution (def-axiom (or $x4045 $x3918)) @x8164 $x3918)))
+(let ((?x6546 (b_G$ (pair$ v_b_v_G_1$ ?v0!13))))
+(let ((?x2118 (v_b_SP_G_2$ ?v0!13)))
+(let ((?x2119 (* (- 1) ?x2118)))
+(let ((?x6581 (+ ?x204 ?x2119 ?x6546)))
+(let (($x6584 (= ?x6581 0)))
+(let (($x6576 (>= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!13)) ?x6546) 0)))
+(let (($x6555 (<= (+ b_Infinity$ (* (- 1) ?x6546)) 0)))
+(let (($x6633 (or $x6555 $x6576)))
+(let (($x6635 (not $x6633)))
+(let (($x6716 (not (= (fun_app$c v_b_SP_G_1$ ?v0!13) ?x2118))))
+(let ((?x2117 (fun_app$c v_b_SP_G_1$ ?v0!13)))
+(let (($x6631 (= ?x2118 ?x2117)))
+(let ((@x6726 (monotonicity (commutativity (= (= ?x2117 ?x2118) $x6631)) (= $x6716 (not $x6631)))))
+(let ((@x6727 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6716 $x2121)) (hypothesis $x2122) $x6716) @x6726 (not $x6631))))
+(let (($x6620 (or $x6635 $x6631)))
+(let (($x6613 (or $x3931 $x6635 $x6631)))
+(let (($x6614 (or $x3931 (or (not (or $x6555 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0))) $x6631))))
+(let (($x6610 (= (or (not (or $x6555 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0))) $x6631) $x6620)))
+(let (($x6556 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0)))
+(let ((@x6595 (rewrite (= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) (+ ?x1520 ?x2117 (* (- 1) ?x6546))))))
+(let ((@x6574 (monotonicity @x6595 (= $x6556 (<= (+ ?x1520 ?x2117 (* (- 1) ?x6546)) 0)))))
+(let ((@x6580 (trans @x6574 (rewrite (= (<= (+ ?x1520 ?x2117 (* (- 1) ?x6546)) 0) $x6576)) (= $x6556 $x6576))))
+(let ((@x6619 (monotonicity (monotonicity @x6580 (= (or $x6555 $x6556) $x6633)) (= (not (or $x6555 $x6556)) $x6635))))
+(let ((@x6624 (trans (monotonicity (monotonicity @x6619 $x6610) (= $x6614 (or $x3931 $x6620))) (rewrite (= (or $x3931 $x6620) $x6613)) (= $x6614 $x6613))))
+(let ((@x6732 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!13) $x6614) @x6624 $x6613) @x6086 $x6620) @x6727 $x6635)))
+(let (($x6587 (or $x6555 $x6576 $x6584)))
+(let ((@x4512 (hypothesis $x3918)))
+(let (($x6590 (or $x3923 $x6555 $x6576 $x6584)))
+(let (($x6591 (or $x3923 (or $x6555 $x6556 (= (+ ?x204 ?x6546 ?x2119) 0)))))
+(let ((@x6586 (monotonicity (rewrite (= (+ ?x204 ?x6546 ?x2119) ?x6581)) (= (= (+ ?x204 ?x6546 ?x2119) 0) $x6584))))
+(let ((@x6589 (monotonicity @x6580 @x6586 (= (or $x6555 $x6556 (= (+ ?x204 ?x6546 ?x2119) 0)) $x6587))))
+(let ((@x6601 (trans (monotonicity @x6589 (= $x6591 (or $x3923 $x6587))) (rewrite (= (or $x3923 $x6587) $x6590)) (= $x6591 $x6590))))
+(let ((@x6735 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!13) $x6591) @x6601 $x6590) @x4512 $x6587) (unit-resolution (def-axiom (or $x6633 (not $x6576))) @x6732 (not $x6576)) (unit-resolution (def-axiom (or $x6633 (not $x6555))) @x6732 (not $x6555)) $x6584)))
+(let ((@x6746 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6584) (>= ?x6581 0))) @x6735 (>= ?x6581 0))))
+(let ((@x6748 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= (+ ?x2117 ?x2119) 0) $x2121)) (hypothesis $x2122) (<= (+ ?x2117 ?x2119) 0))))
+(let ((@x6749 ((_ th-lemma arith farkas 1 -1 1) @x6748 (unit-resolution (def-axiom (or $x6633 (not $x6576))) @x6732 (not $x6576)) @x6746 false)))
+(let ((@x8304 (unit-resolution (def-axiom (or $x4042 $x2122 $x4036)) (unit-resolution (lemma @x6749 (or $x2121 $x3923 $x3931)) @x8165 @x8302 $x2121) (unit-resolution (def-axiom (or $x4045 $x4039)) @x8164 $x4039) $x4036)))
+(let ((@x8619 (unit-resolution (def-axiom (or $x4030 $x2139 $x4024)) (unit-resolution (def-axiom (or $x4033 $x4027)) @x8304 $x4027) $x4027)))
+(let ((@x10488 (unit-resolution @x8619 (lemma (unit-resolution @x5912 @x8820 @x8891 false) $x2138) $x4024)))
+(let ((@x10489 (unit-resolution (def-axiom (or $x4021 $x3943)) @x10488 $x3943)))
+(let (($x4687 (= ?v0!17 v_b_v_G_1$)))
+(let (($x4718 (fun_app$ v_b_Visited_G_1$ ?v0!17)))
+(let (($x7386 (or $x4687 $x4718)))
+(let (($x4686 (fun_app$ ?x212 ?v0!17)))
+(let (($x7429 (= $x4686 $x7386)))
+(let (($x7431 (or $x5105 $x7429)))
+(let ((@x7423 (monotonicity (rewrite (= (ite $x4687 true $x4718) $x7386)) (= (= $x4686 (ite $x4687 true $x4718)) $x7429))))
+(let ((@x7457 (monotonicity @x7423 (= (or $x5105 (= $x4686 (ite $x4687 true $x4718))) $x7431))))
+(let ((@x7375 (trans @x7457 (rewrite (= $x7431 $x7431)) (= (or $x5105 (= $x4686 (ite $x4687 true $x4718))) $x7431))))
+(let ((@x7402 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x5105 (= $x4686 (ite $x4687 true $x4718)))) @x7375 $x7431)))
+(let ((@x8181 (symm (monotonicity (symm @x8214 (= ?x212 v_b_Visited_G_2$)) (= $x4686 $x2168)) (= $x2168 $x4686))))
+(let ((@x8115 (mp (unit-resolution (def-axiom (or $x3034 $x2168)) (hypothesis $x3039) $x2168) @x8181 $x4686)))
+(let ((@x8116 (unit-resolution (def-axiom (or (not $x7429) (not $x4686) $x7386)) @x8115 (unit-resolution @x7402 @x3721 $x7429) $x7386)))
+(let (($x7513 (not $x4718)))
+(let (($x8244 (>= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0)))
+(let (($x8196 (not $x8244)))
+(let (($x7753 (<= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
+(let (($x4600 (fun_app$ v_b_Visited_G_1$ ?v1!16)))
+(let (($x4599 (= ?v1!16 v_b_v_G_1$)))
+(let (($x7324 (or $x4599 $x4600)))
+(let (($x4598 (fun_app$ ?x212 ?v1!16)))
+(let (($x7351 (= $x4598 $x7324)))
+(let (($x5310 (or $x5105 $x7351)))
+(let ((@x4543 (monotonicity (rewrite (= (ite $x4599 true $x4600) $x7324)) (= (= $x4598 (ite $x4599 true $x4600)) $x7351))))
+(let ((@x7173 (monotonicity @x4543 (= (or $x5105 (= $x4598 (ite $x4599 true $x4600))) $x5310))))
+(let ((@x7233 (trans @x7173 (rewrite (= $x5310 $x5310)) (= (or $x5105 (= $x4598 (ite $x4599 true $x4600))) $x5310))))
+(let ((@x7234 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x5105 (= $x4598 (ite $x4599 true $x4600)))) @x7233 $x5310)))
+(let ((@x8188 (symm (monotonicity (symm @x8214 (= ?x212 v_b_Visited_G_2$)) (= $x4598 $x2166)) (= $x2166 $x4598))))
+(let (($x2167 (not $x2166)))
+(let ((@x8189 (hypothesis $x3039)))
+(let ((@x7882 (mp (unit-resolution (def-axiom (or $x3034 $x2167)) @x8189 $x2167) (monotonicity @x8188 (= $x2167 (not $x4598))) (not $x4598))))
+(let ((@x7883 (unit-resolution (def-axiom (or (not $x7351) $x4598 (not $x7324))) @x7882 (unit-resolution @x7234 @x3721 $x7351) (not $x7324))))
+(let (($x7758 (or $x4600 $x7753)))
+(let (($x7761 (or $x3913 $x4600 $x7753)))
+(let (($x7762 (or $x3913 (or $x4600 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0)))))
+(let (($x7759 (= (or $x4600 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0)) $x7758)))
+(let ((@x7755 (rewrite (= (>= (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x7753))))
+(let (($x5376 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0)))
+(let (($x7728 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16)))))
+(let ((@x7751 (monotonicity (rewrite $x7728) (= $x5376 (>= (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0)))))
+(let ((@x7766 (monotonicity (monotonicity (trans @x7751 @x7755 (= $x5376 $x7753)) $x7759) (= $x7762 (or $x3913 $x7758)))))
+(let ((@x7771 (mp ((_ quant-inst ?v1!16) $x7762) (trans @x7766 (rewrite (= (or $x3913 $x7758) $x7761)) (= $x7762 $x7761)) $x7761)))
+(let ((@x7873 (unit-resolution @x7771 (unit-resolution (def-axiom (or $x4045 $x3908)) @x8164 $x3908) $x7758)))
+(let ((@x7874 (unit-resolution @x7873 (unit-resolution (def-axiom (or $x7324 (not $x4600))) @x7883 (not $x4600)) $x7753)))
+(let ((?x4523 (b_G$ (pair$ v_b_v_G_1$ ?v1!16))))
+(let (($x8224 (<= ?x4523 0)))
+(let (($x8225 (not $x8224)))
+(let (($x8223 (= v_b_v_G_1$ ?v1!16)))
+(let (($x8293 (not $x8223)))
+(let ((@x8351 (unit-resolution (hypothesis (not $x4599)) (symm (hypothesis $x8223) $x4599) false)))
+(let ((@x7877 (unit-resolution (lemma @x8351 (or $x8293 $x4599)) (unit-resolution (def-axiom (or $x7324 (not $x4599))) @x7883 (not $x4599)) $x8293)))
+(let ((@x8233 (rewrite (= (or (not $x3728) (or $x8223 $x8225)) (or (not $x3728) $x8223 $x8225)))))
+(let ((@x8234 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3728) (or $x8223 $x8225))) @x8233 (or (not $x3728) $x8223 $x8225))))
+(let ((@x6202 (lemma (unit-resolution @x8234 @x3733 (hypothesis $x8224) (hypothesis $x8293) false) (or $x8225 $x8223))))
+(let (($x3634 (not $x2175)))
+(let ((@x8299 (hypothesis $x3634)))
+(let (($x7624 (<= (+ (v_b_SP_G_2$ ?v0!17) (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0)))
+(let ((@x8305 (unit-resolution (def-axiom (or $x4033 $x3934)) @x8304 $x3934)))
+(let (($x7629 (or $x3939 $x7624)))
+(let (($x5070 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
+(let (($x7620 (>= (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$c v_b_SP_G_1$ ?v0!17)) 0)))
+(let (($x7616 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$c v_b_SP_G_1$ ?v0!17)))))
+(let ((@x7628 (trans (monotonicity (rewrite $x7616) (= $x5070 $x7620)) (rewrite (= $x7620 $x7624)) (= $x5070 $x7624))))
+(let ((@x7636 (trans (monotonicity @x7628 (= (or $x3939 $x5070) $x7629)) (rewrite (= $x7629 $x7629)) (= (or $x3939 $x5070) $x7629))))
+(let ((@x8222 (hypothesis $x8244)))
+(let (($x7884 (or $x8196 $x2175 (not (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)) $x8224 (not $x7624))))
+(let ((@x8211 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) $x7884) @x8222 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3939 $x5070)) @x7636 $x7629) @x8305 $x7624) (hypothesis $x8225) @x8299 (not (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)))))
+(let (($x8251 (or (not (= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)) (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0))))
+(let ((@x8191 (unit-resolution ((_ th-lemma arith triangle-eq) $x8251) @x8211 (not (= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)))))
+(let (($x7559 (>= (+ ?x204 ?x4523 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
+(let (($x4525 (<= (+ b_Infinity$ (* (- 1) ?x4523)) 0)))
+(let (($x7564 (or $x4525 $x7559)))
+(let (($x7567 (not $x7564)))
+(let (($x7592 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
+(let ((@x8198 ((_ th-lemma arith farkas -1 -1 1 1 1) (hypothesis $x7592) @x8222 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3939 $x5070)) @x7636 $x7629) @x8305 $x7624) @x8299 (hypothesis $x7753) false)))
+(let ((@x8177 (unit-resolution (lemma @x8198 (or $x8196 (not $x7592) $x2175 (not $x7753))) @x8222 @x8299 (hypothesis $x7753) (not $x7592))))
+(let (($x8284 (or (not (= (v_b_SP_G_2$ ?v1!16) (fun_app$c v_b_SP_G_1$ ?v1!16))) $x7592)))
+(let ((@x8185 (unit-resolution ((_ th-lemma arith triangle-eq) $x8284) @x8177 (not (= (v_b_SP_G_2$ ?v1!16) (fun_app$c v_b_SP_G_1$ ?v1!16))))))
+(let ((?x4855 (fun_app$c v_b_SP_G_1$ ?v1!16)))
+(let ((?x2171 (v_b_SP_G_2$ ?v1!16)))
+(let (($x4497 (= ?x2171 ?x4855)))
+(let (($x7570 (or $x7567 $x4497)))
+(let (($x7573 (or $x3931 $x7567 $x4497)))
+(let (($x7574 (or $x3931 (or (not (or $x4525 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0))) $x4497))))
+(let (($x7571 (= (or (not (or $x4525 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0))) $x4497) $x7570)))
+(let (($x4527 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0)))
+(let ((@x7554 (rewrite (= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) (+ ?x1520 (* (- 1) ?x4523) ?x4855)))))
+(let ((@x7557 (monotonicity @x7554 (= $x4527 (<= (+ ?x1520 (* (- 1) ?x4523) ?x4855) 0)))))
+(let ((@x7563 (trans @x7557 (rewrite (= (<= (+ ?x1520 (* (- 1) ?x4523) ?x4855) 0) $x7559)) (= $x4527 $x7559))))
+(let ((@x7569 (monotonicity (monotonicity @x7563 (= (or $x4525 $x4527) $x7564)) (= (not (or $x4525 $x4527)) $x7567))))
+(let ((@x7582 (trans (monotonicity (monotonicity @x7569 $x7571) (= $x7574 (or $x3931 $x7570))) (rewrite (= (or $x3931 $x7570) $x7573)) (= $x7574 $x7573))))
+(let ((@x7879 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v1!16) $x7574) @x7582 $x7573) @x8302 $x7570) @x8185 $x7567)))
+(let ((?x7593 (+ ?x204 (* (- 1) ?x2171) ?x4523)))
+(let (($x7596 (= ?x7593 0)))
+(let (($x7599 (or $x4525 $x7559 $x7596)))
+(let (($x7602 (or $x3923 $x4525 $x7559 $x7596)))
+(let (($x7603 (or $x3923 (or $x4525 $x4527 (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0)))))
+(let ((@x7598 (monotonicity (rewrite (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) ?x7593)) (= (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0) $x7596))))
+(let ((@x7601 (monotonicity @x7563 @x7598 (= (or $x4525 $x4527 (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0)) $x7599))))
+(let ((@x7611 (trans (monotonicity @x7601 (= $x7603 (or $x3923 $x7599))) (rewrite (= (or $x3923 $x7599) $x7602)) (= $x7603 $x7602))))
+(let ((@x7886 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v1!16) $x7603) @x7611 $x7602) @x8165 $x7599) (unit-resolution (def-axiom (or $x7564 (not $x7559))) @x7879 (not $x7559)) (unit-resolution (def-axiom (or $x7564 (not $x4525))) @x7879 (not $x4525)) @x8191 false)))
+(let ((@x7891 (unit-resolution (lemma @x7886 (or $x8196 $x8224 $x2175 (not $x7753))) (unit-resolution @x6202 @x7877 $x8225) (unit-resolution (def-axiom (or $x3034 $x3634)) @x8189 $x3634) @x7874 $x8196)))
+(let ((@x8258 (rewrite (= (or $x3818 (or $x202 $x7513 $x8244)) (or $x3818 $x202 $x7513 $x8244)))))
+(let ((@x8259 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3818 (or $x202 $x7513 $x8244))) @x8258 (or $x3818 $x202 $x7513 $x8244))))
+(let ((@x8237 (unit-resolution @x8259 @x6970 (unit-resolution (def-axiom (or $x4045 $x203)) @x8164 $x203) (hypothesis $x4718) (hypothesis $x8196) false)))
+(let ((@x7896 (unit-resolution (def-axiom (or (not $x7386) $x4687 $x4718)) (unit-resolution (lemma @x8237 (or $x7513 $x8244)) @x7891 $x7513) @x8116 $x4687)))
+(let ((?x2172 (v_b_SP_G_2$ ?v0!17)))
+(let (($x8143 (= ?x2172 ?x3394)))
+(let (($x8113 (not $x8143)))
+(let (($x3298 (>= (+ ?x204 (* (- 1) ?x3394)) 0)))
+(let ((@x8142 (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3939 $x3298)) @x8305 $x3298)))
+(let (($x7700 (>= (+ ?x2172 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0)))
+(let ((?x4678 (fun_app$c v_b_SP_G_1$ ?v0!17)))
+(let (($x4679 (= ?x2172 ?x4678)))
+(let ((@x7441 (mp ((_ quant-inst ?v0!17) (or $x3948 (or $x3019 $x4679))) (rewrite (= (or $x3948 (or $x3019 $x4679)) (or $x3948 $x3019 $x4679))) (or $x3948 $x3019 $x4679))))
+(let ((@x7894 (unit-resolution @x7441 (hypothesis $x3943) (unit-resolution (def-axiom (or $x3034 $x2168)) @x8189 $x2168) $x4679)))
+(let (($x7901 (or $x8244 (not (<= (+ ?x2172 (* (- 1) ?x3394)) 0)) (not $x7700) (not $x3298))))
+(let ((@x5877 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) $x7901) @x7891 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4679) $x7700)) @x7894 $x7700) @x8142 (not (<= (+ ?x2172 (* (- 1) ?x3394)) 0)))))
+(let ((@x5587 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8113 (<= (+ ?x2172 (* (- 1) ?x3394)) 0))) @x5877 $x8113)))
+(let ((@x8137 (unit-resolution (hypothesis $x8113) (monotonicity (hypothesis $x4687) $x8143) false)))
+(let ((@x5143 (lemma (unit-resolution (lemma @x8137 (or (not $x4687) $x8143)) @x5587 @x7896 false) (or $x3034 $x3948))))
+(let ((@x7027 (hypothesis $x2154)))
+(let ((@x5873 (hypothesis $x4048)))
+(let ((@x5974 (unit-resolution (def-axiom (or $x4045 $x3926)) @x5873 $x3926)))
+(let ((@x5247 (unit-resolution (def-axiom (or $x4045 $x3918)) @x5873 $x3918)))
+(let ((?x6040 (b_G$ (pair$ v_b_v_G_1$ ?v0!15))))
+(let ((?x6162 (+ ?x204 (* (- 1) ?x2152) ?x6040)))
+(let (($x5552 (= ?x6162 0)))
+(let (($x7159 (not $x5552)))
+(let (($x6237 (<= ?x6162 0)))
+(let (($x7034 (not $x6237)))
+(let ((?x3280 (?v1!7 v_b_v_G_1$)))
+(let ((?x3281 (fun_app$c v_b_SP_G_1$ ?x3280)))
+(let ((?x3282 (* (- 1) ?x3281)))
+(let (($x4633 (<= (+ b_Infinity$ ?x3282) 0)))
+(let (($x6507 (not $x4633)))
+(let (($x4951 (>= (+ ?x204 ?x3282) 0)))
+(let (($x3284 (<= (+ ?x204 ?x3282) 0)))
+(let (($x4138 (not $x3284)))
+(let (($x4244 (fun_app$ v_b_Visited_G_1$ b_Source$)))
+(let (($x5095 (not $x4244)))
+(let (($x3279 (= v_b_v_G_1$ b_Source$)))
+(let (($x6104 (not (= (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282) 0))))
+(let (($x5949 (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x6104)))
+(let (($x4583 (not $x5949)))
+(let (($x4896 (or $x3834 $x3279 $x1522 $x4583)))
+(let (($x4103 (not (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) 0))))
+(let (($x4106 (or $x3279 $x1522 (not (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103)))))
+(let (($x4926 (or $x3834 $x4106)))
+(let (($x4565 (= (not (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103)) $x4583)))
+(let (($x5863 (= (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) 0) (= (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282) 0))))
+(let (($x5947 (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282))))
+(let ((@x5489 (monotonicity (monotonicity (monotonicity (rewrite $x5947) $x5863) (= $x4103 $x6104)) (= (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103) $x5949))))
+(let ((@x4548 (monotonicity (monotonicity (monotonicity @x5489 $x4565) (= $x4106 (or $x3279 $x1522 $x4583))) (= $x4926 (or $x3834 (or $x3279 $x1522 $x4583))))))
+(let ((@x4802 (trans @x4548 (rewrite (= (or $x3834 (or $x3279 $x1522 $x4583)) $x4896)) (= $x4926 $x4896))))
+(let ((@x6065 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4926) @x4802 $x4896) @x4406 (unit-resolution (def-axiom (or $x4045 $x1525)) @x5873 $x1525) (unit-resolution (def-axiom (or $x5949 $x4138)) (hypothesis $x3284) $x5949) $x3279)))
+(let ((@x5493 (mp (unit-resolution (def-axiom (or $x4045 $x203)) @x5873 $x203) (monotonicity (monotonicity @x6065 (= $x202 $x4244)) (= $x203 $x5095)) $x5095)))
+(let ((@x5435 (unit-resolution (def-axiom (or $x4042 $x2122 $x4036)) (unit-resolution (lemma @x6749 (or $x2121 $x3923 $x3931)) @x5247 @x5974 $x2121) (unit-resolution (def-axiom (or $x4045 $x4039)) @x5873 $x4039) $x4036)))
+(let ((@x7140 (symm (commutativity (= (= b_Source$ ?v0!15) (= ?v0!15 b_Source$))) (= (= ?v0!15 b_Source$) (= b_Source$ ?v0!15)))))
+(let ((@x7142 (monotonicity @x7140 (= (not (= ?v0!15 b_Source$)) (not (= b_Source$ ?v0!15))))))
+(let (($x6380 (= ?v0!15 b_Source$)))
+(let (($x6990 (not $x6380)))
+(let (($x6954 (or $x6380 (fun_app$ v_b_Visited_G_1$ ?v0!15))))
+(let ((?x6005 (fun_app$a (fun_app$b (fun_upd$ v_b_Visited_G_1$) b_Source$) true)))
+(let (($x6887 (fun_app$ ?x6005 ?v0!15)))
+(let (($x6951 (= $x6887 $x6954)))
+(let (($x6959 (or $x5105 $x6951)))
+(let (($x6960 (or $x5105 (= $x6887 (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15))))))
+(let (($x6957 (= (= $x6887 (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15))) $x6951)))
+(let ((@x6956 (rewrite (= (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15)) $x6954))))
+(let ((@x6989 (trans (monotonicity (monotonicity @x6956 $x6957) (= $x6960 $x6959)) (rewrite (= $x6959 $x6959)) (= $x6960 $x6959))))
+(let (($x6793 (= (fun_app$b (fun_upd$ v_b_Visited_G_1$) b_Source$) (fun_app$b (fun_upd$ v_b_Visited_G_1$) v_b_v_G_1$))))
+(let ((@x5780 (hypothesis $x3279)))
+(let ((@x5781 (symm @x5780 (= b_Source$ v_b_v_G_1$))))
+(let ((@x6803 (trans (monotonicity (monotonicity @x5781 $x6793) (= ?x6005 ?x212)) (symm (hypothesis $x213) (= ?x212 v_b_Visited_G_2$)) (= ?x6005 v_b_Visited_G_2$))))
+(let ((@x7131 (symm (monotonicity @x6803 (= $x6887 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6887))))
+(let ((@x7133 (monotonicity @x7131 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6887)))))
+(let (($x5938 (fun_app$ v_b_Visited_G_2$ ?v0!15)))
+(let (($x5943 (not $x5938)))
+(let ((?x5971 (fun_app$c v_b_SP_G_1$ ?v0!15)))
+(let (($x6392 (>= ?x5971 0)))
+(let ((@x5502 (unit-resolution (def-axiom (or $x4057 $x3804)) @x5453 $x3804)))
+(let ((@x7119 ((_ th-lemma arith assign-bounds -1 1) (or (not (>= (+ ?x2152 (* (- 1) ?x5971)) 0)) $x2153 (not $x6392)))))
+(let ((@x7120 (unit-resolution @x7119 (unit-resolution ((_ quant-inst ?v0!15) (or $x3809 $x6392)) @x5502 $x6392) @x7027 (not (>= (+ ?x2152 (* (- 1) ?x5971)) 0)))))
+(let ((@x7123 ((_ th-lemma arith triangle-eq) (or (not (= ?x2152 ?x5971)) (>= (+ ?x2152 (* (- 1) ?x5971)) 0)))))
+(let (($x5994 (= (or $x3948 (or $x5943 (= ?x2152 ?x5971))) (or $x3948 $x5943 (= ?x2152 ?x5971)))))
+(let ((@x6100 (mp ((_ quant-inst ?v0!15) (or $x3948 (or $x5943 (= ?x2152 ?x5971)))) (rewrite $x5994) (or $x3948 $x5943 (= ?x2152 ?x5971)))))
+(let ((@x7127 (unit-resolution (unit-resolution @x6100 (hypothesis $x3943) (or $x5943 (= ?x2152 ?x5971))) (unit-resolution @x7123 @x7120 (not (= ?x2152 ?x5971))) $x5943)))
+(let ((@x7135 (unit-resolution (def-axiom (or (not $x6951) $x6887 (not $x6954))) (mp @x7127 @x7133 (not $x6887)) (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ b_Source$ true ?v0!15) $x6960) @x6989 $x6959) @x3721 $x6951) (not $x6954))))
+(let ((@x7143 (mp (unit-resolution (def-axiom (or $x6954 $x6990)) @x7135 $x6990) @x7142 (not (= b_Source$ ?v0!15)))))
+(let ((?x7024 (b_G$ (pair$ b_Source$ ?v0!15))))
+(let (($x7048 (<= ?x7024 0)))
+(let (($x7084 (>= (+ ?x6040 (* (- 1) ?x7024)) 0)))
+(let ((@x7145 (monotonicity @x5781 (= (pair$ b_Source$ ?v0!15) (pair$ v_b_v_G_1$ ?v0!15)))))
+(let ((@x7152 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6040 ?x7024)) $x7084)) (symm (monotonicity @x7145 (= ?x7024 ?x6040)) (= ?x6040 ?x7024)) $x7084)))
+(let (($x6014 (<= (+ ?x119 ?x1520) 0)))
+(let ((@x5742 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x119 ?x204)) $x6014)) (symm (monotonicity @x5780 (= ?x204 ?x119)) (= ?x119 ?x204)) $x6014)))
+(let (($x3478 (>= ?x119 0)))
+(let ((@x6523 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3478)) @x5456 $x3478)))
+(let (($x5984 (>= (+ ?x204 (* (- 1) ?x5971) ?x6040) 0)))
+(let (($x6042 (<= (+ b_Infinity$ (* (- 1) ?x6040)) 0)))
+(let (($x5545 (or $x6042 $x5984)))
+(let (($x5577 (not $x5545)))
+(let (($x5972 (= ?x2152 ?x5971)))
+(let (($x6132 (or $x5577 $x5972)))
+(let (($x6394 (or $x3931 $x5577 $x5972)))
+(let (($x6213 (or $x3931 (or (not (or $x6042 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0))) $x5972))))
+(let (($x6240 (= (or (not (or $x6042 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0))) $x5972) $x6132)))
+(let (($x6044 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0)))
+(let ((@x6156 (rewrite (= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) (+ ?x1520 ?x5971 (* (- 1) ?x6040))))))
+(let ((@x5992 (monotonicity @x6156 (= $x6044 (<= (+ ?x1520 ?x5971 (* (- 1) ?x6040)) 0)))))
+(let ((@x5651 (trans @x5992 (rewrite (= (<= (+ ?x1520 ?x5971 (* (- 1) ?x6040)) 0) $x5984)) (= $x6044 $x5984))))
+(let ((@x5893 (monotonicity (monotonicity @x5651 (= (or $x6042 $x6044) $x5545)) (= (not (or $x6042 $x6044)) $x5577))))
+(let ((@x5887 (trans (monotonicity (monotonicity @x5893 $x6240) (= $x6213 (or $x3931 $x6132))) (rewrite (= (or $x3931 $x6132) $x6394)) (= $x6213 $x6394))))
+(let ((@x7154 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!15) $x6213) @x5887 $x6394) @x6086 $x6132) (unit-resolution @x7123 @x7120 (not $x5972)) $x5577)))
+(let (($x5495 (or $x6042 $x5984 $x5552)))
+(let (($x5652 (or $x3923 $x6042 $x5984 $x5552)))
+(let (($x5496 (or $x3923 (or $x6042 $x6044 (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0)))))
+(let ((@x5529 (monotonicity (rewrite (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) ?x6162)) (= (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0) $x5552))))
+(let ((@x5649 (monotonicity @x5651 @x5529 (= (or $x6042 $x6044 (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0)) $x5495))))
+(let ((@x5906 (trans (monotonicity @x5649 (= $x5496 (or $x3923 $x5495))) (rewrite (= (or $x3923 $x5495) $x5652)) (= $x5496 $x5652))))
+(let ((@x7158 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!15) $x5496) @x5906 $x5652) @x4512 $x5495) (unit-resolution (def-axiom (or $x5545 (not $x5984))) @x7154 (not $x5984)) (unit-resolution (def-axiom (or $x5545 (not $x6042))) @x7154 (not $x6042)) $x5552)))
+(let ((@x7166 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7048 (not $x7084) $x2153 $x7034 (not $x6014) (not $x3478))) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7159 $x6237)) @x7158 $x6237) @x6523 @x5742 @x7027 @x7152 $x7048)))
+(let (($x7062 (= (or (not $x3728) (or (= b_Source$ ?v0!15) (not $x7048))) (or (not $x3728) (= b_Source$ ?v0!15) (not $x7048)))))
+(let ((@x7064 (mp ((_ quant-inst b_Source$ ?v0!15) (or (not $x3728) (or (= b_Source$ ?v0!15) (not $x7048)))) (rewrite $x7062) (or (not $x3728) (= b_Source$ ?v0!15) (not $x7048)))))
+(let ((@x7168 (unit-resolution (unit-resolution @x7064 @x3733 (or (= b_Source$ ?v0!15) (not $x7048))) @x7166 @x7143 false)))
+(let ((@x6972 (unit-resolution (lemma @x7168 (or $x3948 $x2153 (not $x3279) $x3196 $x3923 $x3931)) @x6065 @x7027 (unit-resolution (def-axiom (or $x4045 $x213)) @x5873 $x213) @x5247 @x5974 $x3948)))
+(let ((@x6196 (unit-resolution (def-axiom (or $x4030 $x2139 $x4024)) (unit-resolution (def-axiom (or $x4021 $x3943)) @x6972 $x4021) (unit-resolution (def-axiom (or $x4033 $x4027)) @x5435 $x4027) $x2139)))
+(let (($x6189 (>= (+ ?x6353 (* (- 1) (b_G$ (pair$ b_Source$ ?v0!14)))) 0)))
+(let ((@x5870 (monotonicity @x5780 (= (pair$ v_b_v_G_1$ ?v0!14) (pair$ b_Source$ ?v0!14)))))
+(let ((@x6892 ((_ th-lemma arith triangle-eq) (or (not (= ?x6353 (b_G$ (pair$ b_Source$ ?v0!14)))) $x6189))))
+(let ((@x6893 (unit-resolution @x6892 (monotonicity @x5870 (= ?x6353 (b_G$ (pair$ b_Source$ ?v0!14)))) $x6189)))
+(let ((?x6449 (b_G$ (pair$ b_Source$ ?v0!14))))
+(let (($x6497 (<= ?x6449 0)))
+(let (($x6702 (not $x6497)))
+(let (($x6238 (= b_Source$ ?v0!14)))
+(let (($x6704 (not $x6238)))
+(let ((@x5923 (monotonicity (symm (hypothesis $x6238) (= ?v0!14 b_Source$)) (= ?x2136 ?x119))))
+(let ((@x5826 (monotonicity (symm (hypothesis $x6238) (= ?v0!14 b_Source$)) (= ?x2135 ?x243))))
+(let ((@x5929 (trans (trans @x5826 (monotonicity @x5781 (= ?x243 ?x3394)) (= ?x2135 ?x3394)) (hypothesis $x3329) (= ?x2135 ?x204))))
+(let ((@x6701 (trans (trans @x5929 (monotonicity @x5780 (= ?x204 ?x119)) (= ?x2135 ?x119)) (symm @x5923 (= ?x119 ?x2136)) $x2137)))
+(let ((@x6754 (lemma (unit-resolution @x5806 @x6701 false) (or $x6704 $x2137 (not $x3329) (not $x3279)))))
+(let ((@x6858 (rewrite (= (or (not $x3728) (or $x6238 $x6702)) (or (not $x3728) $x6238 $x6702)))))
+(let ((@x6859 (mp ((_ quant-inst b_Source$ ?v0!14) (or (not $x3728) (or $x6238 $x6702))) @x6858 (or (not $x3728) $x6238 $x6702))))
+(let ((@x6879 (unit-resolution @x6859 @x3733 (unit-resolution @x6754 @x5806 @x6230 @x5780 $x6704) $x6702)))
+(let (($x5364 (= ?v0!14 b_Source$)))
+(let (($x6300 (or $x5364 $x6262)))
+(let (($x6211 (fun_app$ ?x6005 ?v0!14)))
+(let (($x6870 (= $x6211 $x6300)))
+(let (($x6873 (or $x5105 $x6870)))
+(let ((@x6868 (monotonicity (rewrite (= (ite $x5364 true $x6262) $x6300)) (= (= $x6211 (ite $x5364 true $x6262)) $x6870))))
+(let ((@x6944 (monotonicity @x6868 (= (or $x5105 (= $x6211 (ite $x5364 true $x6262))) $x6873))))
+(let ((@x6946 (trans @x6944 (rewrite (= $x6873 $x6873)) (= (or $x5105 (= $x6211 (ite $x5364 true $x6262))) $x6873))))
+(let ((@x6947 (mp ((_ quant-inst v_b_Visited_G_1$ b_Source$ true ?v0!14) (or $x5105 (= $x6211 (ite $x5364 true $x6262)))) @x6946 $x6873)))
+(let ((@x6885 (mp (hypothesis $x2133) (symm (monotonicity @x6803 (= $x6211 $x2133)) (= $x2133 $x6211)) $x6211)))
+(let ((@x6923 (unit-resolution (def-axiom (or (not $x6870) (not $x6211) $x6300)) @x6885 (unit-resolution @x6947 @x3721 $x6870) $x6300)))
+(let (($x6603 (>= (+ ?x119 (* (- 1) ?x2136)) 0)))
+(let ((@x6948 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6449 0)) $x6497)) (hypothesis $x6702) (not (= ?x6449 0)))))
+(let (($x6718 (= (or $x4439 (or $x6704 (= ?x6449 0))) (or $x4439 $x6704 (= ?x6449 0)))))
+(let ((@x5740 (mp ((_ quant-inst b_Source$ ?v0!14) (or $x4439 (or $x6704 (= ?x6449 0)))) (rewrite $x6718) (or $x4439 $x6704 (= ?x6449 0)))))
+(let ((@x6975 (unit-resolution (unit-resolution @x5740 @x3727 (or $x6704 (= ?x6449 0))) @x6948 $x6704)))
+(let ((@x6981 (mp @x6975 (monotonicity (commutativity (= $x6238 $x5364)) (= $x6704 (not $x5364))) (not $x5364))))
+(let ((@x6938 (unit-resolution (def-axiom (or (not $x6300) $x5364 $x6262)) @x6981 (hypothesis $x6300) $x6262)))
+(let ((@x6605 (rewrite (= (or $x3818 (or $x4244 $x6006 $x6603)) (or $x3818 $x4244 $x6006 $x6603)))))
+(let ((@x6664 (mp ((_ quant-inst ?v0!14 b_Source$) (or $x3818 (or $x4244 $x6006 $x6603))) @x6605 (or $x3818 $x4244 $x6006 $x6603))))
+(let ((@x6832 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (>= ?x6449 0) $x6497)) (hypothesis $x6702) (>= ?x6449 0))))
+(let ((@x6833 ((_ th-lemma arith farkas 1 1 -1 -1 1) @x6832 (hypothesis $x6189) @x6842 (hypothesis $x6014) (unit-resolution @x6664 @x6970 (hypothesis $x5095) @x6938 $x6603) false)))
+(let ((@x6924 (unit-resolution (lemma @x6833 (or $x6497 (not $x6189) $x5623 (not $x6014) $x4244 (not $x6300))) @x6923 @x6879 @x6877 @x5742 (hypothesis $x5095) @x6893 false)))
+(let ((@x6199 (unit-resolution (lemma @x6924 (or $x2134 $x4244 $x3196 (not $x3279) $x3931 $x2137)) (unit-resolution (def-axiom (or $x2138 $x3646)) @x6196 $x3646) (unit-resolution (def-axiom (or $x2138 $x2133)) @x6196 $x2133) (unit-resolution (def-axiom (or $x4045 $x213)) @x5873 $x213) @x6065 @x5974 @x5493 false)))
+(let ((@x7353 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x3284 $x4951)) (unit-resolution (lemma @x6199 (or $x4045 $x2153 $x4138)) @x5873 @x7027 $x4138) $x4951)))
+(let ((@x7331 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x6507 $x1522 (not $x4951))) @x7353 (unit-resolution (def-axiom (or $x4045 $x1525)) @x5873 $x1525) $x6507)))
+(let (($x6440 (= v_b_v_G_1$ ?v0!15)))
+(let (($x6441 (<= ?x6040 0)))
+(let (($x6477 (<= (+ ?x119 ?x3282) 0)))
+(let (($x4627 (= ?x3280 b_Source$)))
+(let ((?x5260 (+ ?x3281 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280))) (* (- 1) (b_G$ (pair$ (?v1!7 ?x3280) ?x3280))))))
+(let (($x5252 (<= (+ ?x3281 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280)))) 0)))
+(let (($x4638 (or $x5252 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?x3280))) (not (= ?x5260 0)))))
+(let ((@x7029 (hypothesis $x4951)))
+(let ((@x7028 (hypothesis $x6237)))
+(let ((@x7030 (hypothesis (not $x5252))))
+(let (($x6656 (>= (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280)) 0)))
+(let ((@x6836 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x6441 (not $x4951) (not $x6656) $x5252 $x2153 $x7034)) @x7030 @x7029 @x7028 @x7027 (unit-resolution ((_ quant-inst (?v1!7 ?x3280)) (or $x3809 $x6656)) @x5502 $x6656) $x6441)))
+(let (($x6469 (= (or (not $x3728) (or $x6440 (not $x6441))) (or (not $x3728) $x6440 (not $x6441)))))
+(let ((@x6472 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3728) (or $x6440 (not $x6441)))) (rewrite $x6469) (or (not $x3728) $x6440 (not $x6441)))))
+(let ((@x7025 (unit-resolution (unit-resolution @x6472 @x3733 (or $x6440 (not $x6441))) (hypothesis $x6441) $x6440)))
+(let (($x6466 (= ?x6040 0)))
+(let (($x7038 (not $x6466)))
+(let (($x7031 (not (>= ?x6040 0))))
+(let ((@x7037 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7031 (not $x4951) (not $x6656) $x5252 $x2153 $x7034)) @x7030 @x7029 @x7028 @x7027 (unit-resolution ((_ quant-inst (?v1!7 ?x3280)) (or $x3809 $x6656)) @x5502 $x6656) $x7031)))
+(let ((@x6480 (rewrite (= (or $x4439 (or (not $x6440) $x6466)) (or $x4439 (not $x6440) $x6466)))))
+(let ((@x6481 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or $x4439 (or (not $x6440) $x6466))) @x6480 (or $x4439 (not $x6440) $x6466))))
+(let ((@x7043 (unit-resolution (unit-resolution @x6481 @x3727 (or (not $x6440) $x6466)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7038 (>= ?x6040 0))) @x7037 $x7038) @x7025 false)))
+(let ((@x6866 (unit-resolution (lemma @x7043 (or (not $x6441) $x5252 (not $x4951) $x7034 $x2153)) @x6836 @x7030 @x7029 @x7028 @x7027 false)))
+(let ((@x6500 (unit-resolution (lemma @x6866 (or $x5252 (not $x4951) $x7034 $x2153)) @x7028 @x7029 @x7027 $x5252)))
+(let (($x5562 (= (or $x3834 (or $x4627 $x4633 (not $x4638))) (or $x3834 $x4627 $x4633 (not $x4638)))))
+(let ((@x5564 (mp ((_ quant-inst (?v1!7 v_b_v_G_1$)) (or $x3834 (or $x4627 $x4633 (not $x4638)))) (rewrite $x5562) (or $x3834 $x4627 $x4633 (not $x4638)))))
+(let ((@x6514 (unit-resolution (unit-resolution @x5564 @x4406 (hypothesis $x6507) (or $x4627 (not $x4638))) (unit-resolution (def-axiom (or $x4638 (not $x5252))) @x6500 $x4638) $x4627)))
+(let ((@x6521 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x119 ?x3281)) $x6477)) (symm (monotonicity @x6514 (= ?x3281 ?x119)) (= ?x119 ?x3281)) $x6477)))
+(let ((@x6529 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x6441 (not $x4951) $x2153 $x7034 (not $x3478) (not $x6477))) @x7028 @x6523 @x7029 @x7027 @x6521 $x6441)))
+(let ((@x6534 (unit-resolution (unit-resolution @x6472 @x3733 (or $x6440 (not $x6441))) @x6529 $x6440)))
+(let ((@x6536 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1) (or $x7031 (not $x4951) $x2153 $x7034 (not $x3478) (not $x6477))) @x7028 @x6523 @x7029 @x7027 @x6521 $x7031)))
+(let ((@x6538 (unit-resolution (unit-resolution @x6481 @x3727 (or (not $x6440) $x6466)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7038 (>= ?x6040 0))) @x6536 $x7038) @x6534 false)))
+(let ((@x7332 (unit-resolution (lemma @x6538 (or $x7034 (not $x4951) $x2153 $x4633)) @x7353 @x7027 @x7331 $x7034)))
+(let ((@x7339 (unit-resolution (mp ((_ quant-inst ?v0!15) $x5496) @x5906 $x5652) @x4512 (hypothesis $x7159) $x5545)))
+(let ((@x7377 (unit-resolution @x7339 (unit-resolution (def-axiom (or $x5545 (not $x5984))) @x7154 (not $x5984)) (unit-resolution (def-axiom (or $x5545 (not $x6042))) @x7154 (not $x6042)) false)))
+(let ((@x7334 (unit-resolution (lemma @x7377 (or $x5552 $x3923 $x3931 $x2153)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7159 $x6237)) @x7332 $x7159) @x5247 @x5974 @x7027 false)))
+(let (($x4282 (= ?x243 ?x119)))
+(let (($x4455 (<= (b_G$ (pair$ v_b_v_G_1$ b_Source$)) 0)))
+(let (($x4147 (>= ?x204 0)))
+(let (($x3479 (<= ?x119 0)))
+(let (($x4279 (<= (+ ?x119 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0)))
+(let (($x4277 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0)))
+(let (($x4281 (not (or $x4277 $x4279))))
+(let (($x4909 (not $x4282)))
+(let ((@x4883 (hypothesis $x913)))
+(let ((@x4907 (mp (hypothesis $x4282) (monotonicity (hypothesis $x120) (= $x4282 $x244)) $x244)))
+(let ((@x6051 (unit-resolution (lemma (unit-resolution @x4883 @x4907 false) (or $x4909 $x244 $x3213)) @x5456 (or $x4909 $x244))))
+(let ((@x5597 (mp ((_ quant-inst b_Source$) (or $x3931 (or $x4281 $x4282))) (rewrite (= (or $x3931 (or $x4281 $x4282)) (or $x3931 $x4281 $x4282))) (or $x3931 $x4281 $x4282))))
+(let ((@x5875 (unit-resolution (unit-resolution @x5597 @x6086 (or $x4281 $x4282)) (unit-resolution @x6051 @x4883 $x4909) $x4281)))
+(let ((@x5520 (unit-resolution (def-axiom (or (or $x4277 $x4279) (not $x4279))) @x5875 (not $x4279))))
+(let ((@x6090 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x4455 (not $x3479) (not $x4147) $x4279)) @x5520 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3479)) @x5456 $x3479) (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3809 $x4147)) @x5502 $x4147) $x4455)))
+(let (($x5519 (= (or (not $x3728) (or $x3279 (not $x4455))) (or (not $x3728) $x3279 (not $x4455)))))
+(let ((@x6055 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3728) (or $x3279 (not $x4455)))) (rewrite $x5519) (or (not $x3728) $x3279 (not $x4455)))))
+(let ((@x6223 (symm (unit-resolution @x6055 @x3733 @x6090 $x3279) (= b_Source$ v_b_v_G_1$))))
+(let ((@x5727 (trans (trans (monotonicity @x6223 (= ?x243 ?x3394)) @x6230 (= ?x243 ?x204)) (monotonicity (unit-resolution @x6055 @x3733 @x6090 $x3279) (= ?x204 ?x119)) $x4282)))
+(let ((@x5312 (lemma (unit-resolution @x4883 (trans @x5727 @x5456 $x244) false) (or $x244 $x3931))))
+(let ((@x8382 (unit-resolution (def-axiom (or $x4018 $x913 $x2154 $x4012)) (unit-resolution @x5312 @x8302 $x244) (unit-resolution (lemma @x7334 (or $x4045 $x2153)) @x8164 $x2153) (or $x4018 $x4012))))
+(let ((@x9064 (unit-resolution @x8382 (unit-resolution (def-axiom (or $x4021 $x4015)) @x10488 $x4015) $x4012)))
+(let ((@x10157 (unit-resolution (def-axiom (or $x4006 $x3039 $x4000)) (unit-resolution (def-axiom (or $x4009 $x4003)) @x9064 $x4003) (unit-resolution @x5143 @x10489 $x3034) $x4000)))
+(let ((@x8593 (hypothesis $x3988)))
+(let ((?x4618 (fun_app$c v_b_SP_G_1$ ?v0!20)))
+(let (($x4870 (<= (+ ?x4618 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0!20)))) 0)))
+(let ((@x5730 (hypothesis $x2221)))
+(let (($x8567 (>= (+ (v_b_SP_G_2$ ?v0!20) (* (- 1) ?x4618)) 0)))
+(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
+(let (($x4625 (= ?x2217 ?x4618)))
+(let ((?x4660 (b_G$ (pair$ v_b_v_G_1$ ?v0!20))))
+(let ((?x4661 (* (- 1) ?x4660)))
+(let ((?x3395 (* (- 1) ?x3394)))
+(let ((?x8452 (+ ?x2217 ?x3395 ?x4661)))
+(let (($x8388 (<= ?x8452 0)))
+(let (($x8780 (>= ?x8452 0)))
+(let ((@x6097 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x8780 $x8388)) (hypothesis (not $x8388)) $x8780)))
+(let (($x4663 (<= (+ b_Infinity$ ?x4661) 0)))
+(let (($x4368 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$)))
+(let ((@x8557 (symm (monotonicity @x8214 (= $x4368 (fun_app$ ?x212 v_b_v_G_1$))) (= (fun_app$ ?x212 v_b_v_G_1$) $x4368))))
+(let (($x3413 (fun_app$ ?x212 v_b_v_G_1$)))
+(let (($x3709 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) )))
+))
+(let (($x1092 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
+))
+(let (($x1089 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
+(let (($x49 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
+))
+(let (($x48 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
+(let ((@x1097 (mp (mp (asserted $x49) (rewrite* (= $x49 $x49)) $x49) (quant-intro (rewrite (= $x48 $x1089)) (= $x49 $x1092)) $x1092)))
+(let ((@x3714 (mp (mp~ @x1097 (nnf-pos (refl (~ $x1089 $x1089)) (~ $x1092 $x1092)) $x1092) (quant-intro (refl (= $x1089 $x1089)) (= $x1092 $x3709)) $x3709)))
+(let (($x4545 (or (not $x3709) $x3413)))
+(let ((@x6188 (monotonicity (rewrite (= (= $x3413 true) $x3413)) (= (or (not $x3709) (= $x3413 true)) $x4545))))
+(let ((@x5812 (trans @x6188 (rewrite (= $x4545 $x4545)) (= (or (not $x3709) (= $x3413 true)) $x4545))))
+(let ((@x8745 (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3709) (= $x3413 true))) @x5812 $x4545) @x3714 $x3413)))
+(let ((@x6205 (hypothesis $x3968)))
+(let (($x4369 (not $x4368)))
+(let (($x9030 (or $x3973 $x4369 $x4663 $x8388)))
+(let (($x9031 (or $x3973 (or $x4369 $x4663 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0)))))
+(let (($x8458 (= (or $x4369 $x4663 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0)) (or $x4369 $x4663 $x8388))))
+(let (($x8517 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0)))
+(let ((@x8896 (rewrite (= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) (+ (* (- 1) ?x2217) ?x3394 ?x4660)))))
+(let ((@x8448 (monotonicity @x8896 (= $x8517 (>= (+ (* (- 1) ?x2217) ?x3394 ?x4660) 0)))))
+(let ((@x8455 (trans @x8448 (rewrite (= (>= (+ (* (- 1) ?x2217) ?x3394 ?x4660) 0) $x8388)) (= $x8517 $x8388))))
+(let ((@x9127 (monotonicity (monotonicity @x8455 $x8458) (= $x9031 (or $x3973 (or $x4369 $x4663 $x8388))))))
+(let ((@x8184 (trans @x9127 (rewrite (= (or $x3973 (or $x4369 $x4663 $x8388)) $x9030)) (= $x9031 $x9030))))
+(let ((@x6333 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x9031) @x8184 $x9030) @x6205 (mp @x8745 @x8557 $x4368) (hypothesis (not $x8388)) $x4663)))
+(let ((@x5997 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x6014 (not $x4147) (not $x3479))) (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3809 $x4147)) @x5502 $x4147) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3479)) @x5456 $x3479) $x6014)))
+(let (($x6242 (= ?x204 ?x3394)))
+(let ((@x9345 (mp (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4517) @x5481 $x5387) @x8302 @x6229 $x3329) (symm (commutativity (= $x6242 $x3329)) (= $x3329 $x6242)) $x6242)))
+(let ((@x8936 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6242) (<= (+ ?x204 ?x3395) 0))) @x9345 (<= (+ ?x204 ?x3395) 0))))
+(let ((@x5629 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1) @x8936 @x5997 @x6523 @x6333 @x6097 @x5730 false) (or $x8388 $x2220 $x3973))))
+(let ((@x10145 (unit-resolution @x5629 (unit-resolution (def-axiom (or $x3985 $x3968)) @x8593 $x3968) @x5730 $x8388)))
+(let (($x8926 (<= (+ ?x2217 ?x3395) 0)))
+(let (($x8453 (= ?x8452 0)))
+(let ((?x2218 (* (- 1) ?x2217)))
+(let ((?x8793 (+ ?x204 ?x2218 ?x4660)))
+(let (($x8622 (<= ?x8793 0)))
+(let (($x8798 (= ?x8793 0)))
+(let (($x8551 (>= (+ ?x204 (* (- 1) ?x4618) ?x4660) 0)))
+(let (($x8822 (or $x4663 $x8551)))
+(let (($x8685 (not $x8822)))
+(let (($x8574 (or $x8685 $x4625)))
+(let (($x8550 (or $x3931 $x8685 $x4625)))
+(let (($x8571 (or $x3931 (or (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x4625))))
+(let ((@x9375 (monotonicity (rewrite (= (+ ?x4618 ?x1520 ?x4661) (+ ?x1520 ?x4618 ?x4661))) (= (<= (+ ?x4618 ?x1520 ?x4661) 0) (<= (+ ?x1520 ?x4618 ?x4661) 0)))))
+(let ((@x8823 (trans @x9375 (rewrite (= (<= (+ ?x1520 ?x4618 ?x4661) 0) $x8551)) (= (<= (+ ?x4618 ?x1520 ?x4661) 0) $x8551))))
+(let ((@x8684 (monotonicity @x8823 (= (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0)) $x8822))))
+(let ((@x8549 (monotonicity @x8684 (= (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x8685))))
+(let ((@x8576 (monotonicity @x8549 (= (or (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x4625) $x8574))))
+(let ((@x8764 (trans (monotonicity @x8576 (= $x8571 (or $x3931 $x8574))) (rewrite (= (or $x3931 $x8574) $x8550)) (= $x8571 $x8550))))
+(let ((@x10339 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20) $x8571) @x8764 $x8550) @x8302 $x8574) (hypothesis (not $x4625)) $x8685)))
+(let ((@x10165 (unit-resolution (def-axiom (or $x8822 (not $x4663))) (hypothesis $x8685) (not $x4663))))
+(let ((@x10166 (unit-resolution (def-axiom (or $x8822 (not $x8551))) (hypothesis $x8685) (not $x8551))))
+(let (($x8800 (or $x4663 $x8551 $x8798)))
+(let (($x8659 (or $x3923 $x4663 $x8551 $x8798)))
+(let (($x4665 (<= (+ ?x4618 ?x1520 ?x4661) 0)))
+(let (($x9296 (or $x3923 (or $x4663 $x4665 (= (+ ?x204 ?x4660 ?x2218) 0)))))
+(let ((@x8797 (monotonicity (rewrite (= (+ ?x204 ?x4660 ?x2218) ?x8793)) (= (= (+ ?x204 ?x4660 ?x2218) 0) $x8798))))
+(let ((@x8638 (monotonicity @x8823 @x8797 (= (or $x4663 $x4665 (= (+ ?x204 ?x4660 ?x2218) 0)) $x8800))))
+(let ((@x9312 (trans (monotonicity @x8638 (= $x9296 (or $x3923 $x8800))) (rewrite (= (or $x3923 $x8800) $x8659)) (= $x9296 $x8659))))
+(let ((@x10167 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20) $x9296) @x9312 $x8659) @x8165 $x8800) @x10166 @x10165 (hypothesis (not $x8798)) false)))
+(let ((@x10348 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8798) $x8622)) (unit-resolution (lemma @x10167 (or $x8822 $x8798)) @x10339 $x8798) $x8622)))
+(let ((@x10388 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x8622) $x8780 (not $x3298))) @x8142 (or (not $x8622) $x8780))))
+(let ((@x10484 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8453 (not $x8388) (not $x8780))) (hypothesis $x8388) (or $x8453 (not $x8780)))))
+(let ((@x11844 (hypothesis $x3977)))
+(let (($x8695 (not $x8453)))
+(let (($x8690 (or $x3982 $x8926 $x4369 $x8695)))
+(let (($x4741 (>= (+ ?x3394 ?x2218) 0)))
+(let (($x8692 (or $x3982 (or $x4741 $x4369 (not (= (+ ?x3394 ?x2218 ?x4660) 0))))))
+(let (($x9019 (= (or $x4741 $x4369 (not (= (+ ?x3394 ?x2218 ?x4660) 0))) (or $x8926 $x4369 $x8695))))
+(let ((@x8997 (monotonicity (rewrite (= (+ ?x3394 ?x2218 ?x4660) (+ ?x2218 ?x3394 ?x4660))) (= (= (+ ?x3394 ?x2218 ?x4660) 0) (= (+ ?x2218 ?x3394 ?x4660) 0)))))
+(let ((@x9034 (trans @x8997 (rewrite (= (= (+ ?x2218 ?x3394 ?x4660) 0) $x8453)) (= (= (+ ?x3394 ?x2218 ?x4660) 0) $x8453))))
+(let ((@x8397 (monotonicity (rewrite (= (+ ?x3394 ?x2218) (+ ?x2218 ?x3394))) (= $x4741 (>= (+ ?x2218 ?x3394) 0)))))
+(let ((@x9139 (trans @x8397 (rewrite (= (>= (+ ?x2218 ?x3394) 0) $x8926)) (= $x4741 $x8926))))
+(let ((@x9020 (monotonicity @x9139 (monotonicity @x9034 (= (not (= (+ ?x3394 ?x2218 ?x4660) 0)) $x8695)) $x9019)))
+(let ((@x8404 (trans (monotonicity @x9020 (= $x8692 (or $x3982 (or $x8926 $x4369 $x8695)))) (rewrite (= (or $x3982 (or $x8926 $x4369 $x8695)) $x8690)) (= $x8692 $x8690))))
+(let ((@x10486 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x8692) @x8404 $x8690) @x11844 (mp @x8745 @x8557 $x4368) (or $x8926 $x8695))))
+(let ((@x10481 (unit-resolution @x10486 (unit-resolution @x10484 (unit-resolution @x10388 @x10348 $x8780) $x8453) $x8926)))
+(let (($x6460 (not (<= ?x4660 0))))
+(let ((@x10539 (commutativity (= (= v_b_v_G_1$ ?v0!20) (= ?v0!20 v_b_v_G_1$)))))
+(let ((@x10627 (monotonicity (symm @x10539 (= (= ?v0!20 v_b_v_G_1$) (= v_b_v_G_1$ ?v0!20))) (= (not (= ?v0!20 v_b_v_G_1$)) (not (= v_b_v_G_1$ ?v0!20))))))
+(let (($x7719 (= ?v0!20 v_b_v_G_1$)))
+(let (($x10690 (not $x7719)))
+(let (($x10582 (or $x7719 (fun_app$ v_b_Visited_G_1$ ?v0!20))))
+(let (($x7724 (fun_app$ ?x212 ?v0!20)))
+(let (($x10917 (= $x7724 $x10582)))
+(let (($x10865 (or $x5105 $x10917)))
+(let (($x10888 (or $x5105 (= $x7724 (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20))))))
+(let (($x10747 (= (= $x7724 (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20))) $x10917)))
+(let ((@x9484 (rewrite (= (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20)) $x10582))))
+(let ((@x10687 (trans (monotonicity (monotonicity @x9484 $x10747) (= $x10888 $x10865)) (rewrite (= $x10865 $x10865)) (= $x10888 $x10865))))
+(let ((@x8210 (symm @x8214 (= ?x212 v_b_Visited_G_2$))))
+(let ((@x10510 (symm (monotonicity @x8210 (= $x7724 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x7724))))
+(let ((@x10542 (monotonicity @x10510 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x7724)))))
+(let (($x4503 (fun_app$ v_b_Visited_G_2$ ?v0!20)))
+(let (($x4504 (not $x4503)))
+(let ((@x10611 (mp ((_ quant-inst ?v0!20) (or $x3948 (or $x4504 $x4625))) (rewrite (= (or $x3948 (or $x4504 $x4625)) (or $x3948 $x4504 $x4625))) (or $x3948 $x4504 $x4625))))
+(let ((@x10491 (unit-resolution (unit-resolution @x10611 @x10489 (or $x4504 $x4625)) (hypothesis (not $x4625)) $x4504)))
+(let ((@x10518 (unit-resolution (def-axiom (or (not $x10917) $x7724 (not $x10582))) (mp @x10491 @x10542 (not $x7724)) (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) $x10888) @x10687 $x10865) @x3721 $x10917) (not $x10582))))
+(let ((@x10563 (mp (unit-resolution (def-axiom (or $x10582 $x10690)) @x10518 $x10690) @x10627 (not (= v_b_v_G_1$ ?v0!20)))))
+(let (($x9114 (= (or (not $x3728) (or (= v_b_v_G_1$ ?v0!20) $x6460)) (or (not $x3728) (= v_b_v_G_1$ ?v0!20) $x6460))))
+(let ((@x9115 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3728) (or (= v_b_v_G_1$ ?v0!20) $x6460))) (rewrite $x9114) (or (not $x3728) (= v_b_v_G_1$ ?v0!20) $x6460))))
+(let ((@x10566 (unit-resolution (unit-resolution @x9115 @x3733 (or (= v_b_v_G_1$ ?v0!20) $x6460)) @x10563 $x6460)))
+(let ((@x10568 (lemma ((_ th-lemma arith farkas -1 -1 1 1) @x8142 @x10566 @x10348 @x10481 false) (or $x4625 $x3982 (not $x8388)))))
+(let ((@x10170 (unit-resolution @x10568 (unit-resolution (def-axiom (or $x3985 $x3977)) @x8593 $x3977) @x10145 $x4625)))
+(let ((?x4866 (?v1!7 ?v0!20)))
+(let (($x8671 (fun_app$ v_b_Visited_G_2$ ?x4866)))
+(let (($x8672 (not $x8671)))
+(let ((@x11435 (symm (monotonicity @x8210 (= (fun_app$ ?x212 ?x4866) $x8671)) (= $x8671 (fun_app$ ?x212 ?x4866)))))
+(let (($x6693 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ ?x4866 ?v0!20)))) 0)))
+(let (($x11835 (not $x6693)))
+(let ((?x4874 (b_G$ (pair$ ?x4866 ?v0!20))))
+(let ((?x4875 (* (- 1) ?x4874)))
+(let ((?x4876 (+ ?x4618 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x4866)) ?x4875)))
+(let (($x8645 (>= ?x4876 0)))
+(let (($x4877 (= ?x4876 0)))
+(let (($x4878 (not $x4877)))
+(let (($x4879 (or $x4870 (not (fun_app$ v_b_Visited_G_1$ ?x4866)) $x4878)))
+(let (($x4880 (not $x4879)))
+(let (($x4865 (<= (+ b_Infinity$ (* (- 1) ?x4618)) 0)))
+(let (($x8667 (not $x4865)))
+(let ((@x8893 (hypothesis $x8567)))
+(let ((@x8402 (lemma ((_ th-lemma arith farkas 1 -1 1) @x8893 (hypothesis $x4865) @x5730 false) (or $x8667 (not $x8567) $x2220))))
+(let ((@x9038 (rewrite (= (or $x3834 (or $x2215 $x4865 $x4880)) (or $x3834 $x2215 $x4865 $x4880)))))
+(let ((@x9039 (mp ((_ quant-inst ?v0!20) (or $x3834 (or $x2215 $x4865 $x4880))) @x9038 (or $x3834 $x2215 $x4865 $x4880))))
+(let ((@x9273 (unit-resolution (unit-resolution @x9039 @x4406 (hypothesis $x2216) (or $x4865 $x4880)) (unit-resolution @x8402 @x8893 @x5730 $x8667) $x4880)))
+(let ((@x11282 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4878 $x8645)) (unit-resolution (def-axiom (or $x4879 $x4877)) @x9273 $x4877) $x8645)))
+(let ((?x4867 (fun_app$c v_b_SP_G_1$ ?x4866)))
+(let (($x5337 (>= ?x4867 0)))
+(let ((@x11717 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1) (or $x11835 (not $x8645) $x2220 (not $x8567) (not $x5337))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3809 $x5337)) @x5502 $x5337) @x5730 @x8893 @x11282 $x11835)))
+(let (($x9233 (<= ?x4876 0)))
+(let ((@x11182 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4878 $x9233)) (unit-resolution (def-axiom (or $x4879 $x4877)) @x9273 $x4877) $x9233)))
+(let ((?x8643 (v_b_SP_G_2$ ?x4866)))
+(let ((?x9203 (* (- 1) ?x8643)))
+(let ((?x9103 (+ ?x2217 ?x4875 ?x9203)))
+(let (($x10503 (>= ?x9103 0)))
+(let (($x6233 (>= (+ ?x4867 ?x9203) 0)))
+(let ((@x11833 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x10503 (not $x6233) (not $x8645) (not $x8567))) (hypothesis $x8645) @x8893 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3939 $x6233)) @x8305 $x6233) $x10503)))
+(let (($x10448 (<= (+ ?x2217 ?x9203) 0)))
+(let (($x11011 (= ?x9103 0)))
+(let (($x10912 (<= ?x9103 0)))
+(let (($x10744 (or $x8672 $x6693 $x10912)))
+(let (($x10746 (or $x3973 $x8672 $x6693 $x10912)))
+(let (($x10750 (or $x3973 (or $x8672 $x6693 (>= (+ ?x4874 ?x8643 ?x2218) 0)))))
+(let ((@x9876 (monotonicity (rewrite (= (+ ?x4874 ?x8643 ?x2218) (+ ?x2218 ?x4874 ?x8643))) (= (>= (+ ?x4874 ?x8643 ?x2218) 0) (>= (+ ?x2218 ?x4874 ?x8643) 0)))))
+(let ((@x10867 (trans @x9876 (rewrite (= (>= (+ ?x2218 ?x4874 ?x8643) 0) $x10912)) (= (>= (+ ?x4874 ?x8643 ?x2218) 0) $x10912))))
+(let ((@x10745 (monotonicity @x10867 (= (or $x8672 $x6693 (>= (+ ?x4874 ?x8643 ?x2218) 0)) $x10744))))
+(let ((@x10734 (trans (monotonicity @x10745 (= $x10750 (or $x3973 $x10744))) (rewrite (= (or $x3973 $x10744) $x10746)) (= $x10750 $x10746))))
+(let ((@x11838 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20 (?v1!7 ?v0!20)) $x10750) @x10734 $x10746) @x6205 $x10744) (hypothesis $x8671) (hypothesis $x11835) $x10912)))
+(let ((@x11843 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x11011 (not $x10912) (not $x10503))) @x11833 @x11838 $x11011)))
+(let (($x10804 (not $x11011)))
+(let (($x11040 (or $x10448 $x8672 $x10804)))
+(let (($x10301 (or $x3982 $x10448 $x8672 $x10804)))
+(let (($x6994 (>= (+ ?x8643 ?x2218) 0)))
+(let (($x10896 (or $x3982 (or $x6994 $x8672 (not (= (+ ?x8643 ?x2218 ?x4874) 0))))))
+(let ((@x11010 (monotonicity (rewrite (= (+ ?x8643 ?x2218 ?x4874) (+ ?x2218 ?x4874 ?x8643))) (= (= (+ ?x8643 ?x2218 ?x4874) 0) (= (+ ?x2218 ?x4874 ?x8643) 0)))))
+(let ((@x10803 (trans @x11010 (rewrite (= (= (+ ?x2218 ?x4874 ?x8643) 0) $x11011)) (= (= (+ ?x8643 ?x2218 ?x4874) 0) $x11011))))
+(let ((@x10440 (monotonicity (rewrite (= (+ ?x8643 ?x2218) (+ ?x2218 ?x8643))) (= $x6994 (>= (+ ?x2218 ?x8643) 0)))))
+(let ((@x10354 (trans @x10440 (rewrite (= (>= (+ ?x2218 ?x8643) 0) $x10448)) (= $x6994 $x10448))))
+(let ((@x10595 (monotonicity @x10354 (monotonicity @x10803 (= (not (= (+ ?x8643 ?x2218 ?x4874) 0)) $x10804)) (= (or $x6994 $x8672 (not (= (+ ?x8643 ?x2218 ?x4874) 0))) $x11040))))
+(let ((@x10685 (trans (monotonicity @x10595 (= $x10896 (or $x3982 $x11040))) (rewrite (= (or $x3982 $x11040) $x10301)) (= $x10896 $x10301))))
+(let ((@x11846 (unit-resolution (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x10896) @x10685 $x10301) @x11844 $x11040) @x11843 (hypothesis $x8671) $x10448)))
+(let ((@x11850 (lemma ((_ th-lemma arith farkas -1 1 -1 1) @x11846 @x11833 (hypothesis $x9233) (hypothesis (not $x4870)) false) (or $x8672 (not $x9233) $x4870 $x3982 (not $x8645) (not $x8567) $x6693 $x3973))))
+(let ((@x11185 (unit-resolution @x11850 @x11182 (hypothesis (not $x4870)) @x11844 @x11282 @x8893 @x11717 @x6205 $x8672)))
+(let ((@x11550 (mp @x11185 (monotonicity @x11435 (= $x8672 (not (fun_app$ ?x212 ?x4866)))) (not (fun_app$ ?x212 ?x4866)))))
+(let (($x11789 (fun_app$ ?x212 ?x4866)))
+(let (($x4871 (fun_app$ v_b_Visited_G_1$ ?x4866)))
+(let (($x11792 (or (= ?x4866 v_b_v_G_1$) $x4871)))
+(let (($x11795 (= $x11789 $x11792)))
+(let (($x11638 (or $x5105 $x11795)))
+(let (($x11557 (= (or $x5105 (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871))) $x11638)))
+(let ((@x11797 (monotonicity (rewrite (= (ite (= ?x4866 v_b_v_G_1$) true $x4871) $x11792)) (= (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871)) $x11795))))
+(let ((@x11556 ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x5105 (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871))))))
+(let ((@x11621 (mp @x11556 (trans (monotonicity @x11797 $x11557) (rewrite (= $x11638 $x11638)) $x11557) $x11638)))
+(let ((@x11379 (unit-resolution (def-axiom (or $x11792 (not $x4871))) (unit-resolution (def-axiom (or $x4879 $x4871)) @x9273 $x4871) $x11792)))
+(let ((@x11588 (unit-resolution (def-axiom (or (not $x11795) $x11789 (not $x11792))) @x11379 (or (not $x11795) $x11789))))
+(let ((@x11409 (unit-resolution (unit-resolution @x11588 (unit-resolution @x11621 @x3721 $x11795) $x11789) @x11550 false)))
+(let ((@x9681 (unit-resolution (lemma @x11409 (or (not $x8567) $x4870 $x3982 $x3973 $x2220 $x2215)) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4625) $x8567)) @x10170 $x8567) (unit-resolution (def-axiom (or $x3985 $x3977)) @x8593 $x3977) (unit-resolution (def-axiom (or $x3985 $x3968)) @x8593 $x3968) @x5730 (unit-resolution (def-axiom (or $x3985 $x2216)) @x8593 $x2216) $x4870)))
+(let ((@x9302 (unit-resolution @x8402 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4625) $x8567)) @x10170 $x8567) @x5730 $x8667)))
+(let ((@x10155 (unit-resolution @x9039 @x4406 (unit-resolution (def-axiom (or $x3985 $x2216)) @x8593 $x2216) (or $x4865 $x4880))))
+(let ((@x10236 (unit-resolution (def-axiom (or $x4879 (not $x4870))) (unit-resolution @x10155 @x9302 $x4880) @x9681 false)))
+(let ((@x10357 (unit-resolution (lemma @x10236 (or $x3985 $x2220)) (unit-resolution (def-axiom (or $x3985 $x2221)) @x8593 $x2221) @x8593 false)))
+(let ((@x8697 (unit-resolution (def-axiom (or $x3994 $x3085 $x3988)) (lemma @x10357 $x3985) (unit-resolution (def-axiom (or $x3997 $x3991)) @x10157 $x3991) $x3085)))
+(let (($x2195 (not $x2194)))
+(let (($x4939 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!19)))) 0)))
+(let ((?x4936 (b_G$ (pair$ v_b_v_G_1$ ?v0!19))))
+(let ((?x4520 (fun_app$c v_b_SP_G_1$ ?v0!19)))
+(let ((?x4919 (* (- 1) ?x4520)))
+(let (($x7104 (>= (+ ?x204 ?x4919 ?x4936) 0)))
+(let (($x8037 (>= (+ ?x2191 (* (- 1) ?x4936)) 0)))
+(let (($x4552 (= ?v1!18 v_b_v_G_1$)))
+(let (($x4560 (fun_app$ v_b_Visited_G_1$ ?v1!18)))
+(let (($x4584 (not $x4560)))
+(let (($x3626 (not $x2202)))
+(let ((@x9184 (hypothesis $x3626)))
+(let (($x8491 (>= (+ ?x2198 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!18))) 0)))
+(let ((?x4539 (fun_app$c v_b_SP_G_1$ ?v1!18)))
+(let (($x4537 (= ?x2198 ?x4539)))
+(let ((@x8063 (mp ((_ quant-inst ?v1!18) (or $x3948 (or $x3065 $x4537))) (rewrite (= (or $x3948 (or $x3065 $x4537)) (or $x3948 $x3065 $x4537))) (or $x3948 $x3065 $x4537))))
+(let ((@x10071 (unit-resolution @x8063 @x10489 (unit-resolution (def-axiom (or $x3080 $x2189)) (hypothesis $x3085) $x2189) $x4537)))
+(let (($x9200 (<= (+ (v_b_SP_G_2$ ?v0!19) ?x4919) 0)))
+(let (($x9219 (or $x3939 $x9200)))
+(let ((@x6015 (monotonicity (rewrite (= (+ ?x4520 ?x2200) (+ ?x2200 ?x4520))) (= (>= (+ ?x4520 ?x2200) 0) (>= (+ ?x2200 ?x4520) 0)))))
+(let ((@x9261 (trans @x6015 (rewrite (= (>= (+ ?x2200 ?x4520) 0) $x9200)) (= (>= (+ ?x4520 ?x2200) 0) $x9200))))
+(let ((@x8768 (trans (monotonicity @x9261 (= (or $x3939 (>= (+ ?x4520 ?x2200) 0)) $x9219)) (rewrite (= $x9219 $x9219)) (= (or $x3939 (>= (+ ?x4520 ?x2200) 0)) $x9219))))
+(let ((@x9207 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3939 (>= (+ ?x4520 ?x2200) 0))) @x8768 $x9219) @x8305 $x9200)))
+(let ((@x9209 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis (>= (+ ?x2191 ?x4919 ?x4539) 0)) @x9207 @x9184 (hypothesis $x8491) false)))
+(let ((@x9157 (lemma @x9209 (or (not (>= (+ ?x2191 ?x4919 ?x4539) 0)) $x2202 (not $x8491)))))
+(let ((@x10062 (unit-resolution @x9157 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4537) $x8491)) @x10071 $x8491) @x9184 (not (>= (+ ?x2191 ?x4919 ?x4539) 0)))))
+(let (($x8396 (>= (+ ?x2191 ?x4919 ?x4539) 0)))
+(let (($x7250 (or $x3826 $x4584 $x2194 $x8396)))
+(let (($x7254 (or $x3826 (or $x4584 $x2194 (>= (+ ?x2191 ?x4539 ?x4919) 0)))))
+(let (($x7281 (= (or $x4584 $x2194 (>= (+ ?x2191 ?x4539 ?x4919) 0)) (or $x4584 $x2194 $x8396))))
+(let ((@x7279 (monotonicity (rewrite (= (+ ?x2191 ?x4539 ?x4919) (+ ?x2191 ?x4919 ?x4539))) (= (>= (+ ?x2191 ?x4539 ?x4919) 0) $x8396))))
+(let ((@x7262 (monotonicity (monotonicity @x7279 $x7281) (= $x7254 (or $x3826 (or $x4584 $x2194 $x8396))))))
+(let ((@x7275 (trans @x7262 (rewrite (= (or $x3826 (or $x4584 $x2194 $x8396)) $x7250)) (= $x7254 $x7250))))
+(let ((@x10063 (unit-resolution (mp ((_ quant-inst ?v0!19 ?v1!18) $x7254) @x7275 $x7250) @x6172 (unit-resolution (def-axiom (or $x3080 $x2195)) (hypothesis $x3085) $x2195) (or $x4584 $x8396))))
+(let (($x8064 (or $x4552 $x4560)))
+(let (($x4569 (fun_app$ ?x212 ?v1!18)))
+(let (($x7915 (= $x4569 $x8064)))
+(let (($x5802 (or $x5105 $x7915)))
+(let ((@x7808 (monotonicity (rewrite (= (ite $x4552 true $x4560) $x8064)) (= (= $x4569 (ite $x4552 true $x4560)) $x7915))))
+(let ((@x8409 (monotonicity @x7808 (= (or $x5105 (= $x4569 (ite $x4552 true $x4560))) $x5802))))
+(let ((@x8439 (trans @x8409 (rewrite (= $x5802 $x5802)) (= (or $x5105 (= $x4569 (ite $x4552 true $x4560))) $x5802))))
+(let ((@x9247 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x5105 (= $x4569 (ite $x4552 true $x4560)))) @x8439 $x5802)))
+(let ((@x10467 (mp (unit-resolution (def-axiom (or $x3080 $x2189)) (hypothesis $x3085) $x2189) (symm (monotonicity @x8210 (= $x4569 $x2189)) (= $x2189 $x4569)) $x4569)))
+(let ((@x10247 (unit-resolution (def-axiom (or (not $x7915) (not $x4569) $x8064)) @x10467 (unit-resolution @x9247 @x3721 $x7915) $x8064)))
+(let ((@x10216 (unit-resolution (def-axiom (or (not $x8064) $x4552 $x4560)) @x10247 (unit-resolution @x10063 @x10062 $x4584) $x4552)))
+(let ((@x10847 (monotonicity @x10216 (= (pair$ ?v1!18 ?v0!19) (pair$ v_b_v_G_1$ ?v0!19)))))
+(let ((@x10848 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2191 ?x4936)) $x8037)) (monotonicity @x10847 (= ?x2191 ?x4936)) $x8037)))
+(let (($x8038 (>= (+ ?x2198 ?x3395) 0)))
+(let ((@x10005 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2198 ?x3394)) $x8038)) (monotonicity @x10216 (= ?x2198 ?x3394)) $x8038)))
+(let ((@x8468 ((_ th-lemma arith farkas -1 1 -1 -1 1 1) (hypothesis $x8038) @x8936 (hypothesis $x8037) (hypothesis $x7104) @x9207 @x9184 false)))
+(let ((@x9577 (unit-resolution (lemma @x8468 (or (not $x7104) (not $x8038) (not $x8037) $x2202)) @x10005 @x9184 @x10848 (not $x7104))))
+(let ((@x8883 ((_ th-lemma arith farkas -1 1 -1 -1 1) (hypothesis $x8038) @x8936 (hypothesis $x8037) (hypothesis (>= (+ ?x204 ?x2200 ?x4936) 0)) @x9184 false)))
+(let ((@x9326 (lemma @x8883 (or (not (>= (+ ?x204 ?x2200 ?x4936) 0)) (not $x8038) (not $x8037) $x2202))))
+(let ((@x9398 (unit-resolution @x9326 @x10848 @x9184 @x10005 (not (>= (+ ?x204 ?x2200 ?x4936) 0)))))
+(let ((?x7186 (+ ?x204 ?x2200 ?x4936)))
+(let (($x7258 (>= ?x7186 0)))
+(let ((@x8781 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7186 0)) $x7258)) @x9398 (not (= ?x7186 0)))))
+(let (($x7111 (= ?x7186 0)))
+(let (($x7222 (or $x4939 $x7104 $x7111)))
+(let (($x7201 (or $x3923 $x4939 $x7104 $x7111)))
+(let (($x4941 (<= (+ ?x4520 ?x1520 (* (- 1) ?x4936)) 0)))
+(let (($x7208 (or $x3923 (or $x4939 $x4941 (= (+ ?x204 ?x4936 ?x2200) 0)))))
+(let ((@x7190 (monotonicity (rewrite (= (+ ?x204 ?x4936 ?x2200) ?x7186)) (= (= (+ ?x204 ?x4936 ?x2200) 0) $x7111))))
+(let ((@x7077 (rewrite (= (+ ?x4520 ?x1520 (* (- 1) ?x4936)) (+ ?x1520 ?x4520 (* (- 1) ?x4936))))))
+(let ((@x7001 (monotonicity @x7077 (= $x4941 (<= (+ ?x1520 ?x4520 (* (- 1) ?x4936)) 0)))))
+(let ((@x7110 (trans @x7001 (rewrite (= (<= (+ ?x1520 ?x4520 (* (- 1) ?x4936)) 0) $x7104)) (= $x4941 $x7104))))
+(let ((@x7200 (monotonicity @x7110 @x7190 (= (or $x4939 $x4941 (= (+ ?x204 ?x4936 ?x2200) 0)) $x7222))))
+(let ((@x7230 (trans (monotonicity @x7200 (= $x7208 (or $x3923 $x7222))) (rewrite (= (or $x3923 $x7222) $x7201)) (= $x7208 $x7201))))
+(let ((@x8782 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!19) $x7208) @x7230 $x7201) @x8165 $x7222) @x8781 @x9577 $x4939)))
+(let ((@x7246 ((_ th-lemma arith farkas 1 -1 1) @x10848 @x8782 (unit-resolution (def-axiom (or $x3080 $x2195)) (hypothesis $x3085) $x2195) false)))
+(unit-resolution (lemma @x7246 (or $x3080 $x2202)) (unit-resolution (def-axiom (or $x3080 $x3626)) @x8697 $x3626) @x8697 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/Boogie_Max.certs	Thu May 01 22:57:36 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2151 +0,0 @@
-2fe4278cefdf713c58d9bb38d221cd0a858eee31 2150 0
-#2 := false
-#7 := 0::Int
-decl ?v0!3 :: Int
-#1165 := ?v0!3
-#688 := -1::Int
-#1310 := (* -1::Int ?v0!3)
-decl f8 :: Int
-#31 := f8
-#2386 := (+ f8 #1310)
-#2387 := (<= #2386 0::Int)
-#2492 := (not #2387)
-#2419 := (>= #2386 0::Int)
-decl f16 :: Int
-#82 := f16
-#797 := (* -1::Int f16)
-#829 := (+ f8 #797)
-#1830 := (>= #829 -1::Int)
-#828 := (= #829 -1::Int)
-decl f15 :: Int
-#78 := f15
-decl f5 :: (-> S2 Int Int)
-decl f14 :: Int
-#76 := f14
-decl f6 :: S2
-#11 := f6
-#93 := (f5 f6 f14)
-#94 := (= #93 f15)
-#20 := (:var 0 Int)
-#24 := (f5 f6 #20)
-#2148 := (pattern #24)
-#808 := (* -1::Int f15)
-#809 := (+ #24 #808)
-#810 := (<= #809 0::Int)
-#798 := (+ #20 #797)
-#796 := (>= #798 0::Int)
-#677 := (>= #20 0::Int)
-#1413 := (not #677)
-#1587 := (or #1413 #796 #810)
-#2182 := (forall (vars (?v0 Int)) (:pat #2148) #1587)
-#2187 := (not #2182)
-#2190 := (or #2187 #94)
-#2193 := (not #2190)
-#1172 := (f5 f6 ?v0!3)
-#1332 := (* -1::Int #1172)
-#1333 := (+ f15 #1332)
-#1334 := (>= #1333 0::Int)
-#1311 := (+ f16 #1310)
-#1312 := (<= #1311 0::Int)
-#1166 := (>= ?v0!3 0::Int)
-#1550 := (not #1166)
-#1565 := (or #1550 #1312 #1334)
-#1570 := (not #1565)
-#2196 := (or #1570 #2193)
-#2199 := (not #2196)
-#85 := 2::Int
-#788 := (>= f16 2::Int)
-#1612 := (not #788)
-#785 := (>= f14 0::Int)
-#1611 := (not #785)
-#832 := (not #828)
-#15 := 1::Int
-#707 := (>= f8 1::Int)
-#841 := (not #707)
-decl f9 :: Int
-#36 := f9
-#115 := (= f15 f9)
-#453 := (not #115)
-decl f7 :: Int
-#29 := f7
-#114 := (= f14 f7)
-#462 := (not #114)
-#71 := (f5 f6 f8)
-#846 := (* -1::Int #71)
-#847 := (+ f9 #846)
-#845 := (>= #847 0::Int)
-#844 := (not #845)
-#704 := (>= f7 0::Int)
-#1542 := (not #704)
-#2208 := (or #1542 #844 #462 #453 #841 #832 #1611 #1612 #2199)
-#2211 := (not #2208)
-decl f13 :: Int
-#73 := f13
-#79 := (= f15 f13)
-#386 := (not #79)
-#77 := (= f14 f8)
-#395 := (not #77)
-#74 := (= f13 #71)
-#420 := (not #74)
-#2202 := (or #1542 #845 #420 #395 #386 #841 #832 #1611 #1612 #2199)
-#2205 := (not #2202)
-#2214 := (or #2205 #2211)
-#2217 := (not #2214)
-#753 := (* -1::Int f8)
-decl f3 :: Int
-#8 := f3
-#754 := (+ f3 #753)
-#755 := (<= #754 0::Int)
-#2220 := (or #1542 #841 #755 #2217)
-#2223 := (not #2220)
-decl ?v0!2 :: Int
-#1110 := ?v0!2
-#1118 := (f5 f6 ?v0!2)
-#1263 := (* -1::Int #1118)
-decl f11 :: Int
-#45 := f11
-#1264 := (+ f11 #1263)
-#1265 := (>= #1264 0::Int)
-#1112 := (* -1::Int ?v0!2)
-#1113 := (+ f3 #1112)
-#1114 := (<= #1113 0::Int)
-#1111 := (>= ?v0!2 0::Int)
-#1503 := (not #1111)
-decl ?v0!1 :: Int
-#1092 := ?v0!1
-#1100 := (f5 f6 ?v0!1)
-#1101 := (= #1100 f11)
-#1094 := (* -1::Int ?v0!1)
-#1095 := (+ f3 #1094)
-#1096 := (<= #1095 0::Int)
-#1093 := (>= ?v0!1 0::Int)
-#1483 := (not #1093)
-#1498 := (or #1483 #1096 #1101)
-#1529 := (not #1498)
-#1530 := (or #1529 #1503 #1114 #1265)
-#1531 := (not #1530)
-#51 := (= #24 f11)
-#715 := (* -1::Int #20)
-#716 := (+ f3 #715)
-#717 := (<= #716 0::Int)
-#1472 := (or #1413 #717 #51)
-#1477 := (not #1472)
-#2165 := (forall (vars (?v0 Int)) (:pat #2148) #1477)
-#2170 := (or #2165 #1531)
-#2173 := (not #2170)
-decl f12 :: Int
-#47 := f12
-#48 := (= f12 f8)
-#235 := (not #48)
-#46 := (= f11 f9)
-#244 := (not #46)
-decl f10 :: Int
-#43 := f10
-#44 := (= f10 f7)
-#253 := (not #44)
-#758 := (not #755)
-#2176 := (or #1542 #841 #758 #253 #244 #235 #2173)
-#2179 := (not #2176)
-#2226 := (or #2179 #2223)
-#2229 := (not #2226)
-#40 := (f5 f6 f7)
-#41 := (= #40 f9)
-#556 := (not #41)
-#953 := (* -1::Int f9)
-#954 := (+ #24 #953)
-#955 := (<= #954 0::Int)
-#943 := (+ #20 #753)
-#942 := (>= #943 0::Int)
-#1450 := (or #1413 #942 #955)
-#2157 := (forall (vars (?v0 Int)) (:pat #2148) #1450)
-#2162 := (not #2157)
-decl f4 :: Int
-#10 := f4
-#12 := (f5 f6 0::Int)
-#28 := (= #12 f4)
-#589 := (not #28)
-#2232 := (or #589 #1542 #841 #2162 #556 #2229)
-#2235 := (not #2232)
-#2238 := (or #589 #2235)
-#2241 := (not #2238)
-#691 := (* -1::Int #24)
-#692 := (+ f4 #691)
-#690 := (>= #692 0::Int)
-#680 := (>= #20 1::Int)
-#1428 := (or #1413 #680 #690)
-#2149 := (forall (vars (?v0 Int)) (:pat #2148) #1428)
-#2154 := (not #2149)
-#2244 := (or #2154 #2241)
-#2247 := (not #2244)
-decl ?v0!0 :: Int
-#1040 := ?v0!0
-#1034 := (f5 f6 ?v0!0)
-#1035 := (* -1::Int #1034)
-#1032 := (+ f4 #1035)
-#1033 := (>= #1032 0::Int)
-#1042 := (>= ?v0!0 1::Int)
-#1041 := (>= ?v0!0 0::Int)
-#1179 := (not #1041)
-#1405 := (or #1179 #1042 #1033)
-#1999 := (= f4 #1034)
-#1925 := (= #12 #1034)
-#1965 := (= #1034 #12)
-#1975 := (= ?v0!0 0::Int)
-#1043 := (not #1042)
-#1410 := (not #1405)
-#1998 := [hypothesis]: #1410
-#1735 := (or #1405 #1043)
-#1820 := [def-axiom]: #1735
-#2000 := [unit-resolution #1820 #1998]: #1043
-#1734 := (or #1405 #1041)
-#1819 := [def-axiom]: #1734
-#1968 := [unit-resolution #1819 #1998]: #1041
-#1934 := [th-lemma arith eq-propagate 0 0 #1968 #2000]: #1975
-#1967 := [monotonicity #1934]: #1965
-#1926 := [symm #1967]: #1925
-#13 := (= f4 #12)
-#799 := (not #796)
-#802 := (and #677 #799)
-#805 := (not #802)
-#813 := (or #805 #810)
-#816 := (forall (vars (?v0 Int)) #813)
-#819 := (not #816)
-#822 := (or #819 #94)
-#825 := (and #816 #822)
-#790 := (and #785 #788)
-#793 := (not #790)
-#835 := (and #785 #707)
-#838 := (not #835)
-#709 := (and #704 #707)
-#712 := (not #709)
-#908 := (or #712 #844 #462 #453 #838 #832 #793 #825)
-#884 := (or #712 #845 #420 #841 #395 #386 #838 #832 #793 #825)
-#913 := (and #884 #908)
-#934 := (or #712 #755 #913)
-#736 := (* -1::Int f11)
-#737 := (+ #24 #736)
-#738 := (<= #737 0::Int)
-#718 := (not #717)
-#721 := (and #677 #718)
-#724 := (not #721)
-#741 := (or #724 #738)
-#744 := (forall (vars (?v0 Int)) #741)
-#727 := (or #724 #51)
-#730 := (exists (vars (?v0 Int)) #727)
-#733 := (not #730)
-#747 := (or #733 #744)
-#750 := (and #730 #747)
-#779 := (or #712 #758 #253 #244 #235 #750)
-#939 := (and #779 #934)
-#944 := (not #942)
-#947 := (and #677 #944)
-#950 := (not #947)
-#958 := (or #950 #955)
-#961 := (forall (vars (?v0 Int)) #958)
-#964 := (not #961)
-#982 := (or #589 #712 #964 #556 #939)
-#987 := (and #28 #982)
-#678 := (not #680)
-#682 := (and #677 #678)
-#685 := (not #682)
-#694 := (or #685 #690)
-#697 := (forall (vars (?v0 Int)) #694)
-#700 := (not #697)
-#990 := (or #700 #987)
-#993 := (and #697 #990)
-#622 := (not #13)
-#996 := (<= f3 0::Int)
-#1016 := (or #996 #622 #993)
-#1021 := (not #1016)
-#1 := true
-#95 := (implies false true)
-#96 := (implies #94 #95)
-#97 := (and #94 #96)
-#90 := (<= #24 f15)
-#88 := (< #20 f16)
-#21 := (<= 0::Int #20)
-#89 := (and #21 #88)
-#91 := (implies #89 #90)
-#92 := (forall (vars (?v0 Int)) #91)
-#98 := (implies #92 #97)
-#99 := (and #92 #98)
-#100 := (implies true #99)
-#86 := (<= 2::Int f16)
-#80 := (<= 0::Int f14)
-#87 := (and #80 #86)
-#101 := (implies #87 #100)
-#83 := (+ f8 1::Int)
-#84 := (= f16 #83)
-#102 := (implies #84 #101)
-#32 := (<= 1::Int f8)
-#81 := (and #80 #32)
-#103 := (implies #81 #102)
-#104 := (implies true #103)
-#116 := (implies #115 #104)
-#117 := (implies #114 #116)
-#118 := (implies true #117)
-#30 := (<= 0::Int f7)
-#33 := (and #30 #32)
-#119 := (implies #33 #118)
-#113 := (<= #71 f9)
-#120 := (implies #113 #119)
-#121 := (implies #33 #120)
-#122 := (implies true #121)
-#105 := (implies #79 #104)
-#106 := (implies #77 #105)
-#107 := (implies true #106)
-#75 := (and #32 #32)
-#108 := (implies #75 #107)
-#109 := (implies #74 #108)
-#72 := (< f9 #71)
-#110 := (implies #72 #109)
-#111 := (implies #33 #110)
-#112 := (implies true #111)
-#123 := (and #112 #122)
-#124 := (implies #33 #123)
-#70 := (< f8 f3)
-#125 := (implies #70 #124)
-#126 := (implies #33 #125)
-#127 := (implies true #126)
-#54 := (<= #24 f11)
-#49 := (< #20 f3)
-#50 := (and #21 #49)
-#55 := (implies #50 #54)
-#56 := (forall (vars (?v0 Int)) #55)
-#57 := (implies #56 true)
-#58 := (and #56 #57)
-#52 := (implies #50 #51)
-#53 := (exists (vars (?v0 Int)) #52)
-#59 := (implies #53 #58)
-#60 := (and #53 #59)
-#61 := (implies true #60)
-#62 := (implies #48 #61)
-#63 := (implies #46 #62)
-#64 := (implies #44 #63)
-#65 := (implies true #64)
-#66 := (implies #33 #65)
-#42 := (<= f3 f8)
-#67 := (implies #42 #66)
-#68 := (implies #33 #67)
-#69 := (implies true #68)
-#128 := (and #69 #127)
-#129 := (implies #33 #128)
-#130 := (implies #41 #129)
-#37 := (<= #24 f9)
-#34 := (< #20 f8)
-#35 := (and #21 #34)
-#38 := (implies #35 #37)
-#39 := (forall (vars (?v0 Int)) #38)
-#131 := (implies #39 #130)
-#132 := (implies #33 #131)
-#133 := (implies true #132)
-#134 := (implies #28 #133)
-#135 := (and #28 #134)
-#25 := (<= #24 f4)
-#22 := (< #20 1::Int)
-#23 := (and #21 #22)
-#26 := (implies #23 #25)
-#27 := (forall (vars (?v0 Int)) #26)
-#136 := (implies #27 #135)
-#137 := (and #27 #136)
-#16 := (<= 1::Int 1::Int)
-#17 := (and #16 #16)
-#14 := (<= 0::Int 0::Int)
-#18 := (and #14 #17)
-#19 := (and #14 #18)
-#138 := (implies #19 #137)
-#139 := (implies #13 #138)
-#140 := (implies true #139)
-#9 := (< 0::Int f3)
-#141 := (implies #9 #140)
-#142 := (implies true #141)
-#143 := (not #142)
-#1024 := (iff #143 #1021)
-#307 := (not #89)
-#308 := (or #307 #90)
-#311 := (forall (vars (?v0 Int)) #308)
-#333 := (not #311)
-#334 := (or #333 #94)
-#339 := (and #311 #334)
-#352 := (not #87)
-#353 := (or #352 #339)
-#301 := (+ 1::Int f8)
-#304 := (= f16 #301)
-#361 := (not #304)
-#362 := (or #361 #353)
-#370 := (not #81)
-#371 := (or #370 #362)
-#454 := (or #453 #371)
-#463 := (or #462 #454)
-#269 := (not #33)
-#478 := (or #269 #463)
-#486 := (not #113)
-#487 := (or #486 #478)
-#495 := (or #269 #487)
-#387 := (or #386 #371)
-#396 := (or #395 #387)
-#411 := (not #32)
-#412 := (or #411 #396)
-#421 := (or #420 #412)
-#429 := (not #72)
-#430 := (or #429 #421)
-#438 := (or #269 #430)
-#507 := (and #438 #495)
-#513 := (or #269 #507)
-#521 := (not #70)
-#522 := (or #521 #513)
-#530 := (or #269 #522)
-#186 := (not #50)
-#193 := (or #186 #54)
-#196 := (forall (vars (?v0 Int)) #193)
-#187 := (or #186 #51)
-#190 := (exists (vars (?v0 Int)) #187)
-#216 := (not #190)
-#217 := (or #216 #196)
-#222 := (and #190 #217)
-#236 := (or #235 #222)
-#245 := (or #244 #236)
-#254 := (or #253 #245)
-#270 := (or #269 #254)
-#278 := (not #42)
-#279 := (or #278 #270)
-#287 := (or #269 #279)
-#542 := (and #287 #530)
-#548 := (or #269 #542)
-#557 := (or #556 #548)
-#179 := (not #35)
-#180 := (or #179 #37)
-#183 := (forall (vars (?v0 Int)) #180)
-#565 := (not #183)
-#566 := (or #565 #557)
-#574 := (or #269 #566)
-#590 := (or #589 #574)
-#595 := (and #28 #590)
-#172 := (not #23)
-#173 := (or #172 #25)
-#176 := (forall (vars (?v0 Int)) #173)
-#601 := (not #176)
-#602 := (or #601 #595)
-#607 := (and #176 #602)
-#166 := (and #14 #16)
-#169 := (and #14 #166)
-#613 := (not #169)
-#614 := (or #613 #607)
-#623 := (or #622 #614)
-#638 := (not #9)
-#639 := (or #638 #623)
-#651 := (not #639)
-#1022 := (iff #651 #1021)
-#1019 := (iff #639 #1016)
-#1007 := (or false #993)
-#1010 := (or #622 #1007)
-#1013 := (or #996 #1010)
-#1017 := (iff #1013 #1016)
-#1018 := [rewrite]: #1017
-#1014 := (iff #639 #1013)
-#1011 := (iff #623 #1010)
-#1008 := (iff #614 #1007)
-#994 := (iff #607 #993)
-#991 := (iff #602 #990)
-#988 := (iff #595 #987)
-#985 := (iff #590 #982)
-#967 := (or #712 #939)
-#970 := (or #556 #967)
-#973 := (or #964 #970)
-#976 := (or #712 #973)
-#979 := (or #589 #976)
-#983 := (iff #979 #982)
-#984 := [rewrite]: #983
-#980 := (iff #590 #979)
-#977 := (iff #574 #976)
-#974 := (iff #566 #973)
-#971 := (iff #557 #970)
-#968 := (iff #548 #967)
-#940 := (iff #542 #939)
-#937 := (iff #530 #934)
-#925 := (or #712 #913)
-#928 := (or #755 #925)
-#931 := (or #712 #928)
-#935 := (iff #931 #934)
-#936 := [rewrite]: #935
-#932 := (iff #530 #931)
-#929 := (iff #522 #928)
-#926 := (iff #513 #925)
-#914 := (iff #507 #913)
-#911 := (iff #495 #908)
-#857 := (or #793 #825)
-#860 := (or #832 #857)
-#863 := (or #838 #860)
-#893 := (or #453 #863)
-#896 := (or #462 #893)
-#899 := (or #712 #896)
-#902 := (or #844 #899)
-#905 := (or #712 #902)
-#909 := (iff #905 #908)
-#910 := [rewrite]: #909
-#906 := (iff #495 #905)
-#903 := (iff #487 #902)
-#900 := (iff #478 #899)
-#897 := (iff #463 #896)
-#894 := (iff #454 #893)
-#864 := (iff #371 #863)
-#861 := (iff #362 #860)
-#858 := (iff #353 #857)
-#826 := (iff #339 #825)
-#823 := (iff #334 #822)
-#820 := (iff #333 #819)
-#817 := (iff #311 #816)
-#814 := (iff #308 #813)
-#811 := (iff #90 #810)
-#812 := [rewrite]: #811
-#806 := (iff #307 #805)
-#803 := (iff #89 #802)
-#800 := (iff #88 #799)
-#801 := [rewrite]: #800
-#675 := (iff #21 #677)
-#676 := [rewrite]: #675
-#804 := [monotonicity #676 #801]: #803
-#807 := [monotonicity #804]: #806
-#815 := [monotonicity #807 #812]: #814
-#818 := [quant-intro #815]: #817
-#821 := [monotonicity #818]: #820
-#824 := [monotonicity #821]: #823
-#827 := [monotonicity #818 #824]: #826
-#794 := (iff #352 #793)
-#791 := (iff #87 #790)
-#787 := (iff #86 #788)
-#789 := [rewrite]: #787
-#784 := (iff #80 #785)
-#786 := [rewrite]: #784
-#792 := [monotonicity #786 #789]: #791
-#795 := [monotonicity #792]: #794
-#859 := [monotonicity #795 #827]: #858
-#833 := (iff #361 #832)
-#830 := (iff #304 #828)
-#831 := [rewrite]: #830
-#834 := [monotonicity #831]: #833
-#862 := [monotonicity #834 #859]: #861
-#839 := (iff #370 #838)
-#836 := (iff #81 #835)
-#706 := (iff #32 #707)
-#708 := [rewrite]: #706
-#837 := [monotonicity #786 #708]: #836
-#840 := [monotonicity #837]: #839
-#865 := [monotonicity #840 #862]: #864
-#895 := [monotonicity #865]: #894
-#898 := [monotonicity #895]: #897
-#713 := (iff #269 #712)
-#710 := (iff #33 #709)
-#703 := (iff #30 #704)
-#705 := [rewrite]: #703
-#711 := [monotonicity #705 #708]: #710
-#714 := [monotonicity #711]: #713
-#901 := [monotonicity #714 #898]: #900
-#891 := (iff #486 #844)
-#889 := (iff #113 #845)
-#890 := [rewrite]: #889
-#892 := [monotonicity #890]: #891
-#904 := [monotonicity #892 #901]: #903
-#907 := [monotonicity #714 #904]: #906
-#912 := [trans #907 #910]: #911
-#887 := (iff #438 #884)
-#866 := (or #386 #863)
-#869 := (or #395 #866)
-#872 := (or #841 #869)
-#875 := (or #420 #872)
-#878 := (or #845 #875)
-#881 := (or #712 #878)
-#885 := (iff #881 #884)
-#886 := [rewrite]: #885
-#882 := (iff #438 #881)
-#879 := (iff #430 #878)
-#876 := (iff #421 #875)
-#873 := (iff #412 #872)
-#870 := (iff #396 #869)
-#867 := (iff #387 #866)
-#868 := [monotonicity #865]: #867
-#871 := [monotonicity #868]: #870
-#842 := (iff #411 #841)
-#843 := [monotonicity #708]: #842
-#874 := [monotonicity #843 #871]: #873
-#877 := [monotonicity #874]: #876
-#855 := (iff #429 #845)
-#850 := (not #844)
-#853 := (iff #850 #845)
-#854 := [rewrite]: #853
-#851 := (iff #429 #850)
-#848 := (iff #72 #844)
-#849 := [rewrite]: #848
-#852 := [monotonicity #849]: #851
-#856 := [trans #852 #854]: #855
-#880 := [monotonicity #856 #877]: #879
-#883 := [monotonicity #714 #880]: #882
-#888 := [trans #883 #886]: #887
-#915 := [monotonicity #888 #912]: #914
-#927 := [monotonicity #714 #915]: #926
-#923 := (iff #521 #755)
-#918 := (not #758)
-#921 := (iff #918 #755)
-#922 := [rewrite]: #921
-#919 := (iff #521 #918)
-#916 := (iff #70 #758)
-#917 := [rewrite]: #916
-#920 := [monotonicity #917]: #919
-#924 := [trans #920 #922]: #923
-#930 := [monotonicity #924 #927]: #929
-#933 := [monotonicity #714 #930]: #932
-#938 := [trans #933 #936]: #937
-#782 := (iff #287 #779)
-#761 := (or #235 #750)
-#764 := (or #244 #761)
-#767 := (or #253 #764)
-#770 := (or #712 #767)
-#773 := (or #758 #770)
-#776 := (or #712 #773)
-#780 := (iff #776 #779)
-#781 := [rewrite]: #780
-#777 := (iff #287 #776)
-#774 := (iff #279 #773)
-#771 := (iff #270 #770)
-#768 := (iff #254 #767)
-#765 := (iff #245 #764)
-#762 := (iff #236 #761)
-#751 := (iff #222 #750)
-#748 := (iff #217 #747)
-#745 := (iff #196 #744)
-#742 := (iff #193 #741)
-#739 := (iff #54 #738)
-#740 := [rewrite]: #739
-#725 := (iff #186 #724)
-#722 := (iff #50 #721)
-#719 := (iff #49 #718)
-#720 := [rewrite]: #719
-#723 := [monotonicity #676 #720]: #722
-#726 := [monotonicity #723]: #725
-#743 := [monotonicity #726 #740]: #742
-#746 := [quant-intro #743]: #745
-#734 := (iff #216 #733)
-#731 := (iff #190 #730)
-#728 := (iff #187 #727)
-#729 := [monotonicity #726]: #728
-#732 := [quant-intro #729]: #731
-#735 := [monotonicity #732]: #734
-#749 := [monotonicity #735 #746]: #748
-#752 := [monotonicity #732 #749]: #751
-#763 := [monotonicity #752]: #762
-#766 := [monotonicity #763]: #765
-#769 := [monotonicity #766]: #768
-#772 := [monotonicity #714 #769]: #771
-#759 := (iff #278 #758)
-#756 := (iff #42 #755)
-#757 := [rewrite]: #756
-#760 := [monotonicity #757]: #759
-#775 := [monotonicity #760 #772]: #774
-#778 := [monotonicity #714 #775]: #777
-#783 := [trans #778 #781]: #782
-#941 := [monotonicity #783 #938]: #940
-#969 := [monotonicity #714 #941]: #968
-#972 := [monotonicity #969]: #971
-#965 := (iff #565 #964)
-#962 := (iff #183 #961)
-#959 := (iff #180 #958)
-#956 := (iff #37 #955)
-#957 := [rewrite]: #956
-#951 := (iff #179 #950)
-#948 := (iff #35 #947)
-#945 := (iff #34 #944)
-#946 := [rewrite]: #945
-#949 := [monotonicity #676 #946]: #948
-#952 := [monotonicity #949]: #951
-#960 := [monotonicity #952 #957]: #959
-#963 := [quant-intro #960]: #962
-#966 := [monotonicity #963]: #965
-#975 := [monotonicity #966 #972]: #974
-#978 := [monotonicity #714 #975]: #977
-#981 := [monotonicity #978]: #980
-#986 := [trans #981 #984]: #985
-#989 := [monotonicity #986]: #988
-#701 := (iff #601 #700)
-#698 := (iff #176 #697)
-#695 := (iff #173 #694)
-#689 := (iff #25 #690)
-#693 := [rewrite]: #689
-#686 := (iff #172 #685)
-#683 := (iff #23 #682)
-#679 := (iff #22 #678)
-#681 := [rewrite]: #679
-#684 := [monotonicity #676 #681]: #683
-#687 := [monotonicity #684]: #686
-#696 := [monotonicity #687 #693]: #695
-#699 := [quant-intro #696]: #698
-#702 := [monotonicity #699]: #701
-#992 := [monotonicity #702 #989]: #991
-#995 := [monotonicity #699 #992]: #994
-#673 := (iff #613 false)
-#668 := (not true)
-#671 := (iff #668 false)
-#672 := [rewrite]: #671
-#669 := (iff #613 #668)
-#666 := (iff #169 true)
-#658 := (and true true)
-#661 := (and true #658)
-#664 := (iff #661 true)
-#665 := [rewrite]: #664
-#662 := (iff #169 #661)
-#659 := (iff #166 #658)
-#656 := (iff #16 true)
-#657 := [rewrite]: #656
-#654 := (iff #14 true)
-#655 := [rewrite]: #654
-#660 := [monotonicity #655 #657]: #659
-#663 := [monotonicity #655 #660]: #662
-#667 := [trans #663 #665]: #666
-#670 := [monotonicity #667]: #669
-#674 := [trans #670 #672]: #673
-#1009 := [monotonicity #674 #995]: #1008
-#1012 := [monotonicity #1009]: #1011
-#1005 := (iff #638 #996)
-#997 := (not #996)
-#1000 := (not #997)
-#1003 := (iff #1000 #996)
-#1004 := [rewrite]: #1003
-#1001 := (iff #638 #1000)
-#998 := (iff #9 #997)
-#999 := [rewrite]: #998
-#1002 := [monotonicity #999]: #1001
-#1006 := [trans #1002 #1004]: #1005
-#1015 := [monotonicity #1006 #1012]: #1014
-#1020 := [trans #1015 #1018]: #1019
-#1023 := [monotonicity #1020]: #1022
-#652 := (iff #143 #651)
-#649 := (iff #142 #639)
-#644 := (implies true #639)
-#647 := (iff #644 #639)
-#648 := [rewrite]: #647
-#645 := (iff #142 #644)
-#642 := (iff #141 #639)
-#635 := (implies #9 #623)
-#640 := (iff #635 #639)
-#641 := [rewrite]: #640
-#636 := (iff #141 #635)
-#633 := (iff #140 #623)
-#628 := (implies true #623)
-#631 := (iff #628 #623)
-#632 := [rewrite]: #631
-#629 := (iff #140 #628)
-#626 := (iff #139 #623)
-#619 := (implies #13 #614)
-#624 := (iff #619 #623)
-#625 := [rewrite]: #624
-#620 := (iff #139 #619)
-#617 := (iff #138 #614)
-#610 := (implies #169 #607)
-#615 := (iff #610 #614)
-#616 := [rewrite]: #615
-#611 := (iff #138 #610)
-#608 := (iff #137 #607)
-#605 := (iff #136 #602)
-#598 := (implies #176 #595)
-#603 := (iff #598 #602)
-#604 := [rewrite]: #603
-#599 := (iff #136 #598)
-#596 := (iff #135 #595)
-#593 := (iff #134 #590)
-#586 := (implies #28 #574)
-#591 := (iff #586 #590)
-#592 := [rewrite]: #591
-#587 := (iff #134 #586)
-#584 := (iff #133 #574)
-#579 := (implies true #574)
-#582 := (iff #579 #574)
-#583 := [rewrite]: #582
-#580 := (iff #133 #579)
-#577 := (iff #132 #574)
-#571 := (implies #33 #566)
-#575 := (iff #571 #574)
-#576 := [rewrite]: #575
-#572 := (iff #132 #571)
-#569 := (iff #131 #566)
-#562 := (implies #183 #557)
-#567 := (iff #562 #566)
-#568 := [rewrite]: #567
-#563 := (iff #131 #562)
-#560 := (iff #130 #557)
-#553 := (implies #41 #548)
-#558 := (iff #553 #557)
-#559 := [rewrite]: #558
-#554 := (iff #130 #553)
-#551 := (iff #129 #548)
-#545 := (implies #33 #542)
-#549 := (iff #545 #548)
-#550 := [rewrite]: #549
-#546 := (iff #129 #545)
-#543 := (iff #128 #542)
-#540 := (iff #127 #530)
-#535 := (implies true #530)
-#538 := (iff #535 #530)
-#539 := [rewrite]: #538
-#536 := (iff #127 #535)
-#533 := (iff #126 #530)
-#527 := (implies #33 #522)
-#531 := (iff #527 #530)
-#532 := [rewrite]: #531
-#528 := (iff #126 #527)
-#525 := (iff #125 #522)
-#518 := (implies #70 #513)
-#523 := (iff #518 #522)
-#524 := [rewrite]: #523
-#519 := (iff #125 #518)
-#516 := (iff #124 #513)
-#510 := (implies #33 #507)
-#514 := (iff #510 #513)
-#515 := [rewrite]: #514
-#511 := (iff #124 #510)
-#508 := (iff #123 #507)
-#505 := (iff #122 #495)
-#500 := (implies true #495)
-#503 := (iff #500 #495)
-#504 := [rewrite]: #503
-#501 := (iff #122 #500)
-#498 := (iff #121 #495)
-#492 := (implies #33 #487)
-#496 := (iff #492 #495)
-#497 := [rewrite]: #496
-#493 := (iff #121 #492)
-#490 := (iff #120 #487)
-#483 := (implies #113 #478)
-#488 := (iff #483 #487)
-#489 := [rewrite]: #488
-#484 := (iff #120 #483)
-#481 := (iff #119 #478)
-#475 := (implies #33 #463)
-#479 := (iff #475 #478)
-#480 := [rewrite]: #479
-#476 := (iff #119 #475)
-#473 := (iff #118 #463)
-#468 := (implies true #463)
-#471 := (iff #468 #463)
-#472 := [rewrite]: #471
-#469 := (iff #118 #468)
-#466 := (iff #117 #463)
-#459 := (implies #114 #454)
-#464 := (iff #459 #463)
-#465 := [rewrite]: #464
-#460 := (iff #117 #459)
-#457 := (iff #116 #454)
-#450 := (implies #115 #371)
-#455 := (iff #450 #454)
-#456 := [rewrite]: #455
-#451 := (iff #116 #450)
-#381 := (iff #104 #371)
-#376 := (implies true #371)
-#379 := (iff #376 #371)
-#380 := [rewrite]: #379
-#377 := (iff #104 #376)
-#374 := (iff #103 #371)
-#367 := (implies #81 #362)
-#372 := (iff #367 #371)
-#373 := [rewrite]: #372
-#368 := (iff #103 #367)
-#365 := (iff #102 #362)
-#358 := (implies #304 #353)
-#363 := (iff #358 #362)
-#364 := [rewrite]: #363
-#359 := (iff #102 #358)
-#356 := (iff #101 #353)
-#349 := (implies #87 #339)
-#354 := (iff #349 #353)
-#355 := [rewrite]: #354
-#350 := (iff #101 #349)
-#347 := (iff #100 #339)
-#342 := (implies true #339)
-#345 := (iff #342 #339)
-#346 := [rewrite]: #345
-#343 := (iff #100 #342)
-#340 := (iff #99 #339)
-#337 := (iff #98 #334)
-#330 := (implies #311 #94)
-#335 := (iff #330 #334)
-#336 := [rewrite]: #335
-#331 := (iff #98 #330)
-#328 := (iff #97 #94)
-#323 := (and #94 true)
-#326 := (iff #323 #94)
-#327 := [rewrite]: #326
-#324 := (iff #97 #323)
-#321 := (iff #96 true)
-#316 := (implies #94 true)
-#319 := (iff #316 true)
-#320 := [rewrite]: #319
-#317 := (iff #96 #316)
-#314 := (iff #95 true)
-#315 := [rewrite]: #314
-#318 := [monotonicity #315]: #317
-#322 := [trans #318 #320]: #321
-#325 := [monotonicity #322]: #324
-#329 := [trans #325 #327]: #328
-#312 := (iff #92 #311)
-#309 := (iff #91 #308)
-#310 := [rewrite]: #309
-#313 := [quant-intro #310]: #312
-#332 := [monotonicity #313 #329]: #331
-#338 := [trans #332 #336]: #337
-#341 := [monotonicity #313 #338]: #340
-#344 := [monotonicity #341]: #343
-#348 := [trans #344 #346]: #347
-#351 := [monotonicity #348]: #350
-#357 := [trans #351 #355]: #356
-#305 := (iff #84 #304)
-#302 := (= #83 #301)
-#303 := [rewrite]: #302
-#306 := [monotonicity #303]: #305
-#360 := [monotonicity #306 #357]: #359
-#366 := [trans #360 #364]: #365
-#369 := [monotonicity #366]: #368
-#375 := [trans #369 #373]: #374
-#378 := [monotonicity #375]: #377
-#382 := [trans #378 #380]: #381
-#452 := [monotonicity #382]: #451
-#458 := [trans #452 #456]: #457
-#461 := [monotonicity #458]: #460
-#467 := [trans #461 #465]: #466
-#470 := [monotonicity #467]: #469
-#474 := [trans #470 #472]: #473
-#477 := [monotonicity #474]: #476
-#482 := [trans #477 #480]: #481
-#485 := [monotonicity #482]: #484
-#491 := [trans #485 #489]: #490
-#494 := [monotonicity #491]: #493
-#499 := [trans #494 #497]: #498
-#502 := [monotonicity #499]: #501
-#506 := [trans #502 #504]: #505
-#448 := (iff #112 #438)
-#443 := (implies true #438)
-#446 := (iff #443 #438)
-#447 := [rewrite]: #446
-#444 := (iff #112 #443)
-#441 := (iff #111 #438)
-#435 := (implies #33 #430)
-#439 := (iff #435 #438)
-#440 := [rewrite]: #439
-#436 := (iff #111 #435)
-#433 := (iff #110 #430)
-#426 := (implies #72 #421)
-#431 := (iff #426 #430)
-#432 := [rewrite]: #431
-#427 := (iff #110 #426)
-#424 := (iff #109 #421)
-#417 := (implies #74 #412)
-#422 := (iff #417 #421)
-#423 := [rewrite]: #422
-#418 := (iff #109 #417)
-#415 := (iff #108 #412)
-#408 := (implies #32 #396)
-#413 := (iff #408 #412)
-#414 := [rewrite]: #413
-#409 := (iff #108 #408)
-#406 := (iff #107 #396)
-#401 := (implies true #396)
-#404 := (iff #401 #396)
-#405 := [rewrite]: #404
-#402 := (iff #107 #401)
-#399 := (iff #106 #396)
-#392 := (implies #77 #387)
-#397 := (iff #392 #396)
-#398 := [rewrite]: #397
-#393 := (iff #106 #392)
-#390 := (iff #105 #387)
-#383 := (implies #79 #371)
-#388 := (iff #383 #387)
-#389 := [rewrite]: #388
-#384 := (iff #105 #383)
-#385 := [monotonicity #382]: #384
-#391 := [trans #385 #389]: #390
-#394 := [monotonicity #391]: #393
-#400 := [trans #394 #398]: #399
-#403 := [monotonicity #400]: #402
-#407 := [trans #403 #405]: #406
-#299 := (iff #75 #32)
-#300 := [rewrite]: #299
-#410 := [monotonicity #300 #407]: #409
-#416 := [trans #410 #414]: #415
-#419 := [monotonicity #416]: #418
-#425 := [trans #419 #423]: #424
-#428 := [monotonicity #425]: #427
-#434 := [trans #428 #432]: #433
-#437 := [monotonicity #434]: #436
-#442 := [trans #437 #440]: #441
-#445 := [monotonicity #442]: #444
-#449 := [trans #445 #447]: #448
-#509 := [monotonicity #449 #506]: #508
-#512 := [monotonicity #509]: #511
-#517 := [trans #512 #515]: #516
-#520 := [monotonicity #517]: #519
-#526 := [trans #520 #524]: #525
-#529 := [monotonicity #526]: #528
-#534 := [trans #529 #532]: #533
-#537 := [monotonicity #534]: #536
-#541 := [trans #537 #539]: #540
-#297 := (iff #69 #287)
-#292 := (implies true #287)
-#295 := (iff #292 #287)
-#296 := [rewrite]: #295
-#293 := (iff #69 #292)
-#290 := (iff #68 #287)
-#284 := (implies #33 #279)
-#288 := (iff #284 #287)
-#289 := [rewrite]: #288
-#285 := (iff #68 #284)
-#282 := (iff #67 #279)
-#275 := (implies #42 #270)
-#280 := (iff #275 #279)
-#281 := [rewrite]: #280
-#276 := (iff #67 #275)
-#273 := (iff #66 #270)
-#266 := (implies #33 #254)
-#271 := (iff #266 #270)
-#272 := [rewrite]: #271
-#267 := (iff #66 #266)
-#264 := (iff #65 #254)
-#259 := (implies true #254)
-#262 := (iff #259 #254)
-#263 := [rewrite]: #262
-#260 := (iff #65 #259)
-#257 := (iff #64 #254)
-#250 := (implies #44 #245)
-#255 := (iff #250 #254)
-#256 := [rewrite]: #255
-#251 := (iff #64 #250)
-#248 := (iff #63 #245)
-#241 := (implies #46 #236)
-#246 := (iff #241 #245)
-#247 := [rewrite]: #246
-#242 := (iff #63 #241)
-#239 := (iff #62 #236)
-#232 := (implies #48 #222)
-#237 := (iff #232 #236)
-#238 := [rewrite]: #237
-#233 := (iff #62 #232)
-#230 := (iff #61 #222)
-#225 := (implies true #222)
-#228 := (iff #225 #222)
-#229 := [rewrite]: #228
-#226 := (iff #61 #225)
-#223 := (iff #60 #222)
-#220 := (iff #59 #217)
-#213 := (implies #190 #196)
-#218 := (iff #213 #217)
-#219 := [rewrite]: #218
-#214 := (iff #59 #213)
-#211 := (iff #58 #196)
-#206 := (and #196 true)
-#209 := (iff #206 #196)
-#210 := [rewrite]: #209
-#207 := (iff #58 #206)
-#204 := (iff #57 true)
-#199 := (implies #196 true)
-#202 := (iff #199 true)
-#203 := [rewrite]: #202
-#200 := (iff #57 #199)
-#197 := (iff #56 #196)
-#194 := (iff #55 #193)
-#195 := [rewrite]: #194
-#198 := [quant-intro #195]: #197
-#201 := [monotonicity #198]: #200
-#205 := [trans #201 #203]: #204
-#208 := [monotonicity #198 #205]: #207
-#212 := [trans #208 #210]: #211
-#191 := (iff #53 #190)
-#188 := (iff #52 #187)
-#189 := [rewrite]: #188
-#192 := [quant-intro #189]: #191
-#215 := [monotonicity #192 #212]: #214
-#221 := [trans #215 #219]: #220
-#224 := [monotonicity #192 #221]: #223
-#227 := [monotonicity #224]: #226
-#231 := [trans #227 #229]: #230
-#234 := [monotonicity #231]: #233
-#240 := [trans #234 #238]: #239
-#243 := [monotonicity #240]: #242
-#249 := [trans #243 #247]: #248
-#252 := [monotonicity #249]: #251
-#258 := [trans #252 #256]: #257
-#261 := [monotonicity #258]: #260
-#265 := [trans #261 #263]: #264
-#268 := [monotonicity #265]: #267
-#274 := [trans #268 #272]: #273
-#277 := [monotonicity #274]: #276
-#283 := [trans #277 #281]: #282
-#286 := [monotonicity #283]: #285
-#291 := [trans #286 #289]: #290
-#294 := [monotonicity #291]: #293
-#298 := [trans #294 #296]: #297
-#544 := [monotonicity #298 #541]: #543
-#547 := [monotonicity #544]: #546
-#552 := [trans #547 #550]: #551
-#555 := [monotonicity #552]: #554
-#561 := [trans #555 #559]: #560
-#184 := (iff #39 #183)
-#181 := (iff #38 #180)
-#182 := [rewrite]: #181
-#185 := [quant-intro #182]: #184
-#564 := [monotonicity #185 #561]: #563
-#570 := [trans #564 #568]: #569
-#573 := [monotonicity #570]: #572
-#578 := [trans #573 #576]: #577
-#581 := [monotonicity #578]: #580
-#585 := [trans #581 #583]: #584
-#588 := [monotonicity #585]: #587
-#594 := [trans #588 #592]: #593
-#597 := [monotonicity #594]: #596
-#177 := (iff #27 #176)
-#174 := (iff #26 #173)
-#175 := [rewrite]: #174
-#178 := [quant-intro #175]: #177
-#600 := [monotonicity #178 #597]: #599
-#606 := [trans #600 #604]: #605
-#609 := [monotonicity #178 #606]: #608
-#170 := (iff #19 #169)
-#167 := (iff #18 #166)
-#164 := (iff #17 #16)
-#165 := [rewrite]: #164
-#168 := [monotonicity #165]: #167
-#171 := [monotonicity #168]: #170
-#612 := [monotonicity #171 #609]: #611
-#618 := [trans #612 #616]: #617
-#621 := [monotonicity #618]: #620
-#627 := [trans #621 #625]: #626
-#630 := [monotonicity #627]: #629
-#634 := [trans #630 #632]: #633
-#637 := [monotonicity #634]: #636
-#643 := [trans #637 #641]: #642
-#646 := [monotonicity #643]: #645
-#650 := [trans #646 #648]: #649
-#653 := [monotonicity #650]: #652
-#1025 := [trans #653 #1023]: #1024
-#163 := [asserted]: #143
-#1026 := [mp #163 #1025]: #1021
-#1028 := [not-or-elim #1026]: #13
-#1933 := [trans #1028 #1926]: #1999
-#1821 := (not #1033)
-#1812 := (or #1405 #1821)
-#1823 := [def-axiom]: #1812
-#1935 := [unit-resolution #1823 #1998]: #1821
-#1936 := (not #1999)
-#1964 := (or #1936 #1033)
-#1937 := [th-lemma arith triangle-eq]: #1964
-#1939 := [unit-resolution #1937 #1935 #1933]: false
-#1940 := [lemma #1939]: #1405
-#2250 := (or #1410 #2247)
-#1592 := (forall (vars (?v0 Int)) #1587)
-#1598 := (not #1592)
-#1599 := (or #1598 #94)
-#1600 := (not #1599)
-#1605 := (or #1570 #1600)
-#1613 := (not #1605)
-#1623 := (or #1542 #844 #462 #453 #841 #832 #1611 #1612 #1613)
-#1624 := (not #1623)
-#1614 := (or #1542 #845 #420 #395 #386 #841 #832 #1611 #1612 #1613)
-#1615 := (not #1614)
-#1629 := (or #1615 #1624)
-#1635 := (not #1629)
-#1636 := (or #1542 #841 #755 #1635)
-#1637 := (not #1636)
-#1480 := (forall (vars (?v0 Int)) #1477)
-#1536 := (or #1480 #1531)
-#1543 := (not #1536)
-#1544 := (or #1542 #841 #758 #253 #244 #235 #1543)
-#1545 := (not #1544)
-#1642 := (or #1545 #1637)
-#1649 := (not #1642)
-#1455 := (forall (vars (?v0 Int)) #1450)
-#1648 := (not #1455)
-#1650 := (or #589 #1542 #841 #1648 #556 #1649)
-#1651 := (not #1650)
-#1656 := (or #589 #1651)
-#1663 := (not #1656)
-#1433 := (forall (vars (?v0 Int)) #1428)
-#1662 := (not #1433)
-#1664 := (or #1662 #1663)
-#1665 := (not #1664)
-#1670 := (or #1410 #1665)
-#2251 := (iff #1670 #2250)
-#2248 := (iff #1665 #2247)
-#2245 := (iff #1664 #2244)
-#2242 := (iff #1663 #2241)
-#2239 := (iff #1656 #2238)
-#2236 := (iff #1651 #2235)
-#2233 := (iff #1650 #2232)
-#2230 := (iff #1649 #2229)
-#2227 := (iff #1642 #2226)
-#2224 := (iff #1637 #2223)
-#2221 := (iff #1636 #2220)
-#2218 := (iff #1635 #2217)
-#2215 := (iff #1629 #2214)
-#2212 := (iff #1624 #2211)
-#2209 := (iff #1623 #2208)
-#2200 := (iff #1613 #2199)
-#2197 := (iff #1605 #2196)
-#2194 := (iff #1600 #2193)
-#2191 := (iff #1599 #2190)
-#2188 := (iff #1598 #2187)
-#2185 := (iff #1592 #2182)
-#2183 := (iff #1587 #1587)
-#2184 := [refl]: #2183
-#2186 := [quant-intro #2184]: #2185
-#2189 := [monotonicity #2186]: #2188
-#2192 := [monotonicity #2189]: #2191
-#2195 := [monotonicity #2192]: #2194
-#2198 := [monotonicity #2195]: #2197
-#2201 := [monotonicity #2198]: #2200
-#2210 := [monotonicity #2201]: #2209
-#2213 := [monotonicity #2210]: #2212
-#2206 := (iff #1615 #2205)
-#2203 := (iff #1614 #2202)
-#2204 := [monotonicity #2201]: #2203
-#2207 := [monotonicity #2204]: #2206
-#2216 := [monotonicity #2207 #2213]: #2215
-#2219 := [monotonicity #2216]: #2218
-#2222 := [monotonicity #2219]: #2221
-#2225 := [monotonicity #2222]: #2224
-#2180 := (iff #1545 #2179)
-#2177 := (iff #1544 #2176)
-#2174 := (iff #1543 #2173)
-#2171 := (iff #1536 #2170)
-#2168 := (iff #1480 #2165)
-#2166 := (iff #1477 #1477)
-#2167 := [refl]: #2166
-#2169 := [quant-intro #2167]: #2168
-#2172 := [monotonicity #2169]: #2171
-#2175 := [monotonicity #2172]: #2174
-#2178 := [monotonicity #2175]: #2177
-#2181 := [monotonicity #2178]: #2180
-#2228 := [monotonicity #2181 #2225]: #2227
-#2231 := [monotonicity #2228]: #2230
-#2163 := (iff #1648 #2162)
-#2160 := (iff #1455 #2157)
-#2158 := (iff #1450 #1450)
-#2159 := [refl]: #2158
-#2161 := [quant-intro #2159]: #2160
-#2164 := [monotonicity #2161]: #2163
-#2234 := [monotonicity #2164 #2231]: #2233
-#2237 := [monotonicity #2234]: #2236
-#2240 := [monotonicity #2237]: #2239
-#2243 := [monotonicity #2240]: #2242
-#2155 := (iff #1662 #2154)
-#2152 := (iff #1433 #2149)
-#2150 := (iff #1428 #1428)
-#2151 := [refl]: #2150
-#2153 := [quant-intro #2151]: #2152
-#2156 := [monotonicity #2153]: #2155
-#2246 := [monotonicity #2156 #2243]: #2245
-#2249 := [monotonicity #2246]: #2248
-#2252 := [monotonicity #2249]: #2251
-#1188 := (not #94)
-#1191 := (and #816 #1188)
-#1317 := (not #1312)
-#1320 := (and #1166 #1317)
-#1323 := (not #1320)
-#1339 := (or #1323 #1334)
-#1342 := (not #1339)
-#1345 := (or #1342 #1191)
-#1363 := (and #704 #845 #114 #115 #707 #828 #785 #788 #1345)
-#1351 := (and #704 #844 #74 #77 #79 #707 #828 #785 #788 #1345)
-#1368 := (or #1351 #1363)
-#1374 := (and #704 #707 #758 #1368)
-#1115 := (not #1114)
-#1116 := (and #1111 #1115)
-#1117 := (not #1116)
-#1270 := (or #1117 #1265)
-#1273 := (not #1270)
-#1097 := (not #1096)
-#1098 := (and #1093 #1097)
-#1099 := (not #1098)
-#1102 := (or #1099 #1101)
-#1276 := (and #1102 #1273)
-#1086 := (not #727)
-#1089 := (forall (vars (?v0 Int)) #1086)
-#1279 := (or #1089 #1276)
-#1285 := (and #704 #707 #755 #44 #46 #48 #1279)
-#1379 := (or #1285 #1374)
-#1385 := (and #28 #704 #707 #961 #41 #1379)
-#1390 := (or #589 #1385)
-#1393 := (and #697 #1390)
-#1036 := (and #1041 #1043)
-#1037 := (not #1036)
-#1044 := (or #1037 #1033)
-#1045 := (not #1044)
-#1396 := (or #1045 #1393)
-#1671 := (iff #1396 #1670)
-#1668 := (iff #1393 #1665)
-#1659 := (and #1433 #1656)
-#1666 := (iff #1659 #1665)
-#1667 := [rewrite]: #1666
-#1660 := (iff #1393 #1659)
-#1657 := (iff #1390 #1656)
-#1654 := (iff #1385 #1651)
-#1645 := (and #28 #704 #707 #1455 #41 #1642)
-#1652 := (iff #1645 #1651)
-#1653 := [rewrite]: #1652
-#1646 := (iff #1385 #1645)
-#1643 := (iff #1379 #1642)
-#1640 := (iff #1374 #1637)
-#1632 := (and #704 #707 #758 #1629)
-#1638 := (iff #1632 #1637)
-#1639 := [rewrite]: #1638
-#1633 := (iff #1374 #1632)
-#1630 := (iff #1368 #1629)
-#1627 := (iff #1363 #1624)
-#1620 := (and #704 #845 #114 #115 #707 #828 #785 #788 #1605)
-#1625 := (iff #1620 #1624)
-#1626 := [rewrite]: #1625
-#1621 := (iff #1363 #1620)
-#1606 := (iff #1345 #1605)
-#1603 := (iff #1191 #1600)
-#1595 := (and #1592 #1188)
-#1601 := (iff #1595 #1600)
-#1602 := [rewrite]: #1601
-#1596 := (iff #1191 #1595)
-#1593 := (iff #816 #1592)
-#1590 := (iff #813 #1587)
-#1573 := (or #1413 #796)
-#1584 := (or #1573 #810)
-#1588 := (iff #1584 #1587)
-#1589 := [rewrite]: #1588
-#1585 := (iff #813 #1584)
-#1582 := (iff #805 #1573)
-#1574 := (not #1573)
-#1577 := (not #1574)
-#1580 := (iff #1577 #1573)
-#1581 := [rewrite]: #1580
-#1578 := (iff #805 #1577)
-#1575 := (iff #802 #1574)
-#1576 := [rewrite]: #1575
-#1579 := [monotonicity #1576]: #1578
-#1583 := [trans #1579 #1581]: #1582
-#1586 := [monotonicity #1583]: #1585
-#1591 := [trans #1586 #1589]: #1590
-#1594 := [quant-intro #1591]: #1593
-#1597 := [monotonicity #1594]: #1596
-#1604 := [trans #1597 #1602]: #1603
-#1571 := (iff #1342 #1570)
-#1568 := (iff #1339 #1565)
-#1551 := (or #1550 #1312)
-#1562 := (or #1551 #1334)
-#1566 := (iff #1562 #1565)
-#1567 := [rewrite]: #1566
-#1563 := (iff #1339 #1562)
-#1560 := (iff #1323 #1551)
-#1552 := (not #1551)
-#1555 := (not #1552)
-#1558 := (iff #1555 #1551)
-#1559 := [rewrite]: #1558
-#1556 := (iff #1323 #1555)
-#1553 := (iff #1320 #1552)
-#1554 := [rewrite]: #1553
-#1557 := [monotonicity #1554]: #1556
-#1561 := [trans #1557 #1559]: #1560
-#1564 := [monotonicity #1561]: #1563
-#1569 := [trans #1564 #1567]: #1568
-#1572 := [monotonicity #1569]: #1571
-#1607 := [monotonicity #1572 #1604]: #1606
-#1622 := [monotonicity #1607]: #1621
-#1628 := [trans #1622 #1626]: #1627
-#1618 := (iff #1351 #1615)
-#1608 := (and #704 #844 #74 #77 #79 #707 #828 #785 #788 #1605)
-#1616 := (iff #1608 #1615)
-#1617 := [rewrite]: #1616
-#1609 := (iff #1351 #1608)
-#1610 := [monotonicity #1607]: #1609
-#1619 := [trans #1610 #1617]: #1618
-#1631 := [monotonicity #1619 #1628]: #1630
-#1634 := [monotonicity #1631]: #1633
-#1641 := [trans #1634 #1639]: #1640
-#1548 := (iff #1285 #1545)
-#1539 := (and #704 #707 #755 #44 #46 #48 #1536)
-#1546 := (iff #1539 #1545)
-#1547 := [rewrite]: #1546
-#1540 := (iff #1285 #1539)
-#1537 := (iff #1279 #1536)
-#1534 := (iff #1276 #1531)
-#1518 := (or #1503 #1114 #1265)
-#1523 := (not #1518)
-#1526 := (and #1498 #1523)
-#1532 := (iff #1526 #1531)
-#1533 := [rewrite]: #1532
-#1527 := (iff #1276 #1526)
-#1524 := (iff #1273 #1523)
-#1521 := (iff #1270 #1518)
-#1504 := (or #1503 #1114)
-#1515 := (or #1504 #1265)
-#1519 := (iff #1515 #1518)
-#1520 := [rewrite]: #1519
-#1516 := (iff #1270 #1515)
-#1513 := (iff #1117 #1504)
-#1505 := (not #1504)
-#1508 := (not #1505)
-#1511 := (iff #1508 #1504)
-#1512 := [rewrite]: #1511
-#1509 := (iff #1117 #1508)
-#1506 := (iff #1116 #1505)
-#1507 := [rewrite]: #1506
-#1510 := [monotonicity #1507]: #1509
-#1514 := [trans #1510 #1512]: #1513
-#1517 := [monotonicity #1514]: #1516
-#1522 := [trans #1517 #1520]: #1521
-#1525 := [monotonicity #1522]: #1524
-#1501 := (iff #1102 #1498)
-#1484 := (or #1483 #1096)
-#1495 := (or #1484 #1101)
-#1499 := (iff #1495 #1498)
-#1500 := [rewrite]: #1499
-#1496 := (iff #1102 #1495)
-#1493 := (iff #1099 #1484)
-#1485 := (not #1484)
-#1488 := (not #1485)
-#1491 := (iff #1488 #1484)
-#1492 := [rewrite]: #1491
-#1489 := (iff #1099 #1488)
-#1486 := (iff #1098 #1485)
-#1487 := [rewrite]: #1486
-#1490 := [monotonicity #1487]: #1489
-#1494 := [trans #1490 #1492]: #1493
-#1497 := [monotonicity #1494]: #1496
-#1502 := [trans #1497 #1500]: #1501
-#1528 := [monotonicity #1502 #1525]: #1527
-#1535 := [trans #1528 #1533]: #1534
-#1481 := (iff #1089 #1480)
-#1478 := (iff #1086 #1477)
-#1475 := (iff #727 #1472)
-#1458 := (or #1413 #717)
-#1469 := (or #1458 #51)
-#1473 := (iff #1469 #1472)
-#1474 := [rewrite]: #1473
-#1470 := (iff #727 #1469)
-#1467 := (iff #724 #1458)
-#1459 := (not #1458)
-#1462 := (not #1459)
-#1465 := (iff #1462 #1458)
-#1466 := [rewrite]: #1465
-#1463 := (iff #724 #1462)
-#1460 := (iff #721 #1459)
-#1461 := [rewrite]: #1460
-#1464 := [monotonicity #1461]: #1463
-#1468 := [trans #1464 #1466]: #1467
-#1471 := [monotonicity #1468]: #1470
-#1476 := [trans #1471 #1474]: #1475
-#1479 := [monotonicity #1476]: #1478
-#1482 := [quant-intro #1479]: #1481
-#1538 := [monotonicity #1482 #1535]: #1537
-#1541 := [monotonicity #1538]: #1540
-#1549 := [trans #1541 #1547]: #1548
-#1644 := [monotonicity #1549 #1641]: #1643
-#1456 := (iff #961 #1455)
-#1453 := (iff #958 #1450)
-#1436 := (or #1413 #942)
-#1447 := (or #1436 #955)
-#1451 := (iff #1447 #1450)
-#1452 := [rewrite]: #1451
-#1448 := (iff #958 #1447)
-#1445 := (iff #950 #1436)
-#1437 := (not #1436)
-#1440 := (not #1437)
-#1443 := (iff #1440 #1436)
-#1444 := [rewrite]: #1443
-#1441 := (iff #950 #1440)
-#1438 := (iff #947 #1437)
-#1439 := [rewrite]: #1438
-#1442 := [monotonicity #1439]: #1441
-#1446 := [trans #1442 #1444]: #1445
-#1449 := [monotonicity #1446]: #1448
-#1454 := [trans #1449 #1452]: #1453
-#1457 := [quant-intro #1454]: #1456
-#1647 := [monotonicity #1457 #1644]: #1646
-#1655 := [trans #1647 #1653]: #1654
-#1658 := [monotonicity #1655]: #1657
-#1434 := (iff #697 #1433)
-#1431 := (iff #694 #1428)
-#1414 := (or #1413 #680)
-#1425 := (or #1414 #690)
-#1429 := (iff #1425 #1428)
-#1430 := [rewrite]: #1429
-#1426 := (iff #694 #1425)
-#1423 := (iff #685 #1414)
-#1415 := (not #1414)
-#1418 := (not #1415)
-#1421 := (iff #1418 #1414)
-#1422 := [rewrite]: #1421
-#1419 := (iff #685 #1418)
-#1416 := (iff #682 #1415)
-#1417 := [rewrite]: #1416
-#1420 := [monotonicity #1417]: #1419
-#1424 := [trans #1420 #1422]: #1423
-#1427 := [monotonicity #1424]: #1426
-#1432 := [trans #1427 #1430]: #1431
-#1435 := [quant-intro #1432]: #1434
-#1661 := [monotonicity #1435 #1658]: #1660
-#1669 := [trans #1661 #1667]: #1668
-#1411 := (iff #1045 #1410)
-#1408 := (iff #1044 #1405)
-#1180 := (or #1179 #1042)
-#1402 := (or #1180 #1033)
-#1406 := (iff #1402 #1405)
-#1407 := [rewrite]: #1406
-#1403 := (iff #1044 #1402)
-#1400 := (iff #1037 #1180)
-#1126 := (not #1180)
-#1049 := (not #1126)
-#1244 := (iff #1049 #1180)
-#1399 := [rewrite]: #1244
-#1105 := (iff #1037 #1049)
-#1127 := (iff #1036 #1126)
-#1048 := [rewrite]: #1127
-#1106 := [monotonicity #1048]: #1105
-#1401 := [trans #1106 #1399]: #1400
-#1404 := [monotonicity #1401]: #1403
-#1409 := [trans #1404 #1407]: #1408
-#1412 := [monotonicity #1409]: #1411
-#1672 := [monotonicity #1412 #1669]: #1671
-#1173 := (+ #1172 #808)
-#1174 := (<= #1173 0::Int)
-#1167 := (+ ?v0!3 #797)
-#1168 := (>= #1167 0::Int)
-#1169 := (not #1168)
-#1170 := (and #1166 #1169)
-#1171 := (not #1170)
-#1175 := (or #1171 #1174)
-#1176 := (not #1175)
-#1195 := (or #1176 #1191)
-#1162 := (not #793)
-#1159 := (not #832)
-#1156 := (not #838)
-#1208 := (not #453)
-#1205 := (not #462)
-#1062 := (not #712)
-#1211 := (and #1062 #850 #1205 #1208 #1156 #1159 #1162 #1195)
-#1153 := (not #386)
-#1150 := (not #395)
-#1147 := (not #841)
-#1144 := (not #420)
-#1199 := (and #1062 #844 #1144 #1147 #1150 #1153 #1156 #1159 #1162 #1195)
-#1215 := (or #1199 #1211)
-#1219 := (and #1062 #758 #1215)
-#1119 := (+ #1118 #736)
-#1120 := (<= #1119 0::Int)
-#1121 := (or #1117 #1120)
-#1122 := (not #1121)
-#1128 := (and #1102 #1122)
-#1132 := (or #1089 #1128)
-#1083 := (not #235)
-#1080 := (not #244)
-#1077 := (not #253)
-#1136 := (and #1062 #918 #1077 #1080 #1083 #1132)
-#1223 := (or #1136 #1219)
-#1072 := (not #556)
-#1059 := (not #589)
-#1227 := (and #1059 #1062 #961 #1072 #1223)
-#1231 := (or #589 #1227)
-#1235 := (and #697 #1231)
-#1239 := (or #1045 #1235)
-#1397 := (iff #1239 #1396)
-#1394 := (iff #1235 #1393)
-#1391 := (iff #1231 #1390)
-#1388 := (iff #1227 #1385)
-#1382 := (and #28 #709 #961 #41 #1379)
-#1386 := (iff #1382 #1385)
-#1387 := [rewrite]: #1386
-#1383 := (iff #1227 #1382)
-#1380 := (iff #1223 #1379)
-#1377 := (iff #1219 #1374)
-#1371 := (and #709 #758 #1368)
-#1375 := (iff #1371 #1374)
-#1376 := [rewrite]: #1375
-#1372 := (iff #1219 #1371)
-#1369 := (iff #1215 #1368)
-#1366 := (iff #1211 #1363)
-#1360 := (and #709 #845 #114 #115 #835 #828 #790 #1345)
-#1364 := (iff #1360 #1363)
-#1365 := [rewrite]: #1364
-#1361 := (iff #1211 #1360)
-#1346 := (iff #1195 #1345)
-#1343 := (iff #1176 #1342)
-#1340 := (iff #1175 #1339)
-#1337 := (iff #1174 #1334)
-#1326 := (+ #808 #1172)
-#1329 := (<= #1326 0::Int)
-#1335 := (iff #1329 #1334)
-#1336 := [rewrite]: #1335
-#1330 := (iff #1174 #1329)
-#1327 := (= #1173 #1326)
-#1328 := [rewrite]: #1327
-#1331 := [monotonicity #1328]: #1330
-#1338 := [trans #1331 #1336]: #1337
-#1324 := (iff #1171 #1323)
-#1321 := (iff #1170 #1320)
-#1318 := (iff #1169 #1317)
-#1315 := (iff #1168 #1312)
-#1304 := (+ #797 ?v0!3)
-#1307 := (>= #1304 0::Int)
-#1313 := (iff #1307 #1312)
-#1314 := [rewrite]: #1313
-#1308 := (iff #1168 #1307)
-#1305 := (= #1167 #1304)
-#1306 := [rewrite]: #1305
-#1309 := [monotonicity #1306]: #1308
-#1316 := [trans #1309 #1314]: #1315
-#1319 := [monotonicity #1316]: #1318
-#1322 := [monotonicity #1319]: #1321
-#1325 := [monotonicity #1322]: #1324
-#1341 := [monotonicity #1325 #1338]: #1340
-#1344 := [monotonicity #1341]: #1343
-#1347 := [monotonicity #1344]: #1346
-#1302 := (iff #1162 #790)
-#1303 := [rewrite]: #1302
-#1300 := (iff #1159 #828)
-#1301 := [rewrite]: #1300
-#1298 := (iff #1156 #835)
-#1299 := [rewrite]: #1298
-#1358 := (iff #1208 #115)
-#1359 := [rewrite]: #1358
-#1356 := (iff #1205 #114)
-#1357 := [rewrite]: #1356
-#1247 := (iff #1062 #709)
-#1248 := [rewrite]: #1247
-#1362 := [monotonicity #1248 #854 #1357 #1359 #1299 #1301 #1303 #1347]: #1361
-#1367 := [trans #1362 #1365]: #1366
-#1354 := (iff #1199 #1351)
-#1348 := (and #709 #844 #74 #707 #77 #79 #835 #828 #790 #1345)
-#1352 := (iff #1348 #1351)
-#1353 := [rewrite]: #1352
-#1349 := (iff #1199 #1348)
-#1296 := (iff #1153 #79)
-#1297 := [rewrite]: #1296
-#1294 := (iff #1150 #77)
-#1295 := [rewrite]: #1294
-#1292 := (iff #1147 #707)
-#1293 := [rewrite]: #1292
-#1290 := (iff #1144 #74)
-#1291 := [rewrite]: #1290
-#1350 := [monotonicity #1248 #1291 #1293 #1295 #1297 #1299 #1301 #1303 #1347]: #1349
-#1355 := [trans #1350 #1353]: #1354
-#1370 := [monotonicity #1355 #1367]: #1369
-#1373 := [monotonicity #1248 #1370]: #1372
-#1378 := [trans #1373 #1376]: #1377
-#1288 := (iff #1136 #1285)
-#1282 := (and #709 #755 #44 #46 #48 #1279)
-#1286 := (iff #1282 #1285)
-#1287 := [rewrite]: #1286
-#1283 := (iff #1136 #1282)
-#1280 := (iff #1132 #1279)
-#1277 := (iff #1128 #1276)
-#1274 := (iff #1122 #1273)
-#1271 := (iff #1121 #1270)
-#1268 := (iff #1120 #1265)
-#1257 := (+ #736 #1118)
-#1260 := (<= #1257 0::Int)
-#1266 := (iff #1260 #1265)
-#1267 := [rewrite]: #1266
-#1261 := (iff #1120 #1260)
-#1258 := (= #1119 #1257)
-#1259 := [rewrite]: #1258
-#1262 := [monotonicity #1259]: #1261
-#1269 := [trans #1262 #1267]: #1268
-#1272 := [monotonicity #1269]: #1271
-#1275 := [monotonicity #1272]: #1274
-#1278 := [monotonicity #1275]: #1277
-#1281 := [monotonicity #1278]: #1280
-#1255 := (iff #1083 #48)
-#1256 := [rewrite]: #1255
-#1253 := (iff #1080 #46)
-#1254 := [rewrite]: #1253
-#1251 := (iff #1077 #44)
-#1252 := [rewrite]: #1251
-#1284 := [monotonicity #1248 #922 #1252 #1254 #1256 #1281]: #1283
-#1289 := [trans #1284 #1287]: #1288
-#1381 := [monotonicity #1289 #1378]: #1380
-#1249 := (iff #1072 #41)
-#1250 := [rewrite]: #1249
-#1245 := (iff #1059 #28)
-#1246 := [rewrite]: #1245
-#1384 := [monotonicity #1246 #1248 #1250 #1381]: #1383
-#1389 := [trans #1384 #1387]: #1388
-#1392 := [monotonicity #1389]: #1391
-#1395 := [monotonicity #1392]: #1394
-#1398 := [monotonicity #1395]: #1397
-#1029 := (not #993)
-#1240 := (~ #1029 #1239)
-#1236 := (not #990)
-#1237 := (~ #1236 #1235)
-#1232 := (not #987)
-#1233 := (~ #1232 #1231)
-#1228 := (not #982)
-#1229 := (~ #1228 #1227)
-#1224 := (not #939)
-#1225 := (~ #1224 #1223)
-#1220 := (not #934)
-#1221 := (~ #1220 #1219)
-#1216 := (not #913)
-#1217 := (~ #1216 #1215)
-#1212 := (not #908)
-#1213 := (~ #1212 #1211)
-#1196 := (not #825)
-#1197 := (~ #1196 #1195)
-#1192 := (not #822)
-#1193 := (~ #1192 #1191)
-#1189 := (~ #1188 #1188)
-#1190 := [refl]: #1189
-#1185 := (not #819)
-#1186 := (~ #1185 #816)
-#1183 := (~ #816 #816)
-#1181 := (~ #813 #813)
-#1182 := [refl]: #1181
-#1184 := [nnf-pos #1182]: #1183
-#1187 := [nnf-neg #1184]: #1186
-#1194 := [nnf-neg #1187 #1190]: #1193
-#1177 := (~ #819 #1176)
-#1178 := [sk]: #1177
-#1198 := [nnf-neg #1178 #1194]: #1197
-#1163 := (~ #1162 #1162)
-#1164 := [refl]: #1163
-#1160 := (~ #1159 #1159)
-#1161 := [refl]: #1160
-#1157 := (~ #1156 #1156)
-#1158 := [refl]: #1157
-#1209 := (~ #1208 #1208)
-#1210 := [refl]: #1209
-#1206 := (~ #1205 #1205)
-#1207 := [refl]: #1206
-#1203 := (~ #850 #850)
-#1204 := [refl]: #1203
-#1063 := (~ #1062 #1062)
-#1064 := [refl]: #1063
-#1214 := [nnf-neg #1064 #1204 #1207 #1210 #1158 #1161 #1164 #1198]: #1213
-#1200 := (not #884)
-#1201 := (~ #1200 #1199)
-#1154 := (~ #1153 #1153)
-#1155 := [refl]: #1154
-#1151 := (~ #1150 #1150)
-#1152 := [refl]: #1151
-#1148 := (~ #1147 #1147)
-#1149 := [refl]: #1148
-#1145 := (~ #1144 #1144)
-#1146 := [refl]: #1145
-#1142 := (~ #844 #844)
-#1143 := [refl]: #1142
-#1202 := [nnf-neg #1064 #1143 #1146 #1149 #1152 #1155 #1158 #1161 #1164 #1198]: #1201
-#1218 := [nnf-neg #1202 #1214]: #1217
-#1140 := (~ #758 #758)
-#1141 := [refl]: #1140
-#1222 := [nnf-neg #1064 #1141 #1218]: #1221
-#1137 := (not #779)
-#1138 := (~ #1137 #1136)
-#1133 := (not #750)
-#1134 := (~ #1133 #1132)
-#1129 := (not #747)
-#1130 := (~ #1129 #1128)
-#1123 := (not #744)
-#1124 := (~ #1123 #1122)
-#1125 := [sk]: #1124
-#1107 := (not #733)
-#1108 := (~ #1107 #1102)
-#1103 := (~ #730 #1102)
-#1104 := [sk]: #1103
-#1109 := [nnf-neg #1104]: #1108
-#1131 := [nnf-neg #1109 #1125]: #1130
-#1090 := (~ #733 #1089)
-#1087 := (~ #1086 #1086)
-#1088 := [refl]: #1087
-#1091 := [nnf-neg #1088]: #1090
-#1135 := [nnf-neg #1091 #1131]: #1134
-#1084 := (~ #1083 #1083)
-#1085 := [refl]: #1084
-#1081 := (~ #1080 #1080)
-#1082 := [refl]: #1081
-#1078 := (~ #1077 #1077)
-#1079 := [refl]: #1078
-#1075 := (~ #918 #918)
-#1076 := [refl]: #1075
-#1139 := [nnf-neg #1064 #1076 #1079 #1082 #1085 #1135]: #1138
-#1226 := [nnf-neg #1139 #1222]: #1225
-#1073 := (~ #1072 #1072)
-#1074 := [refl]: #1073
-#1069 := (not #964)
-#1070 := (~ #1069 #961)
-#1067 := (~ #961 #961)
-#1065 := (~ #958 #958)
-#1066 := [refl]: #1065
-#1068 := [nnf-pos #1066]: #1067
-#1071 := [nnf-neg #1068]: #1070
-#1060 := (~ #1059 #1059)
-#1061 := [refl]: #1060
-#1230 := [nnf-neg #1061 #1064 #1071 #1074 #1226]: #1229
-#1057 := (~ #589 #589)
-#1058 := [refl]: #1057
-#1234 := [nnf-neg #1058 #1230]: #1233
-#1054 := (not #700)
-#1055 := (~ #1054 #697)
-#1052 := (~ #697 #697)
-#1050 := (~ #694 #694)
-#1051 := [refl]: #1050
-#1053 := [nnf-pos #1051]: #1052
-#1056 := [nnf-neg #1053]: #1055
-#1238 := [nnf-neg #1056 #1234]: #1237
-#1046 := (~ #700 #1045)
-#1047 := [sk]: #1046
-#1241 := [nnf-neg #1047 #1238]: #1240
-#1030 := [not-or-elim #1026]: #1029
-#1242 := [mp~ #1030 #1241]: #1239
-#1243 := [mp #1242 #1398]: #1396
-#1673 := [mp #1243 #1672]: #1670
-#2253 := [mp #1673 #2252]: #2250
-#1748 := [unit-resolution #2253 #1940]: #2247
-#2018 := (or #2244 #2238)
-#2019 := [def-axiom]: #2018
-#1744 := [unit-resolution #2019 #1748]: #2238
-#1740 := (or #2241 #2235)
-#1738 := (iff #13 #28)
-#1749 := (iff #28 #13)
-#1736 := [commutativity]: #1749
-#1739 := [symm #1736]: #1738
-#1737 := [mp #1028 #1739]: #28
-#2017 := (or #2241 #589 #2235)
-#2013 := [def-axiom]: #2017
-#2254 := [unit-resolution #2013 #1737]: #1740
-#2255 := [unit-resolution #2254 #1744]: #2235
-#2024 := (or #2232 #2226)
-#2026 := [def-axiom]: #2024
-#2335 := [unit-resolution #2026 #2255]: #2226
-#2293 := [hypothesis]: #2179
-#1841 := (or #2176 #2170)
-#2115 := [def-axiom]: #1841
-#2294 := [unit-resolution #2115 #2293]: #2170
-#2130 := (not #2165)
-#1741 := (or #2176 #46)
-#2117 := [def-axiom]: #1741
-#2295 := [unit-resolution #2117 #2293]: #46
-#2328 := (or #2130 #244)
-#2303 := (= #40 f11)
-#2300 := (* -1::Int f7)
-#2301 := (+ f3 #2300)
-#2302 := (<= #2301 0::Int)
-#2304 := (or #1542 #2302 #2303)
-#1857 := (= f9 f11)
-#2306 := [hypothesis]: #46
-#2323 := [symm #2306]: #1857
-#2045 := (or #2232 #41)
-#2023 := [def-axiom]: #2045
-#2307 := [unit-resolution #2023 #2255]: #41
-#2324 := [trans #2307 #2323]: #2303
-#2318 := (not #2303)
-#2319 := (or #2304 #2318)
-#2320 := [def-axiom]: #2319
-#2325 := [unit-resolution #2320 #2324]: #2304
-#2326 := [hypothesis]: #2165
-#2305 := (not #2304)
-#2308 := (or #2130 #2305)
-#2309 := [quant-inst #29]: #2308
-#2327 := [unit-resolution #2309 #2326 #2325]: false
-#2329 := [lemma #2327]: #2328
-#2296 := [unit-resolution #2329 #2295]: #2130
-#1774 := (or #2173 #2165 #1531)
-#2134 := [def-axiom]: #1774
-#2297 := [unit-resolution #2134 #2296 #2294]: #1531
-#1787 := (or #1530 #1111)
-#1788 := [def-axiom]: #1787
-#2298 := [unit-resolution #1788 #2297]: #1111
-#1816 := (+ f8 #1112)
-#1817 := (<= #1816 0::Int)
-#1767 := (not #1817)
-#1844 := (or #2176 #755)
-#1845 := [def-axiom]: #1844
-#2299 := [unit-resolution #1845 #2293]: #755
-#1789 := (or #1530 #1115)
-#2125 := [def-axiom]: #1789
-#2282 := [unit-resolution #2125 #2297]: #1115
-#1750 := (or #1767 #758 #1114)
-#1763 := [hypothesis]: #1115
-#1764 := [hypothesis]: #1817
-#1766 := [hypothesis]: #755
-#1762 := [th-lemma arith farkas -1 -1 1 #1766 #1764 #1763]: false
-#1753 := [lemma #1762]: #1750
-#2283 := [unit-resolution #1753 #2282 #2299]: #1767
-#1793 := (+ f9 #1263)
-#1794 := (>= #1793 0::Int)
-#1752 := (not #1794)
-#1859 := (+ f9 #736)
-#1848 := (<= #1859 0::Int)
-#2281 := [symm #2295]: #1857
-#2284 := (not #1857)
-#2285 := (or #2284 #1848)
-#2286 := [th-lemma arith triangle-eq]: #2285
-#2287 := [unit-resolution #2286 #2281]: #1848
-#2126 := (not #1265)
-#2127 := (or #1530 #2126)
-#2128 := [def-axiom]: #2127
-#2288 := [unit-resolution #2128 #2297]: #2126
-#1760 := (not #1848)
-#1745 := (or #1752 #1265 #1760)
-#1754 := [hypothesis]: #1848
-#1757 := [hypothesis]: #2126
-#1758 := [hypothesis]: #1794
-#1759 := [th-lemma arith farkas -1 1 1 #1758 #1757 #1754]: false
-#1742 := [lemma #1759]: #1745
-#2289 := [unit-resolution #1742 #2288 #2287]: #1752
-#1779 := (or #1503 #1817 #1794)
-#1743 := [hypothesis]: #1752
-#1746 := [hypothesis]: #1767
-#1747 := [hypothesis]: #1111
-#2044 := (or #2232 #2157)
-#2034 := [def-axiom]: #2044
-#2256 := [unit-resolution #2034 #2255]: #2157
-#1835 := (or #2162 #1503 #1817 #1794)
-#1829 := (+ #1118 #953)
-#1839 := (<= #1829 0::Int)
-#1843 := (+ ?v0!2 #753)
-#1853 := (>= #1843 0::Int)
-#1806 := (or #1503 #1853 #1839)
-#1836 := (or #2162 #1806)
-#1755 := (iff #1836 #1835)
-#1775 := (or #2162 #1779)
-#1776 := (iff #1775 #1835)
-#1751 := [rewrite]: #1776
-#1770 := (iff #1836 #1775)
-#1780 := (iff #1806 #1779)
-#1796 := (iff #1839 #1794)
-#1804 := (+ #953 #1118)
-#1790 := (<= #1804 0::Int)
-#1795 := (iff #1790 #1794)
-#1784 := [rewrite]: #1795
-#1791 := (iff #1839 #1790)
-#1783 := (= #1829 #1804)
-#1785 := [rewrite]: #1783
-#1792 := [monotonicity #1785]: #1791
-#1777 := [trans #1792 #1784]: #1796
-#1801 := (iff #1853 #1817)
-#1808 := (+ #753 ?v0!2)
-#1813 := (>= #1808 0::Int)
-#1807 := (iff #1813 #1817)
-#1818 := [rewrite]: #1807
-#1814 := (iff #1853 #1813)
-#1809 := (= #1843 #1808)
-#1800 := [rewrite]: #1809
-#1815 := [monotonicity #1800]: #1814
-#1803 := [trans #1815 #1818]: #1801
-#1778 := [monotonicity #1803 #1777]: #1780
-#1781 := [monotonicity #1778]: #1770
-#1756 := [trans #1781 #1751]: #1755
-#1772 := [quant-inst #1110]: #1836
-#1761 := [mp #1772 #1756]: #1835
-#2257 := [unit-resolution #1761 #2256 #1747 #1746 #1743]: false
-#2258 := [lemma #2257]: #1779
-#2313 := [unit-resolution #2258 #2289 #2283 #2298]: false
-#2314 := [lemma #2313]: #2176
-#2036 := (or #2229 #2179 #2223)
-#2037 := [def-axiom]: #2036
-#2333 := [unit-resolution #2037 #2314 #2335]: #2223
-#2049 := (or #2220 #2214)
-#2050 := [def-axiom]: #2049
-#2499 := [unit-resolution #2050 #2333]: #2214
-#2420 := (= #71 #1172)
-#2434 := (not #2420)
-#2421 := (+ #71 #1332)
-#2423 := (>= #2421 0::Int)
-#2428 := (not #2423)
-#2322 := (+ #71 #808)
-#2290 := (<= #2322 0::Int)
-#2321 := (= #71 f15)
-#2455 := (= f13 f15)
-#2450 := [hypothesis]: #2205
-#1931 := (or #2202 #79)
-#2084 := [def-axiom]: #1931
-#2451 := [unit-resolution #2084 #2450]: #79
-#2456 := [symm #2451]: #2455
-#2453 := (= #71 f13)
-#2092 := (or #2202 #74)
-#2099 := [def-axiom]: #2092
-#2452 := [unit-resolution #2099 #2450]: #74
-#2454 := [symm #2452]: #2453
-#2457 := [trans #2454 #2456]: #2321
-#2458 := (not #2321)
-#2459 := (or #2458 #2290)
-#2460 := [th-lemma arith triangle-eq]: #2459
-#2461 := [unit-resolution #2460 #2457]: #2290
-#2112 := (not #1334)
-#1932 := (or #2202 #2196)
-#2080 := [def-axiom]: #1932
-#2462 := [unit-resolution #2080 #2450]: #2196
-#2466 := (= #93 f13)
-#2464 := (= #93 #71)
-#1928 := (or #2202 #77)
-#1930 := [def-axiom]: #1928
-#2463 := [unit-resolution #1930 #2450]: #77
-#2465 := [monotonicity #2463]: #2464
-#2467 := [trans #2465 #2454]: #2466
-#2468 := [trans #2467 #2456]: #94
-#2104 := (or #2190 #1188)
-#2100 := [def-axiom]: #2104
-#2469 := [unit-resolution #2100 #2468]: #2190
-#2095 := (or #2199 #1570 #2193)
-#2096 := [def-axiom]: #2095
-#2470 := [unit-resolution #2096 #2469 #2462]: #1570
-#1827 := (or #1565 #2112)
-#2109 := [def-axiom]: #1827
-#2471 := [unit-resolution #2109 #2470]: #2112
-#2429 := (not #2290)
-#2430 := (or #2428 #1334 #2429)
-#2424 := [hypothesis]: #2423
-#2425 := [hypothesis]: #2290
-#2426 := [hypothesis]: #2112
-#2427 := [th-lemma arith farkas -1 -1 1 #2426 #2425 #2424]: false
-#2431 := [lemma #2427]: #2430
-#2472 := [unit-resolution #2431 #2471 #2461]: #2428
-#2435 := (or #2434 #2423)
-#2436 := [th-lemma arith triangle-eq]: #2435
-#2473 := [unit-resolution #2436 #2472]: #2434
-#2422 := (= f8 ?v0!3)
-#2088 := (or #2202 #828)
-#2086 := [def-axiom]: #2088
-#2474 := [unit-resolution #2086 #2450]: #828
-#2475 := (or #832 #1830)
-#2476 := [th-lemma arith triangle-eq]: #2475
-#2477 := [unit-resolution #2476 #2474]: #1830
-#1833 := (or #1565 #1317)
-#2111 := [def-axiom]: #1833
-#2478 := [unit-resolution #2111 #2470]: #1317
-#2479 := (not #1830)
-#2480 := (or #2419 #1312 #2479)
-#2481 := [th-lemma arith assign-bounds 1 1]: #2480
-#2482 := [unit-resolution #2481 #2478 #2477]: #2419
-#2398 := (+ f9 #1332)
-#2399 := (>= #2398 0::Int)
-#2484 := (not #2399)
-#2097 := (or #2202 #844)
-#2098 := [def-axiom]: #2097
-#2483 := [unit-resolution #2098 #2450]: #844
-#2485 := (or #2484 #1334 #2429 #845)
-#2486 := [th-lemma arith assign-bounds 1 1 1]: #2485
-#2487 := [unit-resolution #2486 #2471 #2461 #2483]: #2484
-#2489 := (or #2387 #2399)
-#1831 := (or #1565 #1166)
-#1832 := [def-axiom]: #1831
-#2488 := [unit-resolution #1832 #2470]: #1166
-#2407 := (or #2162 #1550 #2387 #2399)
-#2377 := (+ #1172 #953)
-#2378 := (<= #2377 0::Int)
-#2369 := (+ ?v0!3 #753)
-#2370 := (>= #2369 0::Int)
-#2379 := (or #1550 #2370 #2378)
-#2408 := (or #2162 #2379)
-#2415 := (iff #2408 #2407)
-#2404 := (or #1550 #2387 #2399)
-#2410 := (or #2162 #2404)
-#2413 := (iff #2410 #2407)
-#2414 := [rewrite]: #2413
-#2411 := (iff #2408 #2410)
-#2405 := (iff #2379 #2404)
-#2402 := (iff #2378 #2399)
-#2392 := (+ #953 #1172)
-#2395 := (<= #2392 0::Int)
-#2400 := (iff #2395 #2399)
-#2401 := [rewrite]: #2400
-#2396 := (iff #2378 #2395)
-#2393 := (= #2377 #2392)
-#2394 := [rewrite]: #2393
-#2397 := [monotonicity #2394]: #2396
-#2403 := [trans #2397 #2401]: #2402
-#2390 := (iff #2370 #2387)
-#2380 := (+ #753 ?v0!3)
-#2383 := (>= #2380 0::Int)
-#2388 := (iff #2383 #2387)
-#2389 := [rewrite]: #2388
-#2384 := (iff #2370 #2383)
-#2381 := (= #2369 #2380)
-#2382 := [rewrite]: #2381
-#2385 := [monotonicity #2382]: #2384
-#2391 := [trans #2385 #2389]: #2390
-#2406 := [monotonicity #2391 #2403]: #2405
-#2412 := [monotonicity #2406]: #2411
-#2416 := [trans #2412 #2414]: #2415
-#2409 := [quant-inst #1165]: #2408
-#2417 := [mp #2409 #2416]: #2407
-#2490 := [unit-resolution #2417 #2256 #2488]: #2489
-#2491 := [unit-resolution #2490 #2487]: #2387
-#2493 := (not #2419)
-#2494 := (or #2422 #2492 #2493)
-#2495 := [th-lemma arith triangle-eq]: #2494
-#2496 := [unit-resolution #2495 #2491 #2482]: #2422
-#2447 := (not #2422)
-#2448 := (or #2447 #2420)
-#2443 := (= #1172 #71)
-#2441 := (= ?v0!3 f8)
-#2440 := [hypothesis]: #2422
-#2442 := [symm #2440]: #2441
-#2444 := [monotonicity #2442]: #2443
-#2445 := [symm #2444]: #2420
-#2439 := [hypothesis]: #2434
-#2446 := [unit-resolution #2439 #2445]: false
-#2449 := [lemma #2446]: #2448
-#2497 := [unit-resolution #2449 #2496 #2473]: false
-#2498 := [lemma #2497]: #2202
-#2056 := (or #2217 #2205 #2211)
-#2057 := [def-axiom]: #2056
-#2500 := [unit-resolution #2057 #2498 #2499]: #2211
-#2063 := (or #2208 #828)
-#2073 := [def-axiom]: #2063
-#2501 := [unit-resolution #2073 #2500]: #828
-#2502 := [unit-resolution #2476 #2501]: #1830
-#2065 := (or #2208 #2196)
-#2066 := [def-axiom]: #2065
-#2503 := [unit-resolution #2066 #2500]: #2196
-#1984 := (= f9 f15)
-#2070 := (or #2208 #115)
-#2072 := [def-axiom]: #2070
-#2504 := [unit-resolution #2072 #2500]: #115
-#2508 := [symm #2504]: #1984
-#2509 := (= #93 f9)
-#2506 := (= #93 #40)
-#2079 := (or #2208 #114)
-#2083 := [def-axiom]: #2079
-#2505 := [unit-resolution #2083 #2500]: #114
-#2507 := [monotonicity #2505]: #2506
-#2510 := [trans #2507 #2307]: #2509
-#2511 := [trans #2510 #2508]: #94
-#2512 := [unit-resolution #2100 #2511]: #2190
-#2513 := [unit-resolution #2096 #2512 #2503]: #1570
-#2514 := [unit-resolution #2111 #2513]: #1317
-#2515 := [unit-resolution #2481 #2514 #2502]: #2419
-#1989 := (or #2208 #845)
-#2082 := [def-axiom]: #1989
-#2516 := [unit-resolution #2082 #2500]: #845
-#1977 := (+ f9 #808)
-#1985 := (<= #1977 0::Int)
-#1880 := (or #453 #1984)
-#1876 := (iff #115 #1984)
-#1874 := (iff #1984 #115)
-#1875 := [commutativity]: #1874
-#1877 := [symm #1875]: #1876
-#1873 := [hypothesis]: #115
-#1878 := [mp #1873 #1877]: #1984
-#1870 := (not #1984)
-#1872 := [hypothesis]: #1870
-#1879 := [unit-resolution #1872 #1878]: false
-#1881 := [lemma #1879]: #1880
-#2517 := [unit-resolution #1881 #2504]: #1984
-#2518 := (or #1870 #1985)
-#2519 := [th-lemma arith triangle-eq]: #2518
-#2520 := [unit-resolution #2519 #2517]: #1985
-#2521 := (not #1985)
-#2522 := (or #2290 #844 #2521)
-#2523 := [th-lemma arith assign-bounds 1 -1]: #2522
-#2524 := [unit-resolution #2523 #2520 #2516]: #2290
-#2525 := [unit-resolution #2109 #2513]: #2112
-#2526 := [unit-resolution #2431 #2525 #2524]: #2428
-#2527 := [unit-resolution #2436 #2526]: #2434
-#2528 := [unit-resolution #2449 #2527]: #2447
-#2529 := [unit-resolution #2495 #2528 #2515]: #2492
-#2530 := (or #2484 #1334 #2521)
-#2531 := [th-lemma arith assign-bounds -1 -1]: #2530
-#2532 := [unit-resolution #2531 #2520 #2525]: #2484
-#2533 := [unit-resolution #1832 #2513]: #1166
-[unit-resolution #2417 #2256 #2533 #2532 #2529]: false
-unsat
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SMT_Examples/Boogie_Max.certs2	Thu May 01 22:57:38 2014 +0200
@@ -0,0 +1,844 @@
+336198ca2566b9b7e0ce4a688dd7f9094f37a0b9 843 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!5 () Int)
+(declare-fun ?v0!4 () Int)
+(declare-fun ?v0!3 () Int)
+(declare-fun ?v0!2 () Int)
+(declare-fun k!10 () Bool)
+(declare-fun k!00 () Bool)
+(proof
+(let (($x109 (= v_b_max_G_3$ v_b_max_G_2$)))
+(let ((?x135 (v_b_array$ v_b_k_G_1$)))
+(let (($x136 (= ?x135 v_b_max_G_3$)))
+(let (($x2120 (forall ((?v0 Int) )(!(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x1005 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x1005 $x1020))))) :pattern ( (v_b_array$ ?v0) )))
+))
+(let (($x2128 (or (not $x2120) $x136)))
+(let (($x2131 (not $x2128)))
+(let (($x1312 (>= (+ v_b_max_G_3$ (* (- 1) (v_b_array$ ?v0!5))) 0)))
+(let (($x1290 (<= (+ v_b_p_G_1$ (* (- 1) ?v0!5)) 0)))
+(let (($x1173 (>= ?v0!5 0)))
+(let (($x1540 (not $x1173)))
+(let (($x1555 (or $x1540 $x1290 $x1312)))
+(let (($x1560 (not $x1555)))
+(let (($x2134 (or $x1560 $x2131)))
+(let (($x2137 (not $x2134)))
+(let (($x996 (>= v_b_p_G_1$ 2)))
+(let (($x1606 (not $x996)))
+(let (($x991 (= (+ v_b_p_G_0$ (* (- 1) v_b_p_G_1$)) (- 1))))
+(let (($x1605 (not $x991)))
+(let (($x989 (>= v_b_k_G_1$ 0)))
+(let (($x1604 (not $x989)))
+(let (($x1603 (not $x109)))
+(let (($x107 (= v_b_k_G_1$ v_b_p_G_0$)))
+(let (($x1602 (not $x107)))
+(let ((?x101 (v_b_array$ v_b_p_G_0$)))
+(let (($x104 (= v_b_max_G_2$ ?x101)))
+(let (($x1601 (not $x104)))
+(let (($x980 (>= (+ v_b_max_G_1$ (* (- 1) ?x101)) 0)))
+(let (($x885 (>= v_b_p_G_0$ 1)))
+(let (($x1529 (not $x885)))
+(let (($x882 (>= v_b_k_G_0$ 0)))
+(let (($x1528 (not $x882)))
+(let (($x2140 (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x2137)))
+(let (($x2143 (not $x2140)))
+(let (($x985 (not $x980)))
+(let (($x2146 (or $x1528 $x1529 $x985 (not (= v_b_k_G_1$ v_b_k_G_0$)) (not (= v_b_max_G_3$ v_b_max_G_1$)) $x1604 $x1605 $x1606 $x2137)))
+(let ((?x1179 (v_b_array$ ?v0!5)))
+(let (($x1799 (= ?x101 ?x1179)))
+(let (($x1803 (not $x1799)))
+(let (($x1703 (>= (+ ?x101 (* (- 1) ?x1179)) 0)))
+(let (($x1693 (not $x1703)))
+(let (($x2149 (not $x2146)))
+(let ((@x2389 (hypothesis $x2149)))
+(let (($x2024 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x2022 (= v_b_max_G_1$ v_b_max_G_3$)))
+(let ((@x2401 (symm (commutativity (= $x2022 (= v_b_max_G_3$ v_b_max_G_1$))) (= (= v_b_max_G_3$ v_b_max_G_1$) $x2022))))
+(let (($x145 (= v_b_max_G_3$ v_b_max_G_1$)))
+(let ((@x2406 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x2022) $x2024)) (mp (unit-resolution (def-axiom (or $x2146 $x145)) @x2389 $x145) @x2401 $x2022) $x2024)))
+(let (($x1678 (not $x1312)))
+(let ((?x62 (v_b_array$ v_b_k_G_0$)))
+(let (($x63 (= ?x62 v_b_max_G_1$)))
+(let (($x2152 (or $x2143 $x2149)))
+(let (($x2155 (not $x2152)))
+(let (($x919 (<= (+ v_b_length$ (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x2158 (or $x1528 $x1529 $x919 $x2155)))
+(let (($x2161 (not $x2158)))
+(let (($x1253 (>= (+ v_b_max_G_4$ (* (- 1) (v_b_array$ ?v0!4))) 0)))
+(let (($x1142 (<= (+ v_b_length$ (* (- 1) ?v0!4)) 0)))
+(let (($x1139 (>= ?v0!4 0)))
+(let (($x1489 (not $x1139)))
+(let (($x1131 (= (v_b_array$ ?v0!3) v_b_max_G_4$)))
+(let (($x1126 (<= (+ v_b_length$ (* (- 1) ?v0!3)) 0)))
+(let (($x1484 (or (not (>= ?v0!3 0)) $x1126 $x1131)))
+(let (($x1516 (or (not $x1484) $x1489 $x1142 $x1253)))
+(let (($x1517 (not $x1516)))
+(let (($x2103 (forall ((?v0 Int) )(!(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x930 (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(let (($x1458 (or $x1399 $x930 $x86)))
+(not $x1458))))))) :pattern ( (v_b_array$ ?v0) )))
+))
+(let (($x2108 (or $x2103 $x1517)))
+(let (($x2111 (not $x2108)))
+(let (($x73 (= v_b_max_G_4$ v_b_max_G_1$)))
+(let (($x1531 (not $x73)))
+(let (($x971 (not $x919)))
+(let (($x2114 (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) $x2111)))
+(let (($x2117 (not $x2114)))
+(let (($x2164 (or $x2117 $x2161)))
+(let (($x2167 (not $x2164)))
+(let (($x2095 (forall ((?v0 Int) )(!(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x888 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x888 $x903))))) :pattern ( (v_b_array$ ?v0) )))
+))
+(let (($x2100 (not $x2095)))
+(let (($x2170 (or $x1528 $x1529 $x2100 (not $x63) $x2167)))
+(let (($x2173 (not $x2170)))
+(let ((?x30 (v_b_array$ 0)))
+(let (($x50 (= ?x30 v_b_max_G_0$)))
+(let (($x1095 (not $x50)))
+(let (($x2176 (or $x1095 $x2173)))
+(let (($x2179 (not $x2176)))
+(let (($x2087 (forall ((?v0 Int) )(!(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x841 (>= ?v0 1)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x841 $x851))))) :pattern ( (v_b_array$ ?v0) )))
+))
+(let (($x2182 (or (not $x2087) $x2179)))
+(let (($x2185 (not $x2182)))
+(let (($x1083 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0!2))) 0)))
+(let (($x831 (>= ?v0!2 1)))
+(let (($x1391 (or (not (>= ?v0!2 0)) $x831 $x1083)))
+(let (($x1079 (not $x831)))
+(let (($x1396 (not $x1391)))
+(let ((@x1966 (hypothesis $x1396)))
+(let (($x1078 (>= ?v0!2 0)))
+(let ((@x1951 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x1391 $x1078)) @x1966 $x1078) (unit-resolution (def-axiom (or $x1391 $x1079)) @x1966 $x1079) (= ?v0!2 0))))
+(let ((@x1955 (symm (monotonicity @x1951 (= (v_b_array$ ?v0!2) ?x30)) (= ?x30 (v_b_array$ ?v0!2)))))
+(let (($x31 (= v_b_max_G_0$ ?x30)))
+(let (($x201 (and (not (<= v_b_length$ 0)) $x31)))
+(let (($x572 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(or (not (and (<= 0 ?v0) (not (<= v_b_p_G_1$ ?v0)))) $x132))))
+))
+(let (($x595 (or (not $x572) $x136)))
+(let (($x600 (and $x572 $x595)))
+(let (($x116 (<= 2 v_b_p_G_1$)))
+(let (($x456 (= v_b_p_G_1$ (+ 1 v_b_p_G_0$))))
+(let (($x110 (<= 0 v_b_k_G_1$)))
+(let (($x144 (= v_b_k_G_1$ v_b_k_G_0$)))
+(let (($x143 (<= ?x101 v_b_max_G_1$)))
+(let (($x54 (<= 1 v_b_p_G_0$)))
+(let (($x52 (<= 0 v_b_k_G_0$)))
+(let (($x654 (and $x52 $x54 $x143 $x144 $x145 $x110 $x456 $x116)))
+(let (($x669 (not $x654)))
+(let (($x670 (or $x669 $x600)))
+(let (($x441 (not $x143)))
+(let (($x544 (and $x52 $x54 $x441 $x104 $x107 $x109 $x110 $x456 $x116)))
+(let (($x606 (not $x544)))
+(let (($x607 (or $x606 $x600)))
+(let (($x675 (and $x607 $x670)))
+(let (($x69 (<= v_b_length$ v_b_p_G_0$)))
+(let (($x415 (not $x69)))
+(let (($x429 (and $x52 $x54 $x415)))
+(let (($x681 (not $x429)))
+(let (($x682 (or $x681 $x675)))
+(let (($x377 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x351 (not (<= v_b_length$ ?v0))))
+(let (($x43 (<= 0 ?v0)))
+(let (($x354 (and $x43 $x351)))
+(let (($x360 (not $x354)))
+(or $x360 $x89))))))))
+))
+(let (($x366 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x351 (not (<= v_b_length$ ?v0))))
+(let (($x43 (<= 0 ?v0)))
+(let (($x354 (and $x43 $x351)))
+(let (($x360 (not $x354)))
+(or $x360 $x86))))))))
+))
+(let (($x398 (or (not $x366) $x377)))
+(let (($x403 (and $x366 $x398)))
+(let (($x75 (= v_b_p_G_2$ v_b_p_G_0$)))
+(let (($x71 (= v_b_k_G_2$ v_b_k_G_0$)))
+(let (($x338 (and $x52 $x54 $x69 $x71 $x73 $x75)))
+(let (($x409 (not $x338)))
+(let (($x410 (or $x409 $x403)))
+(let (($x687 (and $x410 $x682)))
+(let (($x259 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(or (not (and (<= 0 ?v0) (not (<= v_b_p_G_0$ ?v0)))) $x59))))
+))
+(let (($x294 (and $x50 $x52 $x54 $x259 $x63)))
+(let (($x694 (or (not $x294) $x687)))
+(let (($x699 (and $x50 $x694)))
+(let (($x234 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(or (not (and (<= 0 ?v0) (not (<= 1 ?v0)))) $x47))))
+))
+(let (($x705 (not $x234)))
+(let (($x706 (or $x705 $x699)))
+(let (($x711 (and $x234 $x706)))
+(let (($x718 (or (not $x201) $x711)))
+(let (($x138 (=> (and $x136 false) true)))
+(let (($x139 (and $x136 $x138)))
+(let (($x134 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(=> (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$)) $x132))))
+))
+(let (($x140 (=> $x134 $x139)))
+(let (($x141 (and $x134 $x140)))
+(let (($x117 (and $x110 $x116)))
+(let (($x118 (and $x117 true)))
+(let (($x119 (and (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x118)))
+(let (($x111 (and $x110 $x54)))
+(let (($x120 (and $x111 $x119)))
+(let (($x121 (and true $x120)))
+(let (($x146 (and $x145 $x121)))
+(let (($x147 (and $x144 $x146)))
+(let (($x148 (and true $x147)))
+(let (($x55 (and $x52 $x54)))
+(let (($x149 (and $x55 $x148)))
+(let (($x150 (and $x143 $x149)))
+(let (($x151 (and $x55 $x150)))
+(let (($x152 (and true $x151)))
+(let (($x153 (=> $x152 $x141)))
+(let (($x122 (and $x109 $x121)))
+(let (($x123 (and $x107 $x122)))
+(let (($x124 (and true $x123)))
+(let (($x105 (and $x54 $x54)))
+(let (($x125 (and $x105 $x124)))
+(let (($x126 (and $x104 $x125)))
+(let (($x127 (and (< v_b_max_G_1$ ?x101) $x126)))
+(let (($x128 (and $x55 $x127)))
+(let (($x129 (and true $x128)))
+(let (($x142 (=> $x129 $x141)))
+(let (($x98 (and (< v_b_p_G_0$ v_b_length$) $x55)))
+(let (($x99 (and $x55 $x98)))
+(let (($x100 (and true $x99)))
+(let (($x155 (=> $x100 (and $x142 $x153))))
+(let (($x91 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(=> $x85 $x89))))))
+))
+(let (($x92 (=> $x91 true)))
+(let (($x93 (and $x91 $x92)))
+(let (($x88 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(=> $x85 $x86))))))
+))
+(let (($x94 (=> $x88 $x93)))
+(let (($x78 (and $x71 (and $x73 (and $x75 true)))))
+(let (($x79 (and true $x78)))
+(let (($x80 (and $x55 $x79)))
+(let (($x81 (and $x69 $x80)))
+(let (($x82 (and $x55 $x81)))
+(let (($x83 (and true $x82)))
+(let (($x96 (=> $x83 (and $x88 $x94))))
+(let (($x64 (and $x63 $x55)))
+(let (($x61 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(=> (and (<= 0 ?v0) (< ?v0 v_b_p_G_0$)) $x59))))
+))
+(let (($x65 (and $x61 $x64)))
+(let (($x66 (and $x55 $x65)))
+(let (($x67 (and true $x66)))
+(let (($x68 (and $x50 $x67)))
+(let (($x157 (=> $x68 (and $x96 $x155))))
+(let (($x49 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(=> (and (<= 0 ?v0) (< ?v0 1)) $x47))))
+))
+(let (($x159 (=> $x49 (and $x50 $x157))))
+(let (($x34 (<= 1 1)))
+(let (($x35 (and $x34 $x34)))
+(let (($x32 (<= 0 0)))
+(let (($x36 (and $x32 $x35)))
+(let (($x37 (and $x32 $x36)))
+(let (($x38 (and $x31 $x37)))
+(let (($x39 (and true $x38)))
+(let (($x41 (and true (and (< 0 v_b_length$) $x39))))
+(let (($x161 (=> $x41 (and $x49 $x159))))
+(let (($x162 (not $x161)))
+(let ((@x579 (monotonicity (rewrite (= (and $x136 false) false)) (= $x138 (=> false true)))))
+(let ((@x583 (trans @x579 (rewrite (= (=> false true) true)) (= $x138 true))))
+(let ((@x590 (trans (monotonicity @x583 (= $x139 (and $x136 true))) (rewrite (= (and $x136 true) $x136)) (= $x139 $x136))))
+(let ((?x46 (v_b_array$ ?0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(let (($x567 (or (not (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0)))) $x132)))
+(let (($x133 (=> (and (<= 0 ?0) (< ?0 v_b_p_G_1$)) $x132)))
+(let (($x568 (= (=> (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0))) $x132) $x567)))
+(let (($x564 (= $x133 (=> (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0))) $x132))))
+(let (($x557 (not (<= v_b_p_G_1$ ?0))))
+(let (($x43 (<= 0 ?0)))
+(let (($x560 (and $x43 $x557)))
+(let ((@x212 (rewrite (= $x43 $x43))))
+(let ((@x562 (monotonicity @x212 (rewrite (= (< ?0 v_b_p_G_1$) $x557)) (= (and $x43 (< ?0 v_b_p_G_1$)) $x560))))
+(let ((@x574 (quant-intro (trans (monotonicity @x562 $x564) (rewrite $x568) (= $x133 $x567)) (= $x134 $x572))))
+(let ((@x599 (trans (monotonicity @x574 @x590 (= $x140 (=> $x572 $x136))) (rewrite (= (=> $x572 $x136) $x595)) (= $x140 $x595))))
+(let ((@x656 (rewrite (= (and $x55 (and $x143 $x52 $x54 $x144 $x145 $x110 $x456 $x116)) $x654))))
+(let (($x646 (and $x143 $x52 $x54 $x144 $x145 $x110 $x456 $x116)))
+(let ((@x648 (rewrite (= (and $x143 (and $x52 $x54 $x144 $x145 $x110 $x456 $x116)) $x646))))
+(let (($x638 (and $x52 $x54 $x144 $x145 $x110 $x456 $x116)))
+(let (($x623 (and $x144 $x145 $x110 $x54 $x456 $x116)))
+(let (($x615 (and $x145 $x110 $x54 $x456 $x116)))
+(let (($x482 (and $x110 $x54 $x456 $x116)))
+(let ((@x463 (rewrite (= $x116 $x116))))
+(let ((@x450 (rewrite (= $x110 $x110))))
+(let ((@x467 (monotonicity (monotonicity @x450 @x463 (= $x117 $x117)) (= $x118 $x118))))
+(let ((@x460 (rewrite (= $x456 $x456))))
+(let ((@x458 (monotonicity (rewrite (= (+ v_b_p_G_0$ 1) (+ 1 v_b_p_G_0$))) (= (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x456))))
+(let ((@x473 (monotonicity (trans @x458 @x460 (= (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x456)) (trans @x467 (rewrite (= $x118 $x117)) (= $x118 $x117)) (= $x119 (and $x456 $x117)))))
+(let ((@x478 (trans @x473 (rewrite (= (and $x456 $x117) (and $x456 $x110 $x116))) (= $x119 (and $x456 $x110 $x116)))))
+(let ((@x481 (monotonicity (monotonicity @x450 (rewrite (= $x54 $x54)) (= $x111 $x111)) @x478 (= $x120 (and $x111 (and $x456 $x110 $x116))))))
+(let ((@x486 (trans @x481 (rewrite (= (and $x111 (and $x456 $x110 $x116)) $x482)) (= $x120 $x482))))
+(let ((@x493 (trans (monotonicity @x486 (= $x121 (and true $x482))) (rewrite (= (and true $x482) $x482)) (= $x121 $x482))))
+(let ((@x619 (trans (monotonicity @x493 (= $x146 (and $x145 $x482))) (rewrite (= (and $x145 $x482) $x615)) (= $x146 $x615))))
+(let ((@x627 (trans (monotonicity @x619 (= $x147 (and $x144 $x615))) (rewrite (= (and $x144 $x615) $x623)) (= $x147 $x623))))
+(let ((@x634 (trans (monotonicity @x627 (= $x148 (and true $x623))) (rewrite (= (and true $x623) $x623)) (= $x148 $x623))))
+(let ((@x240 (rewrite (= $x54 $x54))))
+(let ((@x238 (rewrite (= $x52 $x52))))
+(let ((@x242 (monotonicity @x238 @x240 (= $x55 $x55))))
+(let ((@x642 (trans (monotonicity @x242 @x634 (= $x149 (and $x55 $x623))) (rewrite (= (and $x55 $x623) $x638)) (= $x149 $x638))))
+(let ((@x650 (trans (monotonicity @x642 (= $x150 (and $x143 $x638))) @x648 (= $x150 $x646))))
+(let ((@x658 (trans (monotonicity @x242 @x650 (= $x151 (and $x55 $x646))) @x656 (= $x151 $x654))))
+(let ((@x665 (trans (monotonicity @x658 (= $x152 (and true $x654))) (rewrite (= (and true $x654) $x654)) (= $x152 $x654))))
+(let ((@x668 (monotonicity @x665 (monotonicity @x574 @x599 (= $x141 $x600)) (= $x153 (=> $x654 $x600)))))
+(let ((@x546 (rewrite (= (and $x55 (and $x441 $x104 $x54 $x107 $x109 $x110 $x456 $x116)) $x544))))
+(let (($x536 (and $x441 $x104 $x54 $x107 $x109 $x110 $x456 $x116)))
+(let ((@x538 (rewrite (= (and $x441 (and $x104 $x54 $x107 $x109 $x110 $x456 $x116)) $x536))))
+(let (($x528 (and $x104 $x54 $x107 $x109 $x110 $x456 $x116)))
+(let (($x520 (and $x54 $x107 $x109 $x110 $x456 $x116)))
+(let (($x505 (and $x107 $x109 $x110 $x54 $x456 $x116)))
+(let ((@x501 (trans (monotonicity @x493 (= $x122 (and $x109 $x482))) (rewrite (= (and $x109 $x482) (and $x109 $x110 $x54 $x456 $x116))) (= $x122 (and $x109 $x110 $x54 $x456 $x116)))))
+(let ((@x504 (monotonicity @x501 (= $x123 (and $x107 (and $x109 $x110 $x54 $x456 $x116))))))
+(let ((@x509 (trans @x504 (rewrite (= (and $x107 (and $x109 $x110 $x54 $x456 $x116)) $x505)) (= $x123 $x505))))
+(let ((@x516 (trans (monotonicity @x509 (= $x124 (and true $x505))) (rewrite (= (and true $x505) $x505)) (= $x124 $x505))))
+(let ((@x448 (trans (monotonicity @x240 @x240 (= $x105 $x105)) (rewrite (= $x105 $x54)) (= $x105 $x54))))
+(let ((@x524 (trans (monotonicity @x448 @x516 (= $x125 (and $x54 $x505))) (rewrite (= (and $x54 $x505) $x520)) (= $x125 $x520))))
+(let ((@x532 (trans (monotonicity @x524 (= $x126 (and $x104 $x520))) (rewrite (= (and $x104 $x520) $x528)) (= $x126 $x528))))
+(let ((@x535 (monotonicity (rewrite (= (< v_b_max_G_1$ ?x101) $x441)) @x532 (= $x127 (and $x441 $x528)))))
+(let ((@x543 (monotonicity @x242 (trans @x535 @x538 (= $x127 $x536)) (= $x128 (and $x55 $x536)))))
+(let ((@x551 (monotonicity (trans @x543 @x546 (= $x128 $x544)) (= $x129 (and true $x544)))))
+(let ((@x605 (monotonicity (trans @x551 (rewrite (= (and true $x544) $x544)) (= $x129 $x544)) (monotonicity @x574 @x599 (= $x141 $x600)) (= $x142 (=> $x544 $x600)))))
+(let ((@x677 (monotonicity (trans @x605 (rewrite (= (=> $x544 $x600) $x607)) (= $x142 $x607)) (trans @x668 (rewrite (= (=> $x654 $x600) $x670)) (= $x153 $x670)) (= (and $x142 $x153) $x675))))
+(let ((@x420 (monotonicity (rewrite (= (< v_b_p_G_0$ v_b_length$) $x415)) @x242 (= $x98 (and $x415 $x55)))))
+(let ((@x425 (trans @x420 (rewrite (= (and $x415 $x55) (and $x415 $x52 $x54))) (= $x98 (and $x415 $x52 $x54)))))
+(let ((@x433 (trans (monotonicity @x242 @x425 (= $x99 (and $x55 (and $x415 $x52 $x54)))) (rewrite (= (and $x55 (and $x415 $x52 $x54)) $x429)) (= $x99 $x429))))
+(let ((@x440 (trans (monotonicity @x433 (= $x100 (and true $x429))) (rewrite (= (and true $x429) $x429)) (= $x100 $x429))))
+(let ((@x686 (trans (monotonicity @x440 @x677 (= $x155 (=> $x429 $x675))) (rewrite (= (=> $x429 $x675) $x682)) (= $x155 $x682))))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x351 (not (<= v_b_length$ ?0))))
+(let (($x354 (and $x43 $x351)))
+(let (($x360 (not $x354)))
+(let (($x372 (or $x360 $x89)))
+(let (($x85 (and $x43 (< ?0 v_b_length$))))
+(let (($x90 (=> $x85 $x89)))
+(let ((@x356 (monotonicity @x212 (rewrite (= (< ?0 v_b_length$) $x351)) (= $x85 $x354))))
+(let ((@x376 (trans (monotonicity @x356 (= $x90 (=> $x354 $x89))) (rewrite (= (=> $x354 $x89) $x372)) (= $x90 $x372))))
+(let ((@x382 (monotonicity (quant-intro @x376 (= $x91 $x377)) (= $x92 (=> $x377 true)))))
+(let ((@x386 (trans @x382 (rewrite (= (=> $x377 true) true)) (= $x92 true))))
+(let ((@x389 (monotonicity (quant-intro @x376 (= $x91 $x377)) @x386 (= $x93 (and $x377 true)))))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x361 (or $x360 $x86)))
+(let (($x87 (=> $x85 $x86)))
+(let ((@x365 (trans (monotonicity @x356 (= $x87 (=> $x354 $x86))) (rewrite (= (=> $x354 $x86) $x361)) (= $x87 $x361))))
+(let ((@x396 (monotonicity (quant-intro @x365 (= $x88 $x366)) (trans @x389 (rewrite (= (and $x377 true) $x377)) (= $x93 $x377)) (= $x94 (=> $x366 $x377)))))
+(let ((@x405 (monotonicity (quant-intro @x365 (= $x88 $x366)) (trans @x396 (rewrite (= (=> $x366 $x377) $x398)) (= $x94 $x398)) (= (and $x88 $x94) $x403))))
+(let (($x330 (and $x69 $x52 $x54 $x71 $x73 $x75)))
+(let (($x322 (and $x52 $x54 $x71 $x73 $x75)))
+(let ((@x316 (rewrite (= (and true (and $x71 $x73 $x75)) (and $x71 $x73 $x75)))))
+(let ((@x303 (monotonicity (rewrite (= (and $x75 true) $x75)) (= (and $x73 (and $x75 true)) (and $x73 $x75)))))
+(let ((@x311 (trans (monotonicity @x303 (= $x78 (and $x71 (and $x73 $x75)))) (rewrite (= (and $x71 (and $x73 $x75)) (and $x71 $x73 $x75))) (= $x78 (and $x71 $x73 $x75)))))
+(let ((@x318 (trans (monotonicity @x311 (= $x79 (and true (and $x71 $x73 $x75)))) @x316 (= $x79 (and $x71 $x73 $x75)))))
+(let ((@x326 (trans (monotonicity @x242 @x318 (= $x80 (and $x55 (and $x71 $x73 $x75)))) (rewrite (= (and $x55 (and $x71 $x73 $x75)) $x322)) (= $x80 $x322))))
+(let ((@x334 (trans (monotonicity @x326 (= $x81 (and $x69 $x322))) (rewrite (= (and $x69 $x322) $x330)) (= $x81 $x330))))
+(let ((@x342 (trans (monotonicity @x242 @x334 (= $x82 (and $x55 $x330))) (rewrite (= (and $x55 $x330) $x338)) (= $x82 $x338))))
+(let ((@x349 (trans (monotonicity @x342 (= $x83 (and true $x338))) (rewrite (= (and true $x338) $x338)) (= $x83 $x338))))
+(let ((@x414 (trans (monotonicity @x349 @x405 (= $x96 (=> $x338 $x403))) (rewrite (= (=> $x338 $x403) $x410)) (= $x96 $x410))))
+(let (($x279 (and $x52 $x54 $x259 $x63)))
+(let ((@x273 (rewrite (= (and $x259 (and $x63 $x52 $x54)) (and $x259 $x63 $x52 $x54)))))
+(let ((@x267 (trans (monotonicity @x242 (= $x64 $x64)) (rewrite (= $x64 (and $x63 $x52 $x54))) (= $x64 (and $x63 $x52 $x54)))))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(let (($x254 (or (not (and $x43 (not (<= v_b_p_G_0$ ?0)))) $x59)))
+(let (($x60 (=> (and $x43 (< ?0 v_b_p_G_0$)) $x59)))
+(let ((@x256 (rewrite (= (=> (and $x43 (not (<= v_b_p_G_0$ ?0))) $x59) $x254))))
+(let (($x244 (not (<= v_b_p_G_0$ ?0))))
+(let (($x247 (and $x43 $x244)))
+(let ((@x249 (monotonicity @x212 (rewrite (= (< ?0 v_b_p_G_0$) $x244)) (= (and $x43 (< ?0 v_b_p_G_0$)) $x247))))
+(let ((@x258 (trans (monotonicity @x249 (= $x60 (=> $x247 $x59))) @x256 (= $x60 $x254))))
+(let ((@x270 (monotonicity (quant-intro @x258 (= $x61 $x259)) @x267 (= $x65 (and $x259 (and $x63 $x52 $x54))))))
+(let ((@x278 (monotonicity @x242 (trans @x270 @x273 (= $x65 (and $x259 $x63 $x52 $x54))) (= $x66 (and $x55 (and $x259 $x63 $x52 $x54))))))
+(let ((@x283 (trans @x278 (rewrite (= (and $x55 (and $x259 $x63 $x52 $x54)) $x279)) (= $x66 $x279))))
+(let ((@x290 (trans (monotonicity @x283 (= $x67 (and true $x279))) (rewrite (= (and true $x279) $x279)) (= $x67 $x279))))
+(let ((@x298 (trans (monotonicity @x290 (= $x68 (and $x50 $x279))) (rewrite (= (and $x50 $x279) $x294)) (= $x68 $x294))))
+(let ((@x692 (monotonicity @x298 (monotonicity @x414 @x686 (= (and $x96 $x155) $x687)) (= $x157 (=> $x294 $x687)))))
+(let ((@x701 (monotonicity (trans @x692 (rewrite (= (=> $x294 $x687) $x694)) (= $x157 $x694)) (= (and $x50 $x157) $x699))))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(let (($x229 (or (not (and $x43 (not (<= 1 ?0)))) $x47)))
+(let (($x48 (=> (and $x43 (< ?0 1)) $x47)))
+(let ((@x220 (monotonicity (rewrite (= (<= 1 ?0) (<= 1 ?0))) (= (not (<= 1 ?0)) (not (<= 1 ?0))))))
+(let ((@x221 (trans (rewrite (= (< ?0 1) (not (<= 1 ?0)))) @x220 (= (< ?0 1) (not (<= 1 ?0))))))
+(let ((@x224 (monotonicity @x212 @x221 (= (and $x43 (< ?0 1)) (and $x43 (not (<= 1 ?0)))))))
+(let ((@x227 (monotonicity @x224 (= $x48 (=> (and $x43 (not (<= 1 ?0))) $x47)))))
+(let ((@x233 (trans @x227 (rewrite (= (=> (and $x43 (not (<= 1 ?0))) $x47) $x229)) (= $x48 $x229))))
+(let ((@x704 (monotonicity (quant-intro @x233 (= $x49 $x234)) @x701 (= $x159 (=> $x234 $x699)))))
+(let ((@x713 (monotonicity (quant-intro @x233 (= $x49 $x234)) (trans @x704 (rewrite (= (=> $x234 $x699) $x706)) (= $x159 $x706)) (= (and $x49 $x159) $x711))))
+(let ((@x176 (rewrite (= (and true true) true))))
+(let ((@x174 (monotonicity (rewrite (= $x34 true)) (rewrite (= $x34 true)) (= $x35 (and true true)))))
+(let ((@x180 (monotonicity (rewrite (= $x32 true)) (trans @x174 @x176 (= $x35 true)) (= $x36 (and true true)))))
+(let ((@x184 (monotonicity (rewrite (= $x32 true)) (trans @x180 @x176 (= $x36 true)) (= $x37 (and true true)))))
+(let ((@x189 (monotonicity (trans @x184 @x176 (= $x37 true)) (= $x38 (and $x31 true)))))
+(let ((@x196 (monotonicity (trans @x189 (rewrite (= (and $x31 true) $x31)) (= $x38 $x31)) (= $x39 (and true $x31)))))
+(let ((@x203 (monotonicity (rewrite (= (< 0 v_b_length$) (not (<= v_b_length$ 0)))) (trans @x196 (rewrite (= (and true $x31) $x31)) (= $x39 $x31)) (= (and (< 0 v_b_length$) $x39) $x201))))
+(let ((@x210 (trans (monotonicity @x203 (= $x41 (and true $x201))) (rewrite (= (and true $x201) $x201)) (= $x41 $x201))))
+(let ((@x722 (trans (monotonicity @x210 @x713 (= $x161 (=> $x201 $x711))) (rewrite (= (=> $x201 $x711) $x718)) (= $x161 $x718))))
+(let ((@x726 (mp (asserted $x162) (monotonicity @x722 (= $x162 (not $x718))) (not $x718))))
+(let ((@x737 (mp (and-elim (not-or-elim @x726 $x201) $x31) (rewrite* (= $x31 $x31)) $x31)))
+(let ((@x1930 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_max_G_0$ (v_b_array$ ?v0!2))) $x1083)) (unit-resolution (def-axiom (or $x1391 (not $x1083))) @x1966 (not $x1083)) (trans @x737 @x1955 (= v_b_max_G_0$ (v_b_array$ ?v0!2))) false)))
+(let (($x1582 (forall ((?v0 Int) )(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x1005 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x1005 $x1020))))))
+))
+(let (($x1590 (not (or (not $x1582) $x136))))
+(let (($x1595 (or $x1560 $x1590)))
+(let (($x1607 (not $x1595)))
+(let (($x1620 (not (or $x1528 $x1529 $x985 (not $x144) (not $x145) $x1604 $x1605 $x1606 $x1607))))
+(let (($x1609 (not (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x1607))))
+(let (($x1625 (or $x1609 $x1620)))
+(let (($x1633 (not (or $x1528 $x1529 $x919 (not $x1625)))))
+(let (($x1466 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x930 (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(let (($x1458 (or $x1399 $x930 $x86)))
+(not $x1458))))))))
+))
+(let (($x1522 (or $x1466 $x1517)))
+(let (($x1535 (not (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) (not $x1522)))))
+(let (($x1638 (or $x1535 $x1633)))
+(let (($x1441 (forall ((?v0 Int) )(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x888 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x888 $x903))))))
+))
+(let (($x1648 (not (or $x1528 $x1529 (not $x1441) (not $x63) (not $x1638)))))
+(let (($x1653 (or $x1095 $x1648)))
+(let (($x1419 (forall ((?v0 Int) )(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x841 (>= ?v0 1)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1399 (not $x838)))
+(or $x1399 $x841 $x851))))))
+))
+(let (($x1662 (not (or (not $x1419) (not $x1653)))))
+(let (($x1667 (or $x1396 $x1662)))
+(let (($x2147 (= (or $x1528 $x1529 $x985 (not $x144) (not $x145) $x1604 $x1605 $x1606 $x1607) $x2146)))
+(let (($x1020 (<= (+ ?x46 (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x1005 (>= (+ ?0 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x838 (>= ?0 0)))
+(let (($x1399 (not $x838)))
+(let (($x1577 (or $x1399 $x1005 $x1020)))
+(let ((@x2127 (monotonicity (quant-intro (refl (= $x1577 $x1577)) (= $x1582 $x2120)) (= (not $x1582) (not $x2120)))))
+(let ((@x2133 (monotonicity (monotonicity @x2127 (= (or (not $x1582) $x136) $x2128)) (= $x1590 $x2131))))
+(let ((@x2148 (monotonicity (monotonicity (monotonicity @x2133 (= $x1595 $x2134)) (= $x1607 $x2137)) $x2147)))
+(let ((@x2142 (monotonicity (monotonicity (monotonicity @x2133 (= $x1595 $x2134)) (= $x1607 $x2137)) (= (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x1607) $x2140))))
+(let ((@x2154 (monotonicity (monotonicity @x2142 (= $x1609 $x2143)) (monotonicity @x2148 (= $x1620 $x2149)) (= $x1625 $x2152))))
+(let ((@x2160 (monotonicity (monotonicity @x2154 (= (not $x1625) $x2155)) (= (or $x1528 $x1529 $x919 (not $x1625)) $x2158))))
+(let (($x2115 (= (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) (not $x1522)) $x2114)))
+(let (($x930 (<= (+ v_b_length$ (* (- 1) ?0)) 0)))
+(let (($x1458 (or $x1399 $x930 $x86)))
+(let (($x1463 (not $x1458)))
+(let ((@x2110 (monotonicity (quant-intro (refl (= $x1463 $x1463)) (= $x1466 $x2103)) (= $x1522 $x2108))))
+(let ((@x2119 (monotonicity (monotonicity (monotonicity @x2110 (= (not $x1522) $x2111)) $x2115) (= $x1535 $x2117))))
+(let ((@x2166 (monotonicity @x2119 (monotonicity @x2160 (= $x1633 $x2161)) (= $x1638 $x2164))))
+(let (($x903 (<= (+ ?x46 (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x888 (>= (+ ?0 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x1436 (or $x1399 $x888 $x903)))
+(let ((@x2102 (monotonicity (quant-intro (refl (= $x1436 $x1436)) (= $x1441 $x2095)) (= (not $x1441) $x2100))))
+(let ((@x2172 (monotonicity @x2102 (monotonicity @x2166 (= (not $x1638) $x2167)) (= (or $x1528 $x1529 (not $x1441) (not $x63) (not $x1638)) $x2170))))
+(let ((@x2181 (monotonicity (monotonicity (monotonicity @x2172 (= $x1648 $x2173)) (= $x1653 $x2176)) (= (not $x1653) $x2179))))
+(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) ?x46)) 0)))
+(let (($x841 (>= ?0 1)))
+(let (($x1414 (or $x1399 $x841 $x851)))
+(let ((@x2094 (monotonicity (quant-intro (refl (= $x1414 $x1414)) (= $x1419 $x2087)) (= (not $x1419) (not $x2087)))))
+(let ((@x2187 (monotonicity (monotonicity @x2094 @x2181 (= (or (not $x1419) (not $x1653)) $x2182)) (= $x1662 $x2185))))
+(let (($x1193 (not $x136)))
+(let (($x1026 (forall ((?v0 Int) )(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x1012 (and $x838 (not (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))))
+(let (($x1015 (not $x1012)))
+(or $x1015 $x1020))))))
+))
+(let (($x1196 (and $x1026 $x1193)))
+(let (($x1295 (not $x1290)))
+(let (($x1298 (and $x1173 $x1295)))
+(let (($x1301 (not $x1298)))
+(let (($x1317 (or $x1301 $x1312)))
+(let (($x1320 (not $x1317)))
+(let (($x1323 (or $x1320 $x1196)))
+(let (($x1339 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1323)))
+(let (($x1329 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1323)))
+(let (($x1344 (or $x1329 $x1339)))
+(let (($x1350 (and $x882 $x885 $x971 $x1344)))
+(let (($x1145 (not (and $x1139 (not $x1142)))))
+(let (($x1258 (or $x1145 $x1253)))
+(let (($x1261 (not $x1258)))
+(let (($x1129 (not (and (>= ?v0!3 0) (not $x1126)))))
+(let (($x1132 (or $x1129 $x1131)))
+(let (($x1264 (and $x1132 $x1261)))
+(let (($x1119 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x838 (>= ?v0 0)))
+(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x939 (not $x936)))
+(let (($x942 (or $x939 $x86)))
+(not $x942))))))))
+))
+(let (($x1267 (or $x1119 $x1264)))
+(let (($x1273 (and $x882 $x885 $x919 k!00 $x73 k!10 $x1267)))
+(let (($x1355 (or $x1273 $x1350)))
+(let (($x909 (forall ((?v0 Int) )(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x895 (and $x838 (not (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))))
+(let (($x898 (not $x895)))
+(or $x898 $x903))))))
+))
+(let (($x1361 (and $x882 $x885 $x909 $x63 $x1355)))
+(let (($x1366 (or $x1095 $x1361)))
+(let (($x862 (forall ((?v0 Int) )(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x838 (>= ?v0 0)))
+(let (($x849 (and $x838 (not (>= ?v0 1)))))
+(let (($x854 (not $x849)))
+(or $x854 $x851))))))
+))
+(let (($x1369 (and $x862 $x1366)))
+(let (($x1077 (not (and $x1078 $x1079))))
+(let (($x1084 (or $x1077 $x1083)))
+(let (($x1085 (not $x1084)))
+(let (($x1372 (or $x1085 $x1369)))
+(let ((@x1622 (rewrite (= (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1595) $x1620))))
+(let (($x1012 (and $x838 (not $x1005))))
+(let (($x1015 (not $x1012)))
+(let (($x1023 (or $x1015 $x1020)))
+(let ((@x1569 (monotonicity (rewrite (= $x1012 (not (or $x1399 $x1005)))) (= $x1015 (not (not (or $x1399 $x1005)))))))
+(let ((@x1573 (trans @x1569 (rewrite (= (not (not (or $x1399 $x1005))) (or $x1399 $x1005))) (= $x1015 (or $x1399 $x1005)))))
+(let ((@x1581 (trans (monotonicity @x1573 (= $x1023 (or (or $x1399 $x1005) $x1020))) (rewrite (= (or (or $x1399 $x1005) $x1020) $x1577)) (= $x1023 $x1577))))
+(let ((@x1587 (monotonicity (quant-intro @x1581 (= $x1026 $x1582)) (= $x1196 (and $x1582 $x1193)))))
+(let ((@x1547 (monotonicity (rewrite (= $x1298 (not (or $x1540 $x1290)))) (= $x1301 (not (not (or $x1540 $x1290)))))))
+(let ((@x1551 (trans @x1547 (rewrite (= (not (not (or $x1540 $x1290))) (or $x1540 $x1290))) (= $x1301 (or $x1540 $x1290)))))
+(let ((@x1559 (trans (monotonicity @x1551 (= $x1317 (or (or $x1540 $x1290) $x1312))) (rewrite (= (or (or $x1540 $x1290) $x1312) $x1555)) (= $x1317 $x1555))))
+(let ((@x1597 (monotonicity (monotonicity @x1559 (= $x1320 $x1560)) (trans @x1587 (rewrite (= (and $x1582 $x1193) $x1590)) (= $x1196 $x1590)) (= $x1323 $x1595))))
+(let ((@x1616 (monotonicity @x1597 (= $x1339 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1595)))))
+(let ((@x1611 (rewrite (= (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1595) $x1609))))
+(let ((@x1600 (monotonicity @x1597 (= $x1329 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1595)))))
+(let ((@x1627 (monotonicity (trans @x1600 @x1611 (= $x1329 $x1609)) (trans @x1616 @x1622 (= $x1339 $x1620)) (= $x1344 $x1625))))
+(let ((@x1637 (trans (monotonicity @x1627 (= $x1350 (and $x882 $x885 $x971 $x1625))) (rewrite (= (and $x882 $x885 $x971 $x1625) $x1633)) (= $x1350 $x1633))))
+(let ((@x1537 (rewrite (= (and $x882 $x885 $x919 k!00 $x73 k!10 $x1522) $x1535))))
+(let ((@x1496 (monotonicity (rewrite (= (and $x1139 (not $x1142)) (not (or $x1489 $x1142)))) (= $x1145 (not (not (or $x1489 $x1142)))))))
+(let ((@x1500 (trans @x1496 (rewrite (= (not (not (or $x1489 $x1142))) (or $x1489 $x1142))) (= $x1145 (or $x1489 $x1142)))))
+(let ((@x1508 (trans (monotonicity @x1500 (= $x1258 (or (or $x1489 $x1142) $x1253))) (rewrite (= (or (or $x1489 $x1142) $x1253) (or $x1489 $x1142 $x1253))) (= $x1258 (or $x1489 $x1142 $x1253)))))
+(let (($x1470 (or (not (>= ?v0!3 0)) $x1126)))
+(let ((@x1476 (monotonicity (rewrite (= (and (>= ?v0!3 0) (not $x1126)) (not $x1470))) (= $x1129 (not (not $x1470))))))
+(let ((@x1483 (monotonicity (trans @x1476 (rewrite (= (not (not $x1470)) $x1470)) (= $x1129 $x1470)) (= $x1132 (or $x1470 $x1131)))))
+(let ((@x1514 (monotonicity (trans @x1483 (rewrite (= (or $x1470 $x1131) $x1484)) (= $x1132 $x1484)) (monotonicity @x1508 (= $x1261 (not (or $x1489 $x1142 $x1253)))) (= $x1264 (and $x1484 (not (or $x1489 $x1142 $x1253)))))))
+(let ((@x1521 (trans @x1514 (rewrite (= (and $x1484 (not (or $x1489 $x1142 $x1253))) $x1517)) (= $x1264 $x1517))))
+(let (($x936 (and $x838 (not $x930))))
+(let (($x939 (not $x936)))
+(let (($x942 (or $x939 $x86)))
+(let ((@x1450 (monotonicity (rewrite (= $x936 (not (or $x1399 $x930)))) (= $x939 (not (not (or $x1399 $x930)))))))
+(let ((@x1454 (trans @x1450 (rewrite (= (not (not (or $x1399 $x930))) (or $x1399 $x930))) (= $x939 (or $x1399 $x930)))))
+(let ((@x1462 (trans (monotonicity @x1454 (= $x942 (or (or $x1399 $x930) $x86))) (rewrite (= (or (or $x1399 $x930) $x86) $x1458)) (= $x942 $x1458))))
+(let ((@x1468 (quant-intro (monotonicity @x1462 (= (not $x942) $x1463)) (= $x1119 $x1466))))
+(let ((@x1527 (monotonicity (monotonicity @x1468 @x1521 (= $x1267 $x1522)) (= $x1273 (and $x882 $x885 $x919 k!00 $x73 k!10 $x1522)))))
+(let (($x895 (and $x838 (not $x888))))
+(let (($x898 (not $x895)))
+(let (($x906 (or $x898 $x903)))
+(let ((@x1428 (monotonicity (rewrite (= $x895 (not (or $x1399 $x888)))) (= $x898 (not (not (or $x1399 $x888)))))))
+(let ((@x1432 (trans @x1428 (rewrite (= (not (not (or $x1399 $x888))) (or $x1399 $x888))) (= $x898 (or $x1399 $x888)))))
+(let ((@x1440 (trans (monotonicity @x1432 (= $x906 (or (or $x1399 $x888) $x903))) (rewrite (= (or (or $x1399 $x888) $x903) $x1436)) (= $x906 $x1436))))
+(let ((@x1643 (monotonicity (quant-intro @x1440 (= $x909 $x1441)) (monotonicity (trans @x1527 @x1537 (= $x1273 $x1535)) @x1637 (= $x1355 $x1638)) (= $x1361 (and $x882 $x885 $x1441 $x63 $x1638)))))
+(let ((@x1652 (trans @x1643 (rewrite (= (and $x882 $x885 $x1441 $x63 $x1638) $x1648)) (= $x1361 $x1648))))
+(let (($x849 (and $x838 (not $x841))))
+(let (($x854 (not $x849)))
+(let (($x859 (or $x854 $x851)))
+(let ((@x1406 (monotonicity (rewrite (= $x849 (not (or $x1399 $x841)))) (= $x854 (not (not (or $x1399 $x841)))))))
+(let ((@x1410 (trans @x1406 (rewrite (= (not (not (or $x1399 $x841))) (or $x1399 $x841))) (= $x854 (or $x1399 $x841)))))
+(let ((@x1418 (trans (monotonicity @x1410 (= $x859 (or (or $x1399 $x841) $x851))) (rewrite (= (or (or $x1399 $x841) $x851) $x1414)) (= $x859 $x1414))))
+(let ((@x1658 (monotonicity (quant-intro @x1418 (= $x862 $x1419)) (monotonicity @x1652 (= $x1366 $x1653)) (= $x1369 (and $x1419 $x1653)))))
+(let ((@x1385 (rewrite (= (not (not (or (not $x1078) $x831))) (or (not $x1078) $x831)))))
+(let ((@x1383 (monotonicity (rewrite (= (and $x1078 $x1079) (not (or (not $x1078) $x831)))) (= $x1077 (not (not (or (not $x1078) $x831)))))))
+(let ((@x1390 (monotonicity (trans @x1383 @x1385 (= $x1077 (or (not $x1078) $x831))) (= $x1084 (or (or (not $x1078) $x831) $x1083)))))
+(let ((@x1395 (trans @x1390 (rewrite (= (or (or (not $x1078) $x831) $x1083) $x1391)) (= $x1084 $x1391))))
+(let ((@x1669 (monotonicity (monotonicity @x1395 (= $x1085 $x1396)) (trans @x1658 (rewrite (= (and $x1419 $x1653) $x1662)) (= $x1369 $x1662)) (= $x1372 $x1667))))
+(let (($x1181 (<= (+ ?x1179 (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x1182 (or (not (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0)))) $x1181)))
+(let (($x1183 (not $x1182)))
+(let (($x1200 (or $x1183 $x1196)))
+(let (($x1041 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996)))
+(let (($x1044 (not $x1041)))
+(let (($x1208 (not $x1044)))
+(let (($x1211 (and $x1208 $x1200)))
+(let (($x999 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996)))
+(let (($x1002 (not $x999)))
+(let (($x1169 (not $x1002)))
+(let (($x1204 (and $x1169 $x1200)))
+(let (($x1215 (or $x1204 $x1211)))
+(let (($x974 (and $x882 $x885 $x971)))
+(let (($x977 (not $x974)))
+(let (($x1166 (not $x977)))
+(let (($x1219 (and $x1166 $x1215)))
+(let (($x1150 (not (or $x1145 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0)))))
+(let (($x1154 (and $x1132 $x1150)))
+(let (($x1158 (or $x1119 $x1154)))
+(let (($x922 (and $x882 $x885 $x919 k!00 $x73 k!10)))
+(let (($x925 (not $x922)))
+(let (($x1113 (not $x925)))
+(let (($x1162 (and $x1113 $x1158)))
+(let (($x1223 (or $x1162 $x1219)))
+(let (($x912 (and $x882 $x885 $x909 $x63)))
+(let (($x1227 (and $x912 $x1223)))
+(let (($x1231 (or $x1095 $x1227)))
+(let (($x1235 (and $x862 $x1231)))
+(let (($x1239 (or $x1085 $x1235)))
+(let (($x1305 (= (+ ?x1179 (* (- 1) v_b_max_G_3$)) (+ (* (- 1) v_b_max_G_3$) ?x1179))))
+(let ((@x1309 (monotonicity (rewrite $x1305) (= $x1181 (<= (+ (* (- 1) v_b_max_G_3$) ?x1179) 0)))))
+(let ((@x1316 (trans @x1309 (rewrite (= (<= (+ (* (- 1) v_b_max_G_3$) ?x1179) 0) $x1312)) (= $x1181 $x1312))))
+(let (($x1302 (= (not (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0)))) $x1301)))
+(let (($x1299 (= (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0))) $x1298)))
+(let (($x1175 (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x1283 (= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) (+ (* (- 1) v_b_p_G_1$) ?v0!5))))
+(let ((@x1287 (monotonicity (rewrite $x1283) (= $x1175 (>= (+ (* (- 1) v_b_p_G_1$) ?v0!5) 0)))))
+(let ((@x1294 (trans @x1287 (rewrite (= (>= (+ (* (- 1) v_b_p_G_1$) ?v0!5) 0) $x1290)) (= $x1175 $x1290))))
+(let ((@x1303 (monotonicity (monotonicity (monotonicity @x1294 (= (not $x1175) $x1295)) $x1299) $x1302)))
+(let ((@x1322 (monotonicity (monotonicity @x1303 @x1316 (= $x1182 $x1317)) (= $x1183 $x1320))))
+(let ((@x1338 (monotonicity (rewrite (= $x1208 $x1041)) (monotonicity @x1322 (= $x1200 $x1323)) (= $x1211 (and $x1041 $x1323)))))
+(let ((@x1328 (monotonicity (rewrite (= $x1169 $x999)) (monotonicity @x1322 (= $x1200 $x1323)) (= $x1204 (and $x999 $x1323)))))
+(let ((@x1346 (monotonicity (trans @x1328 (rewrite (= (and $x999 $x1323) $x1329)) (= $x1204 $x1329)) (trans @x1338 (rewrite (= (and $x1041 $x1323) $x1339)) (= $x1211 $x1339)) (= $x1215 $x1344))))
+(let ((@x1349 (monotonicity (rewrite (= $x1166 $x974)) @x1346 (= $x1219 (and $x974 $x1344)))))
+(let (($x1259 (= (or $x1145 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0)) $x1258)))
+(let (($x1148 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0)))
+(let (($x1254 (= (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4)) 0) $x1253)))
+(let (($x1249 (= $x1148 (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4)) 0))))
+(let (($x1246 (= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4)))))
+(let ((@x1257 (trans (monotonicity (rewrite $x1246) $x1249) (rewrite $x1254) (= $x1148 $x1253))))
+(let ((@x1266 (monotonicity (monotonicity (monotonicity @x1257 $x1259) (= $x1150 $x1261)) (= $x1154 $x1264))))
+(let ((@x1272 (monotonicity (rewrite (= $x1113 $x922)) (monotonicity @x1266 (= $x1158 $x1267)) (= $x1162 (and $x922 $x1267)))))
+(let ((@x1357 (monotonicity (trans @x1272 (rewrite (= (and $x922 $x1267) $x1273)) (= $x1162 $x1273)) (trans @x1349 (rewrite (= (and $x974 $x1344) $x1350)) (= $x1219 $x1350)) (= $x1223 $x1355))))
+(let ((@x1365 (trans (monotonicity @x1357 (= $x1227 (and $x912 $x1355))) (rewrite (= (and $x912 $x1355) $x1361)) (= $x1227 $x1361))))
+(let ((@x1374 (monotonicity (monotonicity (monotonicity @x1365 (= $x1231 $x1366)) (= $x1235 $x1369)) (= $x1239 $x1372))))
+(let (($x1029 (not $x1026)))
+(let (($x1032 (or $x1029 $x136)))
+(let (($x1035 (and $x1026 $x1032)))
+(let (($x1047 (or $x1044 $x1035)))
+(let (($x1038 (or $x1002 $x1035)))
+(let (($x1050 (and $x1038 $x1047)))
+(let (($x1053 (or $x977 $x1050)))
+(let (($x959 (forall ((?v0 Int) )(let (($x838 (>= ?v0 0)))
+(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x939 (not $x936)))
+(or $x939 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0))))))
+))
+(let (($x945 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x838 (>= ?v0 0)))
+(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x939 (not $x936)))
+(or $x939 $x86)))))))
+))
+(let (($x948 (not $x945)))
+(let (($x962 (or $x948 $x959)))
+(let (($x965 (and $x945 $x962)))
+(let (($x968 (or $x925 $x965)))
+(let (($x1056 (and $x968 $x1053)))
+(let (($x915 (not $x912)))
+(let (($x1059 (or $x915 $x1056)))
+(let (($x1062 (and $x50 $x1059)))
+(let (($x878 (not $x862)))
+(let (($x1065 (or $x878 $x1062)))
+(let (($x1071 (not (and $x862 $x1065))))
+(let ((@x1192 (nnf-neg (nnf-pos (refl (~ $x1023 $x1023)) (~ $x1026 $x1026)) (~ (not $x1029) $x1026))))
+(let ((@x1203 (nnf-neg (sk (~ $x1029 $x1183)) (nnf-neg @x1192 (refl (~ $x1193 $x1193)) (~ (not $x1032) $x1196)) (~ (not $x1035) $x1200))))
+(let ((@x1218 (nnf-neg (nnf-neg (refl (~ $x1169 $x1169)) @x1203 (~ (not $x1038) $x1204)) (nnf-neg (refl (~ $x1208 $x1208)) @x1203 (~ (not $x1047) $x1211)) (~ (not $x1050) $x1215))))
+(let ((@x1157 (nnf-neg (nnf-neg (sk (~ $x945 $x1132)) (~ (not $x948) $x1132)) (sk (~ (not $x959) $x1150)) (~ (not $x962) $x1154))))
+(let ((@x1161 (nnf-neg (nnf-neg (refl (~ (not $x942) (not $x942))) (~ $x948 $x1119)) @x1157 (~ (not $x965) $x1158))))
+(let ((@x1226 (nnf-neg (nnf-neg (refl (~ $x1113 $x1113)) @x1161 (~ (not $x968) $x1162)) (nnf-neg (refl (~ $x1166 $x1166)) @x1218 (~ (not $x1053) $x1219)) (~ (not $x1056) $x1223))))
+(let ((@x1109 (monotonicity (refl (~ $x882 $x882)) (refl (~ $x885 $x885)) (nnf-pos (refl (~ $x906 $x906)) (~ $x909 $x909)) (refl (~ $x63 $x63)) (~ $x912 $x912))))
+(let ((@x1230 (nnf-neg (nnf-neg @x1109 (~ (not $x915) $x912)) @x1226 (~ (not $x1059) $x1227))))
+(let ((@x1094 (nnf-neg (nnf-pos (refl (~ $x859 $x859)) (~ $x862 $x862)) (~ (not $x878) $x862))))
+(let ((@x1238 (nnf-neg @x1094 (nnf-neg (refl (~ $x1095 $x1095)) @x1230 (~ (not $x1062) $x1231)) (~ (not $x1065) $x1235))))
+(let (($x749 (and $x52 $x54 $x69 k!00 $x73 k!10)))
+(let (($x752 (not $x749)))
+(let (($x785 (or $x752 $x403)))
+(let (($x788 (and $x785 $x682)))
+(let (($x738 (not $x279)))
+(let (($x816 (or $x738 $x788)))
+(let (($x819 (and $x50 $x816)))
+(let (($x822 (or $x705 $x819)))
+(let (($x825 (and $x234 $x822)))
+(let (($x828 (not $x825)))
+(let ((@x1011 (monotonicity (rewrite (= (<= v_b_p_G_1$ ?0) $x1005)) (= $x557 (not $x1005)))))
+(let ((@x837 (rewrite (= $x43 $x838))))
+(let ((@x1017 (monotonicity (monotonicity @x837 @x1011 (= $x560 $x1012)) (= (not $x560) $x1015))))
+(let ((@x1028 (quant-intro (monotonicity @x1017 (rewrite (= $x132 $x1020)) (= $x567 $x1023)) (= $x572 $x1026))))
+(let ((@x1034 (monotonicity (monotonicity @x1028 (= (not $x572) $x1029)) (= $x595 $x1032))))
+(let ((@x886 (rewrite (= $x54 $x885))))
+(let ((@x883 (rewrite (= $x52 $x882))))
+(let ((@x1043 (monotonicity @x883 @x886 (rewrite (= $x143 $x980)) (rewrite (= $x110 $x989)) (rewrite (= $x456 $x991)) (rewrite (= $x116 $x996)) (= $x654 $x1041))))
+(let ((@x1049 (monotonicity (monotonicity @x1043 (= $x669 $x1044)) (monotonicity @x1028 @x1034 (= $x600 $x1035)) (= $x670 $x1047))))
+(let ((@x1001 (monotonicity @x883 @x886 (monotonicity (rewrite (= $x143 $x980)) (= $x441 $x985)) (rewrite (= $x110 $x989)) (rewrite (= $x456 $x991)) (rewrite (= $x116 $x996)) (= $x544 $x999))))
+(let ((@x1040 (monotonicity (monotonicity @x1001 (= $x606 $x1002)) (monotonicity @x1028 @x1034 (= $x600 $x1035)) (= $x607 $x1038))))
+(let ((@x976 (monotonicity @x883 @x886 (monotonicity (rewrite (= $x69 $x919)) (= $x415 $x971)) (= $x429 $x974))))
+(let ((@x1055 (monotonicity (monotonicity @x976 (= $x681 $x977)) (monotonicity @x1040 @x1049 (= $x675 $x1050)) (= $x682 $x1053))))
+(let ((@x935 (monotonicity (rewrite (= (<= v_b_length$ ?0) $x930)) (= $x351 (not $x930)))))
+(let ((@x941 (monotonicity (monotonicity @x837 @x935 (= $x354 $x936)) (= $x360 $x939))))
+(let ((@x958 (monotonicity @x941 (rewrite (= $x89 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0))) (= $x372 (or $x939 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0))))))
+(let ((@x950 (monotonicity (quant-intro (monotonicity @x941 (= $x361 $x942)) (= $x366 $x945)) (= (not $x366) $x948))))
+(let ((@x967 (monotonicity (quant-intro (monotonicity @x941 (= $x361 $x942)) (= $x366 $x945)) (monotonicity @x950 (quant-intro @x958 (= $x377 $x959)) (= $x398 $x962)) (= $x403 $x965))))
+(let ((@x927 (monotonicity (monotonicity @x883 @x886 (rewrite (= $x69 $x919)) (= $x749 $x922)) (= $x752 $x925))))
+(let ((@x1058 (monotonicity (monotonicity @x927 @x967 (= $x785 $x968)) @x1055 (= $x788 $x1056))))
+(let ((@x894 (monotonicity (rewrite (= (<= v_b_p_G_0$ ?0) $x888)) (= $x244 (not $x888)))))
+(let ((@x900 (monotonicity (monotonicity @x837 @x894 (= $x247 $x895)) (= (not $x247) $x898))))
+(let ((@x911 (quant-intro (monotonicity @x900 (rewrite (= $x59 $x903)) (= $x254 $x906)) (= $x259 $x909))))
+(let ((@x917 (monotonicity (monotonicity @x883 @x886 @x911 (= $x279 $x912)) (= $x738 $x915))))
+(let ((@x1064 (monotonicity (monotonicity @x917 @x1058 (= $x816 $x1059)) (= $x819 $x1062))))
+(let ((@x848 (monotonicity (rewrite (= (<= 1 ?0) $x841)) (= (not (<= 1 ?0)) (not $x841)))))
+(let ((@x834 (monotonicity (monotonicity @x837 @x848 (= (and $x43 (not (<= 1 ?0))) $x849)) (= (not (and $x43 (not (<= 1 ?0)))) $x854))))
+(let ((@x877 (quant-intro (monotonicity @x834 (rewrite (= $x47 $x851)) (= $x229 $x859)) (= $x234 $x862))))
+(let ((@x1067 (monotonicity (monotonicity @x877 (= $x705 $x878)) @x1064 (= $x822 $x1065))))
+(let ((@x1073 (monotonicity (monotonicity @x877 @x1067 (= $x825 (and $x862 $x1065))) (= $x828 $x1071))))
+(let ((@x796 (monotonicity (monotonicity @x238 @x240 @x450 @x460 @x463 (= $x654 $x654)) (= $x669 $x669))))
+(let ((@x784 (monotonicity (monotonicity @x238 @x240 @x450 @x460 @x463 (= $x544 $x544)) (= $x606 $x606))))
+(let ((@x800 (monotonicity (monotonicity @x784 (= $x607 $x607)) (monotonicity @x796 (= $x670 $x670)) (= $x675 $x675))))
+(let ((@x780 (monotonicity (monotonicity @x238 @x240 (= $x429 $x429)) (= $x681 $x681))))
+(let ((@x846 (monotonicity (monotonicity @x238 @x240 (= $x749 $x749)) (= $x752 $x752))))
+(let ((@x864 (monotonicity (monotonicity @x846 (= $x785 $x785)) (monotonicity @x780 @x800 (= $x682 $x682)) (= $x788 $x788))))
+(let ((@x762 (monotonicity (monotonicity @x238 @x240 (= $x279 $x279)) (= $x738 $x738))))
+(let ((@x868 (monotonicity (monotonicity @x762 @x864 (= $x816 $x816)) (= $x819 $x819))))
+(let ((@x874 (monotonicity (monotonicity (monotonicity @x868 (= $x822 $x822)) (= $x825 $x825)) (= $x828 $x828))))
+(let ((@x751 (monotonicity (apply-def (intro-def (= $x71 k!00)) (~ $x71 k!00)) (apply-def (intro-def (= $x75 k!10)) (~ $x75 k!10)) (= $x338 $x749))))
+(let ((@x790 (monotonicity (monotonicity (monotonicity @x751 (= $x409 $x752)) (= $x410 $x785)) (= $x687 $x788))))
+(let ((@x821 (monotonicity (monotonicity @x790 (= (or $x738 $x687) $x816)) (= (and $x50 (or $x738 $x687)) $x819))))
+(let ((@x827 (monotonicity (monotonicity @x821 (= (or $x705 (and $x50 (or $x738 $x687))) $x822)) (= (and $x234 (or $x705 (and $x50 (or $x738 $x687)))) $x825))))
+(let ((@x830 (monotonicity @x827 (= (not (and $x234 (or $x705 (and $x50 (or $x738 $x687))))) $x828))))
+(let (($x739 (or $x738 $x687)))
+(let (($x740 (and $x50 $x739)))
+(let (($x741 (or $x705 $x740)))
+(let (($x742 (and $x234 $x741)))
+(let (($x743 (not $x742)))
+(let ((@x766 (monotonicity (monotonicity @x238 @x240 (= $x338 $x338)) (= $x409 $x409))))
+(let ((@x804 (monotonicity (monotonicity @x766 (= $x410 $x410)) (monotonicity @x780 @x800 (= $x682 $x682)) (= $x687 $x687))))
+(let ((@x808 (monotonicity (monotonicity @x762 @x804 (= $x739 $x739)) (= $x740 $x740))))
+(let ((@x814 (monotonicity (monotonicity (monotonicity @x808 (= $x741 $x741)) (= $x742 $x742)) (= $x743 $x743))))
+(let ((@x746 (mp (not-or-elim @x726 (not $x711)) (rewrite* (= (not $x711) $x743)) $x743)))
+(let ((@x1242 (mp~ (mp (mp (mp (mp @x746 @x814 $x743) @x830 $x828) @x874 $x828) @x1073 $x1071) (nnf-neg (sk (~ $x878 $x1085)) @x1238 (~ $x1071 $x1239)) $x1239)))
+(let ((@x2191 (mp (mp (mp @x1242 @x1374 $x1372) @x1669 $x1667) (monotonicity @x2187 (= $x1667 (or $x1396 $x2185))) (or $x1396 $x2185))))
+(let ((@x2302 (unit-resolution (def-axiom (or $x2182 $x2176)) (unit-resolution @x2191 (lemma @x1930 $x1391) $x2185) $x2176)))
+(let ((@x2309 (unit-resolution (def-axiom (or $x2179 $x1095 $x2173)) (mp @x737 (symm (commutativity (= $x50 $x31)) (= $x31 $x50)) $x50) (or $x2179 $x2173))))
+(let ((@x2310 (unit-resolution @x2309 @x2302 $x2173)))
+(let ((@x2410 (monotonicity (unit-resolution (def-axiom (or $x2146 $x144)) @x2389 $x144) (= ?x135 ?x62))))
+(let ((@x2413 (trans @x2410 (unit-resolution (def-axiom (or $x2170 $x63)) @x2310 $x63) (= ?x135 v_b_max_G_1$))))
+(let ((@x2414 (trans @x2413 (symm (unit-resolution (def-axiom (or $x2146 $x145)) @x2389 $x145) $x2022) $x136)))
+(let ((@x2416 (unit-resolution (def-axiom (or $x2137 $x1560 $x2131)) (unit-resolution (def-axiom (or $x2128 $x1193)) @x2414 $x2128) (unit-resolution (def-axiom (or $x2146 $x2134)) @x2389 $x2134) $x1560)))
+(let ((@x2421 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x1693 $x985 $x1312 (not $x2024))) (unit-resolution (def-axiom (or $x1555 $x1678)) @x2416 $x1678) @x2406 (unit-resolution (def-axiom (or $x2146 $x980)) @x2389 $x980) $x1693)))
+(let (($x1798 (= v_b_p_G_0$ ?v0!5)))
+(let (($x1800 (>= (+ v_b_p_G_0$ (* (- 1) ?v0!5)) 0)))
+(let (($x1764 (>= (+ v_b_p_G_0$ (* (- 1) v_b_p_G_1$)) (- 1))))
+(let ((@x2426 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1605 $x1764)) (unit-resolution (def-axiom (or $x2146 $x991)) @x2389 $x991) $x1764)))
+(let ((@x2430 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1800 $x1290 (not $x1764))) (unit-resolution (def-axiom (or $x1555 $x1295)) @x2416 $x1295) @x2426 $x1800)))
+(let (($x1751 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!5)) 0)))
+(let (($x1728 (>= (+ v_b_max_G_1$ (* (- 1) ?x1179)) 0)))
+(let (($x2195 (not $x1728)))
+(let ((@x2433 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x2195 $x1312 (not $x2024))) @x2406 (unit-resolution (def-axiom (or $x1555 $x1678)) @x2416 $x1678) $x2195)))
+(let ((@x2333 (unit-resolution (def-axiom (or $x2170 $x2095)) @x2310 $x2095)))
+(let (($x1716 (or $x2100 $x1540 $x1751 $x1728)))
+(let (($x1775 (<= (+ ?x1179 (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x1789 (>= (+ ?v0!5 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x1717 (or $x2100 (or $x1540 $x1789 $x1775))))
+(let (($x1739 (= (+ ?x1179 (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) ?x1179))))
+(let ((@x1726 (monotonicity (rewrite $x1739) (= $x1775 (<= (+ (* (- 1) v_b_max_G_1$) ?x1179) 0)))))
+(let ((@x1732 (trans @x1726 (rewrite (= (<= (+ (* (- 1) v_b_max_G_1$) ?x1179) 0) $x1728)) (= $x1775 $x1728))))
+(let (($x1743 (= (+ ?v0!5 (* (- 1) v_b_p_G_0$)) (+ (* (- 1) v_b_p_G_0$) ?v0!5))))
+(let ((@x1749 (monotonicity (rewrite $x1743) (= $x1789 (>= (+ (* (- 1) v_b_p_G_0$) ?v0!5) 0)))))
+(let ((@x1755 (trans @x1749 (rewrite (= (>= (+ (* (- 1) v_b_p_G_0$) ?v0!5) 0) $x1751)) (= $x1789 $x1751))))
+(let ((@x1715 (monotonicity @x1755 @x1732 (= (or $x1540 $x1789 $x1775) (or $x1540 $x1751 $x1728)))))
+(let ((@x1690 (trans (monotonicity @x1715 (= $x1717 (or $x2100 (or $x1540 $x1751 $x1728)))) (rewrite (= (or $x2100 (or $x1540 $x1751 $x1728)) $x1716)) (= $x1717 $x1716))))
+(let ((@x2435 (unit-resolution (mp ((_ quant-inst ?v0!5) $x1717) @x1690 $x1716) @x2333 (unit-resolution (def-axiom (or $x1555 $x1173)) @x2416 $x1173) @x2433 $x1751)))
+(let ((@x2436 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1798 (not $x1751) (not $x1800))) @x2435 @x2430 $x1798)))
+(let ((@x1807 (monotonicity (symm (hypothesis $x1798) (= ?v0!5 v_b_p_G_0$)) (= ?x1179 ?x101))))
+(let ((@x1796 (lemma (unit-resolution (hypothesis $x1803) (symm @x1807 $x1799) false) (or (not $x1798) $x1799))))
+(let ((@x2437 (unit-resolution @x1796 @x2436 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1803 $x1703)) @x2421 $x1803) false)))
+(let (($x2228 (= v_b_max_G_1$ v_b_max_G_4$)))
+(let ((@x2349 (symm (unit-resolution (def-axiom (or $x2114 $x73)) (hypothesis $x2117) $x73) $x2228)))
+(let ((@x2352 ((_ th-lemma arith triangle-eq) (or (not $x2228) (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0)))))
+(let ((@x2353 (unit-resolution @x2352 @x2349 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0))))
+(let (($x2265 (>= (+ v_b_max_G_1$ (* (- 1) (v_b_array$ ?v0!4))) 0)))
+(let (($x1143 (not $x1142)))
+(let (($x2077 (not $x2103)))
+(let (($x2282 (= ?x62 v_b_max_G_4$)))
+(let (($x2283 (or $x1528 (<= (+ v_b_length$ (* (- 1) v_b_k_G_0$)) 0) $x2282)))
+(let ((@x2313 (trans (unit-resolution (def-axiom (or $x2170 $x63)) @x2310 $x63) (symm (hypothesis $x73) $x2228) $x2282)))
+(let ((@x2316 (unit-resolution ((_ quant-inst v_b_k_G_0$) (or $x2077 (not $x2283))) (hypothesis $x2103) (unit-resolution (def-axiom (or $x2283 (not $x2282))) @x2313 $x2283) false)))
+(let ((@x2355 (unit-resolution (lemma @x2316 (or $x2077 $x1531)) (unit-resolution (def-axiom (or $x2114 $x73)) (hypothesis $x2117) $x73) $x2077)))
+(let ((@x2356 (unit-resolution (def-axiom (or $x2111 $x2103 $x1517)) @x2355 (unit-resolution (def-axiom (or $x2114 $x2108)) (hypothesis $x2117) $x2108) $x1517)))
+(let ((@x2343 ((_ th-lemma arith farkas -1 -1 1) (hypothesis (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)) (hypothesis $x919) (hypothesis $x1143) false)))
+(let ((@x2346 (lemma @x2343 (or (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)) $x971 $x1142))))
+(let ((@x2359 (unit-resolution @x2346 (unit-resolution (def-axiom (or $x2114 $x919)) (hypothesis $x2117) $x919) (unit-resolution (def-axiom (or $x1516 $x1143)) @x2356 $x1143) (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)))))
+(let (($x2272 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)))
+(let (($x2296 (or $x2100 $x1489 $x2272 $x2265)))
+(let (($x2249 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x2241 (>= (+ ?v0!4 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x2300 (or $x2100 (or $x1489 $x2241 $x2249))))
+(let (($x2266 (= (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4)) 0) $x2265)))
+(let (($x2260 (= $x2249 (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4)) 0))))
+(let (($x2278 (= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4)))))
+(let ((@x2292 (trans (monotonicity (rewrite $x2278) $x2260) (rewrite $x2266) (= $x2249 $x2265))))
+(let (($x2253 (= (+ ?v0!4 (* (- 1) v_b_p_G_0$)) (+ (* (- 1) v_b_p_G_0$) ?v0!4))))
+(let ((@x2258 (monotonicity (rewrite $x2253) (= $x2241 (>= (+ (* (- 1) v_b_p_G_0$) ?v0!4) 0)))))
+(let ((@x2276 (trans @x2258 (rewrite (= (>= (+ (* (- 1) v_b_p_G_0$) ?v0!4) 0) $x2272)) (= $x2241 $x2272))))
+(let ((@x2295 (monotonicity @x2276 @x2292 (= (or $x1489 $x2241 $x2249) (or $x1489 $x2272 $x2265)))))
+(let ((@x2319 (trans (monotonicity @x2295 (= $x2300 (or $x2100 (or $x1489 $x2272 $x2265)))) (rewrite (= (or $x2100 (or $x1489 $x2272 $x2265)) $x2296)) (= $x2300 $x2296))))
+(let ((@x2362 (unit-resolution (mp ((_ quant-inst ?v0!4) $x2300) @x2319 $x2296) @x2333 (unit-resolution (def-axiom (or $x1516 $x1139)) @x2356 $x1139) (or $x2272 $x2265))))
+(let ((@x2365 ((_ th-lemma arith farkas 1 -1 1) (unit-resolution (def-axiom (or $x1516 (not $x1253))) @x2356 (not $x1253)) (unit-resolution @x2362 @x2359 $x2265) @x2353 false)))
+(let ((@x2373 (unit-resolution (def-axiom (or $x2167 $x2117 $x2161)) (lemma @x2365 $x2114) (unit-resolution (def-axiom (or $x2170 $x2164)) @x2310 $x2164) $x2161)))
+(let ((@x2243 (unit-resolution (def-axiom (or $x2155 $x2143 $x2149)) (unit-resolution (def-axiom (or $x2158 $x2152)) @x2373 $x2152) $x2152)))
+(let ((@x2244 (unit-resolution @x2243 (lemma @x2437 $x2146) $x2143)))
+(let ((@x1791 (trans (monotonicity (hypothesis $x107) (= ?x135 ?x101)) (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (= ?x135 v_b_max_G_2$))))
+(let ((@x1769 (trans @x1791 (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) $x136)))
+(let ((@x1771 (lemma (unit-resolution (hypothesis $x1193) @x1769 false) (or $x136 $x1603 $x1601 $x1602))))
+(let ((@x2380 (unit-resolution @x1771 (unit-resolution (def-axiom (or $x2140 $x109)) @x2244 $x109) (unit-resolution (def-axiom (or $x2140 $x104)) @x2244 $x104) (unit-resolution (def-axiom (or $x2140 $x107)) @x2244 $x107) $x136)))
+(let ((@x2368 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1605 $x1764)) (unit-resolution (def-axiom (or $x2140 $x991)) @x2244 $x991) $x1764)))
+(let ((@x1699 (unit-resolution (def-axiom (or $x2137 $x1560 $x2131)) (unit-resolution (def-axiom (or $x2128 $x1193)) (hypothesis $x136) $x2128) (hypothesis $x2134) $x1560)))
+(let (($x2205 (not $x1800)))
+(let (($x1838 (<= (+ ?x101 (* (- 1) v_b_max_G_3$)) 0)))
+(let ((@x1685 (trans (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) (= ?x101 v_b_max_G_3$))))
+(let ((@x1675 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x101 v_b_max_G_3$)) $x1838)) @x1685 $x1838)))
+(let ((@x1696 (lemma ((_ th-lemma arith farkas -1 -1 1) (hypothesis $x1678) (hypothesis $x1838) (hypothesis $x1703) false) (or $x1693 $x1312 (not $x1838)))))
+(let ((@x1677 (unit-resolution @x1696 (unit-resolution (def-axiom (or $x1555 $x1678)) @x1699 $x1678) @x1675 $x1693)))
+(let ((@x2193 (unit-resolution @x1796 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1803 $x1703)) @x1677 $x1803) (not $x1798))))
+(let ((@x2198 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x2195 $x1312 (not $x1838) $x980)) (unit-resolution (def-axiom (or $x1555 $x1678)) @x1699 $x1678) @x1675 (hypothesis $x985) $x2195)))
+(let ((@x2202 (unit-resolution (mp ((_ quant-inst ?v0!5) $x1717) @x1690 $x1716) (hypothesis $x2095) (unit-resolution (def-axiom (or $x1555 $x1173)) @x1699 $x1173) (or $x1751 $x1728))))
+(let ((@x2209 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1798 (not $x1751) $x2205)) (unit-resolution @x2202 @x2198 $x1751) (or $x1798 $x2205))))
+(let ((@x2211 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x2209 @x2193 $x2205) (hypothesis $x1764) (unit-resolution (def-axiom (or $x1555 $x1295)) @x1699 $x1295) false)))
+(let ((@x2370 (unit-resolution (lemma @x2211 (or $x1193 (not $x1764) $x2100 $x980 $x2137 $x1601 $x1603)) @x2333 (or $x1193 (not $x1764) $x980 $x2137 $x1601 $x1603))))
+(unit-resolution @x2370 @x2368 @x2380 (unit-resolution (def-axiom (or $x2140 $x985)) @x2244 $x985) (unit-resolution (def-axiom (or $x2140 $x2134)) @x2244 $x2134) (unit-resolution (def-axiom (or $x2140 $x104)) @x2244 $x104) (unit-resolution (def-axiom (or $x2140 $x109)) @x2244 $x109) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/VCC_Max.certs	Thu May 01 22:57:36 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,7207 +0,0 @@
-2122eda8d3638c072eaaa16a2c285fe3e5c83f7e 7206 0
-WARNING: For problems containing quantifiers, the model finding capabilities of Z3 work better when the formula does not contain nested quantifiers. You can use PULL_NESTED_QUANTIFIERS=true to eliminate nested quantifiers.
-#2 := false
-decl f470 :: Int
-#4962 := f470
-decl f55 :: (-> S17 S11 Int)
-decl f139 :: (-> S60 S4 S11)
-decl f35 :: S4
-#356 := f35
-decl f140 :: (-> S61 Int S60)
-decl f471 :: Int
-#4964 := f471
-decl f153 :: (-> S68 S11 S61)
-decl f87 :: (-> S34 Int S11)
-decl f445 :: Int
-#4655 := f445
-decl f113 :: (-> S49 S4 S34)
-decl f114 :: S49
-#1136 := f114
-#4654 := (f113 f114 f35)
-#4656 := (f87 #4654 f445)
-decl f154 :: S68
-#1350 := f154
-#4734 := (f153 f154 #4656)
-#4988 := (f140 #4734 f471)
-#4989 := (f139 #4988 f35)
-decl f103 :: (-> S42 S10 S17)
-decl f444 :: S10
-#4649 := f444
-decl f199 :: S42
-#2434 := f199
-#4748 := (f103 f199 f444)
-#4990 := (f55 #4748 #4989)
-#4991 := (= #4990 f470)
-#20985 := (not #4991)
-#1138 := 0::Int
-#6707 := -1::Int
-#12718 := (* -1::Int f471)
-decl f443 :: Int
-#4646 := f443
-#12719 := (+ f443 #12718)
-#12720 := (<= #12719 0::Int)
-#20986 := (or #12720 #20985)
-#20987 := (not #20986)
-#1197 := (:var 0 Int)
-#4773 := (f140 #4734 #1197)
-#21878 := (pattern #4773)
-#12696 := (* -1::Int f470)
-#4774 := (f139 #4773 f35)
-#4775 := (f55 #4748 #4774)
-#12697 := (+ #4775 #12696)
-#12698 := (<= #12697 0::Int)
-decl f472 :: Int
-#4972 := f472
-#12677 := (* -1::Int f472)
-#12685 := (+ #1197 #12677)
-#12684 := (>= #12685 0::Int)
-#9359 := 4294967295::Int
-#14917 := (<= #1197 4294967295::Int)
-#18181 := (not #14917)
-#6706 := (>= #1197 0::Int)
-#7428 := (not #6706)
-#20977 := (or #7428 #18181 #12684 #12698)
-#21895 := (forall (vars (?v0 Int)) (:pat #21878) #20977)
-#21900 := (not #21895)
-#21903 := (or #21900 #20987)
-#21906 := (not #21903)
-decl ?v0!14 :: Int
-#17232 := ?v0!14
-#17239 := (f140 #4734 ?v0!14)
-#17240 := (f139 #17239 f35)
-#17241 := (f55 #4748 #17240)
-#17543 := (* -1::Int #17241)
-#17544 := (+ f470 #17543)
-#17545 := (>= #17544 0::Int)
-#17530 := (* -1::Int ?v0!14)
-#17531 := (+ f472 #17530)
-#17532 := (<= #17531 0::Int)
-#17234 := (<= ?v0!14 4294967295::Int)
-#20951 := (not #17234)
-#17233 := (>= ?v0!14 0::Int)
-#20950 := (not #17233)
-#20966 := (or #20950 #20951 #17532 #17545)
-#20971 := (not #20966)
-#21909 := (or #20971 #21906)
-#21912 := (not #21909)
-#12678 := (+ f443 #12677)
-#12676 := (>= #12678 0::Int)
-#12681 := (not #12676)
-#21915 := (or #12681 #21912)
-#21918 := (not #21915)
-#21921 := (or #12681 #21918)
-#21924 := (not #21921)
-#12651 := (>= f471 0::Int)
-#21027 := (not #12651)
-#2098 := 2::Int
-#12668 := (>= f472 2::Int)
-#21026 := (not #12668)
-decl f1 :: S1
-#3 := f1
-decl f45 :: (-> S7 S4 S1)
-decl f33 :: S4
-#350 := f33
-decl f46 :: (-> S8 Int S7)
-decl f449 :: (-> S178 S3 S8)
-decl f20 :: S3
-#66 := f20
-decl f450 :: (-> S179 S3 S178)
-decl f9 :: S3
-#33 := f9
-decl f451 :: (-> S180 S10 S179)
-decl f452 :: S180
-#4695 := f452
-#4696 := (f451 f452 f444)
-#4974 := (f450 #4696 f9)
-#4975 := (f449 #4974 f20)
-#4976 := (f46 #4975 f472)
-#4977 := (f45 #4976 f33)
-#4978 := (= #4977 f1)
-#11705 := (not #4978)
-decl f464 :: Int
-#4790 := f464
-#12740 := (+ f464 #12677)
-#12739 := (= #12740 -1::Int)
-#12743 := (not #12739)
-#13726 := 4294967294::Int
-#13727 := (<= f464 4294967294::Int)
-#17212 := (not #13727)
-#12660 := (>= f464 -1::Int)
-#17209 := (not #12660)
-#21927 := (or #17209 #17212 #12743 #11705 #21026 #21027 #21924)
-#21930 := (not #21927)
-#21933 := (or #17209 #17212 #21930)
-#21936 := (not #21933)
-#968 := 1::Int
-#12639 := (>= f464 1::Int)
-#12777 := (not #12639)
-#4965 := (= f471 f464)
-#11751 := (not #4965)
-decl f469 :: Int
-#4949 := f469
-#4963 := (= f470 f469)
-#11760 := (not #4963)
-decl f10 :: S3
-#36 := f10
-decl f8 :: S3
-#30 := f8
-#4956 := (f450 #4696 f8)
-#4957 := (f449 #4956 f10)
-#4958 := (f46 #4957 f464)
-#4959 := (f45 #4958 f33)
-#4960 := (= #4959 f1)
-#11785 := (not #4960)
-decl f17 :: S3
-#57 := f17
-decl f11 :: S3
-#39 := f11
-#4951 := (f450 #4696 f11)
-#4952 := (f449 #4951 f17)
-#4953 := (f46 #4952 f469)
-#4954 := (f45 #4953 f35)
-#4955 := (= #4954 f1)
-#11794 := (not #4955)
-#4936 := (f140 #4734 f464)
-#4937 := (f139 #4936 f35)
-#4947 := (f55 #4748 #4937)
-#4950 := (= f469 #4947)
-#11803 := (not #4950)
-decl f71 :: (-> S27 S11 S1)
-decl f80 :: (-> S31 S10 S27)
-decl f157 :: S31
-#1372 := f157
-#4743 := (f80 f157 f444)
-#4944 := (f71 #4743 #4937)
-#4945 := (= #4944 f1)
-#17180 := (not #4945)
-decl f118 :: (-> S51 S11 S7)
-decl f123 :: S51
-#1172 := f123
-#4938 := (f118 f123 #4937)
-#4939 := (f45 #4938 f35)
-#4940 := (= #4939 f1)
-#17171 := (not #4940)
-#21939 := (or #17171 #17180 #11803 #11794 #11785 #11760 #11751 #12777 #21027 #21936)
-#21942 := (not #21939)
-#21945 := (or #17171 #17180 #21942)
-#21948 := (not #21945)
-decl f244 :: (-> S93 S4 Int)
-decl f245 :: S93
-#2903 := f245
-#4624 := (f244 f245 f35)
-#25629 := (* #4624 f464)
-#4735 := (f140 #4734 0::Int)
-#4736 := (f139 #4735 f35)
-decl f206 :: S17
-#2483 := f206
-#23971 := (f55 f206 #4736)
-#23991 := (f87 #4654 #23971)
-#24379 := (f55 f206 #23991)
-#25632 := (+ #24379 #25629)
-#25639 := (f87 #4654 #25632)
-decl f358 :: S31
-#3975 := f358
-#24190 := (f80 f358 f444)
-#25878 := (f71 #24190 #25639)
-#25879 := (= #25878 f1)
-decl f85 :: S11
-#1075 := f85
-decl f82 :: (-> S32 S11 S11)
-decl f83 :: (-> S33 S10 S32)
-decl f84 :: S33
-#1072 := f84
-#4661 := (f83 f84 f444)
-#25876 := (f82 #4661 #25639)
-#25877 := (= #25876 f85)
-#25880 := (or #25877 #25879)
-#25881 := (not #25880)
-decl f3 :: S2
-#7 := f3
-decl f61 :: (-> S4 S2)
-decl f62 :: (-> S22 S11 S4)
-decl f63 :: S22
-#999 := f63
-#25851 := (f62 f63 #25639)
-#25852 := (f61 #25851)
-#25853 := (= #25852 f3)
-#25882 := (or #25853 #25881)
-#25883 := (not #25882)
-decl f235 :: (-> S88 S56 S11)
-decl f134 :: (-> S55 S11 S56)
-decl f135 :: (-> S57 S58 S55)
-decl f137 :: (-> S59 S10 S58)
-decl f138 :: S59
-#1302 := f138
-#4882 := (f137 f138 f444)
-decl f136 :: S57
-#1301 := f136
-#4883 := (f135 f136 #4882)
-#25855 := (f134 #4883 #25639)
-decl f236 :: S88
-#2770 := f236
-#25859 := (f235 f236 #25855)
-#25870 := (f71 #24190 #25859)
-#25871 := (= #25870 f1)
-#25868 := (f82 #4661 #25859)
-#25869 := (= #25868 f85)
-#25872 := (or #25869 #25871)
-#25873 := (not #25872)
-#25865 := (f62 f63 #25859)
-#25866 := (f61 #25865)
-#25867 := (= #25866 f3)
-decl f86 :: S31
-#1078 := f86
-#4650 := (f80 f86 f444)
-#25860 := (f71 #4650 #25859)
-#25861 := (= #25860 f1)
-#25862 := (not #25861)
-decl f155 :: (-> S69 S56 S1)
-decl f237 :: S69
-#2777 := f237
-#25856 := (f155 f237 #25855)
-#25857 := (= #25856 f1)
-#25858 := (not #25857)
-#25863 := (or #25858 #25862)
-#25864 := (not #25863)
-#25854 := (not #25853)
-#25874 := (or #25854 #25864 #25867 #25873)
-#25875 := (not #25874)
-#25884 := (or #25875 #25883)
-#25885 := (not #25884)
-decl f81 :: S31
-#1068 := f81
-#4667 := (f80 f81 f444)
-#25848 := (f71 #4667 #25639)
-#25849 := (= #25848 f1)
-#4941 := (f71 #4667 #4937)
-#4942 := (= #4941 f1)
-#24580 := (f134 #4883 #4937)
-#25782 := (f155 f237 #24580)
-#25783 := (= #25782 f1)
-#17174 := (not #4942)
-#25784 := (or #17174 #25783)
-#25785 := (not #25784)
-#25916 := [hypothesis]: #25784
-decl f50 :: (-> S13 S12 S1)
-decl f65 :: (-> S23 S11 S12)
-#4657 := (f55 f206 #4656)
-decl f215 :: (-> S78 Int S4)
-decl f216 :: (-> S79 S4 S78)
-decl f217 :: S79
-#2593 := f217
-#4651 := (f216 f217 f35)
-#4652 := (f215 #4651 f443)
-#4653 := (f113 f114 #4652)
-#4658 := (f87 #4653 #4657)
-#22490 := (f55 f206 #4658)
-#23413 := (f87 #4653 #22490)
-decl f66 :: (-> S24 S10 S23)
-decl f67 :: S24
-#1018 := f67
-#23811 := (f66 f67 f444)
-#23819 := (f65 #23811 #23413)
-decl f51 :: (-> S14 S11 S13)
-#24084 := (f87 #4653 f445)
-decl f64 :: S14
-#1003 := f64
-#24085 := (f51 f64 #24084)
-#24086 := (f50 #24085 #23819)
-#24087 := (= #24086 f1)
-#23810 := (f51 f64 #23413)
-#23820 := (f50 #23810 #23819)
-#23821 := (= #23820 f1)
-decl f129 :: S24
-#1228 := f129
-#23570 := (f66 f129 f444)
-#23825 := (f65 #23570 #23413)
-#996 := (:var 0 S11)
-#1004 := (f51 f64 #996)
-#23826 := (f50 #1004 #23825)
-#23835 := (pattern #23826)
-decl f329 :: (-> S126 S19 S12)
-decl f58 :: (-> S20 S11 S19)
-decl f59 :: (-> S21 S10 S20)
-decl f60 :: S21
-#991 := f60
-#23829 := (f59 f60 f444)
-#23830 := (f58 #23829 #23413)
-decl f330 :: S126
-#3503 := f330
-#23831 := (f329 f330 #23830)
-decl f254 :: S14
-#2955 := f254
-#3762 := (f51 f254 #996)
-#23832 := (f50 #3762 #23831)
-#23833 := (= #23832 f1)
-#23827 := (= #23826 f1)
-#23828 := (not #23827)
-#23693 := (f62 f63 #23413)
-decl f337 :: S7
-#3683 := f337
-#23823 := (f45 f337 #23693)
-#23824 := (= #23823 f1)
-#23834 := (or #23824 #23828 #23833)
-#23836 := (forall (vars (?v3 S11)) (:pat #23835) #23834)
-#23837 := (not #23836)
-#23704 := (f71 #4650 #23413)
-#23705 := (= #23704 f1)
-#23730 := (not #23705)
-#23822 := (not #23821)
-#23838 := (or #23822 #23730 #23837)
-#23839 := (not #23838)
-decl f125 :: (-> S54 S11 S27)
-decl f334 :: (-> S128 S10 S54)
-decl f336 :: S128
-#3670 := f336
-#23786 := (f334 f336 f444)
-#23787 := (f125 #23786 #23413)
-#23788 := (f71 #23787 #23413)
-#23789 := (= #23788 f1)
-decl f338 :: (-> S130 S129 S1)
-decl f460 :: S129
-#4731 := f460
-decl f339 :: (-> S131 S11 S130)
-decl f340 :: (-> S132 S11 S131)
-decl f341 :: (-> S133 S10 S132)
-decl f345 :: S133
-#3792 := f345
-#4728 := (f341 f345 f444)
-#23775 := (f340 #4728 #23413)
-#23776 := (f339 #23775 #23413)
-#23784 := (f338 #23776 f460)
-#23785 := (= #23784 f1)
-#23790 := (iff #23785 #23789)
-#3776 := (:var 0 S129)
-#984 := (:var 1 S11)
-#993 := (:var 2 S11)
-#980 := (:var 3 S10)
-#3793 := (f341 f345 #980)
-#3794 := (f340 #3793 #993)
-#3795 := (f339 #3794 #984)
-#3796 := (f338 #3795 #3776)
-#3797 := (pattern #3796)
-#3720 := (f334 f336 #980)
-#3799 := (f125 #3720 #993)
-#3800 := (f71 #3799 #984)
-#3801 := (= #3800 f1)
-#3798 := (= #3796 f1)
-#3802 := (iff #3798 #3801)
-#3803 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11) (?v3 S129)) (:pat #3797) #3802)
-#16565 := (~ #3803 #3803)
-#16563 := (~ #3802 #3802)
-#16564 := [refl]: #16563
-#16566 := [nnf-pos #16564]: #16565
-#10696 := [asserted]: #3803
-#16567 := [mp~ #10696 #16566]: #3803
-#23799 := (not #3803)
-#23801 := (or #23799 #23790)
-#23802 := [quant-inst #4649 #23413 #23413 #4731]: #23801
-#23945 := [unit-resolution #23802 #16567]: #23790
-#4729 := (f340 #4728 #4658)
-#4730 := (f339 #4729 #4658)
-#4732 := (f338 #4730 f460)
-#4733 := (= #4732 f1)
-#23865 := (f61 #23693)
-#23866 := (= #23865 f3)
-#23954 := (not #23866)
-decl f6 :: S2
-#14 := f6
-#15 := (= f3 f6)
-#16 := (not #15)
-#23955 := (iff #16 #23954)
-#23952 := (iff #15 #23866)
-#23950 := (iff #23866 #15)
-#23928 := (= f6 f3)
-#23948 := (iff #23928 #15)
-#23949 := [commutativity]: #23948
-#23929 := (iff #23866 #23928)
-#23939 := (= #23865 f6)
-#4670 := (f61 #4652)
-#23587 := (= #4670 f6)
-decl f248 :: S7
-#2922 := f248
-#23515 := (f45 f248 #4652)
-#23516 := (= #23515 f1)
-#23588 := (iff #23516 #23587)
-#1287 := (:var 0 S4)
-#3295 := (f45 f248 #1287)
-#4521 := (pattern #3295)
-#4530 := (f61 #1287)
-#4534 := (= #4530 f6)
-#3297 := (= #3295 f1)
-#4535 := (iff #3297 #4534)
-#4536 := (forall (vars (?v0 S4)) (:pat #4521) #4535)
-#17000 := (~ #4536 #4536)
-#16998 := (~ #4535 #4535)
-#16999 := [refl]: #16998
-#17001 := [nnf-pos #16999]: #17000
-#11185 := [asserted]: #4536
-#17002 := [mp~ #11185 #17001]: #4536
-#23597 := (not #4536)
-#23598 := (or #23597 #23588)
-#23599 := [quant-inst #4652]: #23598
-#23796 := [unit-resolution #23599 #17002]: #23588
-#23600 := (not #23588)
-#23798 := (or #23600 #23587)
-#1426 := (:var 1 S4)
-#2594 := (f216 f217 #1426)
-#2595 := (f215 #2594 #1197)
-#2917 := (pattern #2595)
-#2923 := (f45 f248 #2595)
-#2924 := (= #2923 f1)
-#2925 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #2917) #2924)
-#16099 := (~ #2925 #2925)
-#16097 := (~ #2924 #2924)
-#16098 := [refl]: #16097
-#16100 := [nnf-pos #16098]: #16099
-#9874 := [asserted]: #2925
-#16101 := [mp~ #9874 #16100]: #2925
-#23522 := (not #2925)
-#23523 := (or #23522 #23516)
-#23524 := [quant-inst #356 #4646]: #23523
-#24987 := [unit-resolution #23524 #16101]: #23516
-#23604 := (not #23516)
-#23605 := (or #23600 #23604 #23587)
-#23606 := [def-axiom]: #23605
-#23914 := [unit-resolution #23606 #24987]: #23798
-#23915 := [unit-resolution #23914 #23796]: #23587
-#23937 := (= #23865 #4670)
-#23935 := (= #23693 #4652)
-#23428 := (f62 f63 #4658)
-#23429 := (= #23428 #4652)
-#2667 := (f113 f114 #1426)
-#4356 := (f87 #2667 #1197)
-#21823 := (pattern #4356)
-#4360 := (f62 f63 #4356)
-#4361 := (= #4360 #1426)
-#21830 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #21823) #4361)
-#4362 := (forall (vars (?v0 S4) (?v1 Int)) #4361)
-#21833 := (iff #4362 #21830)
-#21831 := (iff #4361 #4361)
-#21832 := [refl]: #21831
-#21834 := [quant-intro #21832]: #21833
-#16915 := (~ #4362 #4362)
-#16913 := (~ #4361 #4361)
-#16914 := [refl]: #16913
-#16916 := [nnf-pos #16914]: #16915
-#11104 := [asserted]: #4362
-#16917 := [mp~ #11104 #16916]: #4362
-#21835 := [mp #16917 #21834]: #21830
-#23455 := (not #21830)
-#23494 := (or #23455 #23429)
-#23495 := [quant-inst #4652 #4657]: #23494
-#23916 := [unit-resolution #23495 #21835]: #23429
-#23933 := (= #23693 #23428)
-#23931 := (= #23413 #4658)
-#23426 := (= #4658 #23413)
-#4664 := (f118 f123 #4658)
-#4665 := (f45 #4664 #4652)
-#4666 := (= #4665 f1)
-decl f79 :: S7
-#1064 := f79
-#4673 := (f45 f79 #4652)
-#4674 := (= #4673 f1)
-#4671 := (= #4670 f3)
-#4672 := (not #4671)
-#4668 := (f71 #4667 #4658)
-#4669 := (= #4668 f1)
-#4662 := (f82 #4661 #4658)
-#4663 := (= #4662 f85)
-#4659 := (f71 #4650 #4658)
-#4660 := (= #4659 f1)
-#13334 := (and #4660 #4663 #4666 #4669 #4672 #4674)
-decl f468 :: Int
-#4819 := f468
-#4826 := (= #4775 f468)
-#12568 := (* -1::Int f443)
-#12951 := (+ #1197 #12568)
-#12950 := (>= #12951 0::Int)
-#12952 := (not #12950)
-decl f168 :: Int
-#1519 := f168
-#6888 := (* -1::Int f168)
-#6889 := (+ #1197 #6888)
-#6890 := (<= #6889 0::Int)
-#12993 := (and #6706 #6890 #12952 #4826)
-#12998 := (exists (vars (?v0 Int)) #12993)
-#12962 := (* -1::Int f468)
-#12963 := (+ #4775 #12962)
-#12964 := (<= #12963 0::Int)
-#6897 := (and #6706 #6890)
-#7910 := (not #6897)
-#12973 := (or #7910 #12950 #12964)
-#12978 := (forall (vars (?v0 Int)) #12973)
-#12981 := (not #12978)
-#13001 := (or #12981 #12998)
-#13004 := (and #12978 #13001)
-decl f462 :: Int
-#4782 := f462
-#4820 := (= f468 f462)
-#11361 := (not #4820)
-decl f463 :: Int
-#4786 := f463
-decl f467 :: Int
-#4817 := f467
-#4818 := (= f467 f463)
-#11370 := (not #4818)
-decl f466 :: Int
-#4815 := f466
-#4816 := (= f466 f464)
-#11379 := (not #4816)
-decl f465 :: Int
-#4813 := f465
-#4814 := (= f465 f462)
-#11388 := (not #4814)
-#12642 := (>= f463 0::Int)
-#12644 := (and #12639 #12642)
-#12647 := (not #12644)
-decl f367 :: S1
-#4071 := f367
-#4072 := (= f367 f1)
-#11436 := (not #4072)
-#13031 := (or #11436 #12647 #11388 #11379 #11370 #11361 #13004)
-#13036 := (and #4072 #13031)
-#12663 := (* -1::Int f464)
-#12921 := (+ f443 #12663)
-#12922 := (<= #12921 0::Int)
-#12923 := (not #12922)
-#13061 := (or #12647 #12923 #13036)
-#12721 := (not #12720)
-#12724 := (and #12721 #4991)
-#12707 := (or #7910 #12684 #12698)
-#12712 := (forall (vars (?v0 Int)) #12707)
-#12715 := (not #12712)
-#12727 := (or #12715 #12724)
-#12730 := (and #12712 #12727)
-#12733 := (or #12681 #12730)
-#12736 := (and #12676 #12733)
-#12670 := (and #12668 #12651)
-#12673 := (not #12670)
-#12664 := (+ f168 #12663)
-#12662 := (>= #12664 1::Int)
-#12746 := (and #12660 #12662)
-#12749 := (not #12746)
-#12764 := (or #12749 #12743 #11705 #12673 #12736)
-#12772 := (and #12660 #12662 #12764)
-#12653 := (and #12639 #12651)
-#12656 := (not #12653)
-#5027 := (= f471 f463)
-#11883 := (not #5027)
-#5026 := (= f470 f462)
-#11892 := (not #5026)
-#12830 := (* -1::Int #4947)
-#12831 := (+ f462 #12830)
-#12829 := (>= #12831 0::Int)
-#12828 := (not #12829)
-#12883 := (or #12647 #12828 #11892 #11883 #12656 #12772)
-#4946 := (and #4940 #4945)
-#11812 := (not #4946)
-#12804 := (or #11812 #11803 #11794 #11785 #12777 #11760 #11751 #12656 #12772)
-#12812 := (and #4940 #4945 #12804)
-#4943 := (and #4940 #4942)
-#11824 := (not #4943)
-#12817 := (or #11824 #12812)
-#12823 := (and #4940 #4942 #12817)
-#12853 := (or #12647 #12829 #12823)
-#12888 := (and #12853 #12883)
-#12897 := (or #11812 #12647 #12888)
-#12905 := (and #4940 #4945 #12897)
-#12910 := (or #11824 #12905)
-#12916 := (and #4940 #4942 #12910)
-#12945 := (or #12647 #12922 #12916)
-#13066 := (and #12945 #13061)
-decl f48 :: (-> S9 S4 S4)
-decl f49 :: S9
-#976 := f49
-#977 := (f48 f49 f35)
-decl f453 :: (-> S181 S3 S51)
-decl f19 :: S3
-#63 := f19
-decl f454 :: (-> S182 S3 S181)
-decl f13 :: S3
-#45 := f13
-decl f455 :: (-> S183 S10 S182)
-decl f456 :: S183
-#4703 := f456
-#4704 := (f455 f456 f444)
-#4926 := (f454 #4704 f13)
-#4927 := (f453 #4926 f19)
-#4928 := (f118 #4927 #4656)
-#4929 := (f45 #4928 #977)
-#4930 := (= #4929 f1)
-decl f89 :: S17
-#1094 := f89
-#4699 := (f55 f89 #4656)
-#4905 := (f450 #4696 f13)
-#4922 := (f449 #4905 f19)
-#4923 := (f46 #4922 #4699)
-#4924 := (f45 #4923 #977)
-#4925 := (= #4924 f1)
-#4931 := (and #4925 #4930)
-#12108 := (not #4931)
-decl f18 :: S3
-#60 := f18
-#4918 := (f449 #4905 f18)
-#4919 := (f46 #4918 f443)
-#4920 := (f45 #4919 f33)
-#4921 := (= #4920 f1)
-#12117 := (not #4921)
-#4914 := (f449 #4905 f17)
-#4915 := (f46 #4914 f462)
-#4916 := (f45 #4915 f35)
-#4917 := (= #4916 f1)
-#12126 := (not #4917)
-#4910 := (f449 #4905 f10)
-#4911 := (f46 #4910 f463)
-#4912 := (f45 #4911 f33)
-#4913 := (= #4912 f1)
-#12135 := (not #4913)
-#4906 := (f449 #4905 f20)
-#4907 := (f46 #4906 f464)
-#4908 := (f45 #4907 f33)
-#4909 := (= #4908 f1)
-#12144 := (not #4909)
-decl f115 :: (-> S50 S10 S1)
-decl f131 :: S50
-#1279 := f131
-#4685 := (f115 f131 f444)
-#4686 := (= #4685 f1)
-decl f348 :: (-> S136 S3 S50)
-decl f349 :: S136
-#3828 := f349
-#4809 := (f348 f349 f13)
-#4810 := (f115 #4809 f444)
-#4811 := (= #4810 f1)
-#4812 := (and #4811 #4686)
-#11471 := (not #4812)
-decl f304 :: (-> S115 S10 S50)
-decl f305 :: S115
-#3261 := f305
-#4896 := (f304 f305 f444)
-#4897 := (f115 #4896 f444)
-#4898 := (= #4897 f1)
-#13090 := (not #4898)
-#4803 := (f140 #4734 f463)
-#4804 := (f139 #4803 f35)
-#4805 := (f55 #4748 #4804)
-#4806 := (= #4805 f462)
-#13093 := (* -1::Int f463)
-#13094 := (+ f443 #13093)
-#13095 := (<= #13094 0::Int)
-#13096 := (not #13095)
-#13099 := (and #13096 #4806)
-#13102 := (not #13099)
-#13117 := (* -1::Int f462)
-#13118 := (+ #4775 #13117)
-#13119 := (<= #13118 0::Int)
-#13106 := (+ #1197 #12663)
-#13105 := (>= #13106 0::Int)
-#13128 := (or #7910 #13105 #13119)
-#13133 := (forall (vars (?v0 Int)) #13128)
-#13136 := (not #13133)
-#13139 := (>= #12921 0::Int)
-#13142 := (not #13139)
-#13148 := (>= #12664 0::Int)
-#13145 := (>= f464 0::Int)
-#13151 := (and #13145 #13148)
-#13154 := (not #13151)
-#13158 := (+ f168 #13093)
-#13157 := (>= #13158 0::Int)
-#13161 := (and #12642 #13157)
-#13164 := (not #13161)
-decl f170 :: Int
-#1539 := f170
-#13171 := (+ f170 #13117)
-#13170 := (>= #13171 0::Int)
-#13167 := (>= f462 0::Int)
-#13174 := (and #13167 #13170)
-#13177 := (not #13174)
-decl f461 :: Int
-#4747 := f461
-#4749 := (f55 #4748 #4736)
-#4780 := (= #4749 f461)
-#12634 := (<= f443 0::Int)
-#12635 := (not #12634)
-#13180 := (and #12635 #4780)
-#13183 := (not #13180)
-#13249 := (or #13183 #13177 #13164 #13154 #12647 #13142 #13136 #13102 #13090 #11471 #12144 #12135 #12126 #12117 #12108 #13066)
-#13257 := (and #12635 #4780 #13249)
-#12614 := (* -1::Int #4775)
-#12615 := (+ f461 #12614)
-#12613 := (>= #12615 0::Int)
-#12601 := (>= #1197 1::Int)
-#12623 := (or #7910 #12601 #12613)
-#12628 := (forall (vars (?v0 Int)) #12623)
-#12631 := (not #12628)
-#13262 := (or #12631 #13257)
-#13265 := (and #12628 #13262)
-#12595 := (>= f443 1::Int)
-#12598 := (not #12595)
-#13268 := (or #12598 #13265)
-#13271 := (and #12595 #13268)
-decl f12 :: S3
-#42 := f12
-#4761 := (f450 #4696 f12)
-#4762 := (f449 #4761 f20)
-#4763 := (f46 #4762 1::Int)
-#4764 := (f45 #4763 f33)
-#4765 := (= #4764 f1)
-#12352 := (not #4765)
-decl f14 :: S3
-#48 := f14
-#4756 := (f450 #4696 f14)
-#4757 := (f449 #4756 f10)
-#4758 := (f46 #4757 0::Int)
-#4759 := (f45 #4758 f33)
-#4760 := (= #4759 f1)
-#12361 := (not #4760)
-decl f15 :: S3
-#51 := f15
-#4751 := (f450 #4696 f15)
-#4752 := (f449 #4751 f17)
-#4753 := (f46 #4752 f461)
-#4754 := (f45 #4753 f35)
-#4755 := (= #4754 f1)
-#12370 := (not #4755)
-#4750 := (= f461 #4749)
-#12379 := (not #4750)
-#4744 := (f71 #4743 #4736)
-#4745 := (= #4744 f1)
-#4737 := (f118 f123 #4736)
-#4738 := (f45 #4737 f35)
-#4739 := (= #4738 f1)
-#4746 := (and #4739 #4745)
-#12388 := (not #4746)
-#13292 := (or #12388 #12379 #12370 #12361 #12352 #13271)
-#13300 := (and #4739 #4745 #13292)
-#4740 := (f71 #4667 #4736)
-#4741 := (= #4740 f1)
-#4742 := (and #4739 #4741)
-#12400 := (not #4742)
-#13305 := (or #12400 #13300)
-#13311 := (and #4739 #4741 #13305)
-#12412 := (not #4733)
-#13316 := (or #12412 #13311)
-#13319 := (and #4733 #13316)
-#12569 := (+ f168 #12568)
-#12567 := (>= #12569 0::Int)
-#12565 := (>= f443 0::Int)
-#12572 := (and #12565 #12567)
-#12575 := (not #12572)
-decl f458 :: (-> S184 Int S27)
-decl f457 :: Int
-#4715 := f457
-decl f459 :: S184
-#4718 := f459
-#4719 := (f458 f459 f457)
-#4720 := (f71 #4719 #996)
-#4721 := (pattern #4720)
-#4722 := (= #4720 f1)
-#11269 := (not #4722)
-#11272 := (forall (vars (?v0 S11)) (:pat #4721) #11269)
-#12433 := (not #11272)
-decl f292 :: (-> S108 S10 Int)
-decl f293 :: S108
-#3194 := f293
-#4716 := (f292 f293 f444)
-#4717 := (= f457 #4716)
-#12442 := (not #4717)
-decl f16 :: S3
-#54 := f16
-#4697 := (f450 #4696 f16)
-#4711 := (f449 #4697 f18)
-#4712 := (f46 #4711 f443)
-#4713 := (f45 #4712 f33)
-#4714 := (= #4713 f1)
-#12451 := (not #4714)
-#4705 := (f454 #4704 f16)
-#4706 := (f453 #4705 f19)
-#4707 := (f118 #4706 #4656)
-#4708 := (f45 #4707 #977)
-#4709 := (= #4708 f1)
-#4698 := (f449 #4697 f19)
-#4700 := (f46 #4698 #4699)
-#4701 := (f45 #4700 #977)
-#4702 := (= #4701 f1)
-#4710 := (and #4702 #4709)
-#12460 := (not #4710)
-decl f446 :: (-> S177 S176 Int)
-#4689 := (:var 0 S176)
-decl f447 :: S177
-#4688 := f447
-#4690 := (f446 f447 #4689)
-#4691 := (pattern #4690)
-decl f448 :: Int
-#4692 := f448
-#13324 := (* -1::Int f448)
-#13325 := (+ #4690 #13324)
-#13323 := (>= #13325 0::Int)
-#13322 := (not #13323)
-#13328 := (forall (vars (?v0 S176)) (:pat #4691) #13322)
-#13331 := (not #13328)
-#4682 := (f348 f349 f16)
-#4683 := (f115 #4682 f444)
-#4684 := (= #4683 f1)
-#4687 := (and #4684 #4686)
-#12478 := (not #4687)
-decl f350 :: S50
-#3847 := f350
-#4680 := (f115 f350 f444)
-#4681 := (= #4680 f1)
-#12487 := (not #4681)
-#13337 := (not #13334)
-#2248 := 1099511627776::Int
-#13347 := (>= f443 1099511627776::Int)
-decl f442 :: Int
-#4642 := f442
-#13362 := (* -1::Int f442)
-#13363 := (+ f168 #13362)
-#13361 := (>= #13363 0::Int)
-#13359 := (>= f442 0::Int)
-#13366 := (and #13359 #13361)
-#13369 := (not #13366)
-decl f441 :: Int
-#4638 := f441
-#13376 := (* -1::Int f441)
-#13377 := (+ f168 #13376)
-#13375 := (>= #13377 0::Int)
-#13373 := (>= f441 0::Int)
-#13380 := (and #13373 #13375)
-#13383 := (not #13380)
-decl f440 :: Int
-#4634 := f440
-#13390 := (* -1::Int f440)
-#13391 := (+ f170 #13390)
-#13389 := (>= #13391 0::Int)
-#13387 := (>= f440 0::Int)
-#13394 := (and #13387 #13389)
-#13397 := (not #13394)
-#13442 := (or #13397 #13383 #13369 #13347 #12634 #13337 #12487 #12478 #13331 #12460 #12451 #12442 #12433 #12575 #13319)
-#13447 := (not #13442)
-#1 := true
-#4821 := (< #1197 f443)
-#4827 := (and #4821 #4826)
-#1521 := (<= #1197 f168)
-#4828 := (and #1521 #4827)
-#1363 := (<= 0::Int #1197)
-#4829 := (and #1363 #4828)
-#4830 := (exists (vars (?v0 Int)) #4829)
-#4831 := (implies #4830 true)
-#4832 := (and #4830 #4831)
-#4822 := (<= #4775 f468)
-#4823 := (implies #4821 #4822)
-#1522 := (and #1363 #1521)
-#4824 := (implies #1522 #4823)
-#4825 := (forall (vars (?v0 Int)) #4824)
-#4833 := (implies #4825 #4832)
-#4834 := (and #4825 #4833)
-#4835 := (implies true #4834)
-#4836 := (implies #4820 #4835)
-#4837 := (implies #4818 #4836)
-#4838 := (implies #4816 #4837)
-#4839 := (implies #4814 #4838)
-#4840 := (implies true #4839)
-#4787 := (<= 0::Int f463)
-#4794 := (<= 1::Int f464)
-#4795 := (and #4794 #4787)
-#4841 := (implies #4795 #4840)
-#4842 := (implies #4795 #4841)
-#4843 := (implies true #4842)
-#4844 := (implies #4795 #4843)
-#4845 := (implies #4072 #4844)
-#4846 := (and #4072 #4845)
-#4847 := (implies #4795 #4846)
-#4848 := (implies true #4847)
-#4849 := (implies #4795 #4848)
-#5051 := (implies #4795 #4849)
-#5052 := (implies true #5051)
-#5053 := (implies #4795 #5052)
-#5050 := (<= f443 f464)
-#5054 := (implies #5050 #5053)
-#5055 := (implies #4795 #5054)
-#5056 := (implies true #5055)
-#4993 := (implies false true)
-#4987 := (< f471 f443)
-#4992 := (and #4987 #4991)
-#4994 := (implies #4992 #4993)
-#4995 := (and #4992 #4994)
-#4983 := (<= #4775 f470)
-#4982 := (< #1197 f472)
-#4984 := (implies #4982 #4983)
-#4985 := (implies #1522 #4984)
-#4986 := (forall (vars (?v0 Int)) #4985)
-#4996 := (implies #4986 #4995)
-#4997 := (and #4986 #4996)
-#4981 := (<= f472 f443)
-#4998 := (implies #4981 #4997)
-#4999 := (and #4981 #4998)
-#5000 := (implies true #4999)
-#4966 := (<= 0::Int f471)
-#4979 := (<= 2::Int f472)
-#4980 := (and #4979 #4966)
-#5001 := (implies #4980 #5000)
-#5002 := (implies #4978 #5001)
-#4968 := (+ f464 1::Int)
-#4973 := (= f472 #4968)
-#5003 := (implies #4973 #5002)
-#4970 := (<= #4968 f168)
-#4969 := (<= 0::Int #4968)
-#4971 := (and #4969 #4970)
-#5004 := (implies #4971 #5003)
-#5005 := (and #4971 #5004)
-#4967 := (and #4794 #4966)
-#5006 := (implies #4967 #5005)
-#5007 := (implies true #5006)
-#5028 := (implies #5027 #5007)
-#5029 := (implies #5026 #5028)
-#5030 := (implies true #5029)
-#5031 := (implies #4795 #5030)
-#5032 := (implies #4795 #5031)
-#5033 := (implies true #5032)
-#5034 := (implies #4795 #5033)
-#5025 := (<= #4947 f462)
-#5035 := (implies #5025 #5034)
-#5036 := (implies #4795 #5035)
-#5037 := (implies true #5036)
-#5008 := (implies #4965 #5007)
-#5009 := (implies #4963 #5008)
-#5010 := (implies true #5009)
-#4961 := (and #4794 #4794)
-#5011 := (implies #4961 #5010)
-#5012 := (implies #4960 #5011)
-#5013 := (implies #4955 #5012)
-#5014 := (implies #4950 #5013)
-#5015 := (implies #4946 #5014)
-#5016 := (and #4946 #5015)
-#5017 := (implies #4943 #5016)
-#5018 := (and #4943 #5017)
-#5019 := (implies #4795 #5018)
-#5020 := (implies true #5019)
-#5021 := (implies #4795 #5020)
-#4948 := (< f462 #4947)
-#5022 := (implies #4948 #5021)
-#5023 := (implies #4795 #5022)
-#5024 := (implies true #5023)
-#5038 := (and #5024 #5037)
-#5039 := (implies #4795 #5038)
-#5040 := (implies #4946 #5039)
-#5041 := (and #4946 #5040)
-#5042 := (implies #4943 #5041)
-#5043 := (and #4943 #5042)
-#5044 := (implies #4795 #5043)
-#5045 := (implies true #5044)
-#5046 := (implies #4795 #5045)
-#4935 := (< f464 f443)
-#5047 := (implies #4935 #5046)
-#5048 := (implies #4795 #5047)
-#5049 := (implies true #5048)
-#5057 := (and #5049 #5056)
-#5058 := (implies #4795 #5057)
-decl f110 :: (-> S48 S10 S47)
-decl f111 :: S48
-#1128 := f111
-#4857 := (f110 f111 f444)
-#4933 := (= #4857 #4857)
-#4932 := (= #4882 #4882)
-#4934 := (and #4932 #4933)
-#5059 := (implies #4934 #5058)
-#5060 := (implies #4931 #5059)
-#5061 := (implies #4921 #5060)
-#5062 := (implies #4917 #5061)
-#5063 := (implies #4913 #5062)
-#5064 := (implies #4909 #5063)
-#5065 := (implies #4812 #5064)
-decl f291 :: S42
-#3191 := f291
-#4891 := (f103 f291 f444)
-#4892 := (f55 #4891 #996)
-#4893 := (pattern #4892)
-#4894 := (<= #4892 #4892)
-#4895 := (forall (vars (?v0 S11)) (:pat #4893) #4894)
-#4899 := (and #4895 #4898)
-#4890 := (<= #4716 #4716)
-#4900 := (and #4890 #4899)
-#5066 := (implies #4900 #5065)
-#4884 := (f134 #4883 #996)
-#4885 := (pattern #4884)
-#4872 := (f71 #4743 #996)
-#4873 := (= #4872 f1)
-#4886 := (= #4884 #4884)
-#4887 := (and #4886 #4873)
-#4888 := (implies #4873 #4887)
-#4889 := (forall (vars (?v0 S11)) (:pat #4885) #4888)
-#4901 := (and #4889 #4900)
-decl f107 :: (-> S45 S11 S44)
-decl f108 :: (-> S46 S47 S45)
-decl f109 :: S46
-#1127 := f109
-#4858 := (f108 f109 #4857)
-#4859 := (f107 #4858 #996)
-#4860 := (pattern #4859)
-#4878 := (= #4859 #4859)
-#4879 := (and #4878 #4873)
-#4880 := (implies #4873 #4879)
-#4881 := (forall (vars (?v0 S11)) (:pat #4860) #4880)
-#4902 := (and #4881 #4901)
-decl f73 :: (-> S28 S29 S17)
-decl f75 :: (-> S30 S10 S29)
-decl f76 :: S30
-#1039 := f76
-#4868 := (f75 f76 f444)
-decl f74 :: S28
-#1038 := f74
-#4869 := (f73 f74 #4868)
-#4870 := (f55 #4869 #996)
-#4871 := (pattern #4870)
-#4874 := (= #4870 #4870)
-#4875 := (and #4874 #4873)
-#4876 := (implies #4873 #4875)
-#4877 := (forall (vars (?v0 S11)) (:pat #4871) #4876)
-#4903 := (and #4877 #4902)
-decl f5 :: S2
-#11 := f5
-#4861 := (f82 #4661 #996)
-#4862 := (f62 f63 #4861)
-#4863 := (f61 #4862)
-#4864 := (= #4863 f5)
-#4865 := (not #4864)
-#4866 := (implies #4865 #4865)
-#4867 := (forall (vars (?v0 S11)) (:pat #4860) #4866)
-#4904 := (and #4867 #4903)
-#5067 := (implies #4904 #5066)
-#5068 := (implies #4795 #5067)
-#5069 := (implies true #5068)
-#5070 := (implies #4795 #5069)
-#5071 := (implies true #5070)
-#5072 := (implies #4795 #5071)
-#5073 := (implies true #5072)
-#4850 := (implies #4812 #4849)
-#4851 := (implies #4795 #4850)
-#4852 := (implies true #4851)
-#4853 := (implies #4795 #4852)
-#4808 := (not true)
-#4854 := (implies #4808 #4853)
-#4855 := (implies #4795 #4854)
-#4856 := (implies true #4855)
-#5074 := (and #4856 #5073)
-#5075 := (implies #4795 #5074)
-#4802 := (< f463 f443)
-#4807 := (and #4802 #4806)
-#5076 := (implies #4807 #5075)
-#4798 := (<= #4775 f462)
-#4797 := (< #1197 f464)
-#4799 := (implies #4797 #4798)
-#4800 := (implies #1522 #4799)
-#4801 := (forall (vars (?v0 Int)) #4800)
-#5077 := (implies #4801 #5076)
-#4796 := (<= f464 f443)
-#5078 := (implies #4796 #5077)
-#5079 := (implies #4795 #5078)
-#4792 := (<= f464 f168)
-#4791 := (<= 0::Int f464)
-#4793 := (and #4791 #4792)
-#5080 := (implies #4793 #5079)
-#4788 := (<= f463 f168)
-#4789 := (and #4787 #4788)
-#5081 := (implies #4789 #5080)
-#4784 := (<= f462 f170)
-#4783 := (<= 0::Int f462)
-#4785 := (and #4783 #4784)
-#5082 := (implies #4785 #5081)
-#5083 := (implies true #5082)
-#4648 := (< 0::Int f443)
-#4781 := (and #4648 #4780)
-#5084 := (implies #4781 #5083)
-#5085 := (and #4781 #5084)
-#4776 := (<= #4775 f461)
-#4772 := (< #1197 1::Int)
-#4777 := (implies #4772 #4776)
-#4778 := (implies #1522 #4777)
-#4779 := (forall (vars (?v0 Int)) #4778)
-#5086 := (implies #4779 #5085)
-#5087 := (and #4779 #5086)
-#4771 := (<= 1::Int f443)
-#5088 := (implies #4771 #5087)
-#5089 := (and #4771 #5088)
-#4767 := (<= 0::Int 0::Int)
-#4768 := (and #4767 #4767)
-#4766 := (<= 1::Int 1::Int)
-#4769 := (and #4766 #4768)
-#4770 := (and #4766 #4769)
-#5090 := (implies #4770 #5089)
-#5091 := (implies #4765 #5090)
-#5092 := (implies #4760 #5091)
-#5093 := (implies #4755 #5092)
-#5094 := (implies #4750 #5093)
-#5095 := (implies #4746 #5094)
-#5096 := (and #4746 #5095)
-#5097 := (implies #4742 #5096)
-#5098 := (and #4742 #5097)
-#5099 := (implies #4733 #5098)
-#5100 := (and #4733 #5099)
-#4726 := (<= f443 f168)
-#4725 := (<= 0::Int f443)
-#4727 := (and #4725 #4726)
-#5101 := (implies #4727 #5100)
-#4723 := (iff #4722 false)
-#4724 := (forall (vars (?v0 S11)) (:pat #4721) #4723)
-#5102 := (implies #4724 #5101)
-#5103 := (implies #4717 #5102)
-#5104 := (implies #4714 #5103)
-#5105 := (implies #4710 #5104)
-#4693 := (< #4690 f448)
-#4694 := (forall (vars (?v0 S176)) (:pat #4691) #4693)
-#5106 := (implies #4694 #5105)
-#5107 := (implies #4687 #5106)
-#5108 := (implies #4681 #5107)
-#5109 := (implies true #5108)
-#4675 := (and #4672 #4674)
-#4676 := (and #4669 #4675)
-#4677 := (and #4666 #4676)
-#4678 := (and #4663 #4677)
-#4679 := (and #4660 #4678)
-#5110 := (implies #4679 #5109)
-#5111 := (implies #4648 #5110)
-#4647 := (< f443 1099511627776::Int)
-#5112 := (implies #4647 #5111)
-#4644 := (<= f442 f168)
-#4643 := (<= 0::Int f442)
-#4645 := (and #4643 #4644)
-#5113 := (implies #4645 #5112)
-#4640 := (<= f441 f168)
-#4639 := (<= 0::Int f441)
-#4641 := (and #4639 #4640)
-#5114 := (implies #4641 #5113)
-#4636 := (<= f440 f170)
-#4635 := (<= 0::Int f440)
-#4637 := (and #4635 #4636)
-#5115 := (implies #4637 #5114)
-#5116 := (implies true #5115)
-#5117 := (not #5116)
-#13450 := (iff #5117 #13447)
-#11315 := (not #4821)
-#11316 := (or #11315 #4822)
-#7903 := (not #1522)
-#11322 := (or #7903 #11316)
-#11327 := (forall (vars (?v0 Int)) #11322)
-#11342 := (not #11327)
-#11343 := (or #11342 #4830)
-#11348 := (and #11327 #11343)
-#11362 := (or #11361 #11348)
-#11371 := (or #11370 #11362)
-#11380 := (or #11379 #11371)
-#11389 := (or #11388 #11380)
-#11404 := (not #4795)
-#11405 := (or #11404 #11389)
-#11413 := (or #11404 #11405)
-#11428 := (or #11404 #11413)
-#11437 := (or #11436 #11428)
-#11442 := (and #4072 #11437)
-#11448 := (or #11404 #11442)
-#11463 := (or #11404 #11448)
-#12043 := (or #11404 #11463)
-#12058 := (or #11404 #12043)
-#12066 := (not #5050)
-#12067 := (or #12066 #12058)
-#12075 := (or #11404 #12067)
-#11631 := (not #4982)
-#11632 := (or #11631 #4983)
-#11638 := (or #7903 #11632)
-#11643 := (forall (vars (?v0 Int)) #11638)
-#11665 := (not #11643)
-#11666 := (or #11665 #4992)
-#11671 := (and #11643 #11666)
-#11677 := (not #4981)
-#11678 := (or #11677 #11671)
-#11683 := (and #4981 #11678)
-#11696 := (not #4980)
-#11697 := (or #11696 #11683)
-#11706 := (or #11705 #11697)
-#11616 := (+ 1::Int f464)
-#11628 := (= f472 #11616)
-#11714 := (not #11628)
-#11715 := (or #11714 #11706)
-#11622 := (<= #11616 f168)
-#11619 := (<= 0::Int #11616)
-#11625 := (and #11619 #11622)
-#11723 := (not #11625)
-#11724 := (or #11723 #11715)
-#11729 := (and #11625 #11724)
-#11735 := (not #4967)
-#11736 := (or #11735 #11729)
-#11884 := (or #11883 #11736)
-#11893 := (or #11892 #11884)
-#11908 := (or #11404 #11893)
-#11916 := (or #11404 #11908)
-#11931 := (or #11404 #11916)
-#11939 := (not #5025)
-#11940 := (or #11939 #11931)
-#11948 := (or #11404 #11940)
-#11752 := (or #11751 #11736)
-#11761 := (or #11760 #11752)
-#11776 := (not #4794)
-#11777 := (or #11776 #11761)
-#11786 := (or #11785 #11777)
-#11795 := (or #11794 #11786)
-#11804 := (or #11803 #11795)
-#11813 := (or #11812 #11804)
-#11818 := (and #4946 #11813)
-#11825 := (or #11824 #11818)
-#11830 := (and #4943 #11825)
-#11836 := (or #11404 #11830)
-#11851 := (or #11404 #11836)
-#11859 := (not #4948)
-#11860 := (or #11859 #11851)
-#11868 := (or #11404 #11860)
-#11960 := (and #11868 #11948)
-#11966 := (or #11404 #11960)
-#11974 := (or #11812 #11966)
-#11979 := (and #4946 #11974)
-#11985 := (or #11824 #11979)
-#11990 := (and #4943 #11985)
-#11996 := (or #11404 #11990)
-#12011 := (or #11404 #11996)
-#12019 := (not #4935)
-#12020 := (or #12019 #12011)
-#12028 := (or #11404 #12020)
-#12087 := (and #12028 #12075)
-#12093 := (or #11404 #12087)
-#12109 := (or #12108 #12093)
-#12118 := (or #12117 #12109)
-#12127 := (or #12126 #12118)
-#12136 := (or #12135 #12127)
-#12145 := (or #12144 #12136)
-#12153 := (or #11471 #12145)
-#12161 := (not #4900)
-#12162 := (or #12161 #12153)
-#12170 := (or #12161 #12162)
-#12178 := (or #11404 #12170)
-#12193 := (or #11404 #12178)
-#12208 := (or #11404 #12193)
-#12230 := (or #11404 #12208)
-#12238 := (not #4807)
-#12239 := (or #12238 #12230)
-#11298 := (not #4797)
-#11299 := (or #11298 #4798)
-#11305 := (or #7903 #11299)
-#11310 := (forall (vars (?v0 Int)) #11305)
-#12247 := (not #11310)
-#12248 := (or #12247 #12239)
-#12256 := (not #4796)
-#12257 := (or #12256 #12248)
-#12265 := (or #11404 #12257)
-#12273 := (not #4793)
-#12274 := (or #12273 #12265)
-#12282 := (not #4789)
-#12283 := (or #12282 #12274)
-#12291 := (not #4785)
-#12292 := (or #12291 #12283)
-#12307 := (not #4781)
-#12308 := (or #12307 #12292)
-#12313 := (and #4781 #12308)
-#11283 := (not #4772)
-#11284 := (or #11283 #4776)
-#11290 := (or #7903 #11284)
-#11295 := (forall (vars (?v0 Int)) #11290)
-#12319 := (not #11295)
-#12320 := (or #12319 #12313)
-#12325 := (and #11295 #12320)
-#12331 := (not #4771)
-#12332 := (or #12331 #12325)
-#12337 := (and #4771 #12332)
-#11277 := (and #4766 #4767)
-#11280 := (and #4766 #11277)
-#12343 := (not #11280)
-#12344 := (or #12343 #12337)
-#12353 := (or #12352 #12344)
-#12362 := (or #12361 #12353)
-#12371 := (or #12370 #12362)
-#12380 := (or #12379 #12371)
-#12389 := (or #12388 #12380)
-#12394 := (and #4746 #12389)
-#12401 := (or #12400 #12394)
-#12406 := (and #4742 #12401)
-#12413 := (or #12412 #12406)
-#12418 := (and #4733 #12413)
-#12424 := (not #4727)
-#12425 := (or #12424 #12418)
-#12434 := (or #12433 #12425)
-#12443 := (or #12442 #12434)
-#12452 := (or #12451 #12443)
-#12461 := (or #12460 #12452)
-#12469 := (not #4694)
-#12470 := (or #12469 #12461)
-#12479 := (or #12478 #12470)
-#12488 := (or #12487 #12479)
-#12503 := (not #4679)
-#12504 := (or #12503 #12488)
-#12512 := (not #4648)
-#12513 := (or #12512 #12504)
-#12521 := (not #4647)
-#12522 := (or #12521 #12513)
-#12530 := (not #4645)
-#12531 := (or #12530 #12522)
-#12539 := (not #4641)
-#12540 := (or #12539 #12531)
-#12548 := (not #4637)
-#12549 := (or #12548 #12540)
-#12561 := (not #12549)
-#13448 := (iff #12561 #13447)
-#13445 := (iff #12549 #13442)
-#13400 := (or #12575 #13319)
-#13403 := (or #12433 #13400)
-#13406 := (or #12442 #13403)
-#13409 := (or #12451 #13406)
-#13412 := (or #12460 #13409)
-#13415 := (or #13331 #13412)
-#13418 := (or #12478 #13415)
-#13421 := (or #12487 #13418)
-#13424 := (or #13337 #13421)
-#13427 := (or #12634 #13424)
-#13430 := (or #13347 #13427)
-#13433 := (or #13369 #13430)
-#13436 := (or #13383 #13433)
-#13439 := (or #13397 #13436)
-#13443 := (iff #13439 #13442)
-#13444 := [rewrite]: #13443
-#13440 := (iff #12549 #13439)
-#13437 := (iff #12540 #13436)
-#13434 := (iff #12531 #13433)
-#13431 := (iff #12522 #13430)
-#13428 := (iff #12513 #13427)
-#13425 := (iff #12504 #13424)
-#13422 := (iff #12488 #13421)
-#13419 := (iff #12479 #13418)
-#13416 := (iff #12470 #13415)
-#13413 := (iff #12461 #13412)
-#13410 := (iff #12452 #13409)
-#13407 := (iff #12443 #13406)
-#13404 := (iff #12434 #13403)
-#13401 := (iff #12425 #13400)
-#13320 := (iff #12418 #13319)
-#13317 := (iff #12413 #13316)
-#13314 := (iff #12406 #13311)
-#13308 := (and #4742 #13305)
-#13312 := (iff #13308 #13311)
-#13313 := [rewrite]: #13312
-#13309 := (iff #12406 #13308)
-#13306 := (iff #12401 #13305)
-#13303 := (iff #12394 #13300)
-#13297 := (and #4746 #13292)
-#13301 := (iff #13297 #13300)
-#13302 := [rewrite]: #13301
-#13298 := (iff #12394 #13297)
-#13295 := (iff #12389 #13292)
-#13274 := (or false #13271)
-#13277 := (or #12352 #13274)
-#13280 := (or #12361 #13277)
-#13283 := (or #12370 #13280)
-#13286 := (or #12379 #13283)
-#13289 := (or #12388 #13286)
-#13293 := (iff #13289 #13292)
-#13294 := [rewrite]: #13293
-#13290 := (iff #12389 #13289)
-#13287 := (iff #12380 #13286)
-#13284 := (iff #12371 #13283)
-#13281 := (iff #12362 #13280)
-#13278 := (iff #12353 #13277)
-#13275 := (iff #12344 #13274)
-#13272 := (iff #12337 #13271)
-#13269 := (iff #12332 #13268)
-#13266 := (iff #12325 #13265)
-#13263 := (iff #12320 #13262)
-#13260 := (iff #12313 #13257)
-#13254 := (and #13180 #13249)
-#13258 := (iff #13254 #13257)
-#13259 := [rewrite]: #13258
-#13255 := (iff #12313 #13254)
-#13252 := (iff #12308 #13249)
-#13186 := (or #12647 #13066)
-#13189 := (or #12108 #13186)
-#13192 := (or #12117 #13189)
-#13195 := (or #12126 #13192)
-#13198 := (or #12135 #13195)
-#13201 := (or #12144 #13198)
-#13204 := (or #11471 #13201)
-#13207 := (or #13090 #13204)
-#13210 := (or #13090 #13207)
-#13213 := (or #12647 #13210)
-#13216 := (or #12647 #13213)
-#13219 := (or #12647 #13216)
-#13222 := (or #12647 #13219)
-#13225 := (or #13102 #13222)
-#13228 := (or #13136 #13225)
-#13231 := (or #13142 #13228)
-#13234 := (or #12647 #13231)
-#13237 := (or #13154 #13234)
-#13240 := (or #13164 #13237)
-#13243 := (or #13177 #13240)
-#13246 := (or #13183 #13243)
-#13250 := (iff #13246 #13249)
-#13251 := [rewrite]: #13250
-#13247 := (iff #12308 #13246)
-#13244 := (iff #12292 #13243)
-#13241 := (iff #12283 #13240)
-#13238 := (iff #12274 #13237)
-#13235 := (iff #12265 #13234)
-#13232 := (iff #12257 #13231)
-#13229 := (iff #12248 #13228)
-#13226 := (iff #12239 #13225)
-#13223 := (iff #12230 #13222)
-#13220 := (iff #12208 #13219)
-#13217 := (iff #12193 #13216)
-#13214 := (iff #12178 #13213)
-#13211 := (iff #12170 #13210)
-#13208 := (iff #12162 #13207)
-#13205 := (iff #12153 #13204)
-#13202 := (iff #12145 #13201)
-#13199 := (iff #12136 #13198)
-#13196 := (iff #12127 #13195)
-#13193 := (iff #12118 #13192)
-#13190 := (iff #12109 #13189)
-#13187 := (iff #12093 #13186)
-#13067 := (iff #12087 #13066)
-#13064 := (iff #12075 #13061)
-#13043 := (or #12647 #13036)
-#13046 := (or #12647 #13043)
-#13049 := (or #12647 #13046)
-#13052 := (or #12647 #13049)
-#13055 := (or #12923 #13052)
-#13058 := (or #12647 #13055)
-#13062 := (iff #13058 #13061)
-#13063 := [rewrite]: #13062
-#13059 := (iff #12075 #13058)
-#13056 := (iff #12067 #13055)
-#13053 := (iff #12058 #13052)
-#13050 := (iff #12043 #13049)
-#13047 := (iff #11463 #13046)
-#13044 := (iff #11448 #13043)
-#13037 := (iff #11442 #13036)
-#13034 := (iff #11437 #13031)
-#13007 := (or #11361 #13004)
-#13010 := (or #11370 #13007)
-#13013 := (or #11379 #13010)
-#13016 := (or #11388 #13013)
-#13019 := (or #12647 #13016)
-#13022 := (or #12647 #13019)
-#13025 := (or #12647 #13022)
-#13028 := (or #11436 #13025)
-#13032 := (iff #13028 #13031)
-#13033 := [rewrite]: #13032
-#13029 := (iff #11437 #13028)
-#13026 := (iff #11428 #13025)
-#13023 := (iff #11413 #13022)
-#13020 := (iff #11405 #13019)
-#13017 := (iff #11389 #13016)
-#13014 := (iff #11380 #13013)
-#13011 := (iff #11371 #13010)
-#13008 := (iff #11362 #13007)
-#13005 := (iff #11348 #13004)
-#13002 := (iff #11343 #13001)
-#12999 := (iff #4830 #12998)
-#12996 := (iff #4829 #12993)
-#12984 := (and #12952 #4826)
-#12987 := (and #6890 #12984)
-#12990 := (and #6706 #12987)
-#12994 := (iff #12990 #12993)
-#12995 := [rewrite]: #12994
-#12991 := (iff #4829 #12990)
-#12988 := (iff #4828 #12987)
-#12985 := (iff #4827 #12984)
-#12953 := (iff #4821 #12952)
-#12954 := [rewrite]: #12953
-#12986 := [monotonicity #12954]: #12985
-#6891 := (iff #1521 #6890)
-#6892 := [rewrite]: #6891
-#12989 := [monotonicity #6892 #12986]: #12988
-#6704 := (iff #1363 #6706)
-#6705 := [rewrite]: #6704
-#12992 := [monotonicity #6705 #12989]: #12991
-#12997 := [trans #12992 #12995]: #12996
-#13000 := [quant-intro #12997]: #12999
-#12982 := (iff #11342 #12981)
-#12979 := (iff #11327 #12978)
-#12976 := (iff #11322 #12973)
-#12967 := (or #12950 #12964)
-#12970 := (or #7910 #12967)
-#12974 := (iff #12970 #12973)
-#12975 := [rewrite]: #12974
-#12971 := (iff #11322 #12970)
-#12968 := (iff #11316 #12967)
-#12965 := (iff #4822 #12964)
-#12966 := [rewrite]: #12965
-#12960 := (iff #11315 #12950)
-#12955 := (not #12952)
-#12958 := (iff #12955 #12950)
-#12959 := [rewrite]: #12958
-#12956 := (iff #11315 #12955)
-#12957 := [monotonicity #12954]: #12956
-#12961 := [trans #12957 #12959]: #12960
-#12969 := [monotonicity #12961 #12966]: #12968
-#7911 := (iff #7903 #7910)
-#6898 := (iff #1522 #6897)
-#6899 := [monotonicity #6705 #6892]: #6898
-#7912 := [monotonicity #6899]: #7911
-#12972 := [monotonicity #7912 #12969]: #12971
-#12977 := [trans #12972 #12975]: #12976
-#12980 := [quant-intro #12977]: #12979
-#12983 := [monotonicity #12980]: #12982
-#13003 := [monotonicity #12983 #13000]: #13002
-#13006 := [monotonicity #12980 #13003]: #13005
-#13009 := [monotonicity #13006]: #13008
-#13012 := [monotonicity #13009]: #13011
-#13015 := [monotonicity #13012]: #13014
-#13018 := [monotonicity #13015]: #13017
-#12648 := (iff #11404 #12647)
-#12645 := (iff #4795 #12644)
-#12641 := (iff #4787 #12642)
-#12643 := [rewrite]: #12641
-#12638 := (iff #4794 #12639)
-#12640 := [rewrite]: #12638
-#12646 := [monotonicity #12640 #12643]: #12645
-#12649 := [monotonicity #12646]: #12648
-#13021 := [monotonicity #12649 #13018]: #13020
-#13024 := [monotonicity #12649 #13021]: #13023
-#13027 := [monotonicity #12649 #13024]: #13026
-#13030 := [monotonicity #13027]: #13029
-#13035 := [trans #13030 #13033]: #13034
-#13038 := [monotonicity #13035]: #13037
-#13045 := [monotonicity #12649 #13038]: #13044
-#13048 := [monotonicity #12649 #13045]: #13047
-#13051 := [monotonicity #12649 #13048]: #13050
-#13054 := [monotonicity #12649 #13051]: #13053
-#13041 := (iff #12066 #12923)
-#13039 := (iff #5050 #12922)
-#13040 := [rewrite]: #13039
-#13042 := [monotonicity #13040]: #13041
-#13057 := [monotonicity #13042 #13054]: #13056
-#13060 := [monotonicity #12649 #13057]: #13059
-#13065 := [trans #13060 #13063]: #13064
-#12948 := (iff #12028 #12945)
-#12933 := (or #12647 #12916)
-#12936 := (or #12647 #12933)
-#12939 := (or #12922 #12936)
-#12942 := (or #12647 #12939)
-#12946 := (iff #12942 #12945)
-#12947 := [rewrite]: #12946
-#12943 := (iff #12028 #12942)
-#12940 := (iff #12020 #12939)
-#12937 := (iff #12011 #12936)
-#12934 := (iff #11996 #12933)
-#12919 := (iff #11990 #12916)
-#12913 := (and #4943 #12910)
-#12917 := (iff #12913 #12916)
-#12918 := [rewrite]: #12917
-#12914 := (iff #11990 #12913)
-#12911 := (iff #11985 #12910)
-#12908 := (iff #11979 #12905)
-#12902 := (and #4946 #12897)
-#12906 := (iff #12902 #12905)
-#12907 := [rewrite]: #12906
-#12903 := (iff #11979 #12902)
-#12900 := (iff #11974 #12897)
-#12891 := (or #12647 #12888)
-#12894 := (or #11812 #12891)
-#12898 := (iff #12894 #12897)
-#12899 := [rewrite]: #12898
-#12895 := (iff #11974 #12894)
-#12892 := (iff #11966 #12891)
-#12889 := (iff #11960 #12888)
-#12886 := (iff #11948 #12883)
-#12780 := (or #12656 #12772)
-#12862 := (or #11883 #12780)
-#12865 := (or #11892 #12862)
-#12868 := (or #12647 #12865)
-#12871 := (or #12647 #12868)
-#12874 := (or #12647 #12871)
-#12877 := (or #12828 #12874)
-#12880 := (or #12647 #12877)
-#12884 := (iff #12880 #12883)
-#12885 := [rewrite]: #12884
-#12881 := (iff #11948 #12880)
-#12878 := (iff #11940 #12877)
-#12875 := (iff #11931 #12874)
-#12872 := (iff #11916 #12871)
-#12869 := (iff #11908 #12868)
-#12866 := (iff #11893 #12865)
-#12863 := (iff #11884 #12862)
-#12781 := (iff #11736 #12780)
-#12775 := (iff #11729 #12772)
-#12769 := (and #12746 #12764)
-#12773 := (iff #12769 #12772)
-#12774 := [rewrite]: #12773
-#12770 := (iff #11729 #12769)
-#12767 := (iff #11724 #12764)
-#12752 := (or #12673 #12736)
-#12755 := (or #11705 #12752)
-#12758 := (or #12743 #12755)
-#12761 := (or #12749 #12758)
-#12765 := (iff #12761 #12764)
-#12766 := [rewrite]: #12765
-#12762 := (iff #11724 #12761)
-#12759 := (iff #11715 #12758)
-#12756 := (iff #11706 #12755)
-#12753 := (iff #11697 #12752)
-#12737 := (iff #11683 #12736)
-#12734 := (iff #11678 #12733)
-#12731 := (iff #11671 #12730)
-#12728 := (iff #11666 #12727)
-#12725 := (iff #4992 #12724)
-#12722 := (iff #4987 #12721)
-#12723 := [rewrite]: #12722
-#12726 := [monotonicity #12723]: #12725
-#12716 := (iff #11665 #12715)
-#12713 := (iff #11643 #12712)
-#12710 := (iff #11638 #12707)
-#12701 := (or #12684 #12698)
-#12704 := (or #7910 #12701)
-#12708 := (iff #12704 #12707)
-#12709 := [rewrite]: #12708
-#12705 := (iff #11638 #12704)
-#12702 := (iff #11632 #12701)
-#12699 := (iff #4983 #12698)
-#12700 := [rewrite]: #12699
-#12694 := (iff #11631 #12684)
-#12686 := (not #12684)
-#12689 := (not #12686)
-#12692 := (iff #12689 #12684)
-#12693 := [rewrite]: #12692
-#12690 := (iff #11631 #12689)
-#12687 := (iff #4982 #12686)
-#12688 := [rewrite]: #12687
-#12691 := [monotonicity #12688]: #12690
-#12695 := [trans #12691 #12693]: #12694
-#12703 := [monotonicity #12695 #12700]: #12702
-#12706 := [monotonicity #7912 #12703]: #12705
-#12711 := [trans #12706 #12709]: #12710
-#12714 := [quant-intro #12711]: #12713
-#12717 := [monotonicity #12714]: #12716
-#12729 := [monotonicity #12717 #12726]: #12728
-#12732 := [monotonicity #12714 #12729]: #12731
-#12682 := (iff #11677 #12681)
-#12679 := (iff #4981 #12676)
-#12680 := [rewrite]: #12679
-#12683 := [monotonicity #12680]: #12682
-#12735 := [monotonicity #12683 #12732]: #12734
-#12738 := [monotonicity #12680 #12735]: #12737
-#12674 := (iff #11696 #12673)
-#12671 := (iff #4980 #12670)
-#12650 := (iff #4966 #12651)
-#12652 := [rewrite]: #12650
-#12667 := (iff #4979 #12668)
-#12669 := [rewrite]: #12667
-#12672 := [monotonicity #12669 #12652]: #12671
-#12675 := [monotonicity #12672]: #12674
-#12754 := [monotonicity #12675 #12738]: #12753
-#12757 := [monotonicity #12754]: #12756
-#12744 := (iff #11714 #12743)
-#12741 := (iff #11628 #12739)
-#12742 := [rewrite]: #12741
-#12745 := [monotonicity #12742]: #12744
-#12760 := [monotonicity #12745 #12757]: #12759
-#12750 := (iff #11723 #12749)
-#12747 := (iff #11625 #12746)
-#12665 := (iff #11622 #12662)
-#12666 := [rewrite]: #12665
-#12659 := (iff #11619 #12660)
-#12661 := [rewrite]: #12659
-#12748 := [monotonicity #12661 #12666]: #12747
-#12751 := [monotonicity #12748]: #12750
-#12763 := [monotonicity #12751 #12760]: #12762
-#12768 := [trans #12763 #12766]: #12767
-#12771 := [monotonicity #12748 #12768]: #12770
-#12776 := [trans #12771 #12774]: #12775
-#12657 := (iff #11735 #12656)
-#12654 := (iff #4967 #12653)
-#12655 := [monotonicity #12640 #12652]: #12654
-#12658 := [monotonicity #12655]: #12657
-#12782 := [monotonicity #12658 #12776]: #12781
-#12864 := [monotonicity #12782]: #12863
-#12867 := [monotonicity #12864]: #12866
-#12870 := [monotonicity #12649 #12867]: #12869
-#12873 := [monotonicity #12649 #12870]: #12872
-#12876 := [monotonicity #12649 #12873]: #12875
-#12860 := (iff #11939 #12828)
-#12858 := (iff #5025 #12829)
-#12859 := [rewrite]: #12858
-#12861 := [monotonicity #12859]: #12860
-#12879 := [monotonicity #12861 #12876]: #12878
-#12882 := [monotonicity #12649 #12879]: #12881
-#12887 := [trans #12882 #12885]: #12886
-#12856 := (iff #11868 #12853)
-#12841 := (or #12647 #12823)
-#12844 := (or #12647 #12841)
-#12847 := (or #12829 #12844)
-#12850 := (or #12647 #12847)
-#12854 := (iff #12850 #12853)
-#12855 := [rewrite]: #12854
-#12851 := (iff #11868 #12850)
-#12848 := (iff #11860 #12847)
-#12845 := (iff #11851 #12844)
-#12842 := (iff #11836 #12841)
-#12826 := (iff #11830 #12823)
-#12820 := (and #4943 #12817)
-#12824 := (iff #12820 #12823)
-#12825 := [rewrite]: #12824
-#12821 := (iff #11830 #12820)
-#12818 := (iff #11825 #12817)
-#12815 := (iff #11818 #12812)
-#12809 := (and #4946 #12804)
-#12813 := (iff #12809 #12812)
-#12814 := [rewrite]: #12813
-#12810 := (iff #11818 #12809)
-#12807 := (iff #11813 #12804)
-#12783 := (or #11751 #12780)
-#12786 := (or #11760 #12783)
-#12789 := (or #12777 #12786)
-#12792 := (or #11785 #12789)
-#12795 := (or #11794 #12792)
-#12798 := (or #11803 #12795)
-#12801 := (or #11812 #12798)
-#12805 := (iff #12801 #12804)
-#12806 := [rewrite]: #12805
-#12802 := (iff #11813 #12801)
-#12799 := (iff #11804 #12798)
-#12796 := (iff #11795 #12795)
-#12793 := (iff #11786 #12792)
-#12790 := (iff #11777 #12789)
-#12787 := (iff #11761 #12786)
-#12784 := (iff #11752 #12783)
-#12785 := [monotonicity #12782]: #12784
-#12788 := [monotonicity #12785]: #12787
-#12778 := (iff #11776 #12777)
-#12779 := [monotonicity #12640]: #12778
-#12791 := [monotonicity #12779 #12788]: #12790
-#12794 := [monotonicity #12791]: #12793
-#12797 := [monotonicity #12794]: #12796
-#12800 := [monotonicity #12797]: #12799
-#12803 := [monotonicity #12800]: #12802
-#12808 := [trans #12803 #12806]: #12807
-#12811 := [monotonicity #12808]: #12810
-#12816 := [trans #12811 #12814]: #12815
-#12819 := [monotonicity #12816]: #12818
-#12822 := [monotonicity #12819]: #12821
-#12827 := [trans #12822 #12825]: #12826
-#12843 := [monotonicity #12649 #12827]: #12842
-#12846 := [monotonicity #12649 #12843]: #12845
-#12839 := (iff #11859 #12829)
-#12834 := (not #12828)
-#12837 := (iff #12834 #12829)
-#12838 := [rewrite]: #12837
-#12835 := (iff #11859 #12834)
-#12832 := (iff #4948 #12828)
-#12833 := [rewrite]: #12832
-#12836 := [monotonicity #12833]: #12835
-#12840 := [trans #12836 #12838]: #12839
-#12849 := [monotonicity #12840 #12846]: #12848
-#12852 := [monotonicity #12649 #12849]: #12851
-#12857 := [trans #12852 #12855]: #12856
-#12890 := [monotonicity #12857 #12887]: #12889
-#12893 := [monotonicity #12649 #12890]: #12892
-#12896 := [monotonicity #12893]: #12895
-#12901 := [trans #12896 #12899]: #12900
-#12904 := [monotonicity #12901]: #12903
-#12909 := [trans #12904 #12907]: #12908
-#12912 := [monotonicity #12909]: #12911
-#12915 := [monotonicity #12912]: #12914
-#12920 := [trans #12915 #12918]: #12919
-#12935 := [monotonicity #12649 #12920]: #12934
-#12938 := [monotonicity #12649 #12935]: #12937
-#12931 := (iff #12019 #12922)
-#12926 := (not #12923)
-#12929 := (iff #12926 #12922)
-#12930 := [rewrite]: #12929
-#12927 := (iff #12019 #12926)
-#12924 := (iff #4935 #12923)
-#12925 := [rewrite]: #12924
-#12928 := [monotonicity #12925]: #12927
-#12932 := [trans #12928 #12930]: #12931
-#12941 := [monotonicity #12932 #12938]: #12940
-#12944 := [monotonicity #12649 #12941]: #12943
-#12949 := [trans #12944 #12947]: #12948
-#13068 := [monotonicity #12949 #13065]: #13067
-#13188 := [monotonicity #12649 #13068]: #13187
-#13191 := [monotonicity #13188]: #13190
-#13194 := [monotonicity #13191]: #13193
-#13197 := [monotonicity #13194]: #13196
-#13200 := [monotonicity #13197]: #13199
-#13203 := [monotonicity #13200]: #13202
-#13206 := [monotonicity #13203]: #13205
-#13091 := (iff #12161 #13090)
-#13088 := (iff #4900 #4898)
-#13080 := (and true #4898)
-#13083 := (and true #13080)
-#13086 := (iff #13083 #4898)
-#13087 := [rewrite]: #13086
-#13084 := (iff #4900 #13083)
-#13081 := (iff #4899 #13080)
-#13076 := (iff #4895 true)
-#13071 := (forall (vars (?v0 S11)) (:pat #4893) true)
-#13074 := (iff #13071 true)
-#13075 := [elim-unused]: #13074
-#13072 := (iff #4895 #13071)
-#13069 := (iff #4894 true)
-#13070 := [rewrite]: #13069
-#13073 := [quant-intro #13070]: #13072
-#13077 := [trans #13073 #13075]: #13076
-#13082 := [monotonicity #13077]: #13081
-#13078 := (iff #4890 true)
-#13079 := [rewrite]: #13078
-#13085 := [monotonicity #13079 #13082]: #13084
-#13089 := [trans #13085 #13087]: #13088
-#13092 := [monotonicity #13089]: #13091
-#13209 := [monotonicity #13092 #13206]: #13208
-#13212 := [monotonicity #13092 #13209]: #13211
-#13215 := [monotonicity #12649 #13212]: #13214
-#13218 := [monotonicity #12649 #13215]: #13217
-#13221 := [monotonicity #12649 #13218]: #13220
-#13224 := [monotonicity #12649 #13221]: #13223
-#13103 := (iff #12238 #13102)
-#13100 := (iff #4807 #13099)
-#13097 := (iff #4802 #13096)
-#13098 := [rewrite]: #13097
-#13101 := [monotonicity #13098]: #13100
-#13104 := [monotonicity #13101]: #13103
-#13227 := [monotonicity #13104 #13224]: #13226
-#13137 := (iff #12247 #13136)
-#13134 := (iff #11310 #13133)
-#13131 := (iff #11305 #13128)
-#13122 := (or #13105 #13119)
-#13125 := (or #7910 #13122)
-#13129 := (iff #13125 #13128)
-#13130 := [rewrite]: #13129
-#13126 := (iff #11305 #13125)
-#13123 := (iff #11299 #13122)
-#13120 := (iff #4798 #13119)
-#13121 := [rewrite]: #13120
-#13115 := (iff #11298 #13105)
-#13107 := (not #13105)
-#13110 := (not #13107)
-#13113 := (iff #13110 #13105)
-#13114 := [rewrite]: #13113
-#13111 := (iff #11298 #13110)
-#13108 := (iff #4797 #13107)
-#13109 := [rewrite]: #13108
-#13112 := [monotonicity #13109]: #13111
-#13116 := [trans #13112 #13114]: #13115
-#13124 := [monotonicity #13116 #13121]: #13123
-#13127 := [monotonicity #7912 #13124]: #13126
-#13132 := [trans #13127 #13130]: #13131
-#13135 := [quant-intro #13132]: #13134
-#13138 := [monotonicity #13135]: #13137
-#13230 := [monotonicity #13138 #13227]: #13229
-#13143 := (iff #12256 #13142)
-#13140 := (iff #4796 #13139)
-#13141 := [rewrite]: #13140
-#13144 := [monotonicity #13141]: #13143
-#13233 := [monotonicity #13144 #13230]: #13232
-#13236 := [monotonicity #12649 #13233]: #13235
-#13155 := (iff #12273 #13154)
-#13152 := (iff #4793 #13151)
-#13149 := (iff #4792 #13148)
-#13150 := [rewrite]: #13149
-#13146 := (iff #4791 #13145)
-#13147 := [rewrite]: #13146
-#13153 := [monotonicity #13147 #13150]: #13152
-#13156 := [monotonicity #13153]: #13155
-#13239 := [monotonicity #13156 #13236]: #13238
-#13165 := (iff #12282 #13164)
-#13162 := (iff #4789 #13161)
-#13159 := (iff #4788 #13157)
-#13160 := [rewrite]: #13159
-#13163 := [monotonicity #12643 #13160]: #13162
-#13166 := [monotonicity #13163]: #13165
-#13242 := [monotonicity #13166 #13239]: #13241
-#13178 := (iff #12291 #13177)
-#13175 := (iff #4785 #13174)
-#13172 := (iff #4784 #13170)
-#13173 := [rewrite]: #13172
-#13168 := (iff #4783 #13167)
-#13169 := [rewrite]: #13168
-#13176 := [monotonicity #13169 #13173]: #13175
-#13179 := [monotonicity #13176]: #13178
-#13245 := [monotonicity #13179 #13242]: #13244
-#13184 := (iff #12307 #13183)
-#13181 := (iff #4781 #13180)
-#12636 := (iff #4648 #12635)
-#12637 := [rewrite]: #12636
-#13182 := [monotonicity #12637]: #13181
-#13185 := [monotonicity #13182]: #13184
-#13248 := [monotonicity #13185 #13245]: #13247
-#13253 := [trans #13248 #13251]: #13252
-#13256 := [monotonicity #13182 #13253]: #13255
-#13261 := [trans #13256 #13259]: #13260
-#12632 := (iff #12319 #12631)
-#12629 := (iff #11295 #12628)
-#12626 := (iff #11290 #12623)
-#12617 := (or #12601 #12613)
-#12620 := (or #7910 #12617)
-#12624 := (iff #12620 #12623)
-#12625 := [rewrite]: #12624
-#12621 := (iff #11290 #12620)
-#12618 := (iff #11284 #12617)
-#12612 := (iff #4776 #12613)
-#12616 := [rewrite]: #12612
-#12610 := (iff #11283 #12601)
-#12602 := (not #12601)
-#12605 := (not #12602)
-#12608 := (iff #12605 #12601)
-#12609 := [rewrite]: #12608
-#12606 := (iff #11283 #12605)
-#12603 := (iff #4772 #12602)
-#12604 := [rewrite]: #12603
-#12607 := [monotonicity #12604]: #12606
-#12611 := [trans #12607 #12609]: #12610
-#12619 := [monotonicity #12611 #12616]: #12618
-#12622 := [monotonicity #7912 #12619]: #12621
-#12627 := [trans #12622 #12625]: #12626
-#12630 := [quant-intro #12627]: #12629
-#12633 := [monotonicity #12630]: #12632
-#13264 := [monotonicity #12633 #13261]: #13263
-#13267 := [monotonicity #12630 #13264]: #13266
-#12599 := (iff #12331 #12598)
-#12596 := (iff #4771 #12595)
-#12597 := [rewrite]: #12596
-#12600 := [monotonicity #12597]: #12599
-#13270 := [monotonicity #12600 #13267]: #13269
-#13273 := [monotonicity #12597 #13270]: #13272
-#12593 := (iff #12343 false)
-#11313 := (iff #4808 false)
-#11314 := [rewrite]: #11313
-#12591 := (iff #12343 #4808)
-#12589 := (iff #11280 true)
-#11607 := (and true true)
-#12584 := (and true #11607)
-#12587 := (iff #12584 true)
-#12588 := [rewrite]: #12587
-#12585 := (iff #11280 #12584)
-#12582 := (iff #11277 #11607)
-#12580 := (iff #4767 true)
-#12581 := [rewrite]: #12580
-#12578 := (iff #4766 true)
-#12579 := [rewrite]: #12578
-#12583 := [monotonicity #12579 #12581]: #12582
-#12586 := [monotonicity #12579 #12583]: #12585
-#12590 := [trans #12586 #12588]: #12589
-#12592 := [monotonicity #12590]: #12591
-#12594 := [trans #12592 #11314]: #12593
-#13276 := [monotonicity #12594 #13273]: #13275
-#13279 := [monotonicity #13276]: #13278
-#13282 := [monotonicity #13279]: #13281
-#13285 := [monotonicity #13282]: #13284
-#13288 := [monotonicity #13285]: #13287
-#13291 := [monotonicity #13288]: #13290
-#13296 := [trans #13291 #13294]: #13295
-#13299 := [monotonicity #13296]: #13298
-#13304 := [trans #13299 #13302]: #13303
-#13307 := [monotonicity #13304]: #13306
-#13310 := [monotonicity #13307]: #13309
-#13315 := [trans #13310 #13313]: #13314
-#13318 := [monotonicity #13315]: #13317
-#13321 := [monotonicity #13318]: #13320
-#12576 := (iff #12424 #12575)
-#12573 := (iff #4727 #12572)
-#12570 := (iff #4726 #12567)
-#12571 := [rewrite]: #12570
-#12564 := (iff #4725 #12565)
-#12566 := [rewrite]: #12564
-#12574 := [monotonicity #12566 #12571]: #12573
-#12577 := [monotonicity #12574]: #12576
-#13402 := [monotonicity #12577 #13321]: #13401
-#13405 := [monotonicity #13402]: #13404
-#13408 := [monotonicity #13405]: #13407
-#13411 := [monotonicity #13408]: #13410
-#13414 := [monotonicity #13411]: #13413
-#13332 := (iff #12469 #13331)
-#13329 := (iff #4694 #13328)
-#13326 := (iff #4693 #13322)
-#13327 := [rewrite]: #13326
-#13330 := [quant-intro #13327]: #13329
-#13333 := [monotonicity #13330]: #13332
-#13417 := [monotonicity #13333 #13414]: #13416
-#13420 := [monotonicity #13417]: #13419
-#13423 := [monotonicity #13420]: #13422
-#13338 := (iff #12503 #13337)
-#13335 := (iff #4679 #13334)
-#13336 := [rewrite]: #13335
-#13339 := [monotonicity #13336]: #13338
-#13426 := [monotonicity #13339 #13423]: #13425
-#13345 := (iff #12512 #12634)
-#13340 := (not #12635)
-#13343 := (iff #13340 #12634)
-#13344 := [rewrite]: #13343
-#13341 := (iff #12512 #13340)
-#13342 := [monotonicity #12637]: #13341
-#13346 := [trans #13342 #13344]: #13345
-#13429 := [monotonicity #13346 #13426]: #13428
-#13356 := (iff #12521 #13347)
-#13348 := (not #13347)
-#13351 := (not #13348)
-#13354 := (iff #13351 #13347)
-#13355 := [rewrite]: #13354
-#13352 := (iff #12521 #13351)
-#13349 := (iff #4647 #13348)
-#13350 := [rewrite]: #13349
-#13353 := [monotonicity #13350]: #13352
-#13357 := [trans #13353 #13355]: #13356
-#13432 := [monotonicity #13357 #13429]: #13431
-#13370 := (iff #12530 #13369)
-#13367 := (iff #4645 #13366)
-#13364 := (iff #4644 #13361)
-#13365 := [rewrite]: #13364
-#13358 := (iff #4643 #13359)
-#13360 := [rewrite]: #13358
-#13368 := [monotonicity #13360 #13365]: #13367
-#13371 := [monotonicity #13368]: #13370
-#13435 := [monotonicity #13371 #13432]: #13434
-#13384 := (iff #12539 #13383)
-#13381 := (iff #4641 #13380)
-#13378 := (iff #4640 #13375)
-#13379 := [rewrite]: #13378
-#13372 := (iff #4639 #13373)
-#13374 := [rewrite]: #13372
-#13382 := [monotonicity #13374 #13379]: #13381
-#13385 := [monotonicity #13382]: #13384
-#13438 := [monotonicity #13385 #13435]: #13437
-#13398 := (iff #12548 #13397)
-#13395 := (iff #4637 #13394)
-#13392 := (iff #4636 #13389)
-#13393 := [rewrite]: #13392
-#13386 := (iff #4635 #13387)
-#13388 := [rewrite]: #13386
-#13396 := [monotonicity #13388 #13393]: #13395
-#13399 := [monotonicity #13396]: #13398
-#13441 := [monotonicity #13399 #13438]: #13440
-#13446 := [trans #13441 #13444]: #13445
-#13449 := [monotonicity #13446]: #13448
-#12562 := (iff #5117 #12561)
-#12559 := (iff #5116 #12549)
-#12554 := (implies true #12549)
-#12557 := (iff #12554 #12549)
-#12558 := [rewrite]: #12557
-#12555 := (iff #5116 #12554)
-#12552 := (iff #5115 #12549)
-#12545 := (implies #4637 #12540)
-#12550 := (iff #12545 #12549)
-#12551 := [rewrite]: #12550
-#12546 := (iff #5115 #12545)
-#12543 := (iff #5114 #12540)
-#12536 := (implies #4641 #12531)
-#12541 := (iff #12536 #12540)
-#12542 := [rewrite]: #12541
-#12537 := (iff #5114 #12536)
-#12534 := (iff #5113 #12531)
-#12527 := (implies #4645 #12522)
-#12532 := (iff #12527 #12531)
-#12533 := [rewrite]: #12532
-#12528 := (iff #5113 #12527)
-#12525 := (iff #5112 #12522)
-#12518 := (implies #4647 #12513)
-#12523 := (iff #12518 #12522)
-#12524 := [rewrite]: #12523
-#12519 := (iff #5112 #12518)
-#12516 := (iff #5111 #12513)
-#12509 := (implies #4648 #12504)
-#12514 := (iff #12509 #12513)
-#12515 := [rewrite]: #12514
-#12510 := (iff #5111 #12509)
-#12507 := (iff #5110 #12504)
-#12500 := (implies #4679 #12488)
-#12505 := (iff #12500 #12504)
-#12506 := [rewrite]: #12505
-#12501 := (iff #5110 #12500)
-#12498 := (iff #5109 #12488)
-#12493 := (implies true #12488)
-#12496 := (iff #12493 #12488)
-#12497 := [rewrite]: #12496
-#12494 := (iff #5109 #12493)
-#12491 := (iff #5108 #12488)
-#12484 := (implies #4681 #12479)
-#12489 := (iff #12484 #12488)
-#12490 := [rewrite]: #12489
-#12485 := (iff #5108 #12484)
-#12482 := (iff #5107 #12479)
-#12475 := (implies #4687 #12470)
-#12480 := (iff #12475 #12479)
-#12481 := [rewrite]: #12480
-#12476 := (iff #5107 #12475)
-#12473 := (iff #5106 #12470)
-#12466 := (implies #4694 #12461)
-#12471 := (iff #12466 #12470)
-#12472 := [rewrite]: #12471
-#12467 := (iff #5106 #12466)
-#12464 := (iff #5105 #12461)
-#12457 := (implies #4710 #12452)
-#12462 := (iff #12457 #12461)
-#12463 := [rewrite]: #12462
-#12458 := (iff #5105 #12457)
-#12455 := (iff #5104 #12452)
-#12448 := (implies #4714 #12443)
-#12453 := (iff #12448 #12452)
-#12454 := [rewrite]: #12453
-#12449 := (iff #5104 #12448)
-#12446 := (iff #5103 #12443)
-#12439 := (implies #4717 #12434)
-#12444 := (iff #12439 #12443)
-#12445 := [rewrite]: #12444
-#12440 := (iff #5103 #12439)
-#12437 := (iff #5102 #12434)
-#12430 := (implies #11272 #12425)
-#12435 := (iff #12430 #12434)
-#12436 := [rewrite]: #12435
-#12431 := (iff #5102 #12430)
-#12428 := (iff #5101 #12425)
-#12421 := (implies #4727 #12418)
-#12426 := (iff #12421 #12425)
-#12427 := [rewrite]: #12426
-#12422 := (iff #5101 #12421)
-#12419 := (iff #5100 #12418)
-#12416 := (iff #5099 #12413)
-#12409 := (implies #4733 #12406)
-#12414 := (iff #12409 #12413)
-#12415 := [rewrite]: #12414
-#12410 := (iff #5099 #12409)
-#12407 := (iff #5098 #12406)
-#12404 := (iff #5097 #12401)
-#12397 := (implies #4742 #12394)
-#12402 := (iff #12397 #12401)
-#12403 := [rewrite]: #12402
-#12398 := (iff #5097 #12397)
-#12395 := (iff #5096 #12394)
-#12392 := (iff #5095 #12389)
-#12385 := (implies #4746 #12380)
-#12390 := (iff #12385 #12389)
-#12391 := [rewrite]: #12390
-#12386 := (iff #5095 #12385)
-#12383 := (iff #5094 #12380)
-#12376 := (implies #4750 #12371)
-#12381 := (iff #12376 #12380)
-#12382 := [rewrite]: #12381
-#12377 := (iff #5094 #12376)
-#12374 := (iff #5093 #12371)
-#12367 := (implies #4755 #12362)
-#12372 := (iff #12367 #12371)
-#12373 := [rewrite]: #12372
-#12368 := (iff #5093 #12367)
-#12365 := (iff #5092 #12362)
-#12358 := (implies #4760 #12353)
-#12363 := (iff #12358 #12362)
-#12364 := [rewrite]: #12363
-#12359 := (iff #5092 #12358)
-#12356 := (iff #5091 #12353)
-#12349 := (implies #4765 #12344)
-#12354 := (iff #12349 #12353)
-#12355 := [rewrite]: #12354
-#12350 := (iff #5091 #12349)
-#12347 := (iff #5090 #12344)
-#12340 := (implies #11280 #12337)
-#12345 := (iff #12340 #12344)
-#12346 := [rewrite]: #12345
-#12341 := (iff #5090 #12340)
-#12338 := (iff #5089 #12337)
-#12335 := (iff #5088 #12332)
-#12328 := (implies #4771 #12325)
-#12333 := (iff #12328 #12332)
-#12334 := [rewrite]: #12333
-#12329 := (iff #5088 #12328)
-#12326 := (iff #5087 #12325)
-#12323 := (iff #5086 #12320)
-#12316 := (implies #11295 #12313)
-#12321 := (iff #12316 #12320)
-#12322 := [rewrite]: #12321
-#12317 := (iff #5086 #12316)
-#12314 := (iff #5085 #12313)
-#12311 := (iff #5084 #12308)
-#12304 := (implies #4781 #12292)
-#12309 := (iff #12304 #12308)
-#12310 := [rewrite]: #12309
-#12305 := (iff #5084 #12304)
-#12302 := (iff #5083 #12292)
-#12297 := (implies true #12292)
-#12300 := (iff #12297 #12292)
-#12301 := [rewrite]: #12300
-#12298 := (iff #5083 #12297)
-#12295 := (iff #5082 #12292)
-#12288 := (implies #4785 #12283)
-#12293 := (iff #12288 #12292)
-#12294 := [rewrite]: #12293
-#12289 := (iff #5082 #12288)
-#12286 := (iff #5081 #12283)
-#12279 := (implies #4789 #12274)
-#12284 := (iff #12279 #12283)
-#12285 := [rewrite]: #12284
-#12280 := (iff #5081 #12279)
-#12277 := (iff #5080 #12274)
-#12270 := (implies #4793 #12265)
-#12275 := (iff #12270 #12274)
-#12276 := [rewrite]: #12275
-#12271 := (iff #5080 #12270)
-#12268 := (iff #5079 #12265)
-#12262 := (implies #4795 #12257)
-#12266 := (iff #12262 #12265)
-#12267 := [rewrite]: #12266
-#12263 := (iff #5079 #12262)
-#12260 := (iff #5078 #12257)
-#12253 := (implies #4796 #12248)
-#12258 := (iff #12253 #12257)
-#12259 := [rewrite]: #12258
-#12254 := (iff #5078 #12253)
-#12251 := (iff #5077 #12248)
-#12244 := (implies #11310 #12239)
-#12249 := (iff #12244 #12248)
-#12250 := [rewrite]: #12249
-#12245 := (iff #5077 #12244)
-#12242 := (iff #5076 #12239)
-#12235 := (implies #4807 #12230)
-#12240 := (iff #12235 #12239)
-#12241 := [rewrite]: #12240
-#12236 := (iff #5076 #12235)
-#12233 := (iff #5075 #12230)
-#12227 := (implies #4795 #12208)
-#12231 := (iff #12227 #12230)
-#12232 := [rewrite]: #12231
-#12228 := (iff #5075 #12227)
-#12225 := (iff #5074 #12208)
-#12220 := (and true #12208)
-#12223 := (iff #12220 #12208)
-#12224 := [rewrite]: #12223
-#12221 := (iff #5074 #12220)
-#12218 := (iff #5073 #12208)
-#12213 := (implies true #12208)
-#12216 := (iff #12213 #12208)
-#12217 := [rewrite]: #12216
-#12214 := (iff #5073 #12213)
-#12211 := (iff #5072 #12208)
-#12205 := (implies #4795 #12193)
-#12209 := (iff #12205 #12208)
-#12210 := [rewrite]: #12209
-#12206 := (iff #5072 #12205)
-#12203 := (iff #5071 #12193)
-#12198 := (implies true #12193)
-#12201 := (iff #12198 #12193)
-#12202 := [rewrite]: #12201
-#12199 := (iff #5071 #12198)
-#12196 := (iff #5070 #12193)
-#12190 := (implies #4795 #12178)
-#12194 := (iff #12190 #12193)
-#12195 := [rewrite]: #12194
-#12191 := (iff #5070 #12190)
-#12188 := (iff #5069 #12178)
-#12183 := (implies true #12178)
-#12186 := (iff #12183 #12178)
-#12187 := [rewrite]: #12186
-#12184 := (iff #5069 #12183)
-#12181 := (iff #5068 #12178)
-#12175 := (implies #4795 #12170)
-#12179 := (iff #12175 #12178)
-#12180 := [rewrite]: #12179
-#12176 := (iff #5068 #12175)
-#12173 := (iff #5067 #12170)
-#12167 := (implies #4900 #12162)
-#12171 := (iff #12167 #12170)
-#12172 := [rewrite]: #12171
-#12168 := (iff #5067 #12167)
-#12165 := (iff #5066 #12162)
-#12158 := (implies #4900 #12153)
-#12163 := (iff #12158 #12162)
-#12164 := [rewrite]: #12163
-#12159 := (iff #5066 #12158)
-#12156 := (iff #5065 #12153)
-#12150 := (implies #4812 #12145)
-#12154 := (iff #12150 #12153)
-#12155 := [rewrite]: #12154
-#12151 := (iff #5065 #12150)
-#12148 := (iff #5064 #12145)
-#12141 := (implies #4909 #12136)
-#12146 := (iff #12141 #12145)
-#12147 := [rewrite]: #12146
-#12142 := (iff #5064 #12141)
-#12139 := (iff #5063 #12136)
-#12132 := (implies #4913 #12127)
-#12137 := (iff #12132 #12136)
-#12138 := [rewrite]: #12137
-#12133 := (iff #5063 #12132)
-#12130 := (iff #5062 #12127)
-#12123 := (implies #4917 #12118)
-#12128 := (iff #12123 #12127)
-#12129 := [rewrite]: #12128
-#12124 := (iff #5062 #12123)
-#12121 := (iff #5061 #12118)
-#12114 := (implies #4921 #12109)
-#12119 := (iff #12114 #12118)
-#12120 := [rewrite]: #12119
-#12115 := (iff #5061 #12114)
-#12112 := (iff #5060 #12109)
-#12105 := (implies #4931 #12093)
-#12110 := (iff #12105 #12109)
-#12111 := [rewrite]: #12110
-#12106 := (iff #5060 #12105)
-#12103 := (iff #5059 #12093)
-#12098 := (implies true #12093)
-#12101 := (iff #12098 #12093)
-#12102 := [rewrite]: #12101
-#12099 := (iff #5059 #12098)
-#12096 := (iff #5058 #12093)
-#12090 := (implies #4795 #12087)
-#12094 := (iff #12090 #12093)
-#12095 := [rewrite]: #12094
-#12091 := (iff #5058 #12090)
-#12088 := (iff #5057 #12087)
-#12085 := (iff #5056 #12075)
-#12080 := (implies true #12075)
-#12083 := (iff #12080 #12075)
-#12084 := [rewrite]: #12083
-#12081 := (iff #5056 #12080)
-#12078 := (iff #5055 #12075)
-#12072 := (implies #4795 #12067)
-#12076 := (iff #12072 #12075)
-#12077 := [rewrite]: #12076
-#12073 := (iff #5055 #12072)
-#12070 := (iff #5054 #12067)
-#12063 := (implies #5050 #12058)
-#12068 := (iff #12063 #12067)
-#12069 := [rewrite]: #12068
-#12064 := (iff #5054 #12063)
-#12061 := (iff #5053 #12058)
-#12055 := (implies #4795 #12043)
-#12059 := (iff #12055 #12058)
-#12060 := [rewrite]: #12059
-#12056 := (iff #5053 #12055)
-#12053 := (iff #5052 #12043)
-#12048 := (implies true #12043)
-#12051 := (iff #12048 #12043)
-#12052 := [rewrite]: #12051
-#12049 := (iff #5052 #12048)
-#12046 := (iff #5051 #12043)
-#12040 := (implies #4795 #11463)
-#12044 := (iff #12040 #12043)
-#12045 := [rewrite]: #12044
-#12041 := (iff #5051 #12040)
-#11466 := (iff #4849 #11463)
-#11460 := (implies #4795 #11448)
-#11464 := (iff #11460 #11463)
-#11465 := [rewrite]: #11464
-#11461 := (iff #4849 #11460)
-#11458 := (iff #4848 #11448)
-#11453 := (implies true #11448)
-#11456 := (iff #11453 #11448)
-#11457 := [rewrite]: #11456
-#11454 := (iff #4848 #11453)
-#11451 := (iff #4847 #11448)
-#11445 := (implies #4795 #11442)
-#11449 := (iff #11445 #11448)
-#11450 := [rewrite]: #11449
-#11446 := (iff #4847 #11445)
-#11443 := (iff #4846 #11442)
-#11440 := (iff #4845 #11437)
-#11433 := (implies #4072 #11428)
-#11438 := (iff #11433 #11437)
-#11439 := [rewrite]: #11438
-#11434 := (iff #4845 #11433)
-#11431 := (iff #4844 #11428)
-#11425 := (implies #4795 #11413)
-#11429 := (iff #11425 #11428)
-#11430 := [rewrite]: #11429
-#11426 := (iff #4844 #11425)
-#11423 := (iff #4843 #11413)
-#11418 := (implies true #11413)
-#11421 := (iff #11418 #11413)
-#11422 := [rewrite]: #11421
-#11419 := (iff #4843 #11418)
-#11416 := (iff #4842 #11413)
-#11410 := (implies #4795 #11405)
-#11414 := (iff #11410 #11413)
-#11415 := [rewrite]: #11414
-#11411 := (iff #4842 #11410)
-#11408 := (iff #4841 #11405)
-#11401 := (implies #4795 #11389)
-#11406 := (iff #11401 #11405)
-#11407 := [rewrite]: #11406
-#11402 := (iff #4841 #11401)
-#11399 := (iff #4840 #11389)
-#11394 := (implies true #11389)
-#11397 := (iff #11394 #11389)
-#11398 := [rewrite]: #11397
-#11395 := (iff #4840 #11394)
-#11392 := (iff #4839 #11389)
-#11385 := (implies #4814 #11380)
-#11390 := (iff #11385 #11389)
-#11391 := [rewrite]: #11390
-#11386 := (iff #4839 #11385)
-#11383 := (iff #4838 #11380)
-#11376 := (implies #4816 #11371)
-#11381 := (iff #11376 #11380)
-#11382 := [rewrite]: #11381
-#11377 := (iff #4838 #11376)
-#11374 := (iff #4837 #11371)
-#11367 := (implies #4818 #11362)
-#11372 := (iff #11367 #11371)
-#11373 := [rewrite]: #11372
-#11368 := (iff #4837 #11367)
-#11365 := (iff #4836 #11362)
-#11358 := (implies #4820 #11348)
-#11363 := (iff #11358 #11362)
-#11364 := [rewrite]: #11363
-#11359 := (iff #4836 #11358)
-#11356 := (iff #4835 #11348)
-#11351 := (implies true #11348)
-#11354 := (iff #11351 #11348)
-#11355 := [rewrite]: #11354
-#11352 := (iff #4835 #11351)
-#11349 := (iff #4834 #11348)
-#11346 := (iff #4833 #11343)
-#11339 := (implies #11327 #4830)
-#11344 := (iff #11339 #11343)
-#11345 := [rewrite]: #11344
-#11340 := (iff #4833 #11339)
-#11337 := (iff #4832 #4830)
-#11332 := (and #4830 true)
-#11335 := (iff #11332 #4830)
-#11336 := [rewrite]: #11335
-#11333 := (iff #4832 #11332)
-#11330 := (iff #4831 true)
-#11331 := [rewrite]: #11330
-#11334 := [monotonicity #11331]: #11333
-#11338 := [trans #11334 #11336]: #11337
-#11328 := (iff #4825 #11327)
-#11325 := (iff #4824 #11322)
-#11319 := (implies #1522 #11316)
-#11323 := (iff #11319 #11322)
-#11324 := [rewrite]: #11323
-#11320 := (iff #4824 #11319)
-#11317 := (iff #4823 #11316)
-#11318 := [rewrite]: #11317
-#11321 := [monotonicity #11318]: #11320
-#11326 := [trans #11321 #11324]: #11325
-#11329 := [quant-intro #11326]: #11328
-#11341 := [monotonicity #11329 #11338]: #11340
-#11347 := [trans #11341 #11345]: #11346
-#11350 := [monotonicity #11329 #11347]: #11349
-#11353 := [monotonicity #11350]: #11352
-#11357 := [trans #11353 #11355]: #11356
-#11360 := [monotonicity #11357]: #11359
-#11366 := [trans #11360 #11364]: #11365
-#11369 := [monotonicity #11366]: #11368
-#11375 := [trans #11369 #11373]: #11374
-#11378 := [monotonicity #11375]: #11377
-#11384 := [trans #11378 #11382]: #11383
-#11387 := [monotonicity #11384]: #11386
-#11393 := [trans #11387 #11391]: #11392
-#11396 := [monotonicity #11393]: #11395
-#11400 := [trans #11396 #11398]: #11399
-#11403 := [monotonicity #11400]: #11402
-#11409 := [trans #11403 #11407]: #11408
-#11412 := [monotonicity #11409]: #11411
-#11417 := [trans #11412 #11415]: #11416
-#11420 := [monotonicity #11417]: #11419
-#11424 := [trans #11420 #11422]: #11423
-#11427 := [monotonicity #11424]: #11426
-#11432 := [trans #11427 #11430]: #11431
-#11435 := [monotonicity #11432]: #11434
-#11441 := [trans #11435 #11439]: #11440
-#11444 := [monotonicity #11441]: #11443
-#11447 := [monotonicity #11444]: #11446
-#11452 := [trans #11447 #11450]: #11451
-#11455 := [monotonicity #11452]: #11454
-#11459 := [trans #11455 #11457]: #11458
-#11462 := [monotonicity #11459]: #11461
-#11467 := [trans #11462 #11465]: #11466
-#12042 := [monotonicity #11467]: #12041
-#12047 := [trans #12042 #12045]: #12046
-#12050 := [monotonicity #12047]: #12049
-#12054 := [trans #12050 #12052]: #12053
-#12057 := [monotonicity #12054]: #12056
-#12062 := [trans #12057 #12060]: #12061
-#12065 := [monotonicity #12062]: #12064
-#12071 := [trans #12065 #12069]: #12070
-#12074 := [monotonicity #12071]: #12073
-#12079 := [trans #12074 #12077]: #12078
-#12082 := [monotonicity #12079]: #12081
-#12086 := [trans #12082 #12084]: #12085
-#12038 := (iff #5049 #12028)
-#12033 := (implies true #12028)
-#12036 := (iff #12033 #12028)
-#12037 := [rewrite]: #12036
-#12034 := (iff #5049 #12033)
-#12031 := (iff #5048 #12028)
-#12025 := (implies #4795 #12020)
-#12029 := (iff #12025 #12028)
-#12030 := [rewrite]: #12029
-#12026 := (iff #5048 #12025)
-#12023 := (iff #5047 #12020)
-#12016 := (implies #4935 #12011)
-#12021 := (iff #12016 #12020)
-#12022 := [rewrite]: #12021
-#12017 := (iff #5047 #12016)
-#12014 := (iff #5046 #12011)
-#12008 := (implies #4795 #11996)
-#12012 := (iff #12008 #12011)
-#12013 := [rewrite]: #12012
-#12009 := (iff #5046 #12008)
-#12006 := (iff #5045 #11996)
-#12001 := (implies true #11996)
-#12004 := (iff #12001 #11996)
-#12005 := [rewrite]: #12004
-#12002 := (iff #5045 #12001)
-#11999 := (iff #5044 #11996)
-#11993 := (implies #4795 #11990)
-#11997 := (iff #11993 #11996)
-#11998 := [rewrite]: #11997
-#11994 := (iff #5044 #11993)
-#11991 := (iff #5043 #11990)
-#11988 := (iff #5042 #11985)
-#11982 := (implies #4943 #11979)
-#11986 := (iff #11982 #11985)
-#11987 := [rewrite]: #11986
-#11983 := (iff #5042 #11982)
-#11980 := (iff #5041 #11979)
-#11977 := (iff #5040 #11974)
-#11971 := (implies #4946 #11966)
-#11975 := (iff #11971 #11974)
-#11976 := [rewrite]: #11975
-#11972 := (iff #5040 #11971)
-#11969 := (iff #5039 #11966)
-#11963 := (implies #4795 #11960)
-#11967 := (iff #11963 #11966)
-#11968 := [rewrite]: #11967
-#11964 := (iff #5039 #11963)
-#11961 := (iff #5038 #11960)
-#11958 := (iff #5037 #11948)
-#11953 := (implies true #11948)
-#11956 := (iff #11953 #11948)
-#11957 := [rewrite]: #11956
-#11954 := (iff #5037 #11953)
-#11951 := (iff #5036 #11948)
-#11945 := (implies #4795 #11940)
-#11949 := (iff #11945 #11948)
-#11950 := [rewrite]: #11949
-#11946 := (iff #5036 #11945)
-#11943 := (iff #5035 #11940)
-#11936 := (implies #5025 #11931)
-#11941 := (iff #11936 #11940)
-#11942 := [rewrite]: #11941
-#11937 := (iff #5035 #11936)
-#11934 := (iff #5034 #11931)
-#11928 := (implies #4795 #11916)
-#11932 := (iff #11928 #11931)
-#11933 := [rewrite]: #11932
-#11929 := (iff #5034 #11928)
-#11926 := (iff #5033 #11916)
-#11921 := (implies true #11916)
-#11924 := (iff #11921 #11916)
-#11925 := [rewrite]: #11924
-#11922 := (iff #5033 #11921)
-#11919 := (iff #5032 #11916)
-#11913 := (implies #4795 #11908)
-#11917 := (iff #11913 #11916)
-#11918 := [rewrite]: #11917
-#11914 := (iff #5032 #11913)
-#11911 := (iff #5031 #11908)
-#11905 := (implies #4795 #11893)
-#11909 := (iff #11905 #11908)
-#11910 := [rewrite]: #11909
-#11906 := (iff #5031 #11905)
-#11903 := (iff #5030 #11893)
-#11898 := (implies true #11893)
-#11901 := (iff #11898 #11893)
-#11902 := [rewrite]: #11901
-#11899 := (iff #5030 #11898)
-#11896 := (iff #5029 #11893)
-#11889 := (implies #5026 #11884)
-#11894 := (iff #11889 #11893)
-#11895 := [rewrite]: #11894
-#11890 := (iff #5029 #11889)
-#11887 := (iff #5028 #11884)
-#11880 := (implies #5027 #11736)
-#11885 := (iff #11880 #11884)
-#11886 := [rewrite]: #11885
-#11881 := (iff #5028 #11880)
-#11746 := (iff #5007 #11736)
-#11741 := (implies true #11736)
-#11744 := (iff #11741 #11736)
-#11745 := [rewrite]: #11744
-#11742 := (iff #5007 #11741)
-#11739 := (iff #5006 #11736)
-#11732 := (implies #4967 #11729)
-#11737 := (iff #11732 #11736)
-#11738 := [rewrite]: #11737
-#11733 := (iff #5006 #11732)
-#11730 := (iff #5005 #11729)
-#11727 := (iff #5004 #11724)
-#11720 := (implies #11625 #11715)
-#11725 := (iff #11720 #11724)
-#11726 := [rewrite]: #11725
-#11721 := (iff #5004 #11720)
-#11718 := (iff #5003 #11715)
-#11711 := (implies #11628 #11706)
-#11716 := (iff #11711 #11715)
-#11717 := [rewrite]: #11716
-#11712 := (iff #5003 #11711)
-#11709 := (iff #5002 #11706)
-#11702 := (implies #4978 #11697)
-#11707 := (iff #11702 #11706)
-#11708 := [rewrite]: #11707
-#11703 := (iff #5002 #11702)
-#11700 := (iff #5001 #11697)
-#11693 := (implies #4980 #11683)
-#11698 := (iff #11693 #11697)
-#11699 := [rewrite]: #11698
-#11694 := (iff #5001 #11693)
-#11691 := (iff #5000 #11683)
-#11686 := (implies true #11683)
-#11689 := (iff #11686 #11683)
-#11690 := [rewrite]: #11689
-#11687 := (iff #5000 #11686)
-#11684 := (iff #4999 #11683)
-#11681 := (iff #4998 #11678)
-#11674 := (implies #4981 #11671)
-#11679 := (iff #11674 #11678)
-#11680 := [rewrite]: #11679
-#11675 := (iff #4998 #11674)
-#11672 := (iff #4997 #11671)
-#11669 := (iff #4996 #11666)
-#11662 := (implies #11643 #4992)
-#11667 := (iff #11662 #11666)
-#11668 := [rewrite]: #11667
-#11663 := (iff #4996 #11662)
-#11660 := (iff #4995 #4992)
-#11655 := (and #4992 true)
-#11658 := (iff #11655 #4992)
-#11659 := [rewrite]: #11658
-#11656 := (iff #4995 #11655)
-#11653 := (iff #4994 true)
-#11648 := (implies #4992 true)
-#11651 := (iff #11648 true)
-#11652 := [rewrite]: #11651
-#11649 := (iff #4994 #11648)
-#11646 := (iff #4993 true)
-#11647 := [rewrite]: #11646
-#11650 := [monotonicity #11647]: #11649
-#11654 := [trans #11650 #11652]: #11653
-#11657 := [monotonicity #11654]: #11656
-#11661 := [trans #11657 #11659]: #11660
-#11644 := (iff #4986 #11643)
-#11641 := (iff #4985 #11638)
-#11635 := (implies #1522 #11632)
-#11639 := (iff #11635 #11638)
-#11640 := [rewrite]: #11639
-#11636 := (iff #4985 #11635)
-#11633 := (iff #4984 #11632)
-#11634 := [rewrite]: #11633
-#11637 := [monotonicity #11634]: #11636
-#11642 := [trans #11637 #11640]: #11641
-#11645 := [quant-intro #11642]: #11644
-#11664 := [monotonicity #11645 #11661]: #11663
-#11670 := [trans #11664 #11668]: #11669
-#11673 := [monotonicity #11645 #11670]: #11672
-#11676 := [monotonicity #11673]: #11675
-#11682 := [trans #11676 #11680]: #11681
-#11685 := [monotonicity #11682]: #11684
-#11688 := [monotonicity #11685]: #11687
-#11692 := [trans #11688 #11690]: #11691
-#11695 := [monotonicity #11692]: #11694
-#11701 := [trans #11695 #11699]: #11700
-#11704 := [monotonicity #11701]: #11703
-#11710 := [trans #11704 #11708]: #11709
-#11629 := (iff #4973 #11628)
-#11617 := (= #4968 #11616)
-#11618 := [rewrite]: #11617
-#11630 := [monotonicity #11618]: #11629
-#11713 := [monotonicity #11630 #11710]: #11712
-#11719 := [trans #11713 #11717]: #11718
-#11626 := (iff #4971 #11625)
-#11623 := (iff #4970 #11622)
-#11624 := [monotonicity #11618]: #11623
-#11620 := (iff #4969 #11619)
-#11621 := [monotonicity #11618]: #11620
-#11627 := [monotonicity #11621 #11624]: #11626
-#11722 := [monotonicity #11627 #11719]: #11721
-#11728 := [trans #11722 #11726]: #11727
-#11731 := [monotonicity #11627 #11728]: #11730
-#11734 := [monotonicity #11731]: #11733
-#11740 := [trans #11734 #11738]: #11739
-#11743 := [monotonicity #11740]: #11742
-#11747 := [trans #11743 #11745]: #11746
-#11882 := [monotonicity #11747]: #11881
-#11888 := [trans #11882 #11886]: #11887
-#11891 := [monotonicity #11888]: #11890
-#11897 := [trans #11891 #11895]: #11896
-#11900 := [monotonicity #11897]: #11899
-#11904 := [trans #11900 #11902]: #11903
-#11907 := [monotonicity #11904]: #11906
-#11912 := [trans #11907 #11910]: #11911
-#11915 := [monotonicity #11912]: #11914
-#11920 := [trans #11915 #11918]: #11919
-#11923 := [monotonicity #11920]: #11922
-#11927 := [trans #11923 #11925]: #11926
-#11930 := [monotonicity #11927]: #11929
-#11935 := [trans #11930 #11933]: #11934
-#11938 := [monotonicity #11935]: #11937
-#11944 := [trans #11938 #11942]: #11943
-#11947 := [monotonicity #11944]: #11946
-#11952 := [trans #11947 #11950]: #11951
-#11955 := [monotonicity #11952]: #11954
-#11959 := [trans #11955 #11957]: #11958
-#11878 := (iff #5024 #11868)
-#11873 := (implies true #11868)
-#11876 := (iff #11873 #11868)
-#11877 := [rewrite]: #11876
-#11874 := (iff #5024 #11873)
-#11871 := (iff #5023 #11868)
-#11865 := (implies #4795 #11860)
-#11869 := (iff #11865 #11868)
-#11870 := [rewrite]: #11869
-#11866 := (iff #5023 #11865)
-#11863 := (iff #5022 #11860)
-#11856 := (implies #4948 #11851)
-#11861 := (iff #11856 #11860)
-#11862 := [rewrite]: #11861
-#11857 := (iff #5022 #11856)
-#11854 := (iff #5021 #11851)
-#11848 := (implies #4795 #11836)
-#11852 := (iff #11848 #11851)
-#11853 := [rewrite]: #11852
-#11849 := (iff #5021 #11848)
-#11846 := (iff #5020 #11836)
-#11841 := (implies true #11836)
-#11844 := (iff #11841 #11836)
-#11845 := [rewrite]: #11844
-#11842 := (iff #5020 #11841)
-#11839 := (iff #5019 #11836)
-#11833 := (implies #4795 #11830)
-#11837 := (iff #11833 #11836)
-#11838 := [rewrite]: #11837
-#11834 := (iff #5019 #11833)
-#11831 := (iff #5018 #11830)
-#11828 := (iff #5017 #11825)
-#11821 := (implies #4943 #11818)
-#11826 := (iff #11821 #11825)
-#11827 := [rewrite]: #11826
-#11822 := (iff #5017 #11821)
-#11819 := (iff #5016 #11818)
-#11816 := (iff #5015 #11813)
-#11809 := (implies #4946 #11804)
-#11814 := (iff #11809 #11813)
-#11815 := [rewrite]: #11814
-#11810 := (iff #5015 #11809)
-#11807 := (iff #5014 #11804)
-#11800 := (implies #4950 #11795)
-#11805 := (iff #11800 #11804)
-#11806 := [rewrite]: #11805
-#11801 := (iff #5014 #11800)
-#11798 := (iff #5013 #11795)
-#11791 := (implies #4955 #11786)
-#11796 := (iff #11791 #11795)
-#11797 := [rewrite]: #11796
-#11792 := (iff #5013 #11791)
-#11789 := (iff #5012 #11786)
-#11782 := (implies #4960 #11777)
-#11787 := (iff #11782 #11786)
-#11788 := [rewrite]: #11787
-#11783 := (iff #5012 #11782)
-#11780 := (iff #5011 #11777)
-#11773 := (implies #4794 #11761)
-#11778 := (iff #11773 #11777)
-#11779 := [rewrite]: #11778
-#11774 := (iff #5011 #11773)
-#11771 := (iff #5010 #11761)
-#11766 := (implies true #11761)
-#11769 := (iff #11766 #11761)
-#11770 := [rewrite]: #11769
-#11767 := (iff #5010 #11766)
-#11764 := (iff #5009 #11761)
-#11757 := (implies #4963 #11752)
-#11762 := (iff #11757 #11761)
-#11763 := [rewrite]: #11762
-#11758 := (iff #5009 #11757)
-#11755 := (iff #5008 #11752)
-#11748 := (implies #4965 #11736)
-#11753 := (iff #11748 #11752)
-#11754 := [rewrite]: #11753
-#11749 := (iff #5008 #11748)
-#11750 := [monotonicity #11747]: #11749
-#11756 := [trans #11750 #11754]: #11755
-#11759 := [monotonicity #11756]: #11758
-#11765 := [trans #11759 #11763]: #11764
-#11768 := [monotonicity #11765]: #11767
-#11772 := [trans #11768 #11770]: #11771
-#11614 := (iff #4961 #4794)
-#11615 := [rewrite]: #11614
-#11775 := [monotonicity #11615 #11772]: #11774
-#11781 := [trans #11775 #11779]: #11780
-#11784 := [monotonicity #11781]: #11783
-#11790 := [trans #11784 #11788]: #11789
-#11793 := [monotonicity #11790]: #11792
-#11799 := [trans #11793 #11797]: #11798
-#11802 := [monotonicity #11799]: #11801
-#11808 := [trans #11802 #11806]: #11807
-#11811 := [monotonicity #11808]: #11810
-#11817 := [trans #11811 #11815]: #11816
-#11820 := [monotonicity #11817]: #11819
-#11823 := [monotonicity #11820]: #11822
-#11829 := [trans #11823 #11827]: #11828
-#11832 := [monotonicity #11829]: #11831
-#11835 := [monotonicity #11832]: #11834
-#11840 := [trans #11835 #11838]: #11839
-#11843 := [monotonicity #11840]: #11842
-#11847 := [trans #11843 #11845]: #11846
-#11850 := [monotonicity #11847]: #11849
-#11855 := [trans #11850 #11853]: #11854
-#11858 := [monotonicity #11855]: #11857
-#11864 := [trans #11858 #11862]: #11863
-#11867 := [monotonicity #11864]: #11866
-#11872 := [trans #11867 #11870]: #11871
-#11875 := [monotonicity #11872]: #11874
-#11879 := [trans #11875 #11877]: #11878
-#11962 := [monotonicity #11879 #11959]: #11961
-#11965 := [monotonicity #11962]: #11964
-#11970 := [trans #11965 #11968]: #11969
-#11973 := [monotonicity #11970]: #11972
-#11978 := [trans #11973 #11976]: #11977
-#11981 := [monotonicity #11978]: #11980
-#11984 := [monotonicity #11981]: #11983
-#11989 := [trans #11984 #11987]: #11988
-#11992 := [monotonicity #11989]: #11991
-#11995 := [monotonicity #11992]: #11994
-#12000 := [trans #11995 #11998]: #11999
-#12003 := [monotonicity #12000]: #12002
-#12007 := [trans #12003 #12005]: #12006
-#12010 := [monotonicity #12007]: #12009
-#12015 := [trans #12010 #12013]: #12014
-#12018 := [monotonicity #12015]: #12017
-#12024 := [trans #12018 #12022]: #12023
-#12027 := [monotonicity #12024]: #12026
-#12032 := [trans #12027 #12030]: #12031
-#12035 := [monotonicity #12032]: #12034
-#12039 := [trans #12035 #12037]: #12038
-#12089 := [monotonicity #12039 #12086]: #12088
-#12092 := [monotonicity #12089]: #12091
-#12097 := [trans #12092 #12095]: #12096
-#11612 := (iff #4934 true)
-#11610 := (iff #11607 true)
-#11611 := [rewrite]: #11610
-#11608 := (iff #4934 #11607)
-#11605 := (iff #4933 true)
-#11606 := [rewrite]: #11605
-#11603 := (iff #4932 true)
-#11604 := [rewrite]: #11603
-#11609 := [monotonicity #11604 #11606]: #11608
-#11613 := [trans #11609 #11611]: #11612
-#12100 := [monotonicity #11613 #12097]: #12099
-#12104 := [trans #12100 #12102]: #12103
-#12107 := [monotonicity #12104]: #12106
-#12113 := [trans #12107 #12111]: #12112
-#12116 := [monotonicity #12113]: #12115
-#12122 := [trans #12116 #12120]: #12121
-#12125 := [monotonicity #12122]: #12124
-#12131 := [trans #12125 #12129]: #12130
-#12134 := [monotonicity #12131]: #12133
-#12140 := [trans #12134 #12138]: #12139
-#12143 := [monotonicity #12140]: #12142
-#12149 := [trans #12143 #12147]: #12148
-#12152 := [monotonicity #12149]: #12151
-#12157 := [trans #12152 #12155]: #12156
-#12160 := [monotonicity #12157]: #12159
-#12166 := [trans #12160 #12164]: #12165
-#11601 := (iff #4904 #4900)
-#11584 := (and true #4900)
-#11587 := (iff #11584 #4900)
-#11588 := [rewrite]: #11587
-#11599 := (iff #4904 #11584)
-#11597 := (iff #4903 #4900)
-#11595 := (iff #4903 #11584)
-#11593 := (iff #4902 #4900)
-#11591 := (iff #4902 #11584)
-#11589 := (iff #4901 #4900)
-#11585 := (iff #4901 #11584)
-#11582 := (iff #4889 true)
-#11577 := (forall (vars (?v0 S11)) (:pat #4885) true)
-#11580 := (iff #11577 true)
-#11581 := [elim-unused]: #11580
-#11578 := (iff #4889 #11577)
-#11575 := (iff #4888 true)
-#11539 := (implies #4873 #4873)
-#11542 := (iff #11539 true)
-#11543 := [rewrite]: #11542
-#11573 := (iff #4888 #11539)
-#11571 := (iff #4887 #4873)
-#11532 := (and true #4873)
-#11535 := (iff #11532 #4873)
-#11536 := [rewrite]: #11535
-#11569 := (iff #4887 #11532)
-#11567 := (iff #4886 true)
-#11568 := [rewrite]: #11567
-#11570 := [monotonicity #11568]: #11569
-#11572 := [trans #11570 #11536]: #11571
-#11574 := [monotonicity #11572]: #11573
-#11576 := [trans #11574 #11543]: #11575
-#11579 := [quant-intro #11576]: #11578
-#11583 := [trans #11579 #11581]: #11582
-#11586 := [monotonicity #11583]: #11585
-#11590 := [trans #11586 #11588]: #11589
-#11565 := (iff #4881 true)
-#11523 := (forall (vars (?v0 S11)) (:pat #4860) true)
-#11526 := (iff #11523 true)
-#11527 := [elim-unused]: #11526
-#11563 := (iff #4881 #11523)
-#11561 := (iff #4880 true)
-#11559 := (iff #4880 #11539)
-#11557 := (iff #4879 #4873)
-#11555 := (iff #4879 #11532)
-#11553 := (iff #4878 true)
-#11554 := [rewrite]: #11553
-#11556 := [monotonicity #11554]: #11555
-#11558 := [trans #11556 #11536]: #11557
-#11560 := [monotonicity #11558]: #11559
-#11562 := [trans #11560 #11543]: #11561
-#11564 := [quant-intro #11562]: #11563
-#11566 := [trans #11564 #11527]: #11565
-#11592 := [monotonicity #11566 #11590]: #11591
-#11594 := [trans #11592 #11588]: #11593
-#11551 := (iff #4877 true)
-#11546 := (forall (vars (?v0 S11)) (:pat #4871) true)
-#11549 := (iff #11546 true)
-#11550 := [elim-unused]: #11549
-#11547 := (iff #4877 #11546)
-#11544 := (iff #4876 true)
-#11540 := (iff #4876 #11539)
-#11537 := (iff #4875 #4873)
-#11533 := (iff #4875 #11532)
-#11530 := (iff #4874 true)
-#11531 := [rewrite]: #11530
-#11534 := [monotonicity #11531]: #11533
-#11538 := [trans #11534 #11536]: #11537
-#11541 := [monotonicity #11538]: #11540
-#11545 := [trans #11541 #11543]: #11544
-#11548 := [quant-intro #11545]: #11547
-#11552 := [trans #11548 #11550]: #11551
-#11596 := [monotonicity #11552 #11594]: #11595
-#11598 := [trans #11596 #11588]: #11597
-#11528 := (iff #4867 true)
-#11524 := (iff #4867 #11523)
-#11521 := (iff #4866 true)
-#11522 := [rewrite]: #11521
-#11525 := [quant-intro #11522]: #11524
-#11529 := [trans #11525 #11527]: #11528
-#11600 := [monotonicity #11529 #11598]: #11599
-#11602 := [trans #11600 #11588]: #11601
-#12169 := [monotonicity #11602 #12166]: #12168
-#12174 := [trans #12169 #12172]: #12173
-#12177 := [monotonicity #12174]: #12176
-#12182 := [trans #12177 #12180]: #12181
-#12185 := [monotonicity #12182]: #12184
-#12189 := [trans #12185 #12187]: #12188
-#12192 := [monotonicity #12189]: #12191
-#12197 := [trans #12192 #12195]: #12196
-#12200 := [monotonicity #12197]: #12199
-#12204 := [trans #12200 #12202]: #12203
-#12207 := [monotonicity #12204]: #12206
-#12212 := [trans #12207 #12210]: #12211
-#12215 := [monotonicity #12212]: #12214
-#12219 := [trans #12215 #12217]: #12218
-#11519 := (iff #4856 true)
-#11514 := (implies true true)
-#11517 := (iff #11514 true)
-#11518 := [rewrite]: #11517
-#11515 := (iff #4856 #11514)
-#11512 := (iff #4855 true)
-#11507 := (implies #4795 true)
-#11510 := (iff #11507 true)
-#11511 := [rewrite]: #11510
-#11508 := (iff #4855 #11507)
-#11505 := (iff #4854 true)
-#11472 := (or #11471 #11463)
-#11480 := (or #11404 #11472)
-#11495 := (or #11404 #11480)
-#11500 := (implies false #11495)
-#11503 := (iff #11500 true)
-#11504 := [rewrite]: #11503
-#11501 := (iff #4854 #11500)
-#11498 := (iff #4853 #11495)
-#11492 := (implies #4795 #11480)
-#11496 := (iff #11492 #11495)
-#11497 := [rewrite]: #11496
-#11493 := (iff #4853 #11492)
-#11490 := (iff #4852 #11480)
-#11485 := (implies true #11480)
-#11488 := (iff #11485 #11480)
-#11489 := [rewrite]: #11488
-#11486 := (iff #4852 #11485)
-#11483 := (iff #4851 #11480)
-#11477 := (implies #4795 #11472)
-#11481 := (iff #11477 #11480)
-#11482 := [rewrite]: #11481
-#11478 := (iff #4851 #11477)
-#11475 := (iff #4850 #11472)
-#11468 := (implies #4812 #11463)
-#11473 := (iff #11468 #11472)
-#11474 := [rewrite]: #11473
-#11469 := (iff #4850 #11468)
-#11470 := [monotonicity #11467]: #11469
-#11476 := [trans #11470 #11474]: #11475
-#11479 := [monotonicity #11476]: #11478
-#11484 := [trans #11479 #11482]: #11483
-#11487 := [monotonicity #11484]: #11486
-#11491 := [trans #11487 #11489]: #11490
-#11494 := [monotonicity #11491]: #11493
-#11499 := [trans #11494 #11497]: #11498
-#11502 := [monotonicity #11314 #11499]: #11501
-#11506 := [trans #11502 #11504]: #11505
-#11509 := [monotonicity #11506]: #11508
-#11513 := [trans #11509 #11511]: #11512
-#11516 := [monotonicity #11513]: #11515
-#11520 := [trans #11516 #11518]: #11519
-#12222 := [monotonicity #11520 #12219]: #12221
-#12226 := [trans #12222 #12224]: #12225
-#12229 := [monotonicity #12226]: #12228
-#12234 := [trans #12229 #12232]: #12233
-#12237 := [monotonicity #12234]: #12236
-#12243 := [trans #12237 #12241]: #12242
-#11311 := (iff #4801 #11310)
-#11308 := (iff #4800 #11305)
-#11302 := (implies #1522 #11299)
-#11306 := (iff #11302 #11305)
-#11307 := [rewrite]: #11306
-#11303 := (iff #4800 #11302)
-#11300 := (iff #4799 #11299)
-#11301 := [rewrite]: #11300
-#11304 := [monotonicity #11301]: #11303
-#11309 := [trans #11304 #11307]: #11308
-#11312 := [quant-intro #11309]: #11311
-#12246 := [monotonicity #11312 #12243]: #12245
-#12252 := [trans #12246 #12250]: #12251
-#12255 := [monotonicity #12252]: #12254
-#12261 := [trans #12255 #12259]: #12260
-#12264 := [monotonicity #12261]: #12263
-#12269 := [trans #12264 #12267]: #12268
-#12272 := [monotonicity #12269]: #12271
-#12278 := [trans #12272 #12276]: #12277
-#12281 := [monotonicity #12278]: #12280
-#12287 := [trans #12281 #12285]: #12286
-#12290 := [monotonicity #12287]: #12289
-#12296 := [trans #12290 #12294]: #12295
-#12299 := [monotonicity #12296]: #12298
-#12303 := [trans #12299 #12301]: #12302
-#12306 := [monotonicity #12303]: #12305
-#12312 := [trans #12306 #12310]: #12311
-#12315 := [monotonicity #12312]: #12314
-#11296 := (iff #4779 #11295)
-#11293 := (iff #4778 #11290)
-#11287 := (implies #1522 #11284)
-#11291 := (iff #11287 #11290)
-#11292 := [rewrite]: #11291
-#11288 := (iff #4778 #11287)
-#11285 := (iff #4777 #11284)
-#11286 := [rewrite]: #11285
-#11289 := [monotonicity #11286]: #11288
-#11294 := [trans #11289 #11292]: #11293
-#11297 := [quant-intro #11294]: #11296
-#12318 := [monotonicity #11297 #12315]: #12317
-#12324 := [trans #12318 #12322]: #12323
-#12327 := [monotonicity #11297 #12324]: #12326
-#12330 := [monotonicity #12327]: #12329
-#12336 := [trans #12330 #12334]: #12335
-#12339 := [monotonicity #12336]: #12338
-#11281 := (iff #4770 #11280)
-#11278 := (iff #4769 #11277)
-#11275 := (iff #4768 #4767)
-#11276 := [rewrite]: #11275
-#11279 := [monotonicity #11276]: #11278
-#11282 := [monotonicity #11279]: #11281
-#12342 := [monotonicity #11282 #12339]: #12341
-#12348 := [trans #12342 #12346]: #12347
-#12351 := [monotonicity #12348]: #12350
-#12357 := [trans #12351 #12355]: #12356
-#12360 := [monotonicity #12357]: #12359
-#12366 := [trans #12360 #12364]: #12365
-#12369 := [monotonicity #12366]: #12368
-#12375 := [trans #12369 #12373]: #12374
-#12378 := [monotonicity #12375]: #12377
-#12384 := [trans #12378 #12382]: #12383
-#12387 := [monotonicity #12384]: #12386
-#12393 := [trans #12387 #12391]: #12392
-#12396 := [monotonicity #12393]: #12395
-#12399 := [monotonicity #12396]: #12398
-#12405 := [trans #12399 #12403]: #12404
-#12408 := [monotonicity #12405]: #12407
-#12411 := [monotonicity #12408]: #12410
-#12417 := [trans #12411 #12415]: #12416
-#12420 := [monotonicity #12417]: #12419
-#12423 := [monotonicity #12420]: #12422
-#12429 := [trans #12423 #12427]: #12428
-#11273 := (iff #4724 #11272)
-#11270 := (iff #4723 #11269)
-#11271 := [rewrite]: #11270
-#11274 := [quant-intro #11271]: #11273
-#12432 := [monotonicity #11274 #12429]: #12431
-#12438 := [trans #12432 #12436]: #12437
-#12441 := [monotonicity #12438]: #12440
-#12447 := [trans #12441 #12445]: #12446
-#12450 := [monotonicity #12447]: #12449
-#12456 := [trans #12450 #12454]: #12455
-#12459 := [monotonicity #12456]: #12458
-#12465 := [trans #12459 #12463]: #12464
-#12468 := [monotonicity #12465]: #12467
-#12474 := [trans #12468 #12472]: #12473
-#12477 := [monotonicity #12474]: #12476
-#12483 := [trans #12477 #12481]: #12482
-#12486 := [monotonicity #12483]: #12485
-#12492 := [trans #12486 #12490]: #12491
-#12495 := [monotonicity #12492]: #12494
-#12499 := [trans #12495 #12497]: #12498
-#12502 := [monotonicity #12499]: #12501
-#12508 := [trans #12502 #12506]: #12507
-#12511 := [monotonicity #12508]: #12510
-#12517 := [trans #12511 #12515]: #12516
-#12520 := [monotonicity #12517]: #12519
-#12526 := [trans #12520 #12524]: #12525
-#12529 := [monotonicity #12526]: #12528
-#12535 := [trans #12529 #12533]: #12534
-#12538 := [monotonicity #12535]: #12537
-#12544 := [trans #12538 #12542]: #12543
-#12547 := [monotonicity #12544]: #12546
-#12553 := [trans #12547 #12551]: #12552
-#12556 := [monotonicity #12553]: #12555
-#12560 := [trans #12556 #12558]: #12559
-#12563 := [monotonicity #12560]: #12562
-#13451 := [trans #12563 #13449]: #13450
-#11268 := [asserted]: #5117
-#13452 := [mp #11268 #13451]: #13447
-#13464 := [not-or-elim #13452]: #13334
-#13467 := [and-elim #13464]: #4666
-#1254 := (f118 f123 #984)
-#4317 := (f45 #1254 #1287)
-#4318 := (pattern #4317)
-#2484 := (f55 f206 #984)
-#1329 := (f113 f114 #1287)
-#4320 := (f87 #1329 #2484)
-#4321 := (= #984 #4320)
-#4319 := (= #4317 f1)
-#11084 := (not #4319)
-#11085 := (or #11084 #4321)
-#11088 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #11085)
-#16890 := (~ #11088 #11088)
-#16888 := (~ #11085 #11085)
-#16889 := [refl]: #16888
-#16891 := [nnf-pos #16889]: #16890
-#4322 := (implies #4319 #4321)
-#4323 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #4322)
-#11089 := (iff #4323 #11088)
-#11086 := (iff #4322 #11085)
-#11087 := [rewrite]: #11086
-#11090 := [quant-intro #11087]: #11089
-#11083 := [asserted]: #4323
-#11093 := [mp #11083 #11090]: #11088
-#16892 := [mp~ #11093 #16891]: #11088
-#23412 := (not #4666)
-#23430 := (not #11088)
-#23431 := (or #23430 #23412 #23426)
-#23427 := (or #23412 #23426)
-#23432 := (or #23430 #23427)
-#23434 := (iff #23432 #23431)
-#23435 := [rewrite]: #23434
-#23433 := [quant-inst #4658 #4652]: #23432
-#23436 := [mp #23433 #23435]: #23431
-#24979 := [unit-resolution #23436 #16892 #13467]: #23426
-#23932 := [symm #24979]: #23931
-#23934 := [monotonicity #23932]: #23933
-#23936 := [trans #23934 #23916]: #23935
-#23938 := [monotonicity #23936]: #23937
-#23940 := [trans #23938 #23915]: #23939
-#23930 := [monotonicity #23940]: #23929
-#23951 := [trans #23930 #23949]: #23950
-#23953 := [symm #23951]: #23952
-#23956 := [monotonicity #23953]: #23955
-#21 := (= f5 f6)
-#22 := (not #21)
-decl f4 :: S2
-#8 := f4
-#19 := (= f4 f6)
-#20 := (not #19)
-#17 := (= f4 f5)
-#18 := (not #17)
-#12 := (= f3 f5)
-#13 := (not #12)
-#9 := (= f3 f4)
-#10 := (not #9)
-#5155 := (and #10 #13 #16 #18 #20 #22)
-#23 := (and #22 true)
-#24 := (and #20 #23)
-#25 := (and #18 #24)
-#26 := (and #16 #25)
-#27 := (and #13 #26)
-#28 := (and #10 #27)
-#5158 := (iff #28 #5155)
-#5140 := (and #20 #22)
-#5143 := (and #18 #5140)
-#5146 := (and #16 #5143)
-#5149 := (and #13 #5146)
-#5152 := (and #10 #5149)
-#5156 := (iff #5152 #5155)
-#5157 := [rewrite]: #5156
-#5153 := (iff #28 #5152)
-#5150 := (iff #27 #5149)
-#5147 := (iff #26 #5146)
-#5144 := (iff #25 #5143)
-#5141 := (iff #24 #5140)
-#5138 := (iff #23 #22)
-#5139 := [rewrite]: #5138
-#5142 := [monotonicity #5139]: #5141
-#5145 := [monotonicity #5142]: #5144
-#5148 := [monotonicity #5145]: #5147
-#5151 := [monotonicity #5148]: #5150
-#5154 := [monotonicity #5151]: #5153
-#5159 := [trans #5154 #5157]: #5158
-#5137 := [asserted]: #28
-#5160 := [mp #5137 #5159]: #5155
-#5163 := [and-elim #5160]: #16
-#23957 := [mp #5163 #23956]: #23954
-#23797 := (not #23789)
-#23800 := (not #23785)
-#23982 := (iff #12412 #23800)
-#23980 := (iff #4733 #23785)
-#23967 := (iff #23785 #4733)
-#23965 := (= #23784 #4732)
-#23960 := (= #23776 #4730)
-#23947 := (= #23775 #4729)
-#23959 := [monotonicity #23932]: #23947
-#23961 := [monotonicity #23959 #23932]: #23960
-#23966 := [monotonicity #23961]: #23965
-#23979 := [monotonicity #23966]: #23967
-#23981 := [symm #23979]: #23980
-#23983 := [monotonicity #23981]: #23982
-#23946 := [hypothesis]: #12412
-#23984 := [mp #23946 #23983]: #23800
-#23803 := (not #23790)
-#23804 := (or #23803 #23785 #23797)
-#23805 := [def-axiom]: #23804
-#23985 := [unit-resolution #23805 #23984 #23945]: #23797
-#23862 := (f71 #4667 #23413)
-#23863 := (= #23862 f1)
-#13468 := [and-elim #13464]: #4669
-#23986 := (= #23862 #4668)
-#23987 := [monotonicity #23932]: #23986
-#23988 := [trans #23987 #13468]: #23863
-#23858 := (f118 f123 #23413)
-#23859 := (f45 #23858 #23693)
-#23860 := (= #23859 f1)
-#23973 := (= #23859 #4665)
-#23974 := (= #23858 #4664)
-#23975 := [monotonicity #23932]: #23974
-#23976 := [monotonicity #23975 #23936]: #23973
-#23977 := [trans #23976 #13467]: #23860
-#23864 := (not #23863)
-#23861 := (not #23860)
-#24002 := (or #23861 #23864 #23866 #23789)
-#23699 := (f82 #4661 #23413)
-#23841 := (= #23699 f85)
-#13466 := [and-elim #13464]: #4663
-#23978 := (= #23699 #4662)
-#23994 := [monotonicity #23932]: #23978
-#23995 := [trans #23994 #13466]: #23841
-#13465 := [and-elim #13464]: #4660
-#23993 := (= #23704 #4659)
-#23996 := [monotonicity #23932]: #23993
-#23997 := [trans #23996 #13465]: #23705
-#23694 := (f45 f79 #23693)
-#23697 := (= #23694 f1)
-#13470 := [and-elim #13464]: #4674
-#23998 := (= #23694 #4673)
-#24003 := [monotonicity #23936]: #23998
-#24004 := [trans #24003 #13470]: #23697
-#13472 := [not-or-elim #13452]: #4687
-#13474 := [and-elim #13472]: #4686
-#1029 := (:var 1 S10)
-#3740 := (f334 f336 #1029)
-#3741 := (f125 #3740 #996)
-#3742 := (f71 #3741 #996)
-#3743 := (pattern #3742)
-#3750 := (= #3742 f1)
-#1000 := (f62 f63 #996)
-#1065 := (f45 f79 #1000)
-#1066 := (= #1065 f1)
-#10922 := (not #1066)
-#1001 := (f61 #1000)
-#1002 := (= #1001 f3)
-#1176 := (f80 f81 #1029)
-#1177 := (f71 #1176 #996)
-#1178 := (= #1177 f1)
-#11048 := (not #1178)
-#1173 := (f118 f123 #996)
-#1174 := (f45 #1173 #1000)
-#1175 := (= #1174 f1)
-#17928 := (not #1175)
-#1169 := (f83 f84 #1029)
-#1170 := (f82 #1169 #996)
-#1171 := (= #1170 f85)
-#17927 := (not #1171)
-#1159 := (f80 f86 #1029)
-#1160 := (f71 #1159 #996)
-#1161 := (= #1160 f1)
-#4045 := (not #1161)
-#1280 := (f115 f131 #1029)
-#1282 := (= #1280 f1)
-#18054 := (not #1282)
-#20507 := (or #18054 #4045 #17927 #17928 #11048 #1002 #10922 #3750)
-#20512 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #20507)
-#1036 := (not #1002)
-#10634 := (and #1282 #1161 #1171 #1175 #1178 #1036 #1066)
-#10637 := (not #10634)
-#10640 := (or #10637 #3750)
-#10643 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #10640)
-#20513 := (iff #10643 #20512)
-#20510 := (iff #10640 #20507)
-#20493 := (or #18054 #4045 #17927 #17928 #11048 #1002 #10922)
-#20504 := (or #20493 #3750)
-#20508 := (iff #20504 #20507)
-#20509 := [rewrite]: #20508
-#20505 := (iff #10640 #20504)
-#20502 := (iff #10637 #20493)
-#20494 := (not #20493)
-#20497 := (not #20494)
-#20500 := (iff #20497 #20493)
-#20501 := [rewrite]: #20500
-#20498 := (iff #10637 #20497)
-#20495 := (iff #10634 #20494)
-#20496 := [rewrite]: #20495
-#20499 := [monotonicity #20496]: #20498
-#20503 := [trans #20499 #20501]: #20502
-#20506 := [monotonicity #20503]: #20505
-#20511 := [trans #20506 #20509]: #20510
-#20514 := [quant-intro #20511]: #20513
-#16533 := (~ #10643 #10643)
-#16531 := (~ #10640 #10640)
-#16532 := [refl]: #16531
-#16534 := [nnf-pos #16532]: #16533
-#3744 := (and #1036 #1066)
-#3745 := (and #1178 #3744)
-#3746 := (and #1175 #3745)
-#3747 := (and #1171 #3746)
-#3748 := (and #1161 #3747)
-#3749 := (and #1282 #3748)
-#3751 := (implies #3749 #3750)
-#3752 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #3751)
-#10646 := (iff #3752 #10643)
-#10626 := (not #3749)
-#10628 := (or #10626 #3750)
-#10631 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #10628)
-#10644 := (iff #10631 #10643)
-#10641 := (iff #10628 #10640)
-#10638 := (iff #10626 #10637)
-#10635 := (iff #3749 #10634)
-#10636 := [rewrite]: #10635
-#10639 := [monotonicity #10636]: #10638
-#10642 := [monotonicity #10639]: #10641
-#10645 := [quant-intro #10642]: #10644
-#10632 := (iff #3752 #10631)
-#10629 := (iff #3751 #10628)
-#10630 := [rewrite]: #10629
-#10633 := [quant-intro #10630]: #10632
-#10647 := [trans #10633 #10645]: #10646
-#10625 := [asserted]: #3752
-#10648 := [mp #10625 #10647]: #10643
-#16535 := [mp~ #10648 #16534]: #10643
-#20515 := [mp #16535 #20514]: #20512
-#23698 := (not #23697)
-#23842 := (not #23841)
-#22428 := (not #4686)
-#23846 := (not #20512)
-#23844 := (or #23846 #22428 #23730 #23842 #23861 #23864 #23866 #23698 #23789)
-#23867 := (or #22428 #23730 #23842 #23861 #23864 #23866 #23698 #23789)
-#23847 := (or #23846 #23867)
-#23849 := (iff #23847 #23844)
-#23870 := [rewrite]: #23849
-#23848 := [quant-inst #4649 #23413]: #23847
-#23872 := [mp #23848 #23870]: #23844
-#24005 := [unit-resolution #23872 #20515 #13474 #24004 #23997 #23995]: #24002
-#24006 := [unit-resolution #24005 #23977 #23988 #23985 #23957]: false
-#24007 := [lemma #24006]: #4733
-#24421 := [trans #23966 #24007]: #23785
-#23794 := (or #23803 #23800 #23789)
-#23795 := [def-axiom]: #23794
-#24422 := [unit-resolution #23795 #24421 #23945]: #23789
-#23840 := (or #23797 #23839)
-#982 := (:var 2 S10)
-#3671 := (f334 f336 #982)
-#3672 := (f125 #3671 #984)
-#3673 := (f71 #3672 #996)
-#3753 := (pattern #3673)
-#3713 := (f66 f129 #980)
-#3754 := (f65 #3713 #993)
-#3755 := (f50 #1004 #3754)
-#3756 := (pattern #3755)
-#992 := (f59 f60 #980)
-#3658 := (f58 #992 #984)
-#3763 := (f329 f330 #3658)
-#3764 := (f50 #3762 #3763)
-#3765 := (= #3764 f1)
-#3760 := (= #3755 f1)
-#20516 := (not #3760)
-#2628 := (f62 f63 #993)
-#3757 := (f45 f337 #2628)
-#3758 := (= #3757 f1)
-#20531 := (or #3758 #20516 #3765)
-#20536 := (forall (vars (?v3 S11)) (:pat #3756) #20531)
-#20542 := (not #20536)
-#1219 := (f80 f86 #982)
-#1220 := (f71 #1219 #984)
-#1225 := (= #1220 f1)
-#3930 := (not #1225)
-#1021 := (f66 f67 #982)
-#3645 := (f65 #1021 #996)
-#2942 := (f51 f64 #984)
-#3646 := (f50 #2942 #3645)
-#3651 := (= #3646 f1)
-#20351 := (not #3651)
-#20543 := (or #20351 #3930 #20542)
-#20544 := (not #20543)
-#3674 := (= #3673 f1)
-#10666 := (not #3674)
-#20549 := (or #10666 #20544)
-#20552 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #20549)
-#3759 := (not #3758)
-#3761 := (and #3759 #3760)
-#10650 := (not #3761)
-#10651 := (or #10650 #3765)
-#10654 := (forall (vars (?v3 S11)) (:pat #3756) #10651)
-#10675 := (and #3651 #1225 #10654)
-#10678 := (or #10666 #10675)
-#10681 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #10678)
-#20553 := (iff #10681 #20552)
-#20550 := (iff #10678 #20549)
-#20547 := (iff #10675 #20544)
-#20539 := (and #3651 #1225 #20536)
-#20545 := (iff #20539 #20544)
-#20546 := [rewrite]: #20545
-#20540 := (iff #10675 #20539)
-#20537 := (iff #10654 #20536)
-#20534 := (iff #10651 #20531)
-#20517 := (or #3758 #20516)
-#20528 := (or #20517 #3765)
-#20532 := (iff #20528 #20531)
-#20533 := [rewrite]: #20532
-#20529 := (iff #10651 #20528)
-#20526 := (iff #10650 #20517)
-#20518 := (not #20517)
-#20521 := (not #20518)
-#20524 := (iff #20521 #20517)
-#20525 := [rewrite]: #20524
-#20522 := (iff #10650 #20521)
-#20519 := (iff #3761 #20518)
-#20520 := [rewrite]: #20519
-#20523 := [monotonicity #20520]: #20522
-#20527 := [trans #20523 #20525]: #20526
-#20530 := [monotonicity #20527]: #20529
-#20535 := [trans #20530 #20533]: #20534
-#20538 := [quant-intro #20535]: #20537
-#20541 := [monotonicity #20538]: #20540
-#20548 := [trans #20541 #20546]: #20547
-#20551 := [monotonicity #20548]: #20550
-#20554 := [quant-intro #20551]: #20553
-#16550 := (~ #10681 #10681)
-#16548 := (~ #10678 #10678)
-#16546 := (~ #10675 #10675)
-#16544 := (~ #10654 #10654)
-#16542 := (~ #10651 #10651)
-#16543 := [refl]: #16542
-#16545 := [nnf-pos #16543]: #16544
-#16540 := (~ #1225 #1225)
-#16541 := [refl]: #16540
-#16538 := (~ #3651 #3651)
-#16539 := [refl]: #16538
-#16547 := [monotonicity #16539 #16541 #16545]: #16546
-#16536 := (~ #10666 #10666)
-#16537 := [refl]: #16536
-#16549 := [monotonicity #16537 #16547]: #16548
-#16551 := [nnf-pos #16549]: #16550
-#3766 := (implies #3761 #3765)
-#3767 := (forall (vars (?v3 S11)) (:pat #3756) #3766)
-#3768 := (and #1225 #3767)
-#3769 := (and #3651 #3768)
-#3770 := (implies #3674 #3769)
-#3771 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #3770)
-#10684 := (iff #3771 #10681)
-#10657 := (and #1225 #10654)
-#10660 := (and #3651 #10657)
-#10667 := (or #10666 #10660)
-#10672 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #10667)
-#10682 := (iff #10672 #10681)
-#10679 := (iff #10667 #10678)
-#10676 := (iff #10660 #10675)
-#10677 := [rewrite]: #10676
-#10680 := [monotonicity #10677]: #10679
-#10683 := [quant-intro #10680]: #10682
-#10673 := (iff #3771 #10672)
-#10670 := (iff #3770 #10667)
-#10663 := (implies #3674 #10660)
-#10668 := (iff #10663 #10667)
-#10669 := [rewrite]: #10668
-#10664 := (iff #3770 #10663)
-#10661 := (iff #3769 #10660)
-#10658 := (iff #3768 #10657)
-#10655 := (iff #3767 #10654)
-#10652 := (iff #3766 #10651)
-#10653 := [rewrite]: #10652
-#10656 := [quant-intro #10653]: #10655
-#10659 := [monotonicity #10656]: #10658
-#10662 := [monotonicity #10659]: #10661
-#10665 := [monotonicity #10662]: #10664
-#10671 := [trans #10665 #10669]: #10670
-#10674 := [quant-intro #10671]: #10673
-#10685 := [trans #10674 #10683]: #10684
-#10649 := [asserted]: #3771
-#10686 := [mp #10649 #10685]: #10681
-#16552 := [mp~ #10686 #16551]: #10681
-#20555 := [mp #16552 #20554]: #20552
-#23816 := (not #20552)
-#23817 := (or #23816 #23797 #23839)
-#23813 := (or #23816 #23840)
-#23850 := (iff #23813 #23817)
-#23851 := [rewrite]: #23850
-#23818 := [quant-inst #4649 #23413 #23413]: #23813
-#23873 := [mp #23818 #23851]: #23817
-#24409 := [unit-resolution #23873 #20555]: #23840
-#24410 := [unit-resolution #24409 #24422]: #23839
-#23874 := (or #23838 #23821)
-#23875 := [def-axiom]: #23874
-#24408 := [unit-resolution #23875 #24410]: #23821
-#24413 := (= #24086 #23820)
-#24411 := (= #24085 #23810)
-#24985 := (= #24084 #23413)
-#24983 := (= #24084 #4658)
-#24981 := (= f445 #4657)
-#23487 := (= #4657 f445)
-#4357 := (f55 f206 #4356)
-#4358 := (= #4357 #1197)
-#21824 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #21823) #4358)
-#4359 := (forall (vars (?v0 S4) (?v1 Int)) #4358)
-#21827 := (iff #4359 #21824)
-#21825 := (iff #4358 #4358)
-#21826 := [refl]: #21825
-#21828 := [quant-intro #21826]: #21827
-#16910 := (~ #4359 #4359)
-#16908 := (~ #4358 #4358)
-#16909 := [refl]: #16908
-#16911 := [nnf-pos #16909]: #16910
-#11096 := [asserted]: #4359
-#16912 := [mp~ #11096 #16911]: #4359
-#21829 := [mp #16912 #21828]: #21824
-#23460 := (not #21824)
-#23492 := (or #23460 #23487)
-#23493 := [quant-inst #356 #4655]: #23492
-#24980 := [unit-resolution #23493 #21829]: #23487
-#24982 := [symm #24980]: #24981
-#24984 := [monotonicity #24982]: #24983
-#24986 := [trans #24984 #24979]: #24985
-#24412 := [monotonicity #24986]: #24411
-#24414 := [monotonicity #24412]: #24413
-#24415 := [trans #24414 #24408]: #24087
-#24088 := (not #24087)
-#24420 := [hypothesis]: #24088
-#24416 := [unit-resolution #24420 #24415]: false
-#24429 := [lemma #24416]: #24087
-#21067 := (not #12642)
-#21969 := (or #21067 #12828 #11892 #11883 #12777 #21027 #21936)
-#21972 := (not #21969)
-#21951 := (or #17171 #17174 #21948)
-#21954 := (not #21951)
-#21957 := (or #17171 #17174 #21954)
-#21960 := (not #21957)
-#21963 := (or #12777 #21067 #12829 #21960)
-#21966 := (not #21963)
-#21975 := (or #21966 #21972)
-#21978 := (not #21975)
-#21981 := (or #17171 #17180 #12777 #21067 #21978)
-#21984 := (not #21981)
-#21987 := (or #17171 #17180 #21984)
-#21990 := (not #21987)
-#21993 := (or #17171 #17174 #21990)
-#21996 := (not #21993)
-#21999 := (or #17171 #17174 #21996)
-#22002 := (not #21999)
-#22005 := (or #12777 #21067 #12922 #22002)
-#22008 := (not #22005)
-#21158 := (not #4826)
-#21159 := (or #7428 #18181 #12950 #21158)
-#22019 := (forall (vars (?v0 Int)) (:pat #21878) #21159)
-#22024 := (not #22019)
-#21150 := (or #7428 #18181 #12950 #12964)
-#22011 := (forall (vars (?v0 Int)) (:pat #21878) #21150)
-#22016 := (not #22011)
-#22027 := (or #22016 #22024)
-#22030 := (not #22027)
-decl ?v0!15 :: Int
-#17354 := ?v0!15
-#17361 := (f140 #4734 ?v0!15)
-#17362 := (f139 #17361 f35)
-#17363 := (f55 #4748 #17362)
-#17678 := (* -1::Int #17363)
-#17679 := (+ f468 #17678)
-#17680 := (>= #17679 0::Int)
-#17665 := (* -1::Int ?v0!15)
-#17666 := (+ f443 #17665)
-#17667 := (<= #17666 0::Int)
-#17356 := (<= ?v0!15 4294967295::Int)
-#21124 := (not #17356)
-#17355 := (>= ?v0!15 0::Int)
-#21123 := (not #17355)
-#21139 := (or #21123 #21124 #17667 #17680)
-#21144 := (not #21139)
-#22033 := (or #21144 #22030)
-#22036 := (not #22033)
-#22039 := (or #12923 #12777 #21067 #11388 #11379 #11370 #11361 #22036)
-#22042 := (not #22039)
-#22045 := (or #22008 #22042)
-#22048 := (not #22045)
-#21211 := (not #4930)
-#21210 := (not #4925)
-#15031 := (not #4811)
-#21209 := (not #4806)
-#20942 := (or #7428 #18181 #13105 #13119)
-#21887 := (forall (vars (?v0 Int)) (:pat #21878) #20942)
-#21892 := (not #21887)
-#13751 := (<= f464 4294967295::Int)
-#21207 := (not #13751)
-#21206 := (not #13145)
-#13766 := (<= f463 4294967295::Int)
-#21205 := (not #13766)
-#2561 := 255::Int
-#13785 := (<= f462 255::Int)
-#21204 := (not #13785)
-#21203 := (not #13167)
-#17117 := (not #4780)
-#22051 := (or #12634 #17117 #21203 #21204 #21205 #21206 #21207 #12777 #21067 #13142 #21892 #13095 #21209 #13090 #15031 #12144 #12135 #12126 #12117 #21210 #21211 #22048)
-#22054 := (not #22051)
-#25641 := (iff #4750 #4780)
-#25637 := (iff #4780 #4750)
-#25638 := [commutativity]: #25637
-#25642 := [symm #25638]: #25641
-#22057 := (or #12634 #17117 #22054)
-#22060 := (not #22057)
-#20931 := (or #7428 #18181 #12601 #12613)
-#21879 := (forall (vars (?v0 Int)) (:pat #21878) #20931)
-#21884 := (not #21879)
-#22063 := (or #21884 #22060)
-#22066 := (not #22063)
-decl ?v0!13 :: Int
-#17090 := ?v0!13
-#17096 := (f140 #4734 ?v0!13)
-#17097 := (f139 #17096 f35)
-#17098 := (f55 #4748 #17097)
-#17099 := (* -1::Int #17098)
-#17100 := (+ f461 #17099)
-#17101 := (>= #17100 0::Int)
-#17095 := (>= ?v0!13 1::Int)
-#17092 := (<= ?v0!13 4294967295::Int)
-#20905 := (not #17092)
-#17091 := (>= ?v0!13 0::Int)
-#20904 := (not #17091)
-#20920 := (or #20904 #20905 #17095 #17101)
-#20925 := (not #20920)
-#22069 := (or #20925 #22066)
-#22072 := (not #22069)
-#22075 := (or #12598 #22072)
-#22078 := (not #22075)
-#22081 := (or #12598 #22078)
-#22084 := (not #22081)
-#17067 := (not #4745)
-#17058 := (not #4739)
-#22087 := (or #17058 #17067 #12379 #12370 #12361 #12352 #22084)
-#22090 := (not #22087)
-#24199 := (f71 #24190 #23991)
-#24200 := (= #24199 f1)
-#24197 := (f82 #4661 #23991)
-#24198 := (= #24197 f85)
-#24201 := (or #24198 #24200)
-#24202 := (not #24201)
-#24171 := (f62 f63 #23991)
-#24172 := (f61 #24171)
-#24173 := (= #24172 f3)
-#24203 := (or #24173 #24202)
-#24204 := (not #24203)
-#24175 := (f134 #4883 #23991)
-#24179 := (f235 f236 #24175)
-#24191 := (f71 #24190 #24179)
-#24192 := (= #24191 f1)
-#24188 := (f82 #4661 #24179)
-#24189 := (= #24188 f85)
-#24193 := (or #24189 #24192)
-#24194 := (not #24193)
-#24185 := (f62 f63 #24179)
-#24186 := (f61 #24185)
-#24187 := (= #24186 f3)
-#24180 := (f71 #4650 #24179)
-#24181 := (= #24180 f1)
-#24182 := (not #24181)
-#24176 := (f155 f237 #24175)
-#24177 := (= #24176 f1)
-#24178 := (not #24177)
-#24183 := (or #24178 #24182)
-#24184 := (not #24183)
-#24174 := (not #24173)
-#24195 := (or #24174 #24184 #24187 #24194)
-#24196 := (not #24195)
-#24205 := (or #24196 #24204)
-#24206 := (not #24205)
-#24168 := (f71 #4667 #23991)
-#24169 := (= #24168 f1)
-#23963 := (f134 #4883 #4736)
-#24093 := (f155 f237 #23963)
-#24094 := (= #24093 f1)
-#17061 := (not #4741)
-#24095 := (or #17061 #24094)
-#24096 := (not #24095)
-#24430 := [hypothesis]: #24095
-#13463 := [not-or-elim #13452]: #12635
-decl f78 :: S7
-#1061 := f78
-#4476 := (f45 f78 f35)
-#4477 := (= #4476 f1)
-#11138 := [asserted]: #4477
-#1291 := (f45 f78 #1287)
-#1306 := (:var 1 Int)
-#1917 := (:var 4 Int)
-#3555 := (f87 #1329 #1917)
-#3556 := (f153 f154 #3555)
-#3557 := (f140 #3556 #1306)
-#3558 := (f139 #3557 #1287)
-#2614 := (:var 5 S10)
-#3576 := (f83 f84 #2614)
-#3577 := (f82 #3576 #3558)
-#2604 := (:var 3 S11)
-#3552 := (f66 f67 #2614)
-#3553 := (f65 #3552 #2604)
-#1336 := (:var 2 Int)
-#3547 := (f216 f217 #1287)
-#3548 := (f215 #3547 #1336)
-#3549 := (f113 f114 #3548)
-#3550 := (f87 #3549 #1917)
-#3551 := (f51 f64 #3550)
-#3554 := (f50 #3551 #3553)
-#3578 := (pattern #3554 #3577 #1291)
-#2858 := (f137 f138 #2614)
-#2859 := (f135 f136 #2858)
-#3574 := (f134 #2859 #3558)
-#3575 := (pattern #3554 #3574 #1291)
-#3581 := (f155 f237 #3574)
-#3582 := (= #3581 f1)
-#2871 := (f80 f81 #2614)
-#3579 := (f71 #2871 #3558)
-#3580 := (= #3579 f1)
-#20261 := (not #3580)
-#20262 := (or #20261 #3582)
-#20263 := (not #20262)
-#6710 := (* -1::Int #1336)
-#8256 := (+ #1306 #6710)
-#8810 := (>= #8256 0::Int)
-#6842 := (>= #1306 0::Int)
-#18148 := (not #6842)
-#3563 := (= #3554 f1)
-#20237 := (not #3563)
-#1292 := (= #1291 f1)
-#10761 := (not #1292)
-#3561 := (f115 f131 #2614)
-#3562 := (= #3561 f1)
-#20236 := (not #3562)
-#20269 := (or #20236 #10761 #20237 #18148 #8810 #20263)
-#20274 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #20269)
-#3583 := (not #3582)
-#3584 := (and #3580 #3583)
-#9575 := (not #8810)
-#10400 := (and #3562 #1292 #3563 #6842 #9575)
-#10405 := (not #10400)
-#10424 := (or #10405 #3584)
-#10427 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #10424)
-#20275 := (iff #10427 #20274)
-#20272 := (iff #10424 #20269)
-#20238 := (or #20236 #10761 #20237 #18148 #8810)
-#20266 := (or #20238 #20263)
-#20270 := (iff #20266 #20269)
-#20271 := [rewrite]: #20270
-#20267 := (iff #10424 #20266)
-#20264 := (iff #3584 #20263)
-#20265 := [rewrite]: #20264
-#20247 := (iff #10405 #20238)
-#20239 := (not #20238)
-#20242 := (not #20239)
-#20245 := (iff #20242 #20238)
-#20246 := [rewrite]: #20245
-#20243 := (iff #10405 #20242)
-#20240 := (iff #10400 #20239)
-#20241 := [rewrite]: #20240
-#20244 := [monotonicity #20241]: #20243
-#20248 := [trans #20244 #20246]: #20247
-#20268 := [monotonicity #20248 #20265]: #20267
-#20273 := [trans #20268 #20271]: #20272
-#20276 := [quant-intro #20273]: #20275
-#16441 := (~ #10427 #10427)
-#16439 := (~ #10424 #10424)
-#16440 := [refl]: #16439
-#16442 := [nnf-pos #16440]: #16441
-#2706 := (< #1306 #1336)
-#1507 := (<= 0::Int #1306)
-#2707 := (and #1507 #2706)
-#3564 := (and #3563 #2707)
-#3565 := (and #1292 #3564)
-#3566 := (and #3562 #3565)
-#3585 := (implies #3566 #3584)
-#3586 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #3585)
-#10430 := (iff #3586 #10427)
-#10384 := (not #3566)
-#10418 := (or #10384 #3584)
-#10421 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #10418)
-#10428 := (iff #10421 #10427)
-#10425 := (iff #10418 #10424)
-#10406 := (iff #10384 #10405)
-#10403 := (iff #3566 #10400)
-#9578 := (and #6842 #9575)
-#10391 := (and #3563 #9578)
-#10394 := (and #1292 #10391)
-#10397 := (and #3562 #10394)
-#10401 := (iff #10397 #10400)
-#10402 := [rewrite]: #10401
-#10398 := (iff #3566 #10397)
-#10395 := (iff #3565 #10394)
-#10392 := (iff #3564 #10391)
-#9579 := (iff #2707 #9578)
-#9576 := (iff #2706 #9575)
-#9577 := [rewrite]: #9576
-#6841 := (iff #1507 #6842)
-#6843 := [rewrite]: #6841
-#9580 := [monotonicity #6843 #9577]: #9579
-#10393 := [monotonicity #9580]: #10392
-#10396 := [monotonicity #10393]: #10395
-#10399 := [monotonicity #10396]: #10398
-#10404 := [trans #10399 #10402]: #10403
-#10407 := [monotonicity #10404]: #10406
-#10426 := [monotonicity #10407]: #10425
-#10429 := [quant-intro #10426]: #10428
-#10422 := (iff #3586 #10421)
-#10419 := (iff #3585 #10418)
-#10420 := [rewrite]: #10419
-#10423 := [quant-intro #10420]: #10422
-#10431 := [trans #10423 #10429]: #10430
-#10417 := [asserted]: #3586
-#10432 := [mp #10417 #10431]: #10427
-#16443 := [mp~ #10432 #16442]: #10427
-#20277 := [mp #16443 #20276]: #20274
-#22809 := (not #4477)
-#24348 := (not #20274)
-#24349 := (or #24348 #22428 #22809 #24088 #12634 #24096)
-#24091 := (+ 0::Int #12568)
-#24092 := (>= #24091 0::Int)
-#24089 := (>= 0::Int 0::Int)
-#24090 := (not #24089)
-#24097 := (or #22428 #22809 #24088 #24090 #24092 #24096)
-#24372 := (or #24348 #24097)
-#24365 := (iff #24372 #24349)
-#24116 := (or #22428 #22809 #24088 #12634 #24096)
-#24417 := (or #24348 #24116)
-#24344 := (iff #24417 #24349)
-#24364 := [rewrite]: #24344
-#24418 := (iff #24372 #24417)
-#24119 := (iff #24097 #24116)
-#24113 := (or #22428 #22809 #24088 false #12634 #24096)
-#24117 := (iff #24113 #24116)
-#24118 := [rewrite]: #24117
-#24114 := (iff #24097 #24113)
-#24111 := (iff #24092 #12634)
-#24106 := (>= #12568 0::Int)
-#24109 := (iff #24106 #12634)
-#24110 := [rewrite]: #24109
-#24107 := (iff #24092 #24106)
-#24104 := (= #24091 #12568)
-#24105 := [rewrite]: #24104
-#24108 := [monotonicity #24105]: #24107
-#24112 := [trans #24108 #24110]: #24111
-#24102 := (iff #24090 false)
-#24100 := (iff #24090 #4808)
-#24098 := (iff #24089 true)
-#24099 := [rewrite]: #24098
-#24101 := [monotonicity #24099]: #24100
-#24103 := [trans #24101 #11314]: #24102
-#24115 := [monotonicity #24103 #24112]: #24114
-#24120 := [trans #24115 #24118]: #24119
-#24419 := [monotonicity #24120]: #24418
-#24366 := [trans #24419 #24364]: #24365
-#24373 := [quant-inst #4649 #4655 #23413 #4646 #1138 #356]: #24372
-#24367 := [mp #24373 #24366]: #24349
-#24452 := [unit-resolution #24367 #20277 #11138 #13463 #13474 #24429 #24430]: false
-#24453 := [lemma #24452]: #24096
-#24325 := (or #24095 #4741)
-#24326 := [def-axiom]: #24325
-#25074 := [unit-resolution #24326 #24453]: #4741
-#25101 := (= #24168 #4740)
-#25097 := (= #23991 #4736)
-#23992 := (= #4736 #23991)
-#24000 := (f62 f63 #4736)
-#24001 := (= #24000 f35)
-#23483 := (f62 f63 #4656)
-#23484 := (= #23483 f35)
-#23489 := (or #23455 #23484)
-#23490 := [quant-inst #356 #4655]: #23489
-#24454 := [unit-resolution #23490 #21835]: #23484
-#24485 := (= #24000 #23483)
-#24459 := (= #4736 #4656)
-#24041 := (f87 #4654 #4657)
-#24457 := (= #24041 #4656)
-#24458 := [monotonicity #24980]: #24457
-#24044 := (= #4736 #24041)
-#24047 := (not #24044)
-decl f243 :: S54
-#2898 := f243
-#24009 := (f125 f243 #4736)
-#24010 := (f71 #24009 #4656)
-#24023 := (= #24010 f1)
-#24024 := (not #24023)
-#24050 := (or #24024 #24047)
-#24053 := (not #24050)
-#2626 := (f153 f154 #993)
-#2627 := (f140 #2626 #1306)
-#2896 := (f139 #2627 #1287)
-#2897 := (pattern #2896)
-#2904 := (f244 f245 #1287)
-#2905 := (* #1306 #2904)
-#2902 := (f55 f206 #993)
-#2906 := (+ #2902 #2905)
-#2907 := (f87 #1329 #2906)
-#2908 := (= #2896 #2907)
-#19805 := (not #2908)
-#2899 := (f125 f243 #2896)
-#2900 := (f71 #2899 #993)
-#2901 := (= #2900 f1)
-#19804 := (not #2901)
-#19806 := (or #19804 #19805)
-#19807 := (not #19806)
-#19810 := (forall (vars (?v0 S11) (?v1 Int) (?v2 S4)) (:pat #2897) #19807)
-#2909 := (and #2901 #2908)
-#2910 := (forall (vars (?v0 S11) (?v1 Int) (?v2 S4)) (:pat #2897) #2909)
-#19811 := (iff #2910 #19810)
-#19808 := (iff #2909 #19807)
-#19809 := [rewrite]: #19808
-#19812 := [quant-intro #19809]: #19811
-#16084 := (~ #2910 #2910)
-#16082 := (~ #2909 #2909)
-#16083 := [refl]: #16082
-#16085 := [nnf-pos #16083]: #16084
-#9870 := [asserted]: #2910
-#16086 := [mp~ #9870 #16085]: #2910
-#19813 := [mp #16086 #19812]: #19810
-#24299 := (not #19810)
-#24336 := (or #24299 #24053)
-#24025 := (* 0::Int #4624)
-#24026 := (+ #4657 #24025)
-#24027 := (f87 #4654 #24026)
-#24028 := (= #4736 #24027)
-#24029 := (not #24028)
-#24030 := (or #24024 #24029)
-#24031 := (not #24030)
-#24335 := (or #24299 #24031)
-#24337 := (iff #24335 #24336)
-#24301 := (iff #24336 #24336)
-#24339 := [rewrite]: #24301
-#24054 := (iff #24031 #24053)
-#24051 := (iff #24030 #24050)
-#24048 := (iff #24029 #24047)
-#24045 := (iff #24028 #24044)
-#24042 := (= #24027 #24041)
-#24039 := (= #24026 #4657)
-#24034 := (+ #4657 0::Int)
-#24037 := (= #24034 #4657)
-#24038 := [rewrite]: #24037
-#24035 := (= #24026 #24034)
-#24032 := (= #24025 0::Int)
-#24033 := [rewrite]: #24032
-#24036 := [monotonicity #24033]: #24035
-#24040 := [trans #24036 #24038]: #24039
-#24043 := [monotonicity #24040]: #24042
-#24046 := [monotonicity #24043]: #24045
-#24049 := [monotonicity #24046]: #24048
-#24052 := [monotonicity #24049]: #24051
-#24055 := [monotonicity #24052]: #24054
-#24338 := [monotonicity #24055]: #24337
-#24343 := [trans #24338 #24339]: #24337
-#24300 := [quant-inst #4656 #1138 #356]: #24335
-#24292 := [mp #24300 #24343]: #24336
-#24455 := [unit-resolution #24292 #19813]: #24053
-#24294 := (or #24050 #24044)
-#24350 := [def-axiom]: #24294
-#24456 := [unit-resolution #24350 #24455]: #24044
-#24484 := [trans #24456 #24458]: #24459
-#24486 := [monotonicity #24484]: #24485
-#24487 := [trans #24486 #24454]: #24001
-#24302 := (not #24001)
-#24008 := (iff #4739 #24001)
-#2640 := (f62 f63 #984)
-#3307 := (= #2640 #1287)
-#4324 := (iff #4319 #3307)
-#21817 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #4324)
-#4325 := (forall (vars (?v0 S11) (?v1 S4)) #4324)
-#21820 := (iff #4325 #21817)
-#21818 := (iff #4324 #4324)
-#21819 := [refl]: #21818
-#21821 := [quant-intro #21819]: #21820
-#16895 := (~ #4325 #4325)
-#16893 := (~ #4324 #4324)
-#16894 := [refl]: #16893
-#16896 := [nnf-pos #16894]: #16895
-#11091 := [asserted]: #4325
-#16897 := [mp~ #11091 #16896]: #4325
-#21822 := [mp #16897 #21821]: #21817
-#23440 := (not #21817)
-#24334 := (or #23440 #24008)
-#24303 := [quant-inst #4736 #356]: #24334
-#24368 := [unit-resolution #24303 #21822]: #24008
-#24309 := (not #24008)
-#24358 := (or #24309 #24302)
-#24345 := [hypothesis]: #17058
-#24310 := (or #24309 #4739 #24302)
-#24323 := [def-axiom]: #24310
-#24361 := [unit-resolution #24323 #24345]: #24358
-#24451 := [unit-resolution #24361 #24368]: #24302
-#24488 := [unit-resolution #24451 #24487]: false
-#24483 := [lemma #24488]: #4739
-#24526 := (or #23430 #17058 #23992)
-#23999 := (or #17058 #23992)
-#24527 := (or #23430 #23999)
-#24529 := (iff #24527 #24526)
-#24530 := [rewrite]: #24529
-#24528 := [quant-inst #4736 #356]: #24527
-#24525 := [mp #24528 #24530]: #24526
-#25084 := [unit-resolution #24525 #16892 #24483]: #23992
-#25100 := [symm #25084]: #25097
-#25102 := [monotonicity #25100]: #25101
-#25104 := [trans #25102 #25074]: #24169
-#24170 := (not #24169)
-#24207 := (or #24170 #24206)
-#24208 := (not #24207)
-#24163 := (f71 #4743 #23991)
-#24164 := (= #24163 f1)
-#24209 := (iff #24164 #24208)
-#1373 := (f80 f157 #1029)
-#3957 := (f71 #1373 #996)
-#3958 := (pattern #3957)
-#3976 := (f80 f358 #1029)
-#3983 := (f71 #3976 #996)
-#3984 := (= #3983 f1)
-#3985 := (or #1171 #3984)
-#20658 := (not #3985)
-#20659 := (or #1002 #20658)
-#20660 := (not #20659)
-#1359 := (f137 f138 #1029)
-#1360 := (f135 f136 #1359)
-#3960 := (f134 #1360 #996)
-#3964 := (f235 f236 #3960)
-#3977 := (f71 #3976 #3964)
-#3978 := (= #3977 f1)
-#3973 := (f82 #1169 #3964)
-#3974 := (= #3973 f85)
-#3979 := (or #3974 #3978)
-#20653 := (not #3979)
-#3969 := (f62 f63 #3964)
-#3970 := (f61 #3969)
-#3971 := (= #3970 f3)
-#3965 := (f71 #1159 #3964)
-#3966 := (= #3965 f1)
-#3967 := (not #3966)
-#3961 := (f155 f237 #3960)
-#3962 := (= #3961 f1)
-#3963 := (not #3962)
-#3968 := (or #3963 #3967)
-#20652 := (not #3968)
-#20654 := (or #1036 #20652 #3971 #20653)
-#20655 := (not #20654)
-#20663 := (or #20655 #20660)
-#20669 := (not #20663)
-#20670 := (or #11048 #20669)
-#20671 := (not #20670)
-#3959 := (= #3957 f1)
-#20676 := (iff #3959 #20671)
-#20679 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #20676)
-#3986 := (and #1036 #3985)
-#3972 := (not #3971)
-#10834 := (and #1002 #3968 #3972 #3979)
-#10837 := (or #10834 #3986)
-#10840 := (and #1178 #10837)
-#10843 := (iff #3959 #10840)
-#10846 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #10843)
-#20680 := (iff #10846 #20679)
-#20677 := (iff #10843 #20676)
-#20674 := (iff #10840 #20671)
-#20666 := (and #1178 #20663)
-#20672 := (iff #20666 #20671)
-#20673 := [rewrite]: #20672
-#20667 := (iff #10840 #20666)
-#20664 := (iff #10837 #20663)
-#20661 := (iff #3986 #20660)
-#20662 := [rewrite]: #20661
-#20656 := (iff #10834 #20655)
-#20657 := [rewrite]: #20656
-#20665 := [monotonicity #20657 #20662]: #20664
-#20668 := [monotonicity #20665]: #20667
-#20675 := [trans #20668 #20673]: #20674
-#20678 := [monotonicity #20675]: #20677
-#20681 := [quant-intro #20678]: #20680
-#16655 := (~ #10846 #10846)
-#16653 := (~ #10843 #10843)
-#16654 := [refl]: #16653
-#16656 := [nnf-pos #16654]: #16655
-#3980 := (and #3972 #3979)
-#3981 := (and #3968 #3980)
-#3982 := (and #1002 #3981)
-#3987 := (or #3982 #3986)
-#3988 := (and #1178 #3987)
-#3989 := (iff #3959 #3988)
-#3990 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #3989)
-#10847 := (iff #3990 #10846)
-#10844 := (iff #3989 #10843)
-#10841 := (iff #3988 #10840)
-#10838 := (iff #3987 #10837)
-#10835 := (iff #3982 #10834)
-#10836 := [rewrite]: #10835
-#10839 := [monotonicity #10836]: #10838
-#10842 := [monotonicity #10839]: #10841
-#10845 := [monotonicity #10842]: #10844
-#10848 := [quant-intro #10845]: #10847
-#10830 := [asserted]: #3990
-#10849 := [mp #10830 #10848]: #10846
-#16657 := [mp~ #10849 #16656]: #10846
-#20682 := [mp #16657 #20681]: #20679
-#24794 := (not #20679)
-#24803 := (or #24794 #24209)
-#24804 := [quant-inst #4649 #23991]: #24803
-#24792 := [unit-resolution #24804 #20682]: #24209
-#24544 := (not #24164)
-#25021 := (iff #17067 #24544)
-#25015 := (iff #4745 #24164)
-#24960 := (iff #24164 #4745)
-#24958 := (= #24163 #4744)
-#24959 := [monotonicity #25100]: #24958
-#25018 := [monotonicity #24959]: #24960
-#25016 := [symm #25018]: #25015
-#25022 := [monotonicity #25016]: #25021
-#24793 := [hypothesis]: #17067
-#25004 := [mp #24793 #25022]: #24544
-#24541 := (not #24209)
-#24542 := (or #24541 #24164 #24207)
-#24543 := [def-axiom]: #24542
-#25051 := [unit-resolution #24543 #25004 #24792]: #24207
-#24751 := (or #24208 #24170 #24206)
-#24540 := [def-axiom]: #24751
-#25052 := [unit-resolution #24540 #25051 #25104]: #24206
-#22792 := (f61 f35)
-#22793 := (= #22792 f3)
-#22800 := (iff #4477 #22793)
-#3856 := (pattern #1291)
-#4540 := (= #4530 f3)
-#4541 := (iff #1292 #4540)
-#4542 := (forall (vars (?v0 S4)) (:pat #3856) #4541)
-#17010 := (~ #4542 #4542)
-#17008 := (~ #4541 #4541)
-#17009 := [refl]: #17008
-#17011 := [nnf-pos #17009]: #17010
-#11188 := [asserted]: #4542
-#17012 := [mp~ #11188 #17011]: #4542
-#22524 := (not #4542)
-#22803 := (or #22524 #22800)
-#22804 := [quant-inst #356]: #22803
-#25017 := [unit-resolution #22804 #17012]: #22800
-#22805 := (not #22800)
-#24919 := (or #22805 #22793)
-#22810 := (or #22805 #22809 #22793)
-#22811 := [def-axiom]: #22810
-#24920 := [unit-resolution #22811 #11138]: #24919
-#24539 := [unit-resolution #24920 #25017]: #22793
-#25055 := (= #24172 #22792)
-#25063 := (= #24171 f35)
-#25049 := (or #24309 #24001)
-#24531 := (or #24309 #17058 #24001)
-#24532 := [def-axiom]: #24531
-#25050 := [unit-resolution #24532 #24483]: #25049
-#25053 := [unit-resolution #25050 #24368]: #24001
-#25054 := (= #24171 #24000)
-#24643 := [monotonicity #25100]: #25054
-#25064 := [trans #24643 #25053]: #25063
-#25056 := [monotonicity #25064]: #25055
-#25048 := [trans #25056 #24539]: #24173
-#24296 := (not #24094)
-#25070 := (iff #24296 #24178)
-#24731 := (iff #24094 #24177)
-#25057 := (iff #24177 #24094)
-#24648 := (= #24176 #24093)
-#25286 := (= #24175 #23963)
-#25287 := [monotonicity #25100]: #25286
-#25068 := [monotonicity #25287]: #24648
-#25047 := [monotonicity #25068]: #25057
-#24629 := [symm #25047]: #24731
-#25072 := [monotonicity #24629]: #25070
-#24297 := (or #24095 #24296)
-#24295 := [def-axiom]: #24297
-#24647 := [unit-resolution #24295 #24453]: #24296
-#25073 := [mp #24647 #25072]: #24178
-#24805 := (or #24183 #24177)
-#24806 := [def-axiom]: #24805
-#25108 := [unit-resolution #24806 #25073]: #24183
-#25117 := (or #24196 #24174 #24184)
-#24890 := (f55 f206 #23413)
-#25219 := (f87 #4654 #24890)
-#25193 := (f153 f154 #23413)
-#25194 := (f140 #25193 0::Int)
-#25201 := (f139 #25194 f35)
-#25222 := (= #25201 #25219)
-#25225 := (not #25222)
-#25202 := (f125 f243 #25201)
-#25203 := (f71 #25202 #23413)
-#25204 := (= #25203 f1)
-#25205 := (not #25204)
-#25228 := (or #25205 #25225)
-#25231 := (not #25228)
-#25337 := [hypothesis]: #25228
-#25234 := (or #24299 #25231)
-#25206 := (+ #24890 #24025)
-#25207 := (f87 #4654 #25206)
-#25208 := (= #25201 #25207)
-#25209 := (not #25208)
-#25210 := (or #25205 #25209)
-#25211 := (not #25210)
-#25235 := (or #24299 #25211)
-#25237 := (iff #25235 #25234)
-#25239 := (iff #25234 #25234)
-#25240 := [rewrite]: #25239
-#25232 := (iff #25211 #25231)
-#25229 := (iff #25210 #25228)
-#25226 := (iff #25209 #25225)
-#25223 := (iff #25208 #25222)
-#25220 := (= #25207 #25219)
-#25217 := (= #25206 #24890)
-#25212 := (+ #24890 0::Int)
-#25215 := (= #25212 #24890)
-#25216 := [rewrite]: #25215
-#25213 := (= #25206 #25212)
-#25214 := [monotonicity #24033]: #25213
-#25218 := [trans #25214 #25216]: #25217
-#25221 := [monotonicity #25218]: #25220
-#25224 := [monotonicity #25221]: #25223
-#25227 := [monotonicity #25224]: #25226
-#25230 := [monotonicity #25227]: #25229
-#25233 := [monotonicity #25230]: #25232
-#25238 := [monotonicity #25233]: #25237
-#25241 := [trans #25238 #25240]: #25237
-#25236 := [quant-inst #23413 #1138 #356]: #25235
-#25242 := [mp #25236 #25241]: #25234
-#25338 := [unit-resolution #25242 #19813 #25337]: false
-#25339 := [lemma #25338]: #25231
-#25245 := (or #25228 #25222)
-#25246 := [def-axiom]: #25245
-#25109 := [unit-resolution #25246 #25339]: #25222
-#25335 := (or #25225 #24189)
-#25331 := (= #24188 #4662)
-#25298 := (= #24179 #4658)
-#25296 := (= #24179 #24084)
-#25120 := (f153 f154 #24084)
-#25121 := (f140 #25120 0::Int)
-#25122 := (f139 #25121 f35)
-#25123 := (f134 #4883 #25122)
-#25124 := (f235 f236 #25123)
-#25125 := (= #25124 #24084)
-#25132 := (f71 #4667 #25122)
-#25133 := (= #25132 f1)
-#25134 := (not #25133)
-decl f156 :: S69
-#1366 := f156
-#25129 := (f155 f156 #25123)
-#25130 := (= #25129 f1)
-#25131 := (not #25130)
-#25127 := (f155 f237 #25123)
-#25128 := (= #25127 f1)
-#25126 := (not #25125)
-#25135 := (or #25126 #25128 #25131 #25134)
-#25136 := (not #25135)
-#25190 := [hypothesis]: #25135
-#25111 := (f71 #4667 #24084)
-#25112 := (= #25111 f1)
-#25182 := (= #25111 #4668)
-#25183 := [monotonicity #24984]: #25182
-#25184 := [trans #25183 #13468]: #25112
-#25119 := (not #25112)
-#25181 := [hypothesis]: #25119
-#25185 := [unit-resolution #25181 #25184]: false
-#25186 := [lemma #25185]: #25112
-#1351 := (:var 3 Int)
-#1398 := (:var 2 S4)
-#2758 := (f216 f217 #1398)
-#2759 := (f215 #2758 #1306)
-#2760 := (f113 f114 #2759)
-#2761 := (f87 #2760 #1351)
-#2603 := (f113 f114 #1398)
-#2753 := (f87 #2603 #1351)
-#2754 := (f153 f154 #2753)
-#2755 := (f140 #2754 #1197)
-#2756 := (f139 #2755 #1398)
-#1010 := (:var 4 S10)
-#2763 := (f137 f138 #1010)
-#2764 := (f135 f136 #2763)
-#2765 := (f134 #2764 #2756)
-#2766 := (pattern #2765 #2761)
-#2751 := (f110 f111 #1010)
-#2752 := (f108 f109 #2751)
-#2757 := (f107 #2752 #2756)
-#2762 := (pattern #2757 #2761)
-#2771 := (f153 f154 #2761)
-#2772 := (f140 #2771 #1197)
-#2773 := (f139 #2772 #1398)
-#2767 := (f80 f81 #1010)
-#2783 := (f71 #2767 #2773)
-#2784 := (= #2783 f1)
-#19581 := (not #2784)
-#2774 := (f134 #2764 #2773)
-#2781 := (f155 f156 #2774)
-#2782 := (= #2781 f1)
-#19580 := (not #2782)
-#2778 := (f155 f237 #2774)
-#2779 := (= #2778 f1)
-#2775 := (f235 f236 #2774)
-#2776 := (= #2775 #2761)
-#19579 := (not #2776)
-#19582 := (or #19579 #2779 #19580 #19581)
-#19583 := (not #19582)
-#7650 := (* -1::Int #1306)
-#8261 := (+ #1197 #7650)
-#8262 := (>= #8261 0::Int)
-#2768 := (f71 #2767 #2761)
-#2769 := (= #2768 f1)
-#9684 := (not #2769)
-#19589 := (or #9684 #7428 #8262 #19583)
-#19594 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #19589)
-#2780 := (not #2779)
-#9693 := (and #2776 #2780 #2782 #2784)
-#9479 := (not #8262)
-#9482 := (and #6706 #9479)
-#9485 := (not #9482)
-#9702 := (or #9684 #9485 #9693)
-#9707 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #9702)
-#19595 := (iff #9707 #19594)
-#19592 := (iff #9702 #19589)
-#19464 := (or #7428 #8262)
-#19586 := (or #9684 #19464 #19583)
-#19590 := (iff #19586 #19589)
-#19591 := [rewrite]: #19590
-#19587 := (iff #9702 #19586)
-#19584 := (iff #9693 #19583)
-#19585 := [rewrite]: #19584
-#19473 := (iff #9485 #19464)
-#19465 := (not #19464)
-#19468 := (not #19465)
-#19471 := (iff #19468 #19464)
-#19472 := [rewrite]: #19471
-#19469 := (iff #9485 #19468)
-#19466 := (iff #9482 #19465)
-#19467 := [rewrite]: #19466
-#19470 := [monotonicity #19467]: #19469
-#19474 := [trans #19470 #19472]: #19473
-#19588 := [monotonicity #19474 #19585]: #19587
-#19593 := [trans #19588 #19591]: #19592
-#19596 := [quant-intro #19593]: #19595
-#15871 := (~ #9707 #9707)
-#15869 := (~ #9702 #9702)
-#15870 := [refl]: #15869
-#15872 := [nnf-pos #15870]: #15871
-#2785 := (and #2782 #2784)
-#2786 := (and #2780 #2785)
-#2787 := (and #2776 #2786)
-#2612 := (< #1197 #1306)
-#2613 := (and #1363 #2612)
-#2788 := (implies #2613 #2787)
-#2789 := (implies #2769 #2788)
-#2790 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #2789)
-#9710 := (iff #2790 #9707)
-#9451 := (not #2613)
-#9678 := (or #9451 #2787)
-#9685 := (or #9684 #9678)
-#9690 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #9685)
-#9708 := (iff #9690 #9707)
-#9705 := (iff #9685 #9702)
-#9696 := (or #9485 #9693)
-#9699 := (or #9684 #9696)
-#9703 := (iff #9699 #9702)
-#9704 := [rewrite]: #9703
-#9700 := (iff #9685 #9699)
-#9697 := (iff #9678 #9696)
-#9694 := (iff #2787 #9693)
-#9695 := [rewrite]: #9694
-#9486 := (iff #9451 #9485)
-#9483 := (iff #2613 #9482)
-#9480 := (iff #2612 #9479)
-#9481 := [rewrite]: #9480
-#9484 := [monotonicity #6705 #9481]: #9483
-#9487 := [monotonicity #9484]: #9486
-#9698 := [monotonicity #9487 #9695]: #9697
-#9701 := [monotonicity #9698]: #9700
-#9706 := [trans #9701 #9704]: #9705
-#9709 := [quant-intro #9706]: #9708
-#9691 := (iff #2790 #9690)
-#9688 := (iff #2789 #9685)
-#9681 := (implies #2769 #9678)
-#9686 := (iff #9681 #9685)
-#9687 := [rewrite]: #9686
-#9682 := (iff #2789 #9681)
-#9679 := (iff #2788 #9678)
-#9680 := [rewrite]: #9679
-#9683 := [monotonicity #9680]: #9682
-#9689 := [trans #9683 #9687]: #9688
-#9692 := [quant-intro #9689]: #9691
-#9711 := [trans #9692 #9709]: #9710
-#9677 := [asserted]: #2790
-#9712 := [mp #9677 #9711]: #9707
-#15873 := [mp~ #9712 #15872]: #9707
-#19597 := [mp #15873 #19596]: #19594
-#25115 := (not #19594)
-#25113 := (or #25115 #25119 #12634 #25136)
-#25137 := (or #25119 #24090 #24092 #25136)
-#25147 := (or #25115 #25137)
-#25160 := (iff #25147 #25113)
-#25141 := (or #25119 #12634 #25136)
-#25154 := (or #25115 #25141)
-#25157 := (iff #25154 #25113)
-#25158 := [rewrite]: #25157
-#25155 := (iff #25147 #25154)
-#25144 := (iff #25137 #25141)
-#25138 := (or #25119 false #12634 #25136)
-#25142 := (iff #25138 #25141)
-#25143 := [rewrite]: #25142
-#25139 := (iff #25137 #25138)
-#25140 := [monotonicity #24103 #24112]: #25139
-#25145 := [trans #25140 #25143]: #25144
-#25156 := [monotonicity #25145]: #25155
-#25161 := [trans #25156 #25158]: #25160
-#25153 := [quant-inst #4649 #4655 #356 #4646 #1138]: #25147
-#25162 := [mp #25153 #25161]: #25113
-#25176 := [unit-resolution #25162 #19597 #13463 #25186 #25190]: false
-#25177 := [lemma #25176]: #25136
-#24735 := (or #25135 #25125)
-#24722 := [def-axiom]: #24735
-#25319 := [unit-resolution #24722 #25177]: #25125
-#25294 := (= #24179 #25124)
-#25292 := (= #24175 #25123)
-#25290 := (= #23963 #25123)
-#25288 := (= #25123 #23963)
-#25284 := (= #25122 #4736)
-#25276 := (= #24041 #4736)
-#25277 := [symm #24456]: #25276
-#25282 := (= #25122 #24041)
-#25274 := (= #4656 #24041)
-#25275 := [monotonicity #24982]: #25274
-#25280 := (= #25122 #4656)
-#25272 := (= #25219 #4656)
-#25256 := (= #24890 f445)
-#25254 := (= #24890 #4657)
-#23488 := (= #22490 #4657)
-#23497 := (or #23460 #23488)
-#23498 := [quant-inst #4652 #4657]: #23497
-#25251 := [unit-resolution #23498 #21829]: #23488
-#25252 := (= #24890 #22490)
-#25253 := [monotonicity #23932]: #25252
-#25255 := [trans #25253 #25251]: #25254
-#25257 := [trans #25255 #24980]: #25256
-#25273 := [monotonicity #25257]: #25272
-#25278 := (= #25122 #25219)
-#25320 := [hypothesis]: #25222
-#25270 := (= #25122 #25201)
-#25268 := (= #25121 #25194)
-#25266 := (= #25194 #25121)
-#25264 := (= #25193 #25120)
-#25262 := (= #23413 #24084)
-#25260 := (= #4658 #24084)
-#25261 := [symm #24984]: #25260
-#25263 := [trans #23932 #25261]: #25262
-#25265 := [monotonicity #25263]: #25264
-#25267 := [monotonicity #25265]: #25266
-#25269 := [symm #25267]: #25268
-#25271 := [monotonicity #25269]: #25270
-#25321 := [trans #25271 #25320]: #25278
-#25322 := [trans #25321 #25273]: #25280
-#25323 := [trans #25322 #25275]: #25282
-#25324 := [trans #25323 #25277]: #25284
-#25325 := [monotonicity #25324]: #25288
-#25326 := [symm #25325]: #25290
-#25327 := [trans #25287 #25326]: #25292
-#25328 := [monotonicity #25327]: #25294
-#25329 := [trans #25328 #25319]: #25296
-#25330 := [trans #25329 #24984]: #25298
-#25332 := [monotonicity #25330]: #25331
-#25333 := [trans #25332 #13466]: #24189
-#24789 := (not #24189)
-#25318 := [hypothesis]: #24789
-#25334 := [unit-resolution #25318 #25333]: false
-#25336 := [lemma #25334]: #25335
-#25114 := [unit-resolution #25336 #25109]: #24189
-#24940 := (or #24193 #24789)
-#24941 := [def-axiom]: #24940
-#25116 := [unit-resolution #24941 #25114]: #24193
-#24945 := (not #24187)
-#24307 := (f235 f236 #23963)
-#24308 := (f62 f63 #24307)
-#24311 := (f61 #24308)
-#24312 := (= #24311 f3)
-#25019 := [hypothesis]: #24187
-#25005 := (= #24311 #24186)
-#24955 := (= #24308 #24185)
-#24834 := (= #24307 #24179)
-#24835 := (= #23963 #24175)
-#25001 := [symm #25287]: #24835
-#24954 := [monotonicity #25001]: #24834
-#24972 := [monotonicity #24954]: #24955
-#25006 := [monotonicity #24972]: #25005
-#25023 := [trans #25006 #25019]: #24312
-#24939 := (not #24312)
-#24313 := (f45 f79 #24308)
-#24314 := (= #24313 f1)
-#24315 := (not #24314)
-#24316 := (or #24312 #24315)
-#24317 := (not #24316)
-#4275 := (:var 0 S56)
-#4276 := (f235 f236 #4275)
-#4277 := (pattern #4276)
-#4278 := (f62 f63 #4276)
-#4282 := (f45 f79 #4278)
-#4283 := (= #4282 f1)
-#20836 := (not #4283)
-#4279 := (f61 #4278)
-#4280 := (= #4279 f3)
-#20837 := (or #4280 #20836)
-#20838 := (not #20837)
-#20841 := (forall (vars (?v0 S56)) (:pat #4277) #20838)
-#4281 := (not #4280)
-#4284 := (and #4281 #4283)
-#4285 := (forall (vars (?v0 S56)) (:pat #4277) #4284)
-#20842 := (iff #4285 #20841)
-#20839 := (iff #4284 #20838)
-#20840 := [rewrite]: #20839
-#20843 := [quant-intro #20840]: #20842
-#16870 := (~ #4285 #4285)
-#16868 := (~ #4284 #4284)
-#16869 := [refl]: #16868
-#16871 := [nnf-pos #16869]: #16870
-#11056 := [asserted]: #4285
-#16872 := [mp~ #11056 #16871]: #4285
-#20844 := [mp #16872 #20843]: #20841
-#24538 := (not #20841)
-#24950 := (or #24538 #24317)
-#24938 := [quant-inst #23963]: #24950
-#24787 := [unit-resolution #24938 #20844]: #24317
-#25002 := (or #24316 #24939)
-#25003 := [def-axiom]: #25002
-#24788 := [unit-resolution #25003 #24787]: #24939
-#25024 := [unit-resolution #24788 #25023]: false
-#25020 := [lemma #25024]: #24945
-#24628 := (or #24196 #24174 #24184 #24187 #24194)
-#24644 := [def-axiom]: #24628
-#25071 := [unit-resolution #24644 #25020 #25116]: #25117
-#25069 := [unit-resolution #25071 #25108 #25048]: #24196
-#24082 := (or #24205 #24195)
-#24083 := [def-axiom]: #24082
-#24730 := [unit-resolution #24083 #25069 #25052]: false
-#24749 := [lemma #24730]: #4745
-#25458 := (or #17067 #22090)
-#22093 := (or #17058 #17067 #22090)
-#22096 := (not #22093)
-#22099 := (or #17058 #17061 #22096)
-#22102 := (not #22099)
-#22105 := (or #17058 #17061 #22102)
-#22108 := (not #22105)
-#22111 := (or #12412 #22108)
-#22114 := (not #22111)
-#22117 := (or #12412 #22114)
-#21170 := (forall (vars (?v0 Int)) #21159)
-#21177 := (not #21170)
-#21155 := (forall (vars (?v0 Int)) #21150)
-#21176 := (not #21155)
-#21178 := (or #21176 #21177)
-#21179 := (not #21178)
-#21184 := (or #21144 #21179)
-#21190 := (not #21184)
-#21191 := (or #12923 #12777 #21067 #11388 #11379 #11370 #11361 #21190)
-#21192 := (not #21191)
-#20982 := (forall (vars (?v0 Int)) #20977)
-#21000 := (not #20982)
-#21001 := (or #21000 #20987)
-#21002 := (not #21001)
-#21007 := (or #20971 #21002)
-#21013 := (not #21007)
-#21014 := (or #12681 #21013)
-#21015 := (not #21014)
-#21020 := (or #12681 #21015)
-#21028 := (not #21020)
-#21029 := (or #17209 #17212 #12743 #11705 #21026 #21027 #21028)
-#21030 := (not #21029)
-#21035 := (or #17209 #17212 #21030)
-#21041 := (not #21035)
-#21078 := (or #21067 #12828 #11892 #11883 #12777 #21027 #21041)
-#21079 := (not #21078)
-#21042 := (or #17171 #17180 #11803 #11794 #11785 #11760 #11751 #12777 #21027 #21041)
-#21043 := (not #21042)
-#21048 := (or #17171 #17180 #21043)
-#21054 := (not #21048)
-#21055 := (or #17171 #17174 #21054)
-#21056 := (not #21055)
-#21061 := (or #17171 #17174 #21056)
-#21068 := (not #21061)
-#21069 := (or #12777 #21067 #12829 #21068)
-#21070 := (not #21069)
-#21084 := (or #21070 #21079)
-#21090 := (not #21084)
-#21091 := (or #17171 #17180 #12777 #21067 #21090)
-#21092 := (not #21091)
-#21097 := (or #17171 #17180 #21092)
-#21103 := (not #21097)
-#21104 := (or #17171 #17174 #21103)
-#21105 := (not #21104)
-#21110 := (or #17171 #17174 #21105)
-#21116 := (not #21110)
-#21117 := (or #12777 #21067 #12922 #21116)
-#21118 := (not #21117)
-#21197 := (or #21118 #21192)
-#21212 := (not #21197)
-#20947 := (forall (vars (?v0 Int)) #20942)
-#21208 := (not #20947)
-#21213 := (or #12634 #17117 #21203 #21204 #21205 #21206 #21207 #12777 #21067 #13142 #21208 #13095 #21209 #13090 #15031 #12144 #12135 #12126 #12117 #21210 #21211 #21212)
-#21214 := (not #21213)
-#21219 := (or #12634 #17117 #21214)
-#21226 := (not #21219)
-#20936 := (forall (vars (?v0 Int)) #20931)
-#21225 := (not #20936)
-#21227 := (or #21225 #21226)
-#21228 := (not #21227)
-#21233 := (or #20925 #21228)
-#21239 := (not #21233)
-#21240 := (or #12598 #21239)
-#21241 := (not #21240)
-#21246 := (or #12598 #21241)
-#21252 := (not #21246)
-#21253 := (or #17058 #17067 #12379 #12370 #12361 #12352 #21252)
-#21254 := (not #21253)
-#21259 := (or #17058 #17067 #21254)
-#21265 := (not #21259)
-#21266 := (or #17058 #17061 #21265)
-#21267 := (not #21266)
-#21272 := (or #17058 #17061 #21267)
-#21278 := (not #21272)
-#21279 := (or #12412 #21278)
-#21280 := (not #21279)
-#21285 := (or #12412 #21280)
-#22118 := (iff #21285 #22117)
-#22115 := (iff #21280 #22114)
-#22112 := (iff #21279 #22111)
-#22109 := (iff #21278 #22108)
-#22106 := (iff #21272 #22105)
-#22103 := (iff #21267 #22102)
-#22100 := (iff #21266 #22099)
-#22097 := (iff #21265 #22096)
-#22094 := (iff #21259 #22093)
-#22091 := (iff #21254 #22090)
-#22088 := (iff #21253 #22087)
-#22085 := (iff #21252 #22084)
-#22082 := (iff #21246 #22081)
-#22079 := (iff #21241 #22078)
-#22076 := (iff #21240 #22075)
-#22073 := (iff #21239 #22072)
-#22070 := (iff #21233 #22069)
-#22067 := (iff #21228 #22066)
-#22064 := (iff #21227 #22063)
-#22061 := (iff #21226 #22060)
-#22058 := (iff #21219 #22057)
-#22055 := (iff #21214 #22054)
-#22052 := (iff #21213 #22051)
-#22049 := (iff #21212 #22048)
-#22046 := (iff #21197 #22045)
-#22043 := (iff #21192 #22042)
-#22040 := (iff #21191 #22039)
-#22037 := (iff #21190 #22036)
-#22034 := (iff #21184 #22033)
-#22031 := (iff #21179 #22030)
-#22028 := (iff #21178 #22027)
-#22025 := (iff #21177 #22024)
-#22022 := (iff #21170 #22019)
-#22020 := (iff #21159 #21159)
-#22021 := [refl]: #22020
-#22023 := [quant-intro #22021]: #22022
-#22026 := [monotonicity #22023]: #22025
-#22017 := (iff #21176 #22016)
-#22014 := (iff #21155 #22011)
-#22012 := (iff #21150 #21150)
-#22013 := [refl]: #22012
-#22015 := [quant-intro #22013]: #22014
-#22018 := [monotonicity #22015]: #22017
-#22029 := [monotonicity #22018 #22026]: #22028
-#22032 := [monotonicity #22029]: #22031
-#22035 := [monotonicity #22032]: #22034
-#22038 := [monotonicity #22035]: #22037
-#22041 := [monotonicity #22038]: #22040
-#22044 := [monotonicity #22041]: #22043
-#22009 := (iff #21118 #22008)
-#22006 := (iff #21117 #22005)
-#22003 := (iff #21116 #22002)
-#22000 := (iff #21110 #21999)
-#21997 := (iff #21105 #21996)
-#21994 := (iff #21104 #21993)
-#21991 := (iff #21103 #21990)
-#21988 := (iff #21097 #21987)
-#21985 := (iff #21092 #21984)
-#21982 := (iff #21091 #21981)
-#21979 := (iff #21090 #21978)
-#21976 := (iff #21084 #21975)
-#21973 := (iff #21079 #21972)
-#21970 := (iff #21078 #21969)
-#21937 := (iff #21041 #21936)
-#21934 := (iff #21035 #21933)
-#21931 := (iff #21030 #21930)
-#21928 := (iff #21029 #21927)
-#21925 := (iff #21028 #21924)
-#21922 := (iff #21020 #21921)
-#21919 := (iff #21015 #21918)
-#21916 := (iff #21014 #21915)
-#21913 := (iff #21013 #21912)
-#21910 := (iff #21007 #21909)
-#21907 := (iff #21002 #21906)
-#21904 := (iff #21001 #21903)
-#21901 := (iff #21000 #21900)
-#21898 := (iff #20982 #21895)
-#21896 := (iff #20977 #20977)
-#21897 := [refl]: #21896
-#21899 := [quant-intro #21897]: #21898
-#21902 := [monotonicity #21899]: #21901
-#21905 := [monotonicity #21902]: #21904
-#21908 := [monotonicity #21905]: #21907
-#21911 := [monotonicity #21908]: #21910
-#21914 := [monotonicity #21911]: #21913
-#21917 := [monotonicity #21914]: #21916
-#21920 := [monotonicity #21917]: #21919
-#21923 := [monotonicity #21920]: #21922
-#21926 := [monotonicity #21923]: #21925
-#21929 := [monotonicity #21926]: #21928
-#21932 := [monotonicity #21929]: #21931
-#21935 := [monotonicity #21932]: #21934
-#21938 := [monotonicity #21935]: #21937
-#21971 := [monotonicity #21938]: #21970
-#21974 := [monotonicity #21971]: #21973
-#21967 := (iff #21070 #21966)
-#21964 := (iff #21069 #21963)
-#21961 := (iff #21068 #21960)
-#21958 := (iff #21061 #21957)
-#21955 := (iff #21056 #21954)
-#21952 := (iff #21055 #21951)
-#21949 := (iff #21054 #21948)
-#21946 := (iff #21048 #21945)
-#21943 := (iff #21043 #21942)
-#21940 := (iff #21042 #21939)
-#21941 := [monotonicity #21938]: #21940
-#21944 := [monotonicity #21941]: #21943
-#21947 := [monotonicity #21944]: #21946
-#21950 := [monotonicity #21947]: #21949
-#21953 := [monotonicity #21950]: #21952
-#21956 := [monotonicity #21953]: #21955
-#21959 := [monotonicity #21956]: #21958
-#21962 := [monotonicity #21959]: #21961
-#21965 := [monotonicity #21962]: #21964
-#21968 := [monotonicity #21965]: #21967
-#21977 := [monotonicity #21968 #21974]: #21976
-#21980 := [monotonicity #21977]: #21979
-#21983 := [monotonicity #21980]: #21982
-#21986 := [monotonicity #21983]: #21985
-#21989 := [monotonicity #21986]: #21988
-#21992 := [monotonicity #21989]: #21991
-#21995 := [monotonicity #21992]: #21994
-#21998 := [monotonicity #21995]: #21997
-#22001 := [monotonicity #21998]: #22000
-#22004 := [monotonicity #22001]: #22003
-#22007 := [monotonicity #22004]: #22006
-#22010 := [monotonicity #22007]: #22009
-#22047 := [monotonicity #22010 #22044]: #22046
-#22050 := [monotonicity #22047]: #22049
-#21893 := (iff #21208 #21892)
-#21890 := (iff #20947 #21887)
-#21888 := (iff #20942 #20942)
-#21889 := [refl]: #21888
-#21891 := [quant-intro #21889]: #21890
-#21894 := [monotonicity #21891]: #21893
-#22053 := [monotonicity #21894 #22050]: #22052
-#22056 := [monotonicity #22053]: #22055
-#22059 := [monotonicity #22056]: #22058
-#22062 := [monotonicity #22059]: #22061
-#21885 := (iff #21225 #21884)
-#21882 := (iff #20936 #21879)
-#21880 := (iff #20931 #20931)
-#21881 := [refl]: #21880
-#21883 := [quant-intro #21881]: #21882
-#21886 := [monotonicity #21883]: #21885
-#22065 := [monotonicity #21886 #22062]: #22064
-#22068 := [monotonicity #22065]: #22067
-#22071 := [monotonicity #22068]: #22070
-#22074 := [monotonicity #22071]: #22073
-#22077 := [monotonicity #22074]: #22076
-#22080 := [monotonicity #22077]: #22079
-#22083 := [monotonicity #22080]: #22082
-#22086 := [monotonicity #22083]: #22085
-#22089 := [monotonicity #22086]: #22088
-#22092 := [monotonicity #22089]: #22091
-#22095 := [monotonicity #22092]: #22094
-#22098 := [monotonicity #22095]: #22097
-#22101 := [monotonicity #22098]: #22100
-#22104 := [monotonicity #22101]: #22103
-#22107 := [monotonicity #22104]: #22106
-#22110 := [monotonicity #22107]: #22109
-#22113 := [monotonicity #22110]: #22112
-#22116 := [monotonicity #22113]: #22115
-#22119 := [monotonicity #22116]: #22118
-#13642 := (and #6706 #14917 #12952 #4826)
-#17379 := (not #13642)
-#17382 := (forall (vars (?v0 Int)) #17379)
-#14273 := (and #6706 #14917)
-#14268 := (not #14273)
-#13653 := (or #14268 #12950 #12964)
-#13648 := (forall (vars (?v0 Int)) #13653)
-#17386 := (and #13648 #17382)
-#17357 := (and #17355 #17356)
-#17358 := (not #17357)
-#17685 := (or #17358 #17667 #17680)
-#17688 := (not #17685)
-#17691 := (or #17688 #17386)
-#17697 := (and #12922 #12639 #12642 #4814 #4816 #4818 #4820 #17691)
-#17257 := (not #12724)
-#13714 := (or #14268 #12684 #12698)
-#13713 := (forall (vars (?v0 Int)) #13714)
-#17260 := (and #13713 #17257)
-#17235 := (and #17233 #17234)
-#17236 := (not #17235)
-#17550 := (or #17236 #17532 #17545)
-#17553 := (not #17550)
-#17556 := (or #17553 #17260)
-#17559 := (and #12676 #17556)
-#17562 := (or #12681 #17559)
-#17568 := (and #12660 #13727 #12739 #4978 #12668 #12651 #17562)
-#17573 := (or #17209 #17212 #17568)
-#17613 := (and #12642 #12829 #5026 #5027 #12639 #12651 #17573)
-#17579 := (and #4940 #4945 #4950 #4955 #4960 #4963 #4965 #12639 #12651 #17573)
-#17584 := (or #17171 #17180 #17579)
-#17590 := (and #4940 #4942 #17584)
-#17595 := (or #17171 #17174 #17590)
-#17601 := (and #12639 #12642 #12828 #17595)
-#17618 := (or #17601 #17613)
-#17624 := (and #4940 #4945 #12639 #12642 #17618)
-#17629 := (or #17171 #17180 #17624)
-#17635 := (and #4940 #4942 #17629)
-#17640 := (or #17171 #17174 #17635)
-#17646 := (and #12639 #12642 #12923 #17640)
-#17702 := (or #17646 #17697)
-#13738 := (or #14268 #13105 #13119)
-#13737 := (forall (vars (?v0 Int)) #13738)
-#17708 := (and #12635 #4780 #13167 #13785 #13766 #13145 #13751 #12639 #12642 #13139 #13737 #13096 #4806 #4898 #4811 #4909 #4913 #4917 #4921 #4925 #4930 #17702)
-#17713 := (or #12634 #17117 #17708)
-#13798 := (or #14268 #12601 #12613)
-#13797 := (forall (vars (?v0 Int)) #13798)
-#17716 := (and #13797 #17713)
-#17093 := (and #17091 #17092)
-#17094 := (not #17093)
-#17102 := (or #17094 #17095 #17101)
-#17103 := (not #17102)
-#17719 := (or #17103 #17716)
-#17722 := (and #12595 #17719)
-#17725 := (or #12598 #17722)
-#17731 := (and #4739 #4745 #4750 #4755 #4760 #4765 #17725)
-#17736 := (or #17058 #17067 #17731)
-#17742 := (and #4739 #4741 #17736)
-#17747 := (or #17058 #17061 #17742)
-#17750 := (and #4733 #17747)
-#17753 := (or #12412 #17750)
-#21286 := (iff #17753 #21285)
-#21283 := (iff #17750 #21280)
-#21275 := (and #4733 #21272)
-#21281 := (iff #21275 #21280)
-#21282 := [rewrite]: #21281
-#21276 := (iff #17750 #21275)
-#21273 := (iff #17747 #21272)
-#21270 := (iff #17742 #21267)
-#21262 := (and #4739 #4741 #21259)
-#21268 := (iff #21262 #21267)
-#21269 := [rewrite]: #21268
-#21263 := (iff #17742 #21262)
-#21260 := (iff #17736 #21259)
-#21257 := (iff #17731 #21254)
-#21249 := (and #4739 #4745 #4750 #4755 #4760 #4765 #21246)
-#21255 := (iff #21249 #21254)
-#21256 := [rewrite]: #21255
-#21250 := (iff #17731 #21249)
-#21247 := (iff #17725 #21246)
-#21244 := (iff #17722 #21241)
-#21236 := (and #12595 #21233)
-#21242 := (iff #21236 #21241)
-#21243 := [rewrite]: #21242
-#21237 := (iff #17722 #21236)
-#21234 := (iff #17719 #21233)
-#21231 := (iff #17716 #21228)
-#21222 := (and #20936 #21219)
-#21229 := (iff #21222 #21228)
-#21230 := [rewrite]: #21229
-#21223 := (iff #17716 #21222)
-#21220 := (iff #17713 #21219)
-#21217 := (iff #17708 #21214)
-#21200 := (and #12635 #4780 #13167 #13785 #13766 #13145 #13751 #12639 #12642 #13139 #20947 #13096 #4806 #4898 #4811 #4909 #4913 #4917 #4921 #4925 #4930 #21197)
-#21215 := (iff #21200 #21214)
-#21216 := [rewrite]: #21215
-#21201 := (iff #17708 #21200)
-#21198 := (iff #17702 #21197)
-#21195 := (iff #17697 #21192)
-#21187 := (and #12922 #12639 #12642 #4814 #4816 #4818 #4820 #21184)
-#21193 := (iff #21187 #21192)
-#21194 := [rewrite]: #21193
-#21188 := (iff #17697 #21187)
-#21185 := (iff #17691 #21184)
-#21182 := (iff #17386 #21179)
-#21173 := (and #21155 #21170)
-#21180 := (iff #21173 #21179)
-#21181 := [rewrite]: #21180
-#21174 := (iff #17386 #21173)
-#21171 := (iff #17382 #21170)
-#21168 := (iff #17379 #21159)
-#21160 := (not #21159)
-#21163 := (not #21160)
-#21166 := (iff #21163 #21159)
-#21167 := [rewrite]: #21166
-#21164 := (iff #17379 #21163)
-#21161 := (iff #13642 #21160)
-#21162 := [rewrite]: #21161
-#21165 := [monotonicity #21162]: #21164
-#21169 := [trans #21165 #21167]: #21168
-#21172 := [quant-intro #21169]: #21171
-#21156 := (iff #13648 #21155)
-#21153 := (iff #13653 #21150)
-#18824 := (or #7428 #18181)
-#21147 := (or #18824 #12950 #12964)
-#21151 := (iff #21147 #21150)
-#21152 := [rewrite]: #21151
-#21148 := (iff #13653 #21147)
-#18833 := (iff #14268 #18824)
-#18825 := (not #18824)
-#18828 := (not #18825)
-#18831 := (iff #18828 #18824)
-#18832 := [rewrite]: #18831
-#18829 := (iff #14268 #18828)
-#18826 := (iff #14273 #18825)
-#18827 := [rewrite]: #18826
-#18830 := [monotonicity #18827]: #18829
-#18834 := [trans #18830 #18832]: #18833
-#21149 := [monotonicity #18834]: #21148
-#21154 := [trans #21149 #21152]: #21153
-#21157 := [quant-intro #21154]: #21156
-#21175 := [monotonicity #21157 #21172]: #21174
-#21183 := [trans #21175 #21181]: #21182
-#21145 := (iff #17688 #21144)
-#21142 := (iff #17685 #21139)
-#21125 := (or #21123 #21124)
-#21136 := (or #21125 #17667 #17680)
-#21140 := (iff #21136 #21139)
-#21141 := [rewrite]: #21140
-#21137 := (iff #17685 #21136)
-#21134 := (iff #17358 #21125)
-#21126 := (not #21125)
-#21129 := (not #21126)
-#21132 := (iff #21129 #21125)
-#21133 := [rewrite]: #21132
-#21130 := (iff #17358 #21129)
-#21127 := (iff #17357 #21126)
-#21128 := [rewrite]: #21127
-#21131 := [monotonicity #21128]: #21130
-#21135 := [trans #21131 #21133]: #21134
-#21138 := [monotonicity #21135]: #21137
-#21143 := [trans #21138 #21141]: #21142
-#21146 := [monotonicity #21143]: #21145
-#21186 := [monotonicity #21146 #21183]: #21185
-#21189 := [monotonicity #21186]: #21188
-#21196 := [trans #21189 #21194]: #21195
-#21121 := (iff #17646 #21118)
-#21113 := (and #12639 #12642 #12923 #21110)
-#21119 := (iff #21113 #21118)
-#21120 := [rewrite]: #21119
-#21114 := (iff #17646 #21113)
-#21111 := (iff #17640 #21110)
-#21108 := (iff #17635 #21105)
-#21100 := (and #4940 #4942 #21097)
-#21106 := (iff #21100 #21105)
-#21107 := [rewrite]: #21106
-#21101 := (iff #17635 #21100)
-#21098 := (iff #17629 #21097)
-#21095 := (iff #17624 #21092)
-#21087 := (and #4940 #4945 #12639 #12642 #21084)
-#21093 := (iff #21087 #21092)
-#21094 := [rewrite]: #21093
-#21088 := (iff #17624 #21087)
-#21085 := (iff #17618 #21084)
-#21082 := (iff #17613 #21079)
-#21075 := (and #12642 #12829 #5026 #5027 #12639 #12651 #21035)
-#21080 := (iff #21075 #21079)
-#21081 := [rewrite]: #21080
-#21076 := (iff #17613 #21075)
-#21036 := (iff #17573 #21035)
-#21033 := (iff #17568 #21030)
-#21023 := (and #12660 #13727 #12739 #4978 #12668 #12651 #21020)
-#21031 := (iff #21023 #21030)
-#21032 := [rewrite]: #21031
-#21024 := (iff #17568 #21023)
-#21021 := (iff #17562 #21020)
-#21018 := (iff #17559 #21015)
-#21010 := (and #12676 #21007)
-#21016 := (iff #21010 #21015)
-#21017 := [rewrite]: #21016
-#21011 := (iff #17559 #21010)
-#21008 := (iff #17556 #21007)
-#21005 := (iff #17260 #21002)
-#20997 := (and #20982 #20986)
-#21003 := (iff #20997 #21002)
-#21004 := [rewrite]: #21003
-#20998 := (iff #17260 #20997)
-#20995 := (iff #17257 #20986)
-#20990 := (not #20987)
-#20993 := (iff #20990 #20986)
-#20994 := [rewrite]: #20993
-#20991 := (iff #17257 #20990)
-#20988 := (iff #12724 #20987)
-#20989 := [rewrite]: #20988
-#20992 := [monotonicity #20989]: #20991
-#20996 := [trans #20992 #20994]: #20995
-#20983 := (iff #13713 #20982)
-#20980 := (iff #13714 #20977)
-#20974 := (or #18824 #12684 #12698)
-#20978 := (iff #20974 #20977)
-#20979 := [rewrite]: #20978
-#20975 := (iff #13714 #20974)
-#20976 := [monotonicity #18834]: #20975
-#20981 := [trans #20976 #20979]: #20980
-#20984 := [quant-intro #20981]: #20983
-#20999 := [monotonicity #20984 #20996]: #20998
-#21006 := [trans #20999 #21004]: #21005
-#20972 := (iff #17553 #20971)
-#20969 := (iff #17550 #20966)
-#20952 := (or #20950 #20951)
-#20963 := (or #20952 #17532 #17545)
-#20967 := (iff #20963 #20966)
-#20968 := [rewrite]: #20967
-#20964 := (iff #17550 #20963)
-#20961 := (iff #17236 #20952)
-#20953 := (not #20952)
-#20956 := (not #20953)
-#20959 := (iff #20956 #20952)
-#20960 := [rewrite]: #20959
-#20957 := (iff #17236 #20956)
-#20954 := (iff #17235 #20953)
-#20955 := [rewrite]: #20954
-#20958 := [monotonicity #20955]: #20957
-#20962 := [trans #20958 #20960]: #20961
-#20965 := [monotonicity #20962]: #20964
-#20970 := [trans #20965 #20968]: #20969
-#20973 := [monotonicity #20970]: #20972
-#21009 := [monotonicity #20973 #21006]: #21008
-#21012 := [monotonicity #21009]: #21011
-#21019 := [trans #21012 #21017]: #21018
-#21022 := [monotonicity #21019]: #21021
-#21025 := [monotonicity #21022]: #21024
-#21034 := [trans #21025 #21032]: #21033
-#21037 := [monotonicity #21034]: #21036
-#21077 := [monotonicity #21037]: #21076
-#21083 := [trans #21077 #21081]: #21082
-#21073 := (iff #17601 #21070)
-#21064 := (and #12639 #12642 #12828 #21061)
-#21071 := (iff #21064 #21070)
-#21072 := [rewrite]: #21071
-#21065 := (iff #17601 #21064)
-#21062 := (iff #17595 #21061)
-#21059 := (iff #17590 #21056)
-#21051 := (and #4940 #4942 #21048)
-#21057 := (iff #21051 #21056)
-#21058 := [rewrite]: #21057
-#21052 := (iff #17590 #21051)
-#21049 := (iff #17584 #21048)
-#21046 := (iff #17579 #21043)
-#21038 := (and #4940 #4945 #4950 #4955 #4960 #4963 #4965 #12639 #12651 #21035)
-#21044 := (iff #21038 #21043)
-#21045 := [rewrite]: #21044
-#21039 := (iff #17579 #21038)
-#21040 := [monotonicity #21037]: #21039
-#21047 := [trans #21040 #21045]: #21046
-#21050 := [monotonicity #21047]: #21049
-#21053 := [monotonicity #21050]: #21052
-#21060 := [trans #21053 #21058]: #21059
-#21063 := [monotonicity #21060]: #21062
-#21066 := [monotonicity #21063]: #21065
-#21074 := [trans #21066 #21072]: #21073
-#21086 := [monotonicity #21074 #21083]: #21085
-#21089 := [monotonicity #21086]: #21088
-#21096 := [trans #21089 #21094]: #21095
-#21099 := [monotonicity #21096]: #21098
-#21102 := [monotonicity #21099]: #21101
-#21109 := [trans #21102 #21107]: #21108
-#21112 := [monotonicity #21109]: #21111
-#21115 := [monotonicity #21112]: #21114
-#21122 := [trans #21115 #21120]: #21121
-#21199 := [monotonicity #21122 #21196]: #21198
-#20948 := (iff #13737 #20947)
-#20945 := (iff #13738 #20942)
-#20939 := (or #18824 #13105 #13119)
-#20943 := (iff #20939 #20942)
-#20944 := [rewrite]: #20943
-#20940 := (iff #13738 #20939)
-#20941 := [monotonicity #18834]: #20940
-#20946 := [trans #20941 #20944]: #20945
-#20949 := [quant-intro #20946]: #20948
-#21202 := [monotonicity #20949 #21199]: #21201
-#21218 := [trans #21202 #21216]: #21217
-#21221 := [monotonicity #21218]: #21220
-#20937 := (iff #13797 #20936)
-#20934 := (iff #13798 #20931)
-#20928 := (or #18824 #12601 #12613)
-#20932 := (iff #20928 #20931)
-#20933 := [rewrite]: #20932
-#20929 := (iff #13798 #20928)
-#20930 := [monotonicity #18834]: #20929
-#20935 := [trans #20930 #20933]: #20934
-#20938 := [quant-intro #20935]: #20937
-#21224 := [monotonicity #20938 #21221]: #21223
-#21232 := [trans #21224 #21230]: #21231
-#20926 := (iff #17103 #20925)
-#20923 := (iff #17102 #20920)
-#20906 := (or #20904 #20905)
-#20917 := (or #20906 #17095 #17101)
-#20921 := (iff #20917 #20920)
-#20922 := [rewrite]: #20921
-#20918 := (iff #17102 #20917)
-#20915 := (iff #17094 #20906)
-#20907 := (not #20906)
-#20910 := (not #20907)
-#20913 := (iff #20910 #20906)
-#20914 := [rewrite]: #20913
-#20911 := (iff #17094 #20910)
-#20908 := (iff #17093 #20907)
-#20909 := [rewrite]: #20908
-#20912 := [monotonicity #20909]: #20911
-#20916 := [trans #20912 #20914]: #20915
-#20919 := [monotonicity #20916]: #20918
-#20924 := [trans #20919 #20922]: #20923
-#20927 := [monotonicity #20924]: #20926
-#21235 := [monotonicity #20927 #21232]: #21234
-#21238 := [monotonicity #21235]: #21237
-#21245 := [trans #21238 #21243]: #21244
-#21248 := [monotonicity #21245]: #21247
-#21251 := [monotonicity #21248]: #21250
-#21258 := [trans #21251 #21256]: #21257
-#21261 := [monotonicity #21258]: #21260
-#21264 := [monotonicity #21261]: #21263
-#21271 := [trans #21264 #21269]: #21270
-#21274 := [monotonicity #21271]: #21273
-#21277 := [monotonicity #21274]: #21276
-#21284 := [trans #21277 #21282]: #21283
-#21287 := [monotonicity #21284]: #21286
-#17364 := (+ #17363 #12962)
-#17365 := (<= #17364 0::Int)
-#17359 := (+ ?v0!15 #12568)
-#17360 := (>= #17359 0::Int)
-#17366 := (or #17358 #17360 #17365)
-#17367 := (not #17366)
-#17390 := (or #17367 #17386)
-#17351 := (not #11361)
-#17348 := (not #11370)
-#17345 := (not #11379)
-#17342 := (not #11388)
-#17132 := (not #12647)
-#17394 := (and #12926 #17132 #17342 #17345 #17348 #17351 #17390)
-#17242 := (+ #17241 #12696)
-#17243 := (<= #17242 0::Int)
-#17237 := (+ ?v0!14 #12677)
-#17238 := (>= #17237 0::Int)
-#17244 := (or #17236 #17238 #17243)
-#17245 := (not #17244)
-#17264 := (or #17245 #17260)
-#17229 := (not #12681)
-#17268 := (and #17229 #17264)
-#17272 := (or #12681 #17268)
-#17224 := (not #12673)
-#17221 := (not #11705)
-#17218 := (not #12743)
-#13720 := (and #12660 #13727)
-#13719 := (not #13720)
-#17215 := (not #13719)
-#17276 := (and #17215 #17218 #17221 #17224 #17272)
-#17280 := (or #17209 #17212 #17276)
-#17206 := (not #12656)
-#17309 := (not #11883)
-#17306 := (not #11892)
-#17312 := (and #17132 #12834 #17306 #17309 #17206 #17280)
-#17203 := (not #11751)
-#17200 := (not #11760)
-#17197 := (not #12777)
-#17194 := (not #11785)
-#17191 := (not #11794)
-#17188 := (not #11803)
-#17183 := (not #11812)
-#17284 := (and #17183 #17188 #17191 #17194 #17197 #17200 #17203 #17206 #17280)
-#17288 := (or #17171 #17180 #17284)
-#17177 := (not #11824)
-#17292 := (and #17177 #17288)
-#17296 := (or #17171 #17174 #17292)
-#17300 := (and #17132 #12828 #17296)
-#17316 := (or #17300 #17312)
-#17320 := (and #17183 #17132 #17316)
-#17324 := (or #17171 #17180 #17320)
-#17328 := (and #17177 #17324)
-#17332 := (or #17171 #17174 #17328)
-#17336 := (and #17132 #12923 #17332)
-#17398 := (or #17336 #17394)
-#17166 := (not #12108)
-#17163 := (not #12117)
-#17160 := (not #12126)
-#17157 := (not #12135)
-#17154 := (not #12144)
-#17151 := (not #15031)
-#17148 := (not #13090)
-#17145 := (not #13102)
-#17135 := (not #13142)
-#13744 := (and #13145 #13751)
-#13743 := (not #13744)
-#17129 := (not #13743)
-#13763 := (and #12642 #13766)
-#13758 := (not #13763)
-#17126 := (not #13758)
-#13778 := (and #13167 #13785)
-#13777 := (not #13778)
-#17123 := (not #13777)
-#17120 := (not #13183)
-#17402 := (and #17120 #17123 #17126 #17129 #17132 #17135 #13737 #17145 #17148 #17151 #17154 #17157 #17160 #17163 #17166 #17398)
-#17406 := (or #13340 #17117 #17402)
-#17410 := (and #13797 #17406)
-#17414 := (or #17103 #17410)
-#17087 := (not #12598)
-#17418 := (and #17087 #17414)
-#17422 := (or #12598 #17418)
-#17082 := (not #12352)
-#17079 := (not #12361)
-#17076 := (not #12370)
-#17073 := (not #12379)
-#17070 := (not #12388)
-#17426 := (and #17070 #17073 #17076 #17079 #17082 #17422)
-#17430 := (or #17058 #17067 #17426)
-#17064 := (not #12400)
-#17434 := (and #17064 #17430)
-#17438 := (or #17058 #17061 #17434)
-#17055 := (not #12412)
-#17442 := (and #17055 #17438)
-#17446 := (or #12412 #17442)
-#17754 := (iff #17446 #17753)
-#17751 := (iff #17442 #17750)
-#17748 := (iff #17438 #17747)
-#17745 := (iff #17434 #17742)
-#17739 := (and #4742 #17736)
-#17743 := (iff #17739 #17742)
-#17744 := [rewrite]: #17743
-#17740 := (iff #17434 #17739)
-#17737 := (iff #17430 #17736)
-#17734 := (iff #17426 #17731)
-#17728 := (and #4746 #4750 #4755 #4760 #4765 #17725)
-#17732 := (iff #17728 #17731)
-#17733 := [rewrite]: #17732
-#17729 := (iff #17426 #17728)
-#17726 := (iff #17422 #17725)
-#17723 := (iff #17418 #17722)
-#17720 := (iff #17414 #17719)
-#17717 := (iff #17410 #17716)
-#17714 := (iff #17406 #17713)
-#17711 := (iff #17402 #17708)
-#17705 := (and #13180 #13778 #13763 #13744 #12644 #13139 #13737 #13099 #4898 #4811 #4909 #4913 #4917 #4921 #4931 #17702)
-#17709 := (iff #17705 #17708)
-#17710 := [rewrite]: #17709
-#17706 := (iff #17402 #17705)
-#17703 := (iff #17398 #17702)
-#17700 := (iff #17394 #17697)
-#17694 := (and #12922 #12644 #4814 #4816 #4818 #4820 #17691)
-#17698 := (iff #17694 #17697)
-#17699 := [rewrite]: #17698
-#17695 := (iff #17394 #17694)
-#17692 := (iff #17390 #17691)
-#17689 := (iff #17367 #17688)
-#17686 := (iff #17366 #17685)
-#17683 := (iff #17365 #17680)
-#17672 := (+ #12962 #17363)
-#17675 := (<= #17672 0::Int)
-#17681 := (iff #17675 #17680)
-#17682 := [rewrite]: #17681
-#17676 := (iff #17365 #17675)
-#17673 := (= #17364 #17672)
-#17674 := [rewrite]: #17673
-#17677 := [monotonicity #17674]: #17676
-#17684 := [trans #17677 #17682]: #17683
-#17670 := (iff #17360 #17667)
-#17659 := (+ #12568 ?v0!15)
-#17662 := (>= #17659 0::Int)
-#17668 := (iff #17662 #17667)
-#17669 := [rewrite]: #17668
-#17663 := (iff #17360 #17662)
-#17660 := (= #17359 #17659)
-#17661 := [rewrite]: #17660
-#17664 := [monotonicity #17661]: #17663
-#17671 := [trans #17664 #17669]: #17670
-#17687 := [monotonicity #17671 #17684]: #17686
-#17690 := [monotonicity #17687]: #17689
-#17693 := [monotonicity #17690]: #17692
-#17657 := (iff #17351 #4820)
-#17658 := [rewrite]: #17657
-#17655 := (iff #17348 #4818)
-#17656 := [rewrite]: #17655
-#17653 := (iff #17345 #4816)
-#17654 := [rewrite]: #17653
-#17651 := (iff #17342 #4814)
-#17652 := [rewrite]: #17651
-#17476 := (iff #17132 #12644)
-#17477 := [rewrite]: #17476
-#17696 := [monotonicity #12930 #17477 #17652 #17654 #17656 #17658 #17693]: #17695
-#17701 := [trans #17696 #17699]: #17700
-#17649 := (iff #17336 #17646)
-#17643 := (and #12644 #12923 #17640)
-#17647 := (iff #17643 #17646)
-#17648 := [rewrite]: #17647
-#17644 := (iff #17336 #17643)
-#17641 := (iff #17332 #17640)
-#17638 := (iff #17328 #17635)
-#17632 := (and #4943 #17629)
-#17636 := (iff #17632 #17635)
-#17637 := [rewrite]: #17636
-#17633 := (iff #17328 #17632)
-#17630 := (iff #17324 #17629)
-#17627 := (iff #17320 #17624)
-#17621 := (and #4946 #12644 #17618)
-#17625 := (iff #17621 #17624)
-#17626 := [rewrite]: #17625
-#17622 := (iff #17320 #17621)
-#17619 := (iff #17316 #17618)
-#17616 := (iff #17312 #17613)
-#17610 := (and #12644 #12829 #5026 #5027 #12653 #17573)
-#17614 := (iff #17610 #17613)
-#17615 := [rewrite]: #17614
-#17611 := (iff #17312 #17610)
-#17574 := (iff #17280 #17573)
-#17571 := (iff #17276 #17568)
-#17565 := (and #13720 #12739 #4978 #12670 #17562)
-#17569 := (iff #17565 #17568)
-#17570 := [rewrite]: #17569
-#17566 := (iff #17276 #17565)
-#17563 := (iff #17272 #17562)
-#17560 := (iff #17268 #17559)
-#17557 := (iff #17264 #17556)
-#17554 := (iff #17245 #17553)
-#17551 := (iff #17244 #17550)
-#17548 := (iff #17243 #17545)
-#17537 := (+ #12696 #17241)
-#17540 := (<= #17537 0::Int)
-#17546 := (iff #17540 #17545)
-#17547 := [rewrite]: #17546
-#17541 := (iff #17243 #17540)
-#17538 := (= #17242 #17537)
-#17539 := [rewrite]: #17538
-#17542 := [monotonicity #17539]: #17541
-#17549 := [trans #17542 #17547]: #17548
-#17535 := (iff #17238 #17532)
-#17524 := (+ #12677 ?v0!14)
-#17527 := (>= #17524 0::Int)
-#17533 := (iff #17527 #17532)
-#17534 := [rewrite]: #17533
-#17528 := (iff #17238 #17527)
-#17525 := (= #17237 #17524)
-#17526 := [rewrite]: #17525
-#17529 := [monotonicity #17526]: #17528
-#17536 := [trans #17529 #17534]: #17535
-#17552 := [monotonicity #17536 #17549]: #17551
-#17555 := [monotonicity #17552]: #17554
-#17558 := [monotonicity #17555]: #17557
-#17522 := (iff #17229 #12676)
-#17523 := [rewrite]: #17522
-#17561 := [monotonicity #17523 #17558]: #17560
-#17564 := [monotonicity #17561]: #17563
-#17520 := (iff #17224 #12670)
-#17521 := [rewrite]: #17520
-#17518 := (iff #17221 #4978)
-#17519 := [rewrite]: #17518
-#17516 := (iff #17218 #12739)
-#17517 := [rewrite]: #17516
-#17514 := (iff #17215 #13720)
-#17515 := [rewrite]: #17514
-#17567 := [monotonicity #17515 #17517 #17519 #17521 #17564]: #17566
-#17572 := [trans #17567 #17570]: #17571
-#17575 := [monotonicity #17572]: #17574
-#17512 := (iff #17206 #12653)
-#17513 := [rewrite]: #17512
-#17608 := (iff #17309 #5027)
-#17609 := [rewrite]: #17608
-#17606 := (iff #17306 #5026)
-#17607 := [rewrite]: #17606
-#17612 := [monotonicity #17477 #12838 #17607 #17609 #17513 #17575]: #17611
-#17617 := [trans #17612 #17615]: #17616
-#17604 := (iff #17300 #17601)
-#17598 := (and #12644 #12828 #17595)
-#17602 := (iff #17598 #17601)
-#17603 := [rewrite]: #17602
-#17599 := (iff #17300 #17598)
-#17596 := (iff #17296 #17595)
-#17593 := (iff #17292 #17590)
-#17587 := (and #4943 #17584)
-#17591 := (iff #17587 #17590)
-#17592 := [rewrite]: #17591
-#17588 := (iff #17292 #17587)
-#17585 := (iff #17288 #17584)
-#17582 := (iff #17284 #17579)
-#17576 := (and #4946 #4950 #4955 #4960 #12639 #4963 #4965 #12653 #17573)
-#17580 := (iff #17576 #17579)
-#17581 := [rewrite]: #17580
-#17577 := (iff #17284 #17576)
-#17510 := (iff #17203 #4965)
-#17511 := [rewrite]: #17510
-#17508 := (iff #17200 #4963)
-#17509 := [rewrite]: #17508
-#17506 := (iff #17197 #12639)
-#17507 := [rewrite]: #17506
-#17504 := (iff #17194 #4960)
-#17505 := [rewrite]: #17504
-#17502 := (iff #17191 #4955)
-#17503 := [rewrite]: #17502
-#17500 := (iff #17188 #4950)
-#17501 := [rewrite]: #17500
-#17498 := (iff #17183 #4946)
-#17499 := [rewrite]: #17498
-#17578 := [monotonicity #17499 #17501 #17503 #17505 #17507 #17509 #17511 #17513 #17575]: #17577
-#17583 := [trans #17578 #17581]: #17582
-#17586 := [monotonicity #17583]: #17585
-#17496 := (iff #17177 #4943)
-#17497 := [rewrite]: #17496
-#17589 := [monotonicity #17497 #17586]: #17588
-#17594 := [trans #17589 #17592]: #17593
-#17597 := [monotonicity #17594]: #17596
-#17600 := [monotonicity #17477 #17597]: #17599
-#17605 := [trans #17600 #17603]: #17604
-#17620 := [monotonicity #17605 #17617]: #17619
-#17623 := [monotonicity #17499 #17477 #17620]: #17622
-#17628 := [trans #17623 #17626]: #17627
-#17631 := [monotonicity #17628]: #17630
-#17634 := [monotonicity #17497 #17631]: #17633
-#17639 := [trans #17634 #17637]: #17638
-#17642 := [monotonicity #17639]: #17641
-#17645 := [monotonicity #17477 #17642]: #17644
-#17650 := [trans #17645 #17648]: #17649
-#17704 := [monotonicity #17650 #17701]: #17703
-#17494 := (iff #17166 #4931)
-#17495 := [rewrite]: #17494
-#17492 := (iff #17163 #4921)
-#17493 := [rewrite]: #17492
-#17490 := (iff #17160 #4917)
-#17491 := [rewrite]: #17490
-#17488 := (iff #17157 #4913)
-#17489 := [rewrite]: #17488
-#17486 := (iff #17154 #4909)
-#17487 := [rewrite]: #17486
-#17484 := (iff #17151 #4811)
-#17485 := [rewrite]: #17484
-#17482 := (iff #17148 #4898)
-#17483 := [rewrite]: #17482
-#17480 := (iff #17145 #13099)
-#17481 := [rewrite]: #17480
-#17478 := (iff #17135 #13139)
-#17479 := [rewrite]: #17478
-#17474 := (iff #17129 #13744)
-#17475 := [rewrite]: #17474
-#17472 := (iff #17126 #13763)
-#17473 := [rewrite]: #17472
-#17470 := (iff #17123 #13778)
-#17471 := [rewrite]: #17470
-#17468 := (iff #17120 #13180)
-#17469 := [rewrite]: #17468
-#17707 := [monotonicity #17469 #17471 #17473 #17475 #17477 #17479 #17481 #17483 #17485 #17487 #17489 #17491 #17493 #17495 #17704]: #17706
-#17712 := [trans #17707 #17710]: #17711
-#17715 := [monotonicity #13344 #17712]: #17714
-#17718 := [monotonicity #17715]: #17717
-#17721 := [monotonicity #17718]: #17720
-#17466 := (iff #17087 #12595)
-#17467 := [rewrite]: #17466
-#17724 := [monotonicity #17467 #17721]: #17723
-#17727 := [monotonicity #17724]: #17726
-#17464 := (iff #17082 #4765)
-#17465 := [rewrite]: #17464
-#17462 := (iff #17079 #4760)
-#17463 := [rewrite]: #17462
-#17460 := (iff #17076 #4755)
-#17461 := [rewrite]: #17460
-#17458 := (iff #17073 #4750)
-#17459 := [rewrite]: #17458
-#17456 := (iff #17070 #4746)
-#17457 := [rewrite]: #17456
-#17730 := [monotonicity #17457 #17459 #17461 #17463 #17465 #17727]: #17729
-#17735 := [trans #17730 #17733]: #17734
-#17738 := [monotonicity #17735]: #17737
-#17454 := (iff #17064 #4742)
-#17455 := [rewrite]: #17454
-#17741 := [monotonicity #17455 #17738]: #17740
-#17746 := [trans #17741 #17744]: #17745
-#17749 := [monotonicity #17746]: #17748
-#17452 := (iff #17055 #4733)
-#17453 := [rewrite]: #17452
-#17752 := [monotonicity #17453 #17749]: #17751
-#17755 := [monotonicity #17752]: #17754
-#13641 := (exists (vars (?v0 Int)) #13642)
-#13647 := (not #13648)
-#13636 := (or #13647 #13641)
-#13635 := (and #13648 #13636)
-#13630 := (or #12923 #12647 #11388 #11379 #11370 #11361 #13635)
-#13708 := (not #13713)
-#13707 := (or #13708 #12724)
-#13702 := (and #13713 #13707)
-#13701 := (or #12681 #13702)
-#13696 := (and #12676 #13701)
-#13695 := (or #13719 #12743 #11705 #12673 #13696)
-#13690 := (and #12660 #13727 #13695)
-#13672 := (or #12647 #12828 #11892 #11883 #12656 #13690)
-#13689 := (or #11812 #11803 #11794 #11785 #12777 #11760 #11751 #12656 #13690)
-#13684 := (and #4940 #4945 #13689)
-#13683 := (or #11824 #13684)
-#13678 := (and #4940 #4942 #13683)
-#13677 := (or #12647 #12829 #13678)
-#13671 := (and #13677 #13672)
-#13666 := (or #11812 #12647 #13671)
-#13665 := (and #4940 #4945 #13666)
-#13660 := (or #11824 #13665)
-#13659 := (and #4940 #4942 #13660)
-#13654 := (or #12647 #12922 #13659)
-#13629 := (and #13654 #13630)
-#13732 := (not #13737)
-#13624 := (or #13183 #13777 #13758 #13743 #12647 #13142 #13732 #13102 #13090 #15031 #12144 #12135 #12126 #12117 #12108 #13629)
-#13623 := (and #12635 #4780 #13624)
-#13792 := (not #13797)
-#13618 := (or #13792 #13623)
-#13617 := (and #13797 #13618)
-#13612 := (or #12598 #13617)
-#13611 := (and #12595 #13612)
-#13606 := (or #12388 #12379 #12370 #12361 #12352 #13611)
-#13605 := (and #4739 #4745 #13606)
-#13600 := (or #12400 #13605)
-#13599 := (and #4739 #4741 #13600)
-#13594 := (or #12412 #13599)
-#13593 := (and #4733 #13594)
-#13588 := (not #13593)
-#17447 := (~ #13588 #17446)
-#17443 := (not #13594)
-#17444 := (~ #17443 #17442)
-#17439 := (not #13599)
-#17440 := (~ #17439 #17438)
-#17435 := (not #13600)
-#17436 := (~ #17435 #17434)
-#17431 := (not #13605)
-#17432 := (~ #17431 #17430)
-#17427 := (not #13606)
-#17428 := (~ #17427 #17426)
-#17423 := (not #13611)
-#17424 := (~ #17423 #17422)
-#17419 := (not #13612)
-#17420 := (~ #17419 #17418)
-#17415 := (not #13617)
-#17416 := (~ #17415 #17414)
-#17411 := (not #13618)
-#17412 := (~ #17411 #17410)
-#17407 := (not #13623)
-#17408 := (~ #17407 #17406)
-#17403 := (not #13624)
-#17404 := (~ #17403 #17402)
-#17399 := (not #13629)
-#17400 := (~ #17399 #17398)
-#17395 := (not #13630)
-#17396 := (~ #17395 #17394)
-#17391 := (not #13635)
-#17392 := (~ #17391 #17390)
-#17387 := (not #13636)
-#17388 := (~ #17387 #17386)
-#17383 := (not #13641)
-#17384 := (~ #17383 #17382)
-#17380 := (~ #17379 #17379)
-#17381 := [refl]: #17380
-#17385 := [nnf-neg #17381]: #17384
-#17376 := (not #13647)
-#17377 := (~ #17376 #13648)
-#17374 := (~ #13648 #13648)
-#17372 := (~ #13653 #13653)
-#17373 := [refl]: #17372
-#17375 := [nnf-pos #17373]: #17374
-#17378 := [nnf-neg #17375]: #17377
-#17389 := [nnf-neg #17378 #17385]: #17388
-#17368 := (~ #13647 #17367)
-#17369 := [sk]: #17368
-#17393 := [nnf-neg #17369 #17389]: #17392
-#17352 := (~ #17351 #17351)
-#17353 := [refl]: #17352
-#17349 := (~ #17348 #17348)
-#17350 := [refl]: #17349
-#17346 := (~ #17345 #17345)
-#17347 := [refl]: #17346
-#17343 := (~ #17342 #17342)
-#17344 := [refl]: #17343
-#17133 := (~ #17132 #17132)
-#17134 := [refl]: #17133
-#17340 := (~ #12926 #12926)
-#17341 := [refl]: #17340
-#17397 := [nnf-neg #17341 #17134 #17344 #17347 #17350 #17353 #17393]: #17396
-#17337 := (not #13654)
-#17338 := (~ #17337 #17336)
-#17333 := (not #13659)
-#17334 := (~ #17333 #17332)
-#17329 := (not #13660)
-#17330 := (~ #17329 #17328)
-#17325 := (not #13665)
-#17326 := (~ #17325 #17324)
-#17321 := (not #13666)
-#17322 := (~ #17321 #17320)
-#17317 := (not #13671)
-#17318 := (~ #17317 #17316)
-#17313 := (not #13672)
-#17314 := (~ #17313 #17312)
-#17281 := (not #13690)
-#17282 := (~ #17281 #17280)
-#17277 := (not #13695)
-#17278 := (~ #17277 #17276)
-#17273 := (not #13696)
-#17274 := (~ #17273 #17272)
-#17269 := (not #13701)
-#17270 := (~ #17269 #17268)
-#17265 := (not #13702)
-#17266 := (~ #17265 #17264)
-#17261 := (not #13707)
-#17262 := (~ #17261 #17260)
-#17258 := (~ #17257 #17257)
-#17259 := [refl]: #17258
-#17254 := (not #13708)
-#17255 := (~ #17254 #13713)
-#17252 := (~ #13713 #13713)
-#17250 := (~ #13714 #13714)
-#17251 := [refl]: #17250
-#17253 := [nnf-pos #17251]: #17252
-#17256 := [nnf-neg #17253]: #17255
-#17263 := [nnf-neg #17256 #17259]: #17262
-#17246 := (~ #13708 #17245)
-#17247 := [sk]: #17246
-#17267 := [nnf-neg #17247 #17263]: #17266
-#17230 := (~ #17229 #17229)
-#17231 := [refl]: #17230
-#17271 := [nnf-neg #17231 #17267]: #17270
-#17227 := (~ #12681 #12681)
-#17228 := [refl]: #17227
-#17275 := [nnf-neg #17228 #17271]: #17274
-#17225 := (~ #17224 #17224)
-#17226 := [refl]: #17225
-#17222 := (~ #17221 #17221)
-#17223 := [refl]: #17222
-#17219 := (~ #17218 #17218)
-#17220 := [refl]: #17219
-#17216 := (~ #17215 #17215)
-#17217 := [refl]: #17216
-#17279 := [nnf-neg #17217 #17220 #17223 #17226 #17275]: #17278
-#17213 := (~ #17212 #17212)
-#17214 := [refl]: #17213
-#17210 := (~ #17209 #17209)
-#17211 := [refl]: #17210
-#17283 := [nnf-neg #17211 #17214 #17279]: #17282
-#17207 := (~ #17206 #17206)
-#17208 := [refl]: #17207
-#17310 := (~ #17309 #17309)
-#17311 := [refl]: #17310
-#17307 := (~ #17306 #17306)
-#17308 := [refl]: #17307
-#17304 := (~ #12834 #12834)
-#17305 := [refl]: #17304
-#17315 := [nnf-neg #17134 #17305 #17308 #17311 #17208 #17283]: #17314
-#17301 := (not #13677)
-#17302 := (~ #17301 #17300)
-#17297 := (not #13678)
-#17298 := (~ #17297 #17296)
-#17293 := (not #13683)
-#17294 := (~ #17293 #17292)
-#17289 := (not #13684)
-#17290 := (~ #17289 #17288)
-#17285 := (not #13689)
-#17286 := (~ #17285 #17284)
-#17204 := (~ #17203 #17203)
-#17205 := [refl]: #17204
-#17201 := (~ #17200 #17200)
-#17202 := [refl]: #17201
-#17198 := (~ #17197 #17197)
-#17199 := [refl]: #17198
-#17195 := (~ #17194 #17194)
-#17196 := [refl]: #17195
-#17192 := (~ #17191 #17191)
-#17193 := [refl]: #17192
-#17189 := (~ #17188 #17188)
-#17190 := [refl]: #17189
-#17184 := (~ #17183 #17183)
-#17185 := [refl]: #17184
-#17287 := [nnf-neg #17185 #17190 #17193 #17196 #17199 #17202 #17205 #17208 #17283]: #17286
-#17181 := (~ #17180 #17180)
-#17182 := [refl]: #17181
-#17172 := (~ #17171 #17171)
-#17173 := [refl]: #17172
-#17291 := [nnf-neg #17173 #17182 #17287]: #17290
-#17178 := (~ #17177 #17177)
-#17179 := [refl]: #17178
-#17295 := [nnf-neg #17179 #17291]: #17294
-#17175 := (~ #17174 #17174)
-#17176 := [refl]: #17175
-#17299 := [nnf-neg #17173 #17176 #17295]: #17298
-#17186 := (~ #12828 #12828)
-#17187 := [refl]: #17186
-#17303 := [nnf-neg #17134 #17187 #17299]: #17302
-#17319 := [nnf-neg #17303 #17315]: #17318
-#17323 := [nnf-neg #17185 #17134 #17319]: #17322
-#17327 := [nnf-neg #17173 #17182 #17323]: #17326
-#17331 := [nnf-neg #17179 #17327]: #17330
-#17335 := [nnf-neg #17173 #17176 #17331]: #17334
-#17169 := (~ #12923 #12923)
-#17170 := [refl]: #17169
-#17339 := [nnf-neg #17134 #17170 #17335]: #17338
-#17401 := [nnf-neg #17339 #17397]: #17400
-#17167 := (~ #17166 #17166)
-#17168 := [refl]: #17167
-#17164 := (~ #17163 #17163)
-#17165 := [refl]: #17164
-#17161 := (~ #17160 #17160)
-#17162 := [refl]: #17161
-#17158 := (~ #17157 #17157)
-#17159 := [refl]: #17158
-#17155 := (~ #17154 #17154)
-#17156 := [refl]: #17155
-#17152 := (~ #17151 #17151)
-#17153 := [refl]: #17152
-#17149 := (~ #17148 #17148)
-#17150 := [refl]: #17149
-#17146 := (~ #17145 #17145)
-#17147 := [refl]: #17146
-#17142 := (not #13732)
-#17143 := (~ #17142 #13737)
-#17140 := (~ #13737 #13737)
-#17138 := (~ #13738 #13738)
-#17139 := [refl]: #17138
-#17141 := [nnf-pos #17139]: #17140
-#17144 := [nnf-neg #17141]: #17143
-#17136 := (~ #17135 #17135)
-#17137 := [refl]: #17136
-#17130 := (~ #17129 #17129)
-#17131 := [refl]: #17130
-#17127 := (~ #17126 #17126)
-#17128 := [refl]: #17127
-#17124 := (~ #17123 #17123)
-#17125 := [refl]: #17124
-#17121 := (~ #17120 #17120)
-#17122 := [refl]: #17121
-#17405 := [nnf-neg #17122 #17125 #17128 #17131 #17134 #17137 #17144 #17147 #17150 #17153 #17156 #17159 #17162 #17165 #17168 #17401]: #17404
-#17118 := (~ #17117 #17117)
-#17119 := [refl]: #17118
-#17115 := (~ #13340 #13340)
-#17116 := [refl]: #17115
-#17409 := [nnf-neg #17116 #17119 #17405]: #17408
-#17112 := (not #13792)
-#17113 := (~ #17112 #13797)
-#17110 := (~ #13797 #13797)
-#17108 := (~ #13798 #13798)
-#17109 := [refl]: #17108
-#17111 := [nnf-pos #17109]: #17110
-#17114 := [nnf-neg #17111]: #17113
-#17413 := [nnf-neg #17114 #17409]: #17412
-#17104 := (~ #13792 #17103)
-#17105 := [sk]: #17104
-#17417 := [nnf-neg #17105 #17413]: #17416
-#17088 := (~ #17087 #17087)
-#17089 := [refl]: #17088
-#17421 := [nnf-neg #17089 #17417]: #17420
-#17085 := (~ #12598 #12598)
-#17086 := [refl]: #17085
-#17425 := [nnf-neg #17086 #17421]: #17424
-#17083 := (~ #17082 #17082)
-#17084 := [refl]: #17083
-#17080 := (~ #17079 #17079)
-#17081 := [refl]: #17080
-#17077 := (~ #17076 #17076)
-#17078 := [refl]: #17077
-#17074 := (~ #17073 #17073)
-#17075 := [refl]: #17074
-#17071 := (~ #17070 #17070)
-#17072 := [refl]: #17071
-#17429 := [nnf-neg #17072 #17075 #17078 #17081 #17084 #17425]: #17428
-#17068 := (~ #17067 #17067)
-#17069 := [refl]: #17068
-#17059 := (~ #17058 #17058)
-#17060 := [refl]: #17059
-#17433 := [nnf-neg #17060 #17069 #17429]: #17432
-#17065 := (~ #17064 #17064)
-#17066 := [refl]: #17065
-#17437 := [nnf-neg #17066 #17433]: #17436
-#17062 := (~ #17061 #17061)
-#17063 := [refl]: #17062
-#17441 := [nnf-neg #17060 #17063 #17437]: #17440
-#17056 := (~ #17055 #17055)
-#17057 := [refl]: #17056
-#17445 := [nnf-neg #17057 #17441]: #17444
-#17053 := (~ #12412 #12412)
-#17054 := [refl]: #17053
-#17448 := [nnf-neg #17054 #17445]: #17447
-#15056 := (or #12923 #12647 #11388 #11379 #11370 #11361 #13004)
-#15061 := (and #12945 #15056)
-#15064 := (or #13183 #13177 #13164 #13154 #12647 #13142 #13136 #13102 #13090 #15031 #12144 #12135 #12126 #12117 #12108 #15061)
-#15067 := (and #12635 #4780 #15064)
-#15070 := (or #12631 #15067)
-#15073 := (and #12628 #15070)
-#15076 := (or #12598 #15073)
-#15079 := (and #12595 #15076)
-#15082 := (or #12388 #12379 #12370 #12361 #12352 #15079)
-#15085 := (and #4739 #4745 #15082)
-#15088 := (or #12400 #15085)
-#15091 := (and #4739 #4741 #15088)
-#15094 := (or #12412 #15091)
-#15097 := (and #4733 #15094)
-#15100 := (not #15097)
-#13589 := (iff #15100 #13588)
-#13590 := (iff #15097 #13593)
-#13595 := (iff #15094 #13594)
-#13596 := (iff #15091 #13599)
-#13601 := (iff #15088 #13600)
-#13602 := (iff #15085 #13605)
-#13607 := (iff #15082 #13606)
-#13608 := (iff #15079 #13611)
-#13613 := (iff #15076 #13612)
-#13614 := (iff #15073 #13617)
-#13619 := (iff #15070 #13618)
-#13620 := (iff #15067 #13623)
-#13625 := (iff #15064 #13624)
-#13626 := (iff #15061 #13629)
-#13631 := (iff #15056 #13630)
-#13632 := (iff #13004 #13635)
-#13637 := (iff #13001 #13636)
-#13638 := (iff #12998 #13641)
-#13643 := (iff #12993 #13642)
-#14912 := (iff #6890 #14917)
-#14949 := -4294967295::Int
-#14925 := (+ -4294967295::Int #1197)
-#14918 := (<= #14925 0::Int)
-#14914 := (iff #14918 #14917)
-#14915 := [rewrite]: #14914
-#14919 := (iff #6890 #14918)
-#14920 := (= #6889 #14925)
-#14926 := (+ #1197 -4294967295::Int)
-#14922 := (= #14926 #14925)
-#14923 := [rewrite]: #14922
-#14927 := (= #6889 #14926)
-#14944 := (= #6888 -4294967295::Int)
-#14950 := (* -1::Int 4294967295::Int)
-#14946 := (= #14950 -4294967295::Int)
-#14947 := [rewrite]: #14946
-#14951 := (= #6888 #14950)
-#9364 := (= f168 4294967295::Int)
-#2153 := 65536::Int
-#2552 := (* 65536::Int 65536::Int)
-#2557 := (- #2552 1::Int)
-#2558 := (= f168 #2557)
-#9365 := (iff #2558 #9364)
-#9362 := (= #2557 4294967295::Int)
-#2216 := 4294967296::Int
-#9355 := (- 4294967296::Int 1::Int)
-#9360 := (= #9355 4294967295::Int)
-#9361 := [rewrite]: #9360
-#9357 := (= #2557 #9355)
-#9326 := (= #2552 4294967296::Int)
-#9327 := [rewrite]: #9326
-#9358 := [monotonicity #9327]: #9357
-#9363 := [trans #9358 #9361]: #9362
-#9366 := [monotonicity #9363]: #9365
-#9354 := [asserted]: #2558
-#9369 := [mp #9354 #9366]: #9364
-#14948 := [monotonicity #9369]: #14951
-#14945 := [trans #14948 #14947]: #14944
-#14924 := [monotonicity #14945]: #14927
-#14921 := [trans #14924 #14923]: #14920
-#14916 := [monotonicity #14921]: #14919
-#14913 := [trans #14916 #14915]: #14912
-#13640 := [monotonicity #14913]: #13643
-#13639 := [quant-intro #13640]: #13638
-#13644 := (iff #12981 #13647)
-#13649 := (iff #12978 #13648)
-#13650 := (iff #12973 #13653)
-#14269 := (iff #7910 #14268)
-#14270 := (iff #6897 #14273)
-#14271 := [monotonicity #14913]: #14270
-#14266 := [monotonicity #14271]: #14269
-#13651 := [monotonicity #14266]: #13650
-#13646 := [quant-intro #13651]: #13649
-#13645 := [monotonicity #13646]: #13644
-#13634 := [monotonicity #13645 #13639]: #13637
-#13633 := [monotonicity #13646 #13634]: #13632
-#13628 := [monotonicity #13633]: #13631
-#13655 := (iff #12945 #13654)
-#13656 := (iff #12916 #13659)
-#13661 := (iff #12910 #13660)
-#13662 := (iff #12905 #13665)
-#13667 := (iff #12897 #13666)
-#13668 := (iff #12888 #13671)
-#13673 := (iff #12883 #13672)
-#13691 := (iff #12772 #13690)
-#13692 := (iff #12764 #13695)
-#13697 := (iff #12736 #13696)
-#13698 := (iff #12733 #13701)
-#13703 := (iff #12730 #13702)
-#13704 := (iff #12727 #13707)
-#13709 := (iff #12715 #13708)
-#13710 := (iff #12712 #13713)
-#13715 := (iff #12707 #13714)
-#13712 := [monotonicity #14266]: #13715
-#13711 := [quant-intro #13712]: #13710
-#13706 := [monotonicity #13711]: #13709
-#13705 := [monotonicity #13706]: #13704
-#13700 := [monotonicity #13711 #13705]: #13703
-#13699 := [monotonicity #13700]: #13698
-#13694 := [monotonicity #13699]: #13697
-#13716 := (iff #12749 #13719)
-#13721 := (iff #12746 #13720)
-#13722 := (iff #12662 #13727)
-#13757 := (+ 4294967295::Int #12663)
-#13731 := (>= #13757 1::Int)
-#13724 := (iff #13731 #13727)
-#13725 := [rewrite]: #13724
-#13728 := (iff #12662 #13731)
-#13754 := (= #12664 #13757)
-#13755 := [monotonicity #9369]: #13754
-#13729 := [monotonicity #13755]: #13728
-#13723 := [trans #13729 #13725]: #13722
-#13718 := [monotonicity #13723]: #13721
-#13717 := [monotonicity #13718]: #13716
-#13693 := [monotonicity #13717 #13694]: #13692
-#13688 := [monotonicity #13723 #13693]: #13691
-#13670 := [monotonicity #13688]: #13673
-#13674 := (iff #12853 #13677)
-#13679 := (iff #12823 #13678)
-#13680 := (iff #12817 #13683)
-#13685 := (iff #12812 #13684)
-#13686 := (iff #12804 #13689)
-#13687 := [monotonicity #13688]: #13686
-#13682 := [monotonicity #13687]: #13685
-#13681 := [monotonicity #13682]: #13680
-#13676 := [monotonicity #13681]: #13679
-#13675 := [monotonicity #13676]: #13674
-#13669 := [monotonicity #13675 #13670]: #13668
-#13664 := [monotonicity #13669]: #13667
-#13663 := [monotonicity #13664]: #13662
-#13658 := [monotonicity #13663]: #13661
-#13657 := [monotonicity #13658]: #13656
-#13652 := [monotonicity #13657]: #13655
-#13627 := [monotonicity #13652 #13628]: #13626
-#13733 := (iff #13136 #13732)
-#13734 := (iff #13133 #13737)
-#13739 := (iff #13128 #13738)
-#13736 := [monotonicity #14266]: #13739
-#13735 := [quant-intro #13736]: #13734
-#13730 := [monotonicity #13735]: #13733
-#13740 := (iff #13154 #13743)
-#13745 := (iff #13151 #13744)
-#13746 := (iff #13148 #13751)
-#13752 := (>= #13757 0::Int)
-#13748 := (iff #13752 #13751)
-#13749 := [rewrite]: #13748
-#13753 := (iff #13148 #13752)
-#13750 := [monotonicity #13755]: #13753
-#13747 := [trans #13750 #13749]: #13746
-#13742 := [monotonicity #13747]: #13745
-#13741 := [monotonicity #13742]: #13740
-#13759 := (iff #13164 #13758)
-#13760 := (iff #13161 #13763)
-#13765 := (iff #13157 #13766)
-#13772 := (+ 4294967295::Int #13093)
-#13771 := (>= #13772 0::Int)
-#13767 := (iff #13771 #13766)
-#13764 := [rewrite]: #13767
-#13768 := (iff #13157 #13771)
-#13773 := (= #13158 #13772)
-#13770 := [monotonicity #9369]: #13773
-#13769 := [monotonicity #13770]: #13768
-#13762 := [trans #13769 #13764]: #13765
-#13761 := [monotonicity #13762]: #13760
-#13756 := [monotonicity #13761]: #13759
-#13774 := (iff #13177 #13777)
-#13779 := (iff #13174 #13778)
-#13780 := (iff #13170 #13785)
-#13791 := (+ 255::Int #13117)
-#13786 := (>= #13791 0::Int)
-#13782 := (iff #13786 #13785)
-#13783 := [rewrite]: #13782
-#13787 := (iff #13170 #13786)
-#13788 := (= #13171 #13791)
-#2562 := (= f170 255::Int)
-#9368 := [asserted]: #2562
-#13789 := [monotonicity #9368]: #13788
-#13784 := [monotonicity #13789]: #13787
-#13781 := [trans #13784 #13783]: #13780
-#13776 := [monotonicity #13781]: #13779
-#13775 := [monotonicity #13776]: #13774
-#13622 := [monotonicity #13775 #13756 #13741 #13730 #13627]: #13625
-#13621 := [monotonicity #13622]: #13620
-#13793 := (iff #12631 #13792)
-#13794 := (iff #12628 #13797)
-#13799 := (iff #12623 #13798)
-#13796 := [monotonicity #14266]: #13799
-#13795 := [quant-intro #13796]: #13794
-#13790 := [monotonicity #13795]: #13793
-#13616 := [monotonicity #13790 #13621]: #13619
-#13615 := [monotonicity #13795 #13616]: #13614
-#13610 := [monotonicity #13615]: #13613
-#13609 := [monotonicity #13610]: #13608
-#13604 := [monotonicity #13609]: #13607
-#13603 := [monotonicity #13604]: #13602
-#13598 := [monotonicity #13603]: #13601
-#13597 := [monotonicity #13598]: #13596
-#13592 := [monotonicity #13597]: #13595
-#13591 := [monotonicity #13592]: #13590
-#13586 := [monotonicity #13591]: #13589
-#13485 := (not #13319)
-#15101 := (iff #13485 #15100)
-#15098 := (iff #13319 #15097)
-#15095 := (iff #13316 #15094)
-#15092 := (iff #13311 #15091)
-#15089 := (iff #13305 #15088)
-#15086 := (iff #13300 #15085)
-#15083 := (iff #13292 #15082)
-#15080 := (iff #13271 #15079)
-#15077 := (iff #13268 #15076)
-#15074 := (iff #13265 #15073)
-#15071 := (iff #13262 #15070)
-#15068 := (iff #13257 #15067)
-#15065 := (iff #13249 #15064)
-#15062 := (iff #13066 #15061)
-#15059 := (iff #13061 #15056)
-#15041 := (or #12647 #11388 #11379 #11370 #11361 #13004)
-#15053 := (or #12647 #12923 #15041)
-#15057 := (iff #15053 #15056)
-#15058 := [rewrite]: #15057
-#15054 := (iff #13061 #15053)
-#15051 := (iff #13036 #15041)
-#15046 := (and true #15041)
-#15049 := (iff #15046 #15041)
-#15050 := [rewrite]: #15049
-#15047 := (iff #13036 #15046)
-#15044 := (iff #13031 #15041)
-#15038 := (or false #12647 #11388 #11379 #11370 #11361 #13004)
-#15042 := (iff #15038 #15041)
-#15043 := [rewrite]: #15042
-#15039 := (iff #13031 #15038)
-#15036 := (iff #11436 false)
-#15034 := (iff #11436 #4808)
-#14750 := (iff #4072 true)
-#10920 := [asserted]: #4072
-#14751 := [iff-true #10920]: #14750
-#15035 := [monotonicity #14751]: #15034
-#15037 := [trans #15035 #11314]: #15036
-#15040 := [monotonicity #15037]: #15039
-#15045 := [trans #15040 #15043]: #15044
-#15048 := [monotonicity #14751 #15045]: #15047
-#15052 := [trans #15048 #15050]: #15051
-#15055 := [monotonicity #15052]: #15054
-#15060 := [trans #15055 #15058]: #15059
-#15063 := [monotonicity #15060]: #15062
-#15032 := (iff #11471 #15031)
-#15029 := (iff #4812 #4811)
-#15024 := (and #4811 true)
-#15027 := (iff #15024 #4811)
-#15028 := [rewrite]: #15027
-#15025 := (iff #4812 #15024)
-#15006 := (iff #4686 true)
-#15007 := [iff-true #13474]: #15006
-#15026 := [monotonicity #15007]: #15025
-#15030 := [trans #15026 #15028]: #15029
-#15033 := [monotonicity #15030]: #15032
-#15066 := [monotonicity #15033 #15063]: #15065
-#15069 := [monotonicity #15066]: #15068
-#15072 := [monotonicity #15069]: #15071
-#15075 := [monotonicity #15072]: #15074
-#15078 := [monotonicity #15075]: #15077
-#15081 := [monotonicity #15078]: #15080
-#15084 := [monotonicity #15081]: #15083
-#15087 := [monotonicity #15084]: #15086
-#15090 := [monotonicity #15087]: #15089
-#15093 := [monotonicity #15090]: #15092
-#15096 := [monotonicity #15093]: #15095
-#15099 := [monotonicity #15096]: #15098
-#15102 := [monotonicity #15099]: #15101
-#13486 := [not-or-elim #13452]: #13485
-#15103 := [mp #13486 #15102]: #15100
-#13587 := [mp #15103 #13586]: #13588
-#17449 := [mp~ #13587 #17448]: #17446
-#17450 := [mp #17449 #17755]: #17753
-#21288 := [mp #17450 #21287]: #21285
-#22120 := [mp #21288 #22119]: #22117
-#25454 := [unit-resolution #22120 #24007]: #22114
-#22345 := (or #22111 #22105)
-#22346 := [def-axiom]: #22345
-#25455 := [unit-resolution #22346 #25454]: #22105
-#22341 := (or #22108 #17058 #17061 #22102)
-#22342 := [def-axiom]: #22341
-#25456 := [unit-resolution #22342 #24483 #25074 #25455]: #22102
-#22331 := (or #22099 #22093)
-#22332 := [def-axiom]: #22331
-#25457 := [unit-resolution #22332 #25456]: #22093
-#22325 := (or #22096 #17058 #17067 #22090)
-#22326 := [def-axiom]: #22325
-#25459 := [unit-resolution #22326 #24483 #25457]: #25458
-#25460 := [unit-resolution #25459 #24749]: #22090
-#22307 := (or #22087 #4750)
-#22308 := [def-axiom]: #22307
-#25461 := [unit-resolution #22308 #25460]: #4750
-#25643 := [mp #25461 #25642]: #4780
-#22315 := (or #22087 #22081)
-#22316 := [def-axiom]: #22315
-#25644 := [unit-resolution #22316 #25460]: #22081
-#25645 := (or #22084 #22078)
-#24646 := [hypothesis]: #12598
-#24679 := [th-lemma arith farkas 1 1 #13463 #24646]: false
-#24680 := [lemma #24679]: #12595
-#22301 := (or #22084 #12598 #22078)
-#22302 := [def-axiom]: #22301
-#25646 := [unit-resolution #22302 #24680]: #25645
-#25647 := [unit-resolution #25646 #25644]: #22078
-#22293 := (or #22075 #22069)
-#22294 := [def-axiom]: #22293
-#25648 := [unit-resolution #22294 #25647]: #22069
-#25443 := (= f461 #17098)
-#25464 := (= #4749 #17098)
-#25462 := (= #17098 #4749)
-#25452 := (= #17097 #4736)
-#25450 := (= #17096 #4735)
-#25448 := (= ?v0!13 0::Int)
-#21540 := (not #17095)
-#25445 := [hypothesis]: #20925
-#21571 := (or #20920 #21540)
-#21574 := [def-axiom]: #21571
-#25446 := [unit-resolution #21574 #25445]: #21540
-#21618 := (or #20920 #17091)
-#21598 := [def-axiom]: #21618
-#25447 := [unit-resolution #21598 #25445]: #17091
-#25449 := [th-lemma arith eq-propagate 0 0 #25447 #25446]: #25448
-#25451 := [monotonicity #25449]: #25450
-#25453 := [monotonicity #25451]: #25452
-#25463 := [monotonicity #25453]: #25462
-#25465 := [symm #25463]: #25464
-#25466 := [trans #25461 #25465]: #25443
-#21550 := (not #17101)
-#21533 := (or #20920 #21550)
-#21551 := [def-axiom]: #21533
-#25467 := [unit-resolution #21551 #25445]: #21550
-#25468 := (not #25443)
-#25469 := (or #25468 #17101)
-#25470 := [th-lemma arith triangle-eq]: #25469
-#25471 := [unit-resolution #25470 #25467 #25466]: false
-#25472 := [lemma #25471]: #20920
-#22289 := (or #22072 #20925 #22066)
-#22290 := [def-axiom]: #22289
-#25649 := [unit-resolution #22290 #25472 #25648]: #22066
-#22281 := (or #22063 #22057)
-#22282 := [def-axiom]: #22281
-#25650 := [unit-resolution #22282 #25649]: #22057
-#25651 := (or #22060 #17117 #22054)
-#22277 := (or #22060 #12634 #17117 #22054)
-#22278 := [def-axiom]: #22277
-#25652 := [unit-resolution #22278 #13463]: #25651
-#25653 := [unit-resolution #25652 #25650 #25643]: #22054
-#22267 := (or #22051 #22045)
-#22268 := [def-axiom]: #22267
-#25917 := [unit-resolution #22268 #25653]: #22045
-#24775 := (+ f462 #17678)
-#24776 := (>= #24775 0::Int)
-#24763 := (+ f464 #17665)
-#24764 := (<= #24763 0::Int)
-#25683 := (not #24764)
-#22180 := (not #17667)
-#25686 := [hypothesis]: #22042
-#22215 := (or #22039 #22033)
-#22216 := [def-axiom]: #22215
-#25687 := [unit-resolution #22216 #25686]: #22033
-#22233 := (or #22051 #13766)
-#22234 := [def-axiom]: #22233
-#25688 := [unit-resolution #22234 #25653]: #13766
-#22249 := (or #22051 #4806)
-#22250 := [def-axiom]: #22249
-#25689 := [unit-resolution #22250 #25653]: #4806
-#22247 := (or #22051 #13096)
-#22248 := [def-axiom]: #22247
-#25690 := [unit-resolution #22248 #25653]: #13096
-#22241 := (or #22051 #12642)
-#22242 := [def-axiom]: #22241
-#25691 := [unit-resolution #22242 #25653]: #12642
-#22213 := (or #22039 #4820)
-#22214 := [def-axiom]: #22213
-#25692 := [unit-resolution #22214 #25686]: #4820
-#24697 := (or #22024 #21205 #21067 #13095 #21209 #11361)
-#24653 := (= #4805 f468)
-#24602 := (= f462 f468)
-#24688 := [hypothesis]: #4820
-#24690 := [symm #24688]: #24602
-#24689 := [hypothesis]: #4806
-#24691 := [trans #24689 #24690]: #24653
-#24692 := [hypothesis]: #22019
-#24693 := [hypothesis]: #13096
-#24694 := [hypothesis]: #12642
-#24695 := [hypothesis]: #13766
-#24654 := (not #24653)
-#24659 := (or #22024 #21067 #21205 #13095 #24654)
-#24546 := (+ f463 #12568)
-#24547 := (>= #24546 0::Int)
-#24655 := (or #21067 #21205 #24547 #24654)
-#24660 := (or #22024 #24655)
-#24667 := (iff #24660 #24659)
-#24656 := (or #21067 #21205 #13095 #24654)
-#24662 := (or #22024 #24656)
-#24665 := (iff #24662 #24659)
-#24666 := [rewrite]: #24665
-#24663 := (iff #24660 #24662)
-#24657 := (iff #24655 #24656)
-#24559 := (iff #24547 #13095)
-#24551 := (+ #12568 f463)
-#24554 := (>= #24551 0::Int)
-#24557 := (iff #24554 #13095)
-#24558 := [rewrite]: #24557
-#24555 := (iff #24547 #24554)
-#24552 := (= #24546 #24551)
-#24553 := [rewrite]: #24552
-#24556 := [monotonicity #24553]: #24555
-#24560 := [trans #24556 #24558]: #24559
-#24658 := [monotonicity #24560]: #24657
-#24664 := [monotonicity #24658]: #24663
-#24668 := [trans #24664 #24666]: #24667
-#24661 := [quant-inst #4786]: #24660
-#24669 := [mp #24661 #24668]: #24659
-#24696 := [unit-resolution #24669 #24695 #24694 #24693 #24692 #24691]: false
-#24698 := [lemma #24696]: #24697
-#25693 := [unit-resolution #24698 #25692 #25691 #25690 #25689 #25688]: #22024
-#22191 := (or #22027 #22019)
-#22192 := [def-axiom]: #22191
-#25694 := [unit-resolution #22192 #25693]: #22027
-#22199 := (or #22036 #21144 #22030)
-#22200 := [def-axiom]: #22199
-#25695 := [unit-resolution #22200 #25694 #25687]: #21144
-#22181 := (or #21139 #22180)
-#22182 := [def-axiom]: #22181
-#25696 := [unit-resolution #22182 #25695]: #22180
-#22201 := (or #22039 #12922)
-#22202 := [def-axiom]: #22201
-#25697 := [unit-resolution #22202 #25686]: #12922
-#25684 := (or #25683 #12923 #17667)
-#25679 := [hypothesis]: #22180
-#25680 := [hypothesis]: #12922
-#25681 := [hypothesis]: #24764
-#25682 := [th-lemma arith farkas -1 -1 1 #25681 #25680 #25679]: false
-#25685 := [lemma #25682]: #25684
-#25698 := [unit-resolution #25685 #25697 #25696]: #25683
-#25701 := (or #24764 #24776)
-#22178 := (or #21139 #17356)
-#22179 := [def-axiom]: #22178
-#25699 := [unit-resolution #22179 #25695]: #17356
-#22176 := (or #21139 #17355)
-#22177 := [def-axiom]: #22176
-#25700 := [unit-resolution #22177 #25695]: #17355
-#22245 := (or #22051 #21887)
-#22246 := [def-axiom]: #22245
-#25659 := [unit-resolution #22246 #25653]: #21887
-#25593 := (or #21892 #21123 #21124 #24764 #24776)
-#24754 := (+ #17363 #13117)
-#24755 := (<= #24754 0::Int)
-#24746 := (+ ?v0!15 #12663)
-#24747 := (>= #24746 0::Int)
-#24756 := (or #21123 #21124 #24747 #24755)
-#25594 := (or #21892 #24756)
-#25609 := (iff #25594 #25593)
-#24781 := (or #21123 #21124 #24764 #24776)
-#25604 := (or #21892 #24781)
-#25607 := (iff #25604 #25593)
-#25608 := [rewrite]: #25607
-#25605 := (iff #25594 #25604)
-#24782 := (iff #24756 #24781)
-#24779 := (iff #24755 #24776)
-#24769 := (+ #13117 #17363)
-#24772 := (<= #24769 0::Int)
-#24777 := (iff #24772 #24776)
-#24778 := [rewrite]: #24777
-#24773 := (iff #24755 #24772)
-#24770 := (= #24754 #24769)
-#24771 := [rewrite]: #24770
-#24774 := [monotonicity #24771]: #24773
-#24780 := [trans #24774 #24778]: #24779
-#24767 := (iff #24747 #24764)
-#24757 := (+ #12663 ?v0!15)
-#24760 := (>= #24757 0::Int)
-#24765 := (iff #24760 #24764)
-#24766 := [rewrite]: #24765
-#24761 := (iff #24747 #24760)
-#24758 := (= #24746 #24757)
-#24759 := [rewrite]: #24758
-#24762 := [monotonicity #24759]: #24761
-#24768 := [trans #24762 #24766]: #24767
-#24783 := [monotonicity #24768 #24780]: #24782
-#25606 := [monotonicity #24783]: #25605
-#25610 := [trans #25606 #25608]: #25609
-#25603 := [quant-inst #17354]: #25594
-#25611 := [mp #25603 #25610]: #25593
-#25702 := [unit-resolution #25611 #25659 #25700 #25699]: #25701
-#25703 := [unit-resolution #25702 #25698]: #24776
-#22183 := (not #17680)
-#22184 := (or #21139 #22183)
-#22185 := [def-axiom]: #22184
-#25704 := [unit-resolution #22185 #25695]: #22183
-#25559 := (+ f462 #12962)
-#25562 := (<= #25559 0::Int)
-#25705 := [symm #25692]: #24602
-#25706 := (not #24602)
-#25707 := (or #25706 #25562)
-#25708 := [th-lemma arith triangle-eq]: #25707
-#25709 := [unit-resolution #25708 #25705]: #25562
-#25710 := [th-lemma arith farkas -1 -1 1 #25709 #25704 #25703]: false
-#25711 := [lemma #25710]: #22039
-#22223 := (or #22048 #22008 #22042)
-#22224 := [def-axiom]: #22223
-#25918 := [unit-resolution #22224 #25711 #25917]: #22008
-#22170 := (or #22005 #12923)
-#22171 := [def-axiom]: #22170
-#25919 := [unit-resolution #22171 #25918]: #12923
-#22235 := (or #22051 #13145)
-#22236 := [def-axiom]: #22235
-#25920 := [unit-resolution #22236 #25653]: #13145
-#25721 := (or #24348 #22428 #22809 #24088 #21206 #12922 #25785)
-#25780 := (+ f464 #12568)
-#25781 := (>= #25780 0::Int)
-#25786 := (or #22428 #22809 #24088 #21206 #25781 #25785)
-#25726 := (or #24348 #25786)
-#25894 := (iff #25726 #25721)
-#25797 := (or #22428 #22809 #24088 #21206 #12922 #25785)
-#25833 := (or #24348 #25797)
-#25843 := (iff #25833 #25721)
-#25893 := [rewrite]: #25843
-#25834 := (iff #25726 #25833)
-#25798 := (iff #25786 #25797)
-#25795 := (iff #25781 #12922)
-#25787 := (+ #12568 f464)
-#25790 := (>= #25787 0::Int)
-#25793 := (iff #25790 #12922)
-#25794 := [rewrite]: #25793
-#25791 := (iff #25781 #25790)
-#25788 := (= #25780 #25787)
-#25789 := [rewrite]: #25788
-#25792 := [monotonicity #25789]: #25791
-#25796 := [trans #25792 #25794]: #25795
-#25799 := [monotonicity #25796]: #25798
-#25842 := [monotonicity #25799]: #25834
-#25895 := [trans #25842 #25893]: #25894
-#25747 := [quant-inst #4649 #4655 #23413 #4646 #4790 #356]: #25726
-#25896 := [mp #25747 #25895]: #25721
-#25921 := [unit-resolution #25896 #20277 #11138 #13474 #25920 #25919 #24429 #25916]: false
-#25922 := [lemma #25921]: #25785
-#25615 := (or #25784 #4942)
-#25616 := [def-axiom]: #25615
-#25947 := [unit-resolution #25616 #25922]: #4942
-#26236 := (= #25848 #4941)
-#26234 := (= #25639 #4937)
-#24370 := (f153 f154 #23991)
-#25586 := (f140 #24370 f464)
-#25595 := (f139 #25586 f35)
-#26232 := (= #25595 #4937)
-#25809 := (= #4937 #25595)
-#25807 := (= #4936 #25586)
-#25800 := (= #25586 #4936)
-#25804 := (= #24370 #4734)
-#25802 := (= #23991 #4656)
-#25816 := [symm #25275]: #24457
-#25817 := (= #23991 #24041)
-#25801 := [trans #25100 #24456]: #25817
-#25803 := [trans #25801 #25816]: #25802
-#25805 := [monotonicity #25803]: #25804
-#25806 := [monotonicity #25805]: #25800
-#25808 := [symm #25806]: #25807
-#25810 := [monotonicity #25808]: #25809
-#26233 := [symm #25810]: #26232
-#26216 := (= #25639 #25595)
-#25612 := (= #25595 #25639)
-#25712 := (not #25612)
-#25613 := (f125 f243 #25595)
-#25619 := (f71 #25613 #23991)
-#25620 := (= #25619 f1)
-#25621 := (not #25620)
-#25715 := (or #25621 #25712)
-#25718 := (not #25715)
-#25568 := (or #24299 #25718)
-#25622 := (* f464 #4624)
-#25623 := (+ #24379 #25622)
-#25626 := (f87 #4654 #25623)
-#25627 := (= #25595 #25626)
-#25625 := (not #25627)
-#25628 := (or #25621 #25625)
-#25624 := (not #25628)
-#24275 := (or #24299 #25624)
-#25580 := (iff #24275 #25568)
-#25583 := (iff #25568 #25568)
-#25584 := [rewrite]: #25583
-#25719 := (iff #25624 #25718)
-#25716 := (iff #25628 #25715)
-#25713 := (iff #25625 #25712)
-#25635 := (iff #25627 #25612)
-#25640 := (= #25626 #25639)
-#25633 := (= #25623 #25632)
-#25630 := (= #25622 #25629)
-#25631 := [rewrite]: #25630
-#25634 := [monotonicity #25631]: #25633
-#25563 := [monotonicity #25634]: #25640
-#25636 := [monotonicity #25563]: #25635
-#25714 := [monotonicity #25636]: #25713
-#25717 := [monotonicity #25714]: #25716
-#25720 := [monotonicity #25717]: #25719
-#25582 := [monotonicity #25720]: #25580
-#25599 := [trans #25582 #25584]: #25580
-#25581 := [quant-inst #23991 #4790 #356]: #24275
-#25597 := [mp #25581 #25599]: #25568
-#25814 := [unit-resolution #25597 #19813]: #25718
-#25602 := (or #25715 #25612)
-#25614 := [def-axiom]: #25602
-#25815 := [unit-resolution #25614 #25814]: #25612
-#26217 := [symm #25815]: #26216
-#26235 := [trans #26217 #26233]: #26234
-#26237 := [monotonicity #26235]: #26236
-#26238 := [trans #26237 #25947]: #25849
-#25850 := (not #25849)
-#25886 := (or #25850 #25885)
-#25887 := (not #25886)
-#25846 := (f71 #4743 #25639)
-#25847 := (= #25846 f1)
-#25888 := (iff #25847 #25887)
-#26057 := (or #24794 #25888)
-#26049 := [quant-inst #4649 #25639]: #26057
-#26055 := [unit-resolution #26049 #20682]: #25888
-#26188 := (not #25847)
-#26198 := (iff #17180 #26188)
-#26212 := (iff #4945 #25847)
-#25844 := (iff #25847 #4945)
-#26209 := (= #25846 #4944)
-#26210 := [monotonicity #26235]: #26209
-#26211 := [monotonicity #26210]: #25844
-#26213 := [symm #26211]: #26212
-#26199 := [monotonicity #26213]: #26198
-#26056 := [hypothesis]: #17180
-#26197 := [mp #26056 #26199]: #26188
-#26037 := (not #25888)
-#26038 := (or #26037 #25847 #25886)
-#26187 := [def-axiom]: #26038
-#25845 := [unit-resolution #26187 #26197 #26055]: #25886
-#26179 := (or #25887 #25850 #25885)
-#25779 := [def-axiom]: #26179
-#26207 := [unit-resolution #25779 #25845 #26238]: #25885
-#26280 := (= #25852 #22792)
-#25617 := (= #25851 f35)
-#25592 := (f62 f63 #4937)
-#25565 := (= #25592 f35)
-#25585 := (iff #4940 #25565)
-#24274 := (or #23440 #25585)
-#24269 := [quant-inst #4937 #356]: #24274
-#25750 := [unit-resolution #24269 #21822]: #25585
-#24273 := (not #25585)
-#26208 := (or #24273 #25565)
-#25724 := (or #23455 #25617)
-#25725 := [quant-inst #356 #25632]: #25724
-#25813 := [unit-resolution #25725 #21835]: #25617
-#25826 := (= #25592 #25851)
-#25827 := (= #4937 #25639)
-#25828 := [trans #25810 #25815]: #25827
-#25829 := [monotonicity #25828]: #25826
-#25830 := [trans #25829 #25813]: #25565
-#24270 := (not #25565)
-#25752 := (or #24273 #24270)
-#25751 := [hypothesis]: #17171
-#24212 := (or #24273 #4940 #24270)
-#25579 := [def-axiom]: #24212
-#25811 := [unit-resolution #25579 #25751]: #25752
-#25812 := [unit-resolution #25811 #25750]: #24270
-#25831 := [unit-resolution #25812 #25830]: false
-#25832 := [lemma #25831]: #4940
-#25905 := (or #24273 #17171 #25565)
-#25908 := [def-axiom]: #25905
-#26219 := [unit-resolution #25908 #25832]: #26208
-#26220 := [unit-resolution #26219 #25750]: #25565
-#26218 := (= #25851 #25592)
-#26221 := [monotonicity #26235]: #26218
-#26279 := [trans #26221 #26220]: #25617
-#26281 := [monotonicity #26279]: #26280
-#26175 := [trans #26281 #24539]: #25853
-#25596 := (not #25783)
-#26276 := (iff #25596 #25858)
-#26282 := (iff #25783 #25857)
-#26166 := (iff #25857 #25783)
-#26164 := (= #25856 #25782)
-#26271 := (= #25855 #24580)
-#26174 := (= #24580 #25855)
-#26284 := [monotonicity #25828]: #26174
-#26272 := [symm #26284]: #26271
-#26165 := [monotonicity #26272]: #26164
-#26274 := [monotonicity #26165]: #26166
-#26283 := [symm #26274]: #26282
-#26277 := [monotonicity #26283]: #26276
-#25598 := (or #25784 #25596)
-#25731 := [def-axiom]: #25598
-#26176 := [unit-resolution #25731 #25922]: #25596
-#26275 := [mp #26176 #26277]: #25858
-#26050 := (or #25863 #25857)
-#26066 := [def-axiom]: #26050
-#26270 := [unit-resolution #26066 #26275]: #25863
-#26278 := (or #25875 #25854 #25864)
-#26553 := (+ #24890 #25629)
-#26751 := (= #25632 #26553)
-#26752 := (* -1::Int #26553)
-#26753 := (+ #25632 #26752)
-#26754 := (<= #26753 0::Int)
-#24569 := (* -1::Int #23971)
-#24572 := (+ #22490 #24569)
-#24574 := (>= #24572 0::Int)
-#24568 := (= #22490 #23971)
-#26764 := (= #4657 #23971)
-#26762 := (= #23971 #4657)
-#26761 := [trans #24456 #25816]: #24459
-#26763 := [monotonicity #26761]: #26762
-#26765 := [symm #26763]: #26764
-#26766 := [trans #25251 #26765]: #24568
-#26767 := (not #24568)
-#26789 := (or #26767 #24574)
-#26790 := [th-lemma arith triangle-eq]: #26789
-#26791 := [unit-resolution #26790 #26766]: #24574
-#25530 := (* -1::Int #24379)
-#25531 := (+ #23971 #25530)
-#25533 := (>= #25531 0::Int)
-#25529 := (= #23971 #24379)
-#26771 := (= #24379 #23971)
-#26772 := [monotonicity #25100]: #26771
-#26773 := [symm #26772]: #25529
-#26774 := (not #25529)
-#26792 := (or #26774 #25533)
-#26793 := [th-lemma arith triangle-eq]: #26792
-#26794 := [unit-resolution #26793 #26773]: #25533
-#26658 := (* -1::Int #24890)
-#26659 := (+ #22490 #26658)
-#26660 := (<= #26659 0::Int)
-#26653 := (= #22490 #24890)
-#26778 := [symm #25253]: #26653
-#26779 := (not #26653)
-#26795 := (or #26779 #26660)
-#26796 := [th-lemma arith triangle-eq]: #26795
-#26797 := [unit-resolution #26796 #26778]: #26660
-#26800 := (not #24574)
-#26799 := (not #26660)
-#26798 := (not #25533)
-#26801 := (or #26754 #26798 #26799 #26800)
-#26802 := [th-lemma arith assign-bounds 1 -1 1]: #26801
-#26803 := [unit-resolution #26802 #26797 #26794 #26791]: #26754
-#26755 := (>= #26753 0::Int)
-#24573 := (<= #24572 0::Int)
-#26768 := (or #26767 #24573)
-#26769 := [th-lemma arith triangle-eq]: #26768
-#26770 := [unit-resolution #26769 #26766]: #24573
-#25532 := (<= #25531 0::Int)
-#26775 := (or #26774 #25532)
-#26776 := [th-lemma arith triangle-eq]: #26775
-#26777 := [unit-resolution #26776 #26773]: #25532
-#26673 := (>= #26659 0::Int)
-#26780 := (or #26779 #26673)
-#26781 := [th-lemma arith triangle-eq]: #26780
-#26782 := [unit-resolution #26781 #26778]: #26673
-#26785 := (not #24573)
-#26784 := (not #26673)
-#26783 := (not #25532)
-#26786 := (or #26755 #26783 #26784 #26785)
-#26787 := [th-lemma arith assign-bounds 1 -1 1]: #26786
-#26788 := [unit-resolution #26787 #26782 #26777 #26770]: #26755
-#26805 := (not #26755)
-#26804 := (not #26754)
-#26806 := (or #26751 #26804 #26805)
-#26807 := [th-lemma arith triangle-eq]: #26806
-#26388 := [unit-resolution #26807 #26788 #26803]: #26751
-#26908 := (not #26751)
-#26909 := (or #26908 #25869)
-#26904 := (= #25868 #4662)
-#26845 := (= #25859 #4658)
-#26843 := (= #25859 #24084)
-#26447 := (f140 #25120 f464)
-#26448 := (f139 #26447 f35)
-#26449 := (f134 #4883 #26448)
-#26450 := (f235 f236 #26449)
-#26451 := (= #26450 #24084)
-#26458 := (f71 #4667 #26448)
-#26459 := (= #26458 f1)
-#26460 := (not #26459)
-#26455 := (f155 f156 #26449)
-#26456 := (= #26455 f1)
-#26457 := (not #26456)
-#26453 := (f155 f237 #26449)
-#26454 := (= #26453 f1)
-#26452 := (not #26451)
-#26461 := (or #26452 #26454 #26457 #26460)
-#26462 := (not #26461)
-#26380 := (or #25115 #25119 #21206 #12922 #26462)
-#26463 := (or #25119 #21206 #25781 #26462)
-#26381 := (or #25115 #26463)
-#25840 := (iff #26381 #26380)
-#26464 := (or #25119 #21206 #12922 #26462)
-#26020 := (or #25115 #26464)
-#25835 := (iff #26020 #26380)
-#25836 := [rewrite]: #25835
-#26177 := (iff #26381 #26020)
-#26465 := (iff #26463 #26464)
-#26466 := [monotonicity #25796]: #26465
-#26178 := [monotonicity #26466]: #26177
-#26352 := [trans #26178 #25836]: #25840
-#26413 := [quant-inst #4649 #4655 #356 #4646 #4790]: #26381
-#26405 := [mp #26413 #26352]: #26380
-#26757 := [unit-resolution #26405 #19597 #25920 #25919 #25186]: #26462
-#26406 := (or #26461 #26451)
-#26417 := [def-axiom]: #26406
-#26758 := [unit-resolution #26417 #26757]: #26451
-#26841 := (= #25859 #26450)
-#26839 := (= #25855 #26449)
-#26837 := (= #26449 #25855)
-#26835 := (= #26448 #25639)
-#26833 := (= #26448 #25595)
-#26831 := (= #26448 #4937)
-#24810 := (f55 f206 #4937)
-#25570 := (f87 #4654 #24810)
-#26825 := (= #25570 #4937)
-#25571 := (= #4937 #25570)
-#25900 := (or #23430 #17171 #25571)
-#25591 := (or #17171 #25571)
-#25901 := (or #23430 #25591)
-#25904 := (iff #25901 #25900)
-#25906 := [rewrite]: #25904
-#25903 := [quant-inst #4937 #356]: #25901
-#25907 := [mp #25903 #25906]: #25900
-#26759 := [unit-resolution #25907 #16892 #25832]: #25571
-#26826 := [symm #26759]: #26825
-#26829 := (= #26448 #25570)
-#26556 := (f87 #4654 #26553)
-#26823 := (= #26556 #25570)
-#26813 := (= #26553 #24810)
-#26811 := (= #25632 #24810)
-#26746 := (= #24810 #25632)
-#26747 := (* -1::Int #25632)
-#26748 := (+ #24810 #26747)
-#26749 := (<= #26748 0::Int)
-#25818 := (f55 f206 #25639)
-#25823 := (* -1::Int #25818)
-#25824 := (+ #25629 #25823)
-#25825 := (+ #24379 #25824)
-#25940 := (>= #25825 0::Int)
-#25821 := (= #25825 0::Int)
-#25915 := (or #23460 #25821)
-#25819 := (= #25818 #25632)
-#25923 := (or #23460 #25819)
-#25933 := (iff #25923 #25915)
-#25935 := (iff #25915 #25915)
-#25936 := [rewrite]: #25935
-#25820 := (iff #25819 #25821)
-#25822 := [rewrite]: #25820
-#25934 := [monotonicity #25822]: #25933
-#25937 := [trans #25934 #25936]: #25933
-#25932 := [quant-inst #356 #25632]: #25923
-#25938 := [mp #25932 #25937]: #25915
-#26537 := [unit-resolution #25938 #21829]: #25821
-#26517 := (not #25821)
-#26520 := (or #26517 #25940)
-#26519 := [th-lemma arith triangle-eq]: #26520
-#26521 := [unit-resolution #26519 #26537]: #25940
-#25942 := (+ #24810 #25823)
-#25945 := (<= #25942 0::Int)
-#25941 := (= #24810 #25818)
-#26522 := (= #25818 #24810)
-#26538 := [monotonicity #26235]: #26522
-#26580 := [symm #26538]: #25941
-#26581 := (not #25941)
-#26571 := (or #26581 #25945)
-#26640 := [th-lemma arith triangle-eq]: #26571
-#26492 := [unit-resolution #26640 #26580]: #25945
-#26506 := (not #25940)
-#26577 := (not #25945)
-#26578 := (or #26749 #26577 #26506)
-#26579 := [th-lemma arith assign-bounds -1 1]: #26578
-#26498 := [unit-resolution #26579 #26492 #26521]: #26749
-#26750 := (>= #26748 0::Int)
-#25939 := (<= #25825 0::Int)
-#26582 := (or #26517 #25939)
-#26497 := [th-lemma arith triangle-eq]: #26582
-#26576 := [unit-resolution #26497 #26537]: #25939
-#25946 := (>= #25942 0::Int)
-#26584 := (or #26581 #25946)
-#26575 := [th-lemma arith triangle-eq]: #26584
-#26585 := [unit-resolution #26575 #26580]: #25946
-#26573 := (not #25939)
-#26572 := (not #25946)
-#26439 := (or #26750 #26572 #26573)
-#26587 := [th-lemma arith assign-bounds -1 1]: #26439
-#26583 := [unit-resolution #26587 #26585 #26576]: #26750
-#26586 := (not #26750)
-#26588 := (not #26749)
-#26637 := (or #26746 #26588 #26586)
-#26594 := [th-lemma arith triangle-eq]: #26637
-#26595 := [unit-resolution #26594 #26583 #26498]: #26746
-#26892 := [symm #26595]: #26811
-#26809 := (= #26553 #25632)
-#26890 := [hypothesis]: #26751
-#26891 := [symm #26890]: #26809
-#26893 := [trans #26891 #26892]: #26813
-#26894 := [monotonicity #26893]: #26823
-#26827 := (= #26448 #26556)
-#26535 := (f140 #25193 f464)
-#26536 := (f139 #26535 f35)
-#26559 := (= #26536 #26556)
-#26562 := (not #26559)
-#26543 := (f125 f243 #26536)
-#26544 := (f71 #26543 #23413)
-#26545 := (= #26544 f1)
-#26546 := (not #26545)
-#26565 := (or #26546 #26562)
-#26568 := (not #26565)
-#26542 := (or #24299 #26568)
-#26547 := (+ #24890 #25622)
-#26548 := (f87 #4654 #26547)
-#26549 := (= #26536 #26548)
-#26550 := (not #26549)
-#26551 := (or #26546 #26550)
-#26552 := (not #26551)
-#26574 := (or #24299 #26552)
-#26629 := (iff #26574 #26542)
-#26665 := (iff #26542 #26542)
-#26671 := [rewrite]: #26665
-#26569 := (iff #26552 #26568)
-#26566 := (iff #26551 #26565)
-#26563 := (iff #26550 #26562)
-#26560 := (iff #26549 #26559)
-#26557 := (= #26548 #26556)
-#26554 := (= #26547 #26553)
-#26555 := [monotonicity #25631]: #26554
-#26558 := [monotonicity #26555]: #26557
-#26561 := [monotonicity #26558]: #26560
-#26564 := [monotonicity #26561]: #26563
-#26567 := [monotonicity #26564]: #26566
-#26570 := [monotonicity #26567]: #26569
-#26630 := [monotonicity #26570]: #26629
-#26642 := [trans #26630 #26671]: #26629
-#26628 := [quant-inst #23413 #4790 #356]: #26574
-#26645 := [mp #26628 #26642]: #26542
-#26815 := [unit-resolution #26645 #19813]: #26568
-#26654 := (or #26565 #26559)
-#26655 := [def-axiom]: #26654
-#26816 := [unit-resolution #26655 #26815]: #26559
-#26821 := (= #26448 #26536)
-#26819 := (= #26447 #26535)
-#26817 := (= #26535 #26447)
-#26818 := [monotonicity #25265]: #26817
-#26820 := [symm #26818]: #26819
-#26822 := [monotonicity #26820]: #26821
-#26828 := [trans #26822 #26816]: #26827
-#26895 := [trans #26828 #26894]: #26829
-#26896 := [trans #26895 #26826]: #26831
-#26897 := [trans #26896 #25810]: #26833
-#26898 := [trans #26897 #25815]: #26835
-#26899 := [monotonicity #26898]: #26837
-#26900 := [symm #26899]: #26839
-#26901 := [monotonicity #26900]: #26841
-#26902 := [trans #26901 #26758]: #26843
-#26903 := [trans #26902 #24984]: #26845
-#26905 := [monotonicity #26903]: #26904
-#26906 := [trans #26905 #13466]: #25869
-#26000 := (not #25869)
-#26889 := [hypothesis]: #26000
-#26907 := [unit-resolution #26889 #26906]: false
-#26910 := [lemma #26907]: #26909
-#26273 := [unit-resolution #26910 #26388]: #25869
-#26070 := (or #25872 #26000)
-#26074 := [def-axiom]: #26070
-#26291 := [unit-resolution #26074 #26273]: #25872
-#26039 := (not #25867)
-#26047 := (f45 f79 #25865)
-#26048 := (= #26047 f1)
-#26058 := (not #26048)
-#26009 := (or #25867 #26058)
-#26010 := (not #26009)
-#26035 := [hypothesis]: #26009
-#26181 := (or #24538 #26010)
-#26182 := [quant-inst #25855]: #26181
-#26036 := [unit-resolution #26182 #20844 #26035]: false
-#26194 := [lemma #26036]: #26010
-#25999 := (or #26009 #26039)
-#26001 := [def-axiom]: #25999
-#26292 := [unit-resolution #26001 #26194]: #26039
-#26118 := (or #25875 #25854 #25864 #25867 #25873)
-#26119 := [def-axiom]: #26118
-#26295 := [unit-resolution #26119 #26292 #26291]: #26278
-#26296 := [unit-resolution #26295 #26270 #26175]: #25875
-#26167 := (or #25884 #25874)
-#26168 := [def-axiom]: #26167
-#26300 := [unit-resolution #26168 #26296 #26207]: false
-#26293 := [lemma #26300]: #4945
-#26678 := (= f464 ?v0!14)
-#26712 := (not #26678)
-#26680 := (= #4947 #17241)
-#26686 := (not #26680)
-#26685 := (+ #4947 #17543)
-#26687 := (>= #26685 0::Int)
-#26696 := (not #26687)
-#26018 := (+ #4947 #12696)
-#26019 := (<= #26018 0::Int)
-#26867 := [hypothesis]: #12829
-#21362 := (+ f462 #12696)
-#21363 := (<= #21362 0::Int)
-#21359 := (= f462 f470)
-#26738 := (iff #5026 #21359)
-#26736 := (iff #21359 #5026)
-#26737 := [commutativity]: #26736
-#26739 := [symm #26737]: #26738
-#26868 := (or #17180 #21984)
-#22172 := (or #22005 #21999)
-#22173 := [def-axiom]: #22172
-#25948 := [unit-resolution #22173 #25918]: #21999
-#22164 := (or #22002 #17171 #17174 #21996)
-#22165 := [def-axiom]: #22164
-#25949 := [unit-resolution #22165 #25948]: #21999
-#25950 := [unit-resolution #25949 #25947 #25832]: #21996
-#22154 := (or #21993 #21987)
-#22155 := [def-axiom]: #22154
-#25951 := [unit-resolution #22155 #25950]: #21987
-#22148 := (or #21990 #17171 #17180 #21984)
-#22149 := [def-axiom]: #22148
-#26875 := [unit-resolution #22149 #25832 #25951]: #26868
-#26876 := [unit-resolution #26875 #26293]: #21984
-#22138 := (or #21981 #21975)
-#22139 := [def-axiom]: #22138
-#26885 := [unit-resolution #22139 #26876]: #21975
-#21370 := (or #21963 #12828)
-#21372 := [def-axiom]: #21370
-#26886 := [unit-resolution #21372 #26867]: #21963
-#22128 := (or #21978 #21966 #21972)
-#22129 := [def-axiom]: #22128
-#26734 := [unit-resolution #22129 #26886 #26885]: #21972
-#21356 := (or #21969 #5026)
-#21357 := [def-axiom]: #21356
-#26735 := [unit-resolution #21357 #26734]: #5026
-#26740 := [mp #26735 #26739]: #21359
-#26741 := (not #21359)
-#26744 := (or #26741 #21363)
-#26877 := [th-lemma arith triangle-eq]: #26744
-#26878 := [unit-resolution #26877 #26740]: #21363
-#26879 := (not #21363)
-#26880 := (or #26019 #12828 #26879)
-#26881 := [th-lemma arith assign-bounds 1 -1]: #26880
-#26882 := [unit-resolution #26881 #26878 #26867]: #26019
-#21516 := (not #17545)
-#26067 := [hypothesis]: #21936
-#21350 := (or #21969 #21933)
-#22121 := [def-axiom]: #21350
-#26379 := [unit-resolution #22121 #26067]: #21969
-#26007 := (or #21957 #21972)
-#25952 := [hypothesis]: #21960
-#21379 := (or #21957 #21951)
-#21380 := [def-axiom]: #21379
-#25953 := [unit-resolution #21380 #25952]: #21951
-#21385 := (or #21954 #17171 #17174 #21948)
-#21387 := [def-axiom]: #21385
-#25891 := [unit-resolution #21387 #25953 #25832 #25947]: #21948
-#21411 := (or #21945 #4945)
-#21412 := [def-axiom]: #21411
-#25892 := [unit-resolution #21412 #25891]: #4945
-#26002 := [hypothesis]: #21969
-#21373 := (or #21963 #21957)
-#21374 := [def-axiom]: #21373
-#26003 := [unit-resolution #21374 #25952]: #21963
-#26004 := [unit-resolution #22129 #26003 #26002]: #21978
-#26005 := [unit-resolution #22139 #26004]: #21981
-#26006 := [unit-resolution #22149 #26005 #25892 #25832 #25951]: false
-#26008 := [lemma #26006]: #26007
-#26025 := [unit-resolution #26008 #26379]: #21957
-#21423 := (or #21939 #21933)
-#21424 := [def-axiom]: #21423
-#26666 := [unit-resolution #21424 #26067]: #21939
-#26614 := (or #21948 #17180 #21942)
-#21398 := (or #21948 #17171 #17180 #21942)
-#21399 := [def-axiom]: #21398
-#26613 := [unit-resolution #21399 #25832]: #26614
-#26616 := [unit-resolution #26613 #26666 #26293]: #21948
-#21392 := (or #21951 #21945)
-#21404 := [def-axiom]: #21392
-#26617 := [unit-resolution #21404 #26616]: #21951
-#26639 := (or #21960 #21954)
-#21383 := (or #21960 #17171 #17174 #21954)
-#21378 := [def-axiom]: #21383
-#26591 := [unit-resolution #21378 #25832 #25947]: #26639
-#26589 := [unit-resolution #26591 #26617 #26025]: false
-#26625 := [lemma #26589]: #21933
-#26427 := (or #21936 #21930)
-#13804 := (<= f443 4294967295::Int)
-#13803 := (iff #12567 #13804)
-#13810 := (+ 4294967295::Int #12568)
-#13809 := (>= #13810 0::Int)
-#13805 := (iff #13809 #13804)
-#13802 := [rewrite]: #13805
-#13806 := (iff #12567 #13809)
-#13811 := (= #12569 #13810)
-#13808 := [monotonicity #9369]: #13811
-#13807 := [monotonicity #13808]: #13806
-#13800 := [trans #13807 #13802]: #13803
-#13482 := [not-or-elim #13452]: #12572
-#13484 := [and-elim #13482]: #12567
-#13801 := [mp #13484 #13800]: #13804
-#26422 := (not #13804)
-#26423 := (or #13727 #26422 #12922)
-#26424 := [th-lemma arith assign-bounds -1 1]: #26423
-#26411 := [unit-resolution #26424 #25919 #13801]: #13727
-#26425 := (or #21206 #12660)
-#26416 := [th-lemma arith farkas 1 1]: #26425
-#26426 := [unit-resolution #26416 #25920]: #12660
-#21458 := (or #21936 #17209 #17212 #21930)
-#21450 := [def-axiom]: #21458
-#26414 := [unit-resolution #21450 #26426 #26411]: #26427
-#26883 := [unit-resolution #26414 #26625]: #21930
-#21469 := (or #21927 #21921)
-#21477 := [def-axiom]: #21469
-#26884 := [unit-resolution #21477 #26883]: #21921
-#21524 := (>= #12740 -1::Int)
-#21468 := (or #21927 #12739)
-#21470 := [def-axiom]: #21468
-#26887 := [unit-resolution #21470 #26883]: #12739
-#26434 := (or #12743 #21524)
-#26435 := [th-lemma arith triangle-eq]: #26434
-#26888 := [unit-resolution #26435 #26887]: #21524
-#26442 := (not #21524)
-#26911 := (or #12676 #26442)
-#26436 := (or #12676 #26442 #12922)
-#26443 := [th-lemma arith assign-bounds -1 -1]: #26436
-#26912 := [unit-resolution #26443 #25919]: #26911
-#26913 := [unit-resolution #26912 #26888]: #12676
-#21487 := (or #21924 #12681 #21918)
-#21488 := [def-axiom]: #21487
-#26914 := [unit-resolution #21488 #26913 #26884]: #21918
-#21478 := (or #21915 #21909)
-#21480 := [def-axiom]: #21478
-#26915 := [unit-resolution #21480 #26914]: #21909
-#26923 := [symm #26735]: #21359
-#26924 := (= #4990 f462)
-#26921 := (= #4990 #4805)
-#26919 := (= #4989 #4804)
-#26917 := (= #4988 #4803)
-#21353 := (or #21969 #5027)
-#21358 := [def-axiom]: #21353
-#26916 := [unit-resolution #21358 #26734]: #5027
-#26918 := [monotonicity #26916]: #26917
-#26920 := [monotonicity #26918]: #26919
-#26922 := [monotonicity #26920]: #26921
-#26925 := [trans #26922 #25689]: #26924
-#26926 := [trans #26925 #26923]: #4991
-#21368 := (+ f463 #12718)
-#21369 := (>= #21368 0::Int)
-#21367 := (= f463 f471)
-#26929 := (iff #5027 #21367)
-#26927 := (iff #21367 #5027)
-#26928 := [commutativity]: #26927
-#26930 := [symm #26928]: #26929
-#26931 := [mp #26916 #26930]: #21367
-#26932 := (not #21367)
-#26933 := (or #26932 #21369)
-#26934 := [th-lemma arith triangle-eq]: #26933
-#26935 := [unit-resolution #26934 #26931]: #21369
-#26936 := (not #21369)
-#26937 := (or #12721 #13095 #26936)
-#26938 := [th-lemma arith assign-bounds -1 -1]: #26937
-#26939 := [unit-resolution #26938 #26935 #25690]: #12721
-#21505 := (or #20987 #12720 #20985)
-#21497 := [def-axiom]: #21505
-#26940 := [unit-resolution #21497 #26939 #26926]: #20987
-#21502 := (or #21903 #20986)
-#21506 := [def-axiom]: #21502
-#26941 := [unit-resolution #21506 #26940]: #21903
-#21494 := (or #21912 #20971 #21906)
-#21495 := [def-axiom]: #21494
-#26942 := [unit-resolution #21495 #26941 #26915]: #20971
-#21519 := (or #20966 #21516)
-#21517 := [def-axiom]: #21519
-#26943 := [unit-resolution #21517 #26942]: #21516
-#26697 := (not #26019)
-#26698 := (or #26696 #17545 #26697)
-#26692 := [hypothesis]: #26687
-#26693 := [hypothesis]: #26019
-#26694 := [hypothesis]: #21516
-#26695 := [th-lemma arith farkas -1 -1 1 #26694 #26693 #26692]: false
-#26699 := [lemma #26695]: #26698
-#26944 := [unit-resolution #26699 #26943 #26882]: #26696
-#26688 := (or #26686 #26687)
-#26689 := [th-lemma arith triangle-eq]: #26688
-#26945 := [unit-resolution #26689 #26944]: #26686
-#26713 := (or #26712 #26680)
-#26708 := (= #17241 #4947)
-#26706 := (= #17240 #4937)
-#26704 := (= #17239 #4936)
-#26702 := (= ?v0!14 f464)
-#26701 := [hypothesis]: #26678
-#26703 := [symm #26701]: #26702
-#26705 := [monotonicity #26703]: #26704
-#26707 := [monotonicity #26705]: #26706
-#26709 := [monotonicity #26707]: #26708
-#26710 := [symm #26709]: #26680
-#26700 := [hypothesis]: #26686
-#26711 := [unit-resolution #26700 #26710]: false
-#26714 := [lemma #26711]: #26713
-#26946 := [unit-resolution #26714 #26945]: #26712
-#26320 := (+ f464 #17530)
-#26420 := (>= #26320 0::Int)
-#21530 := (not #17532)
-#21509 := (or #20966 #21530)
-#21512 := [def-axiom]: #21509
-#26947 := [unit-resolution #21512 #26942]: #21530
-#26948 := (or #26420 #26442 #17532)
-#26949 := [th-lemma arith assign-bounds -1 -1]: #26948
-#26950 := [unit-resolution #26949 #26947 #26888]: #26420
-#26321 := (<= #26320 0::Int)
-#26332 := (+ f462 #17543)
-#26333 := (>= #26332 0::Int)
-#26493 := (not #26333)
-#26951 := (or #26493 #17545 #26879)
-#26952 := [th-lemma arith assign-bounds -1 -1]: #26951
-#26953 := [unit-resolution #26952 #26878 #26943]: #26493
-#21525 := (or #20966 #17234)
-#21527 := [def-axiom]: #21525
-#26954 := [unit-resolution #21527 #26942]: #17234
-#21528 := (or #20966 #17233)
-#21529 := [def-axiom]: #21528
-#26955 := [unit-resolution #21529 #26942]: #17233
-#26341 := (or #21892 #20950 #20951 #26321 #26333)
-#26311 := (+ #17241 #13117)
-#26312 := (<= #26311 0::Int)
-#26303 := (+ ?v0!14 #12663)
-#26304 := (>= #26303 0::Int)
-#26313 := (or #20950 #20951 #26304 #26312)
-#26342 := (or #21892 #26313)
-#26349 := (iff #26342 #26341)
-#26338 := (or #20950 #20951 #26321 #26333)
-#26344 := (or #21892 #26338)
-#26347 := (iff #26344 #26341)
-#26348 := [rewrite]: #26347
-#26345 := (iff #26342 #26344)
-#26339 := (iff #26313 #26338)
-#26336 := (iff #26312 #26333)
-#26326 := (+ #13117 #17241)
-#26329 := (<= #26326 0::Int)
-#26334 := (iff #26329 #26333)
-#26335 := [rewrite]: #26334
-#26330 := (iff #26312 #26329)
-#26327 := (= #26311 #26326)
-#26328 := [rewrite]: #26327
-#26331 := [monotonicity #26328]: #26330
-#26337 := [trans #26331 #26335]: #26336
-#26324 := (iff #26304 #26321)
-#26314 := (+ #12663 ?v0!14)
-#26317 := (>= #26314 0::Int)
-#26322 := (iff #26317 #26321)
-#26323 := [rewrite]: #26322
-#26318 := (iff #26304 #26317)
-#26315 := (= #26303 #26314)
-#26316 := [rewrite]: #26315
-#26319 := [monotonicity #26316]: #26318
-#26325 := [trans #26319 #26323]: #26324
-#26340 := [monotonicity #26325 #26337]: #26339
-#26346 := [monotonicity #26340]: #26345
-#26350 := [trans #26346 #26348]: #26349
-#26343 := [quant-inst #17232]: #26342
-#26351 := [mp #26343 #26350]: #26341
-#26956 := [unit-resolution #26351 #25659 #26955 #26954 #26953]: #26321
-#26539 := (not #26420)
-#26518 := (not #26321)
-#26526 := (or #26678 #26518 #26539)
-#26527 := [th-lemma arith triangle-eq]: #26526
-#26957 := [unit-resolution #26527 #26956 #26950 #26946]: false
-#26958 := [lemma #26957]: #12828
-#26540 := (or #21939 #12829)
-#26421 := [hypothesis]: #21942
-#26419 := [unit-resolution #21424 #26421]: #21933
-#26428 := [unit-resolution #26414 #26419]: #21930
-#26429 := [unit-resolution #21477 #26428]: #21921
-#26432 := [unit-resolution #21470 #26428]: #12739
-#26441 := [unit-resolution #26435 #26432]: #21524
-#26444 := [unit-resolution #26443 #26441 #25919]: #12676
-#26440 := [unit-resolution #21488 #26444 #26429]: #21918
-#26478 := [unit-resolution #21480 #26440]: #21909
-#26485 := (= f469 f470)
-#21437 := (or #21939 #4963)
-#21447 := [def-axiom]: #21437
-#26479 := [unit-resolution #21447 #26421]: #4963
-#26486 := [symm #26479]: #26485
-#26487 := (= #4990 f469)
-#26415 := (= #4947 f469)
-#21442 := (or #21939 #4950)
-#21443 := [def-axiom]: #21442
-#26445 := [unit-resolution #21443 #26421]: #4950
-#26484 := [symm #26445]: #26415
-#26482 := (= #4990 #4947)
-#26480 := (= #4989 #4937)
-#26469 := (= #4988 #4936)
-#21414 := (or #21939 #4965)
-#21416 := [def-axiom]: #21414
-#26468 := [unit-resolution #21416 #26421]: #4965
-#26470 := [monotonicity #26468]: #26469
-#26481 := [monotonicity #26470]: #26480
-#26483 := [monotonicity #26481]: #26482
-#26488 := [trans #26483 #26484]: #26487
-#26505 := [trans #26488 #26486]: #4991
-#26014 := (+ f464 #12718)
-#26016 := (>= #26014 0::Int)
-#26013 := (= f464 f471)
-#26431 := [symm #26468]: #26013
-#26471 := (not #26013)
-#26472 := (or #26471 #26016)
-#26467 := [th-lemma arith triangle-eq]: #26472
-#26473 := [unit-resolution #26467 #26431]: #26016
-#26418 := (not #26016)
-#26474 := (or #12721 #26418 #12922)
-#26475 := [th-lemma arith assign-bounds -1 -1]: #26474
-#26476 := [unit-resolution #26475 #26473 #25919]: #12721
-#26477 := [unit-resolution #21497 #26476 #26505]: #20987
-#26433 := [unit-resolution #21506 #26477]: #21903
-#26509 := [unit-resolution #21495 #26433 #26478]: #20971
-#26500 := [unit-resolution #21512 #26509]: #21530
-#26017 := (= #4947 f470)
-#26501 := [trans #26484 #26486]: #26017
-#26499 := (not #26017)
-#26502 := (or #26499 #26019)
-#26503 := [th-lemma arith triangle-eq]: #26502
-#26504 := [unit-resolution #26503 #26501]: #26019
-#26510 := [unit-resolution #21517 #26509]: #21516
-#26511 := [unit-resolution #26699 #26510 #26504]: #26696
-#26507 := [unit-resolution #26689 #26511]: #26686
-#26491 := [unit-resolution #26714 #26507]: #26712
-#26525 := (or #26678 #26539)
-#26494 := [hypothesis]: #12828
-#26495 := (or #26493 #17545 #26697 #12829)
-#26496 := [th-lemma arith assign-bounds 1 1 1]: #26495
-#26508 := [unit-resolution #26496 #26510 #26504 #26494]: #26493
-#26512 := (or #26321 #26333)
-#26523 := [unit-resolution #21527 #26509]: #17234
-#26524 := [unit-resolution #21529 #26509]: #17233
-#26531 := [unit-resolution #26351 #25659 #26524 #26523]: #26512
-#26532 := [unit-resolution #26531 #26508]: #26321
-#26528 := [unit-resolution #26527 #26532]: #26525
-#26529 := [unit-resolution #26528 #26491]: #26539
-#26530 := [th-lemma arith farkas 1 -1 1 #26441 #26529 #26500]: false
-#26541 := [lemma #26530]: #26540
-#26716 := [unit-resolution #26541 #26958]: #21939
-#26618 := [unit-resolution #26613 #26716 #26293]: #21948
-#21352 := (or #21969 #12829)
-#21355 := [def-axiom]: #21352
-#26661 := [unit-resolution #21355 #26958]: #21969
-#26593 := [unit-resolution #26008 #26661]: #21957
-#26438 := [unit-resolution #26591 #26593]: #21954
-[unit-resolution #21404 #26438 #26618]: false
-unsat
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SMT_Examples/VCC_Max.certs2	Thu May 01 22:57:38 2014 +0200
@@ -0,0 +1,2831 @@
+d89d419269a26cf0f9e2b838b7d86233eeb72c17 2830 0
+unsat
+((set-logic <null>)
+(declare-fun ?v0!14 () Int)
+(declare-fun ?v0!15 () Int)
+(declare-fun ?v0!13 () Int)
+(proof
+(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$)))
+(let ((?x3680 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$)))
+(let ((?x3922 (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$)))
+(let ((?x3929 (b_S_read_n_u1$ v_b_S_s$ ?x3922)))
+(let (($x24191 (<= (+ ?x3929 ?x12534) 0)))
+(let (($x3940 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_2$)))
+(let ((?x3974 (b_S_idx$ ?x3680 v_b_SL_H_witness_G_1$ b_T_T_u1$)))
+(let ((?x3975 (b_S_read_n_u1$ v_b_S_s$ ?x3974)))
+(let (($x3976 (= ?x3975 v_b_L_H_max_G_3$)))
+(let (($x12550 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_1$)) 0)))
+(let (($x20130 (or $x12550 (not $x3976))))
+(let (($x20131 (not $x20130)))
+(let (($x21049 (forall ((?v0 Int) )(!(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12536 (<= (+ ?x3765 ?x12534) 0)))
+(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12521 $x12536))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) )))
+))
+(let (($x21057 (or (not $x21049) $x20131)))
+(let (($x21060 (not $x21057)))
+(let ((?x16374 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!14 b_T_T_u1$))))
+(let ((?x16620 (* (- 1) ?x16374)))
+(let (($x16622 (>= (+ v_b_L_H_max_G_3$ ?x16620) 0)))
+(let (($x16600 (<= (+ v_b_L_H_p_G_1$ (* (- 1) ?v0!14)) 0)))
+(let (($x16367 (<= ?v0!14 4294967295)))
+(let (($x20084 (not $x16367)))
+(let (($x16366 (>= ?v0!14 0)))
+(let (($x20083 (not $x16366)))
+(let (($x20099 (or $x20083 $x20084 $x16600 $x16622)))
+(let (($x20104 (not $x20099)))
+(let (($x21063 (or $x20104 $x21060)))
+(let (($x21066 (not $x21063)))
+(let (($x12514 (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x12518 (not $x12514)))
+(let (($x21069 (or $x12518 $x21066)))
+(let (($x21072 (not $x21069)))
+(let (($x21075 (or $x12518 $x21072)))
+(let (($x21078 (not $x21075)))
+(let (($x12486 (>= v_b_SL_H_witness_G_1$ 0)))
+(let (($x20173 (not $x12486)))
+(let (($x3960 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_24$ b_H_loc_o_p$ v_b_L_H_p_G_1$ b_T_T_u4$)))
+(let (($x12500 (= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_L_H_p_G_1$)) (- 1))))
+(let (($x20170 (not $x12500)))
+(let (($x13856 (<= v_b_L_H_p_G_0$ 4294967294)))
+(let (($x16354 (not $x13856)))
+(let (($x12494 (>= v_b_L_H_p_G_0$ (- 1))))
+(let (($x16351 (not $x12494)))
+(let (($x21081 (or $x16351 $x16354 $x20170 (not $x3960) (not (>= v_b_L_H_p_G_1$ 2)) $x20173 $x21078)))
+(let (($x21084 (not $x21081)))
+(let (($x21087 (or $x16351 $x16354 $x21084)))
+(let (($x21090 (not $x21087)))
+(let (($x12404 (>= v_b_L_H_p_G_0$ 1)))
+(let (($x20190 (not $x12404)))
+(let (($x3937 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_24_o_47$ b_H_loc_o_witness$ v_b_L_H_p_G_0$ b_T_T_u4$)))
+(let (($x3936 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_23_o_7$ b_H_loc_o_max$ v_b_L_H_max_G_2$ b_T_T_u1$)))
+(let (($x3926 (b_S_thread_n_local$ v_b_S_s$ ?x3922)))
+(let (($x16339 (not $x3926)))
+(let (($x3923 (b_S_is$ ?x3922 b_T_T_u1$)))
+(let (($x16330 (not $x3923)))
+(let (($x21093 (or $x16330 $x16339 (not (= v_b_L_H_max_G_2$ ?x3929)) (not $x3936) (not $x3937) $x20190 (not $x3940) (not (= v_b_SL_H_witness_G_1$ v_b_L_H_p_G_0$)) $x20173 $x21090)))
+(let (($x21096 (not $x21093)))
+(let ((?x24124 (b_S_ref$ ?x3922)))
+(let ((?x23972 (b_S_ptr$ b_T_T_u1$ ?x24124)))
+(let (($x24221 (or (= (b_S_owner$ v_b_S_s$ ?x23972) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x23972))))
+(let (($x24198 (= (b_S_kind_n_of$ (b_S_typ$ ?x23972)) b_S_kind_n_primitive$)))
+(let ((?x3874 (b_S_typemap$ v_b_S_s$)))
+(let ((?x24200 (b_S_select_o_tm$ ?x3874 ?x23972)))
+(let ((?x24203 (b_S_ts_n_emb$ ?x24200)))
+(let (($x24212 (= (b_S_owner$ v_b_S_s$ ?x24203) b_S_me$)))
+(let (($x24214 (or $x24212 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24203))))
+(let (($x24210 (= (b_S_kind_n_of$ (b_S_typ$ ?x24203)) b_S_kind_n_primitive$)))
+(let (($x24201 (b_S_ts_n_is_n_volatile$ ?x24200)))
+(let (($x24202 (not $x24201)))
+(let (($x24206 (or $x24202 (not (b_S_closed$ v_b_S_s$ ?x24203)))))
+(let (($x24207 (not $x24206)))
+(let (($x24199 (not $x24198)))
+(let (($x24217 (not (or $x24199 $x24207 $x24210 (not $x24214)))))
+(let (($x24226 (not (or $x24217 (not (or $x24198 (not $x24221)))))))
+(let (($x24194 (b_S_typed$ v_b_S_s$ ?x23972)))
+(let (($x24195 (not $x24194)))
+(let (($x24227 (or $x24195 $x24226)))
+(let (($x24228 (not $x24227)))
+(let (($x24193 (b_S_thread_n_local$ v_b_S_s$ ?x23972)))
+(let (($x24229 (= $x24193 $x24228)))
+(let (($x19790 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1)))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$)))
+(let ((?x1215 (b_S_typemap$ ?v0)))
+(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1)))
+(let ((?x3169 (b_S_ts_n_emb$ ?x3166)))
+(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169))))
+(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169)))))
+(let (($x1024 (not $x1001)))
+(let (($x19765 (or $x1024 (not $x3172) (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$) (not $x3180))))
+(let (($x19774 (or (not $x19765) (not (or $x1001 (not (or $x1104 $x3184)))))))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x8534 (not $x1106)))
+(let (($x19782 (not (or $x8534 (not $x19774)))))
+(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1)))
+(= $x3165 $x19782))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) )))
+))
+(let (($x12140 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1)))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$)))
+(let (($x1024 (not $x1001)))
+(let (($x3186 (and $x1024 (or $x1104 $x3184))))
+(let ((?x1215 (b_S_typemap$ ?v0)))
+(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1)))
+(let ((?x3169 (b_S_ts_n_emb$ ?x3166)))
+(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169))))
+(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$))))
+(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169)))))
+(let (($x8324 (and $x1001 $x3172 $x3176 $x3180)))
+(let (($x8329 (or $x8324 $x3186)))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x8332 (and $x1106 $x8329)))
+(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1)))
+(= $x3165 $x8332)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) )))
+))
+(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?1 ?0)))
+(let ((?x1103 (b_S_owner$ ?1 ?0)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?0)) b_S_kind_n_primitive$)))
+(let ((?x1215 (b_S_typemap$ ?1)))
+(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?0)))
+(let ((?x3169 (b_S_ts_n_emb$ ?x3166)))
+(let (($x3180 (or (= (b_S_owner$ ?1 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?1 ?x3169))))
+(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?1 ?x3169)))))
+(let (($x1024 (not $x1001)))
+(let (($x19765 (or $x1024 (not $x3172) (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$) (not $x3180))))
+(let (($x19774 (or (not $x19765) (not (or $x1001 (not (or $x1104 $x3184)))))))
+(let (($x1106 (b_S_typed$ ?1 ?0)))
+(let (($x8534 (not $x1106)))
+(let (($x19782 (not (or $x8534 (not $x19774)))))
+(let (($x3165 (b_S_thread_n_local$ ?1 ?0)))
+(let (($x3186 (and $x1024 (or $x1104 $x3184))))
+(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$))))
+(let (($x8324 (and $x1001 $x3172 $x3176 $x3180)))
+(let (($x8329 (or $x8324 $x3186)))
+(let (($x8332 (and $x1106 $x8329)))
+(let (($x12136 (= $x3165 $x8332)))
+(let ((@x19776 (monotonicity (rewrite (= $x8324 (not $x19765))) (rewrite (= $x3186 (not (or $x1001 (not (or $x1104 $x3184)))))) (= $x8329 $x19774))))
+(let ((@x19786 (trans (monotonicity @x19776 (= $x8332 (and $x1106 $x19774))) (rewrite (= (and $x1106 $x19774) $x19782)) (= $x8332 $x19782))))
+(let ((@x19792 (quant-intro (monotonicity @x19786 (= $x12136 (= $x3165 $x19782))) (= $x12140 $x19790))))
+(let (($x8338 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1)))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$)))
+(let (($x1024 (not $x1001)))
+(let (($x3186 (and $x1024 (or $x1104 $x3184))))
+(let ((?x1215 (b_S_typemap$ ?v0)))
+(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1)))
+(let ((?x3169 (b_S_ts_n_emb$ ?x3166)))
+(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169))))
+(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$))))
+(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169)))))
+(let (($x8324 (and $x1001 $x3172 $x3176 $x3180)))
+(let (($x8329 (or $x8324 $x3186)))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x8332 (and $x1106 $x8329)))
+(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1)))
+(= $x3165 $x8332)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) )))
+))
+(let (($x3191 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1)))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$)))
+(let (($x1024 (not $x1001)))
+(let (($x3186 (and $x1024 (or $x1104 $x3184))))
+(let ((?x1215 (b_S_typemap$ ?v0)))
+(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1)))
+(let ((?x3169 (b_S_ts_n_emb$ ?x3166)))
+(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169))))
+(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$))))
+(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169)))))
+(let (($x3183 (and $x1001 (and $x3172 (and $x3176 $x3180)))))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1)))
+(= $x3165 (and $x1106 (or $x3183 $x3186)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) )))
+))
+(let (($x8335 (= $x3165 $x8332)))
+(let (($x8336 (= (= $x3165 (and $x1106 (or (and $x1001 (and $x3172 (and $x3176 $x3180))) $x3186))) $x8335)))
+(let (($x8333 (= (and $x1106 (or (and $x1001 (and $x3172 (and $x3176 $x3180))) $x3186)) $x8332)))
+(let (($x3183 (and $x1001 (and $x3172 (and $x3176 $x3180)))))
+(let ((@x8323 (monotonicity (rewrite (= (and $x3172 (and $x3176 $x3180)) (and $x3172 $x3176 $x3180))) (= $x3183 (and $x1001 (and $x3172 $x3176 $x3180))))))
+(let ((@x8328 (trans @x8323 (rewrite (= (and $x1001 (and $x3172 $x3176 $x3180)) $x8324)) (= $x3183 $x8324))))
+(let ((@x8337 (monotonicity (monotonicity (monotonicity @x8328 (= (or $x3183 $x3186) $x8329)) $x8333) $x8336)))
+(let ((@x12145 (mp (mp (asserted $x3191) (quant-intro @x8337 (= $x3191 $x8338)) $x8338) (quant-intro (rewrite (= $x8335 $x12136)) (= $x8338 $x12140)) $x12140)))
+(let ((@x19793 (mp (mp~ @x12145 (nnf-pos (refl (~ $x12136 $x12136)) (~ $x12140 $x12140)) $x12140) @x19792 $x19790)))
+(let (($x23973 (= ?x3922 ?x23972)))
+(let ((?x23986 (b_S_typ$ ?x3922)))
+(let (($x23984 (= ?x23986 b_T_T_u1$)))
+(let ((?x3652 (b_S_sizeof$ b_T_T_u1$)))
+(let ((?x24037 (* ?x3652 v_b_L_H_p_G_0$)))
+(let ((?x3739 (b_S_idx$ ?x3680 0 b_T_T_u1$)))
+(let ((?x23186 (b_S_ref$ ?x3739)))
+(let ((?x23206 (b_S_ptr$ b_T_T_u1$ ?x23186)))
+(let ((?x23612 (b_S_ref$ ?x23206)))
+(let ((?x24040 (+ ?x23612 ?x24037)))
+(let ((?x24043 (b_S_ptr$ b_T_T_u1$ ?x24040)))
+(let (($x20974 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0) :pattern ( (b_S_ptr$ ?v0 ?v1) )))
+))
+(let (($x3462 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0))
+))
+(let (($x3461 (= (b_S_typ$ (b_S_ptr$ ?1 ?0)) ?1)))
+(let ((@x16101 (mp~ (asserted $x3462) (nnf-pos (refl (~ $x3461 $x3461)) (~ $x3462 $x3462)) $x3462)))
+(let ((@x20979 (mp @x16101 (quant-intro (refl (= $x3461 $x3461)) (= $x3462 $x20974)) $x20974)))
+(let ((@x24995 (unit-resolution ((_ quant-inst b_T_T_u1$ (+ ?x23612 ?x24037)) (or (not $x20974) (= (b_S_typ$ ?x24043) b_T_T_u1$))) @x20979 (= (b_S_typ$ ?x24043) b_T_T_u1$))))
+(let ((?x23996 (b_S_idx$ ?x23206 v_b_L_H_p_G_0$ b_T_T_u1$)))
+(let (($x24957 (= ?x23996 ?x24043)))
+(let (($x24973 (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) (not $x24957))))
+(let (($x24976 (not $x24973)))
+(let (($x18898 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x2466 (* ?v1 (b_S_sizeof$ ?v2))))
+(let ((?x2467 (+ (b_S_ref$ ?v0) ?x2466)))
+(let ((?x2468 (b_S_ptr$ ?v2 ?x2467)))
+(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2)))
+(let (($x2469 (= ?x2462 ?x2468)))
+(not (or (not (b_S_extent_n_hint$ ?x2462 ?v0)) (not $x2469)))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) )))
+))
+(let (($x2472 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x2466 (* ?v1 (b_S_sizeof$ ?v2))))
+(let ((?x2467 (+ (b_S_ref$ ?v0) ?x2466)))
+(let ((?x2468 (b_S_ptr$ ?v2 ?x2467)))
+(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2)))
+(let (($x2469 (= ?x2462 ?x2468)))
+(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?v0)))
+(and $x2463 $x2469))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) )))
+))
+(let ((?x2466 (* ?1 (b_S_sizeof$ ?0))))
+(let ((?x2467 (+ (b_S_ref$ ?2) ?x2466)))
+(let ((?x2468 (b_S_ptr$ ?0 ?x2467)))
+(let ((?x2462 (b_S_idx$ ?2 ?1 ?0)))
+(let (($x2469 (= ?x2462 ?x2468)))
+(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?2)))
+(let (($x2470 (and $x2463 $x2469)))
+(let ((@x18900 (quant-intro (rewrite (= $x2470 (not (or (not $x2463) (not $x2469))))) (= $x2472 $x18898))))
+(let (($x7455 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x7440 (* (b_S_sizeof$ ?v2) ?v1)))
+(let ((?x7443 (+ (b_S_ref$ ?v0) ?x7440)))
+(let ((?x7446 (b_S_ptr$ ?v2 ?x7443)))
+(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2)))
+(let (($x7449 (= ?x2462 ?x7446)))
+(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?v0)))
+(and $x2463 $x7449))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) )))
+))
+(let ((?x7440 (* (b_S_sizeof$ ?0) ?1)))
+(let ((?x7443 (+ (b_S_ref$ ?2) ?x7440)))
+(let ((?x7446 (b_S_ptr$ ?0 ?x7443)))
+(let (($x7449 (= ?x2462 ?x7446)))
+(let (($x7452 (and $x2463 $x7449)))
+(let ((@x11827 (monotonicity (monotonicity (rewrite (= ?x7440 ?x2466)) (= ?x7443 ?x2467)) (= ?x7446 ?x2468))))
+(let ((@x11833 (quant-intro (monotonicity (monotonicity @x11827 (= $x7449 $x2469)) (= $x7452 $x2470)) (= $x7455 $x2472))))
+(let ((@x7448 (monotonicity (monotonicity (rewrite (= ?x2466 ?x7440)) (= ?x2467 ?x7443)) (= ?x2468 ?x7446))))
+(let ((@x7457 (quant-intro (monotonicity (monotonicity @x7448 (= $x2469 $x7449)) (= $x2470 $x7452)) (= $x2472 $x7455))))
+(let ((@x15301 (mp~ (mp (mp (asserted $x2472) @x7457 $x7455) @x11833 $x2472) (nnf-pos (refl (~ $x2470 $x2470)) (~ $x2472 $x2472)) $x2472)))
+(let ((@x18901 (mp @x15301 @x18900 $x18898)))
+(let (($x23217 (not $x18898)))
+(let (($x24981 (or $x23217 $x24976)))
+(let (($x24034 (not (= ?x23996 (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652)))))))
+(let (($x24986 (= (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034))) $x24981)))
+(let (($x24958 (= (= ?x23996 (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652)))) $x24957)))
+(let ((@x24955 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x3652) ?x24037)) (= (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652)) ?x24040))))
+(let ((@x24956 (monotonicity @x24955 (= (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652))) ?x24043))))
+(let ((@x24975 (monotonicity (monotonicity (monotonicity @x24956 $x24958) (= $x24034 (not $x24957))) (= (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034) $x24973))))
+(let ((@x24983 (monotonicity @x24975 (= (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034)) $x24976))))
+(let ((@x24985 ((_ quant-inst (b_S_ptr$ b_T_T_u1$ ?x23186) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034))))))
+(let ((@x23295 (mp @x24985 (trans (monotonicity @x24983 $x24986) (rewrite (= $x24981 $x24981)) $x24986) $x24981)))
+(let ((@x25587 (unit-resolution (def-axiom (or $x24973 $x24957)) (unit-resolution @x23295 @x18901 $x24976) $x24957)))
+(let (($x23207 (= ?x3739 ?x23206)))
+(let (($x3740 (b_S_is$ ?x3739 b_T_T_u1$)))
+(let ((?x23215 (b_S_typ$ ?x3739)))
+(let (($x23216 (= ?x23215 b_T_T_u1$)))
+(let ((@x23266 (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) (or (not $x20974) (= (b_S_typ$ ?x3680) b_T_T_u1$))) @x20979 (= (b_S_typ$ ?x3680) b_T_T_u1$))))
+(let (($x20968 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1) :pattern ( (b_S_ptr$ ?v0 ?v1) )))
+))
+(let (($x3459 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1))
+))
+(let (($x3458 (= (b_S_ref$ (b_S_ptr$ ?1 ?0)) ?0)))
+(let ((@x16096 (mp~ (asserted $x3459) (nnf-pos (refl (~ $x3458 $x3458)) (~ $x3459 $x3459)) $x3459)))
+(let ((@x20973 (mp @x16096 (quant-intro (refl (= $x3458 $x3458)) (= $x3459 $x20968)) $x20968)))
+(let ((@x23283 (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) (or (not $x20968) (= (b_S_ref$ ?x3680) v_b_P_H_arr$))) @x20973 (= (b_S_ref$ ?x3680) v_b_P_H_arr$))))
+(let ((?x3681 (b_S_ref$ ?x3680)))
+(let ((?x23203 (b_S_ptr$ b_T_T_u1$ ?x3681)))
+(let (($x23188 (= ?x3739 ?x23203)))
+(let (($x23208 (or (not (b_S_extent_n_hint$ ?x3739 ?x3680)) (not $x23188))))
+(let (($x23213 (not $x23208)))
+(let (($x23220 (or $x23217 $x23213)))
+(let (($x23243 (or (not (b_S_extent_n_hint$ ?x3739 ?x3680)) (not (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652))))))))
+(let (($x23209 (= (not (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652))))) (not $x23188))))
+(let ((@x23198 (monotonicity (rewrite (= (* 0 ?x3652) 0)) (= (+ ?x3681 (* 0 ?x3652)) (+ ?x3681 0)))))
+(let ((@x23202 (trans @x23198 (rewrite (= (+ ?x3681 0) ?x3681)) (= (+ ?x3681 (* 0 ?x3652)) ?x3681))))
+(let ((@x23190 (monotonicity @x23202 (= (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652))) ?x23203))))
+(let ((@x23192 (monotonicity @x23190 (= (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652)))) $x23188))))
+(let ((@x23219 (monotonicity (monotonicity (monotonicity @x23192 $x23209) (= $x23243 $x23208)) (= (not $x23243) $x23213))))
+(let ((@x23232 (trans (monotonicity @x23219 (= (or $x23217 (not $x23243)) $x23220)) (rewrite (= $x23220 $x23220)) (= (or $x23217 (not $x23243)) $x23220))))
+(let ((@x23284 (unit-resolution (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) 0 b_T_T_u1$) (or $x23217 (not $x23243))) @x23232 $x23220) @x18901 $x23213)))
+(let ((@x23269 (unit-resolution (def-axiom (or $x23208 $x23188)) @x23284 $x23188)))
+(let ((@x23248 (monotonicity (trans @x23269 (monotonicity @x23283 (= ?x23203 ?x3680)) (= ?x3739 ?x3680)) (= ?x23215 (b_S_typ$ ?x3680)))))
+(let (($x23163 (not $x23216)))
+(let (($x23223 (= $x3740 $x23216)))
+(let (($x20961 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let ((?x2296 (b_S_typ$ ?v0)))
+(let (($x2741 (= ?x2296 ?v1)))
+(let (($x3427 (b_S_is$ ?v0 ?v1)))
+(= $x3427 $x2741)))) :pattern ( (b_S_is$ ?v0 ?v1) )))
+))
+(let (($x12230 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x2296 (b_S_typ$ ?v0)))
+(let (($x2741 (= ?x2296 ?v1)))
+(let (($x3427 (b_S_is$ ?v0 ?v1)))
+(= $x3427 $x2741)))))
+))
+(let ((?x2296 (b_S_typ$ ?1)))
+(let (($x2741 (= ?x2296 ?0)))
+(let (($x3427 (b_S_is$ ?1 ?0)))
+(let (($x12201 (= $x3427 $x2741)))
+(let (($x3434 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x2296 (b_S_typ$ ?v0)))
+(let (($x2741 (= ?x2296 ?v1)))
+(let (($x3427 (b_S_is$ ?v0 ?v1)))
+(= $x3427 $x2741)))))
+))
+(let ((@x12235 (mp (asserted $x3434) (quant-intro (rewrite (= (= $x3427 $x2741) $x12201)) (= $x3434 $x12230)) $x12230)))
+(let ((@x20966 (mp (mp~ @x12235 (nnf-pos (refl (~ $x12201 $x12201)) (~ $x12230 $x12230)) $x12230) (quant-intro (refl (= $x12201 $x12201)) (= $x12230 $x20961)) $x20961)))
+(let ((@x23281 (unit-resolution (def-axiom (or (not $x23223) $x3740 $x23163)) (hypothesis (not $x3740)) (or (not $x23223) $x23163))))
+(let ((@x23282 (unit-resolution @x23281 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23223)) @x20966 $x23223) $x23163)))
+(let ((@x23251 (lemma (unit-resolution @x23282 (trans @x23248 @x23266 $x23216) false) $x3740)))
+(let (($x8559 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(or (not (b_S_is$ ?v0 ?v1)) (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0)))) :pattern ( (b_S_is$ ?v0 ?v1) )))
+))
+(let (($x8556 (or (not $x3427) (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1))))))
+(let (($x3432 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let (($x3427 (b_S_is$ ?v0 ?v1)))
+(=> $x3427 (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0))))) :pattern ( (b_S_is$ ?v0 ?v1) )))
+))
+(let ((@x8558 (rewrite (= (=> $x3427 (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))) $x8556))))
+(let ((@x16076 (mp~ (mp (asserted $x3432) (quant-intro @x8558 (= $x3432 $x8559)) $x8559) (nnf-pos (refl (~ $x8556 $x8556)) (~ $x8559 $x8559)) $x8559)))
+(let (($x23403 (= (or (not $x8559) (or (not $x3740) $x23207)) (or (not $x8559) (not $x3740) $x23207))))
+(let ((@x23405 (mp ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x8559) (or (not $x3740) $x23207))) (rewrite $x23403) (or (not $x8559) (not $x3740) $x23207))))
+(let ((@x24358 (monotonicity (symm @x23283 (= v_b_P_H_arr$ ?x3681)) (= ?x3680 ?x23203))))
+(let ((@x24998 (trans (trans @x24358 (symm @x23269 (= ?x23203 ?x3739)) (= ?x3680 ?x3739)) (unit-resolution @x23405 @x16076 @x23251 $x23207) (= ?x3680 ?x23206))))
+(let ((@x25027 (monotonicity (trans (monotonicity @x24998 (= ?x3922 ?x23996)) @x25587 (= ?x3922 ?x24043)) (= ?x23986 (b_S_typ$ ?x24043)))))
+(let (($x25000 (not $x23984)))
+(let (($x23994 (= $x3923 $x23984)))
+(let ((@x24895 (unit-resolution (def-axiom (or (not $x23994) $x3923 $x25000)) (hypothesis $x16330) (or (not $x23994) $x25000))))
+(let ((@x24903 (unit-resolution @x24895 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23994)) @x20966 $x23994) $x25000)))
+(let ((@x25032 (lemma (unit-resolution @x24903 (trans @x25027 @x24995 $x23984) false) $x3923)))
+(let ((@x24892 (rewrite (= (or (not $x8559) (or $x16330 $x23973)) (or (not $x8559) $x16330 $x23973)))))
+(let ((@x24894 (mp ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x8559) (or $x16330 $x23973))) @x24892 (or (not $x8559) $x16330 $x23973))))
+(let ((@x24935 (unit-resolution @x24894 @x16076 (hypothesis $x3923) (hypothesis (not $x23973)) false)))
+(let ((@x25156 (unit-resolution (lemma @x24935 (or $x16330 $x23973)) @x25032 $x23973)))
+(let ((@x25212 (symm (monotonicity (symm @x25156 (= ?x23972 ?x3922)) (= $x24193 $x3926)) (= $x3926 $x24193))))
+(let ((@x25225 (mp (hypothesis $x16339) (monotonicity @x25212 (= $x16339 (not $x24193))) (not $x24193))))
+(let ((@x25226 (unit-resolution (def-axiom (or (not $x24229) $x24193 $x24227)) @x25225 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x24124)) (or (not $x19790) $x24229)) @x19793 $x24229) $x24227)))
+(let ((@x25350 (monotonicity (symm (hypothesis $x23973) (= ?x23972 ?x3922)) (= $x24194 (b_S_typed$ v_b_S_s$ ?x3922)))))
+(let (($x3924 (b_S_typed$ v_b_S_s$ ?x3922)))
+(let ((?x23936 (b_S_select_o_tm$ ?x3874 ?x3922)))
+(let (($x24081 (b_S_ts_n_is_n_volatile$ ?x23936)))
+(let (($x16333 (not $x3924)))
+(let (($x24082 (or $x16333 $x24081)))
+(let (($x24083 (not $x24082)))
+(let (($x12397 (>= v_b_L_H_p_G_0$ 0)))
+(let (($x21173 (forall ((?v0 Int) )(!(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12631 (not $x3840))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) )))
+))
+(let (($x21178 (not $x21173)))
+(let (($x21165 (forall ((?v0 Int) )(!(let ((?x12644 (* (- 1) v_b_S_result_G_0$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12646 (<= (+ ?x3765 ?x12644) 0)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12631 $x12646))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) )))
+))
+(let (($x21181 (or (not $x21165) $x21178)))
+(let (($x21184 (not $x21181)))
+(let ((?x16481 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!15 b_T_T_u1$))))
+(let (($x16760 (>= (+ v_b_S_result_G_0$ (* (- 1) ?x16481)) 0)))
+(let (($x16738 (<= (+ v_b_P_H_len$ (* (- 1) ?v0!15)) 0)))
+(let (($x16474 (<= ?v0!15 4294967295)))
+(let (($x20278 (not $x16474)))
+(let (($x16473 (>= ?v0!15 0)))
+(let (($x20277 (not $x16473)))
+(let (($x20293 (or $x20277 $x20278 $x16738 $x16760)))
+(let (($x20298 (not $x20293)))
+(let (($x21187 (or $x20298 $x21184)))
+(let (($x21190 (not $x21187)))
+(let (($x3824 (= v_b_S_result_G_0$ v_b_L_H_max_G_1$)))
+(let (($x20358 (not $x3824)))
+(let (($x12389 (>= v_b_SL_H_witness_G_0$ 0)))
+(let (($x20219 (not $x12389)))
+(let (($x12453 (<= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x12456 (not $x12453)))
+(let (($x21193 (or $x12456 $x20190 $x20219 (not (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$)) (not (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$)) (not (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$)) $x20358 $x21190)))
+(let (($x21196 (not $x21193)))
+(let (($x3993 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_1$)))
+(let (($x20230 (not $x3993)))
+(let (($x12471 (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x3929)) 0)))
+(let (($x12476 (not $x12471)))
+(let (($x21123 (or $x20190 $x20219 $x12476 $x20230 (not (= v_b_SL_H_witness_G_1$ v_b_SL_H_witness_G_0$)) $x20173 $x21090)))
+(let (($x21126 (not $x21123)))
+(let (($x21099 (or $x16330 $x16339 $x21096)))
+(let (($x21102 (not $x21099)))
+(let (($x21105 (or $x16330 $x16333 $x21102)))
+(let (($x21108 (not $x21105)))
+(let (($x21111 (or $x16330 $x16333 $x21108)))
+(let (($x21114 (not $x21111)))
+(let (($x21117 (or $x20190 $x20219 $x12471 $x21114)))
+(let (($x21120 (not $x21117)))
+(let (($x21129 (or $x21120 $x21126)))
+(let (($x21132 (not $x21129)))
+(let (($x21135 (or $x16330 $x16339 $x20190 $x20219 $x21132)))
+(let (($x21138 (not $x21135)))
+(let (($x21141 (or $x16330 $x16339 $x21138)))
+(let (($x21144 (not $x21141)))
+(let (($x21147 (or $x16330 $x16333 $x21144)))
+(let (($x21150 (not $x21147)))
+(let (($x21153 (or $x16330 $x16333 $x21150)))
+(let (($x21156 (not $x21153)))
+(let (($x21159 (or $x20190 $x20219 $x12453 $x21156)))
+(let (($x21162 (not $x21159)))
+(let (($x21199 (or $x21162 $x21196)))
+(let (($x21202 (not $x21199)))
+(let ((?x991 (b_S_ptr_n_to$ b_T_T_u1$)))
+(let (($x3898 (b_S_local_n_value_n_is_n_ptr$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_arr$ ?x3680 ?x991)))
+(let (($x3897 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_arr$ (b_S_ptr_n_to_n_int$ ?x3680) ?x991)))
+(let (($x3896 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_len$ v_b_P_H_len$ b_T_T_u4$)))
+(let (($x3895 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_1$ b_T_T_u1$)))
+(let (($x3894 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_witness$ v_b_SL_H_witness_G_0$ b_T_T_u4$)))
+(let (($x3893 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_p$ v_b_L_H_p_G_0$ b_T_T_u4$)))
+(let ((?x3793 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 v_b_SL_H_witness_G_0$ b_T_T_u1$))))
+(let (($x3794 (= ?x3793 v_b_L_H_max_G_1$)))
+(let (($x20379 (not $x3794)))
+(let (($x12435 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_0$)) 0)))
+(let (($x21041 (forall ((?v0 Int) )(!(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12425 (<= (+ ?x3765 ?x12384) 0)))
+(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12411 $x12425))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) )))
+))
+(let (($x21046 (not $x21041)))
+(let (($x20375 (not $x12397)))
+(let (($x12834 (<= v_b_SL_H_witness_G_0$ 4294967295)))
+(let (($x20374 (not $x12834)))
+(let ((?x3746 (b_S_read_n_u1$ v_b_S_s$ ?x3739)))
+(let (($x3769 (= ?x3746 v_b_L_H_max_G_0$)))
+(let (($x16288 (not $x3769)))
+(let (($x8666 (<= v_b_P_H_len$ 0)))
+(let (($x21205 (or $x8666 $x16288 (not (>= v_b_L_H_max_G_1$ 0)) (not (<= v_b_L_H_max_G_1$ 255)) $x20374 $x20375 (not (<= v_b_L_H_p_G_0$ 4294967295)) (not (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)) $x21046 $x12435 $x20379 $x20190 $x20219 (not (b_S_call_n_transition$ v_b_S_s$ v_b_S_s$)) (not (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_16_o_3$ v_b_S_s$)) (not $x3893) (not $x3894) (not $x3895) (not $x3896) (not $x3897) (not $x3898) $x21202)))
+(let (($x21208 (not $x21205)))
+(let (($x21211 (or $x8666 $x16288 $x21208)))
+(let (($x21214 (not $x21211)))
+(let (($x21033 (forall ((?v0 Int) )(!(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0)))
+(let (($x12354 (>= ?v0 1)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12354 $x12367)))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) )))
+))
+(let (($x21217 (or (not $x21033) $x21214)))
+(let (($x21220 (not $x21217)))
+(let ((?x16270 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!13 b_T_T_u1$))))
+(let (($x16273 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x16270)) 0)))
+(let (($x16265 (>= ?v0!13 1)))
+(let (($x20031 (or (not (>= ?v0!13 0)) (not (<= ?v0!13 4294967295)) $x16265 $x16273)))
+(let (($x20036 (not $x20031)))
+(let (($x21223 (or $x20036 $x21220)))
+(let (($x21226 (not $x21223)))
+(let (($x12348 (>= v_b_P_H_len$ 1)))
+(let (($x12351 (not $x12348)))
+(let (($x21229 (or $x12351 $x21226)))
+(let (($x21232 (not $x21229)))
+(let (($x8667 (not $x8666)))
+(let (($x3720 (<= v_b_P_H_len$ b_S_max_o_u4$)))
+(let (($x3719 (<= 0 v_b_P_H_len$)))
+(let (($x8707 (forall ((?v0 B_S_ptr$) )(!(let (($x3715 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0)))
+(not $x3715)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) )))
+))
+(let ((?x3713 (b_S_current_n_timestamp$ v_b_S_s$)))
+(let (($x3714 (= v_b_H_wrTime_S_1_T_6_o_1$ ?x3713)))
+(let (($x3711 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_len$ v_b_P_H_len$ b_T_T_u4$)))
+(let (($x3709 (b_S_local_n_value_n_is_n_ptr$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ ?x3680 ?x991)))
+(let (($x3708 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ (b_S_ptr_n_to_n_int$ ?x3680) ?x991)))
+(let (($x8701 (forall ((?v0 B_S_pure_n_function$) )(!(not (<= b_S_current_n_frame_n_level$ (b_S_frame_n_level$ ?v0))) :pattern ( (b_S_frame_n_level$ ?v0) )))
+))
+(let (($x3699 (b_S_full_n_stop$ v_b_S_s$)))
+(let (($x3698 (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_6_o_1$ v_b_S_s$)))
+(let (($x3697 (b_S_function_n_entry$ v_b_S_s$)))
+(let ((?x3678 (b_S_array$ b_T_T_u1$ v_b_P_H_len$)))
+(let (($x3691 (b_S_is_n_non_n_primitive$ ?x3678)))
+(let (($x3690 (not (= (b_S_kind_n_of$ ?x3678) b_S_kind_n_primitive$))))
+(let ((?x3682 (b_S_ptr$ ?x3678 ?x3681)))
+(let (($x3687 (b_S_typed$ v_b_S_s$ ?x3682)))
+(let (($x3686 (b_S_is$ ?x3682 ?x3678)))
+(let ((?x3684 (b_S_owner$ v_b_S_s$ ?x3682)))
+(let (($x3685 (= ?x3684 b_S_me$)))
+(let (($x3683 (b_S_closed$ v_b_S_s$ ?x3682)))
+(let (($x8657 (<= 1099511627776 v_b_P_H_len$)))
+(let (($x8658 (not $x8657)))
+(let (($x3672 (<= v_b_SL_H_witness$ b_S_max_o_u4$)))
+(let (($x3671 (<= 0 v_b_SL_H_witness$)))
+(let (($x3668 (<= v_b_L_H_p$ b_S_max_o_u4$)))
+(let (($x3667 (<= 0 v_b_L_H_p$)))
+(let (($x3663 (<= 0 v_b_L_H_max$)))
+(let (($x8820 (and $x3663 (<= v_b_L_H_max$ b_S_max_o_u1$) $x3667 $x3668 $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x9207 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x9165 (not (<= v_b_P_H_len$ ?v0))))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(and $x1212 $x1344 $x9165 $x3840)))))))
+))
+(let (($x9185 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3837 (<= ?x3765 v_b_S_result_G_0$)))
+(let (($x9165 (not (<= v_b_P_H_len$ ?v0))))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x9171 (and $x1212 $x1344 $x9165)))
+(or (not $x9171) $x3837))))))))
+))
+(let (($x9228 (or (not $x9185) $x9207)))
+(let (($x9233 (and $x9185 $x9228)))
+(let (($x3822 (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$)))
+(let (($x3820 (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$)))
+(let (($x3818 (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$)))
+(let (($x3776 (<= 0 v_b_SL_H_witness_G_0$)))
+(let (($x3783 (<= 1 v_b_L_H_p_G_0$)))
+(let (($x9159 (and b_S_position_n_marker$ $x3783 $x3776 $x3818 $x3820 $x3822 $x3824)))
+(let (($x9240 (or (not $x9159) $x9233)))
+(let (($x9245 (and b_S_position_n_marker$ $x9240)))
+(let (($x9963 (or (not (and $x3783 $x3776 (<= v_b_P_H_len$ v_b_L_H_p_G_0$))) $x9245)))
+(let (($x9687 (not (<= v_b_P_H_len$ v_b_SL_H_witness_G_1$))))
+(let (($x9690 (and $x9687 $x3976)))
+(let (($x9683 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$)))
+(let (($x9663 (not (<= v_b_L_H_p_G_1$ ?v0))))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x9669 (and $x1212 $x1344 $x9663)))
+(or (not $x9669) $x3970))))))))
+))
+(let (($x9718 (or (not $x9683) $x9690)))
+(let (($x9723 (and $x9683 $x9718)))
+(let (($x9730 (or (not (<= v_b_L_H_p_G_1$ v_b_P_H_len$)) $x9723)))
+(let (($x3967 (<= v_b_L_H_p_G_1$ v_b_P_H_len$)))
+(let (($x9735 (and $x3967 $x9730)))
+(let (($x3943 (<= 0 v_b_SL_H_witness_G_1$)))
+(let (($x3961 (<= 2 v_b_L_H_p_G_1$)))
+(let ((?x9600 (+ 1 v_b_L_H_p_G_0$)))
+(let (($x9623 (= v_b_L_H_p_G_1$ ?x9600)))
+(let (($x9615 (<= v_b_L_H_p_G_0$ (+ (- 1) b_S_max_o_u4$))))
+(let (($x9606 (<= (- 1) v_b_L_H_p_G_0$)))
+(let (($x9657 (and $x9606 $x9615 $x9623 $x3960 $x3961 $x3943)))
+(let (($x9742 (or (not $x9657) $x9735)))
+(let (($x9750 (and $x9606 $x9615 $x9742)))
+(let (($x3994 (= v_b_SL_H_witness_G_1$ v_b_SL_H_witness_G_0$)))
+(let (($x3992 (<= ?x3929 v_b_L_H_max_G_1$)))
+(let (($x9858 (and $x3783 $x3776 $x3992 $x3993 $x3994 $x3943)))
+(let (($x9874 (or (not $x9858) $x9750)))
+(let (($x3942 (= v_b_SL_H_witness_G_1$ v_b_L_H_p_G_0$)))
+(let (($x3935 (= v_b_L_H_max_G_2$ ?x3929)))
+(let (($x9595 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943)))
+(let (($x9759 (or (not $x9595) $x9750)))
+(let (($x9767 (and $x3923 $x3926 $x9759)))
+(let (($x3925 (and $x3923 $x3924)))
+(let (($x9775 (not $x3925)))
+(let (($x9776 (or $x9775 $x9767)))
+(let (($x9784 (and $x3923 $x3924 $x9776)))
+(let (($x9793 (or (not (and $x3783 $x3776 (not $x3992))) $x9784)))
+(let (($x9879 (and $x9793 $x9874)))
+(let (($x9886 (or (not (and $x3923 $x3926 $x3783 $x3776)) $x9879)))
+(let (($x9894 (and $x3923 $x3926 $x9886)))
+(let (($x9902 (or $x9775 $x9894)))
+(let (($x9910 (and $x3923 $x3924 $x9902)))
+(let (($x9919 (or (not (and $x3783 $x3776 (not (<= v_b_P_H_len$ v_b_L_H_p_G_0$)))) $x9910)))
+(let (($x9968 (and $x9919 $x9963)))
+(let (($x3806 (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_16_o_3$ v_b_S_s$)))
+(let (($x3886 (b_S_call_n_transition$ v_b_S_s$ v_b_S_s$)))
+(let (($x9434 (and $x3783 $x3776 $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898)))
+(let (($x9974 (not $x9434)))
+(let (($x8960 (not (<= v_b_P_H_len$ v_b_SL_H_witness_G_0$))))
+(let (($x8956 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$)))
+(let (($x8936 (not (<= v_b_L_H_p_G_0$ ?v0))))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x8942 (and $x1212 $x1344 $x8936)))
+(or (not $x8942) $x3788))))))))
+))
+(let (($x3785 (<= v_b_L_H_p_G_0$ v_b_P_H_len$)))
+(let (($x3781 (<= v_b_L_H_p_G_0$ b_S_max_o_u4$)))
+(let (($x3780 (<= 0 v_b_L_H_p_G_0$)))
+(let (($x3777 (<= v_b_SL_H_witness_G_0$ b_S_max_o_u4$)))
+(let (($x3773 (<= v_b_L_H_max_G_1$ b_S_max_o_u1$)))
+(let (($x3772 (<= 0 v_b_L_H_max_G_1$)))
+(let (($x9032 (and $x8667 $x3769 $x3772 $x3773 $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)))
+(let (($x9991 (or (not $x9032) $x9974 $x9968)))
+(let (($x9999 (and $x8667 $x3769 $x9991)))
+(let (($x8913 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$)))
+(let (($x8887 (<= 1 ?v0)))
+(let (($x8888 (not $x8887)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x8899 (and $x1212 $x1344 $x8888)))
+(or (not $x8899) $x3766)))))))))
+))
+(let (($x10008 (or (not $x8913) $x9999)))
+(let (($x10013 (and $x8913 $x10008)))
+(let (($x10020 (or (not (<= 1 v_b_P_H_len$)) $x10013)))
+(let (($x3761 (<= 1 v_b_P_H_len$)))
+(let (($x10025 (and $x3761 $x10020)))
+(let (($x3750 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_8$ b_H_loc_o_p$ 1 b_T_T_u4$)))
+(let (($x3749 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_14_o_3$ b_H_loc_o_witness$ 0 b_T_T_u4$)))
+(let (($x3748 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_12_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_0$ b_T_T_u1$)))
+(let (($x3747 (= v_b_L_H_max_G_0$ ?x3746)))
+(let (($x3743 (b_S_thread_n_local$ v_b_S_s$ ?x3739)))
+(let (($x8880 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750)))
+(let (($x10031 (not $x8880)))
+(let (($x10032 (or $x10031 $x10025)))
+(let (($x10040 (and $x3740 $x3743 $x10032)))
+(let (($x3741 (b_S_typed$ v_b_S_s$ ?x3739)))
+(let (($x3742 (and $x3740 $x3741)))
+(let (($x10048 (not $x3742)))
+(let (($x10049 (or $x10048 $x10040)))
+(let (($x10057 (and $x3740 $x3741 $x10049)))
+(let (($x3738 (b_S_in_n_domain_n_lab$ v_b_S_s$ ?x3682 ?x3682 b_l_H_public$)))
+(let (($x10065 (not $x3738)))
+(let (($x10066 (or $x10065 $x10057)))
+(let (($x10071 (and $x3738 $x10066)))
+(let (($x10078 (or (not $x8820) $x10071)))
+(let (($x3844 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x3835 (< ?v0 v_b_P_H_len$)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x3842 (and $x1344 (and $x3835 $x3840))))
+(let (($x1212 (<= 0 ?v0)))
+(and $x1212 $x3842))))))))
+))
+(let (($x3845 (=> $x3844 true)))
+(let (($x3846 (and $x3844 $x3845)))
+(let (($x3839 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3837 (<= ?x3765 v_b_S_result_G_0$)))
+(let (($x3835 (< ?v0 v_b_P_H_len$)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x1345 (and $x1212 $x1344)))
+(let (($x3836 (and $x1345 $x3835)))
+(=> $x3836 $x3837)))))))))
+))
+(let (($x3847 (=> $x3839 $x3846)))
+(let (($x3827 (and $x3820 (and $x3822 (and $x3824 true)))))
+(let (($x3828 (and $x3818 $x3827)))
+(let (($x3829 (and true $x3828)))
+(let (($x3784 (and $x3783 $x3776)))
+(let (($x3830 (and $x3784 $x3829)))
+(let (($x3831 (and $x3784 $x3830)))
+(let (($x3832 (and true $x3831)))
+(let (($x3833 (and $x3784 $x3832)))
+(let (($x3834 (and b_S_position_n_marker$ $x3833)))
+(let (($x3849 (=> $x3834 (and $x3839 $x3847))))
+(let (($x3850 (and b_S_position_n_marker$ $x3849)))
+(let (($x3808 (and true $x3784)))
+(let (($x3809 (and $x3784 $x3808)))
+(let (($x4013 (and $x3784 $x3809)))
+(let (($x4014 (and true $x4013)))
+(let (($x4015 (and $x3784 $x4014)))
+(let (($x4012 (<= v_b_P_H_len$ v_b_L_H_p_G_0$)))
+(let (($x4016 (and $x4012 $x4015)))
+(let (($x4017 (and $x3784 $x4016)))
+(let (($x4018 (and true $x4017)))
+(let (($x4019 (=> $x4018 $x3850)))
+(let (($x3977 (and (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x3976)))
+(let (($x3978 (and $x3977 false)))
+(let (($x3979 (=> $x3978 true)))
+(let (($x3980 (and $x3977 $x3979)))
+(let (($x3972 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x1345 (and $x1212 $x1344)))
+(let (($x3969 (and $x1345 (< ?v0 v_b_L_H_p_G_1$))))
+(=> $x3969 $x3970))))))))
+))
+(let (($x3981 (=> $x3972 $x3980)))
+(let (($x3983 (=> $x3967 (and $x3972 $x3981))))
+(let (($x3962 (and $x3961 $x3943)))
+(let (($x3963 (and $x3962 true)))
+(let (($x3964 (and $x3960 $x3963)))
+(let (($x3965 (and (= v_b_L_H_p_G_1$ (+ v_b_L_H_p_G_0$ 1)) $x3964)))
+(let ((?x3954 (+ v_b_L_H_p_G_0$ 1)))
+(let (($x3956 (<= ?x3954 b_S_max_o_u4$)))
+(let (($x3955 (<= 0 ?x3954)))
+(let (($x3957 (and $x3955 $x3956)))
+(let (($x3966 (and $x3957 $x3965)))
+(let (($x3985 (=> $x3966 (and $x3967 $x3983))))
+(let (($x3986 (and $x3957 $x3985)))
+(let (($x3944 (and $x3783 $x3943)))
+(let (($x3945 (and true $x3944)))
+(let (($x3995 (and $x3994 $x3945)))
+(let (($x3996 (and $x3993 $x3995)))
+(let (($x3997 (and true $x3996)))
+(let (($x3998 (and $x3784 $x3997)))
+(let (($x3999 (and $x3784 $x3998)))
+(let (($x4000 (and true $x3999)))
+(let (($x4001 (and $x3784 $x4000)))
+(let (($x4002 (and $x3992 $x4001)))
+(let (($x4003 (and $x3784 $x4002)))
+(let (($x4004 (and true $x4003)))
+(let (($x4005 (=> $x4004 $x3986)))
+(let (($x3946 (and $x3942 $x3945)))
+(let (($x3947 (and $x3940 $x3946)))
+(let (($x3948 (and true $x3947)))
+(let (($x3938 (and $x3783 $x3783)))
+(let (($x3949 (and $x3938 $x3948)))
+(let (($x3950 (and $x3937 $x3949)))
+(let (($x3951 (and $x3936 $x3950)))
+(let (($x3952 (and $x3935 $x3951)))
+(let (($x3927 (and $x3923 $x3926)))
+(let (($x3953 (and $x3927 $x3952)))
+(let (($x3987 (=> $x3953 $x3986)))
+(let (($x3988 (and $x3927 $x3987)))
+(let (($x3989 (=> $x3925 $x3988)))
+(let (($x3990 (and $x3925 $x3989)))
+(let (($x3931 (and (< v_b_L_H_max_G_1$ ?x3929) $x3809)))
+(let (($x3932 (and $x3784 $x3931)))
+(let (($x3933 (and true $x3932)))
+(let (($x3991 (=> $x3933 $x3990)))
+(let (($x3928 (and $x3927 $x3784)))
+(let (($x4007 (=> $x3928 (and $x3991 $x4005))))
+(let (($x4008 (and $x3927 $x4007)))
+(let (($x4009 (=> $x3925 $x4008)))
+(let (($x4010 (and $x3925 $x4009)))
+(let (($x3919 (and (< v_b_L_H_p_G_0$ v_b_P_H_len$) $x3809)))
+(let (($x3920 (and $x3784 $x3919)))
+(let (($x3921 (and true $x3920)))
+(let (($x4011 (=> $x3921 $x4010)))
+(let (($x3902 (and (= ?x3874 ?x3874) (= (b_S_statusmap$ v_b_S_s$) (b_S_statusmap$ v_b_S_s$)))))
+(let (($x3903 (and $x3902 $x3784)))
+(let (($x3904 (and (and $x3897 $x3898) $x3903)))
+(let (($x3905 (and $x3896 $x3904)))
+(let (($x3906 (and $x3895 $x3905)))
+(let (($x3907 (and $x3894 $x3906)))
+(let (($x3908 (and $x3893 $x3907)))
+(let (($x3807 (and $x3806 $x3699)))
+(let (($x3909 (and $x3807 $x3908)))
+(let (($x3885 (forall ((?v0 B_S_ptr$) )(!(let ((?x3882 (b_S_timestamp$ v_b_S_s$ ?v0)))
+(<= ?x3882 ?x3882)) :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) )))
+))
+(let (($x3887 (and $x3885 $x3886)))
+(let (($x3888 (and (<= ?x3713 ?x3713) $x3887)))
+(let (($x3910 (and $x3888 $x3909)))
+(let (($x3880 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0)))
+(let ((?x3874 (b_S_typemap$ v_b_S_s$)))
+(let ((?x3875 (b_S_select_o_tm$ ?x3874 ?v0)))
+(let (($x3877 (and (= ?x3875 ?x3875) $x3862)))
+(=> $x3862 $x3877))))) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) )))
+))
+(let (($x3889 (and $x3880 $x3888)))
+(let (($x3873 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0)))
+(let ((?x3858 (b_S_statusmap$ v_b_S_s$)))
+(let ((?x3859 (b_S_select_o_sm$ ?x3858 ?v0)))
+(let (($x3871 (and (= ?x3859 ?x3859) $x3862)))
+(=> $x3862 $x3871))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) )))
+))
+(let (($x3890 (and $x3873 $x3889)))
+(let (($x3869 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0)))
+(let ((?x3864 (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0)))
+(let (($x3866 (and (= ?x3864 ?x3864) $x3862)))
+(=> $x3862 $x3866)))) :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) )))
+))
+(let (($x3891 (and $x3869 $x3890)))
+(let (($x3861 (forall ((?v0 B_S_ptr$) )(!(let (($x3855 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?v0))) b_S_kind_n_thread$)))
+(=> (not $x3855) (not $x3855))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) )))
+))
+(let (($x3892 (and $x3861 $x3891)))
+(let (($x3911 (and $x3892 $x3910)))
+(let (($x3912 (and $x3784 $x3911)))
+(let (($x3913 (and true $x3912)))
+(let (($x3914 (and $x3784 $x3913)))
+(let (($x3915 (and true $x3914)))
+(let (($x3916 (and $x3784 $x3915)))
+(let (($x3917 (and true $x3916)))
+(let (($x4021 (=> $x3917 (and $x4011 $x4019))))
+(let (($x3810 (and $x3807 $x3809)))
+(let (($x3811 (and $x3784 $x3810)))
+(let (($x3812 (and true $x3811)))
+(let (($x3813 (and $x3784 $x3812)))
+(let (($x3805 (not true)))
+(let (($x3814 (and $x3805 $x3813)))
+(let (($x3815 (and $x3784 $x3814)))
+(let (($x3816 (and true $x3815)))
+(let (($x3851 (=> $x3816 $x3850)))
+(let (($x4022 (and $x3851 $x4021)))
+(let (($x3796 (and (and (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x3794) $x3784)))
+(let (($x3790 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x1345 (and $x1212 $x1344)))
+(let (($x3787 (and $x1345 (< ?v0 v_b_L_H_p_G_0$))))
+(=> $x3787 $x3788))))))))
+))
+(let (($x3797 (and $x3790 $x3796)))
+(let (($x3798 (and $x3785 $x3797)))
+(let (($x3799 (and $x3784 $x3798)))
+(let (($x3782 (and $x3780 $x3781)))
+(let (($x3800 (and $x3782 $x3799)))
+(let (($x3778 (and $x3776 $x3777)))
+(let (($x3801 (and $x3778 $x3800)))
+(let (($x3774 (and $x3772 $x3773)))
+(let (($x3802 (and $x3774 $x3801)))
+(let (($x3803 (and true $x3802)))
+(let (($x3676 (< 0 v_b_P_H_len$)))
+(let (($x3770 (and $x3676 $x3769)))
+(let (($x3804 (and $x3770 $x3803)))
+(let (($x4023 (=> $x3804 $x4022)))
+(let (($x4024 (and $x3770 $x4023)))
+(let (($x3768 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$)))
+(let (($x1344 (<= ?v0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?v0)))
+(let (($x1345 (and $x1212 $x1344)))
+(let (($x3763 (and $x1345 (< ?v0 1))))
+(=> $x3763 $x3766))))))))
+))
+(let (($x4025 (=> $x3768 $x4024)))
+(let (($x4027 (=> $x3761 (and $x3768 $x4025))))
+(let (($x3752 (<= 0 0)))
+(let (($x3753 (and $x3752 $x3752)))
+(let (($x3751 (<= 1 1)))
+(let (($x3754 (and $x3751 $x3753)))
+(let (($x3755 (and $x3751 $x3754)))
+(let (($x3756 (and $x3750 $x3755)))
+(let (($x3758 (and $x3748 (and $x3749 $x3756))))
+(let (($x3759 (and $x3747 $x3758)))
+(let (($x3744 (and $x3740 $x3743)))
+(let (($x3760 (and $x3744 $x3759)))
+(let (($x4029 (=> $x3760 (and $x3761 $x4027))))
+(let (($x4030 (and $x3744 $x4029)))
+(let (($x4031 (=> $x3742 $x4030)))
+(let (($x4032 (and $x3742 $x4031)))
+(let (($x4033 (=> $x3738 $x4032)))
+(let (($x3721 (and $x3719 $x3720)))
+(let (($x3718 (forall ((?v0 B_S_ptr$) )(!(let (($x3715 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0)))
+(= $x3715 false)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) )))
+))
+(let (($x3722 (and $x3718 $x3721)))
+(let (($x3723 (and $x3714 $x3722)))
+(let (($x3724 (and $x3711 $x3723)))
+(let (($x3725 (and (and $x3708 $x3709) $x3724)))
+(let (($x3706 (forall ((?v0 B_S_pure_n_function$) )(!(let ((?x3702 (b_S_frame_n_level$ ?v0)))
+(< ?x3702 b_S_current_n_frame_n_level$)) :pattern ( (b_S_frame_n_level$ ?v0) )))
+))
+(let (($x3726 (and $x3706 $x3725)))
+(let (($x3727 (and (and $x3698 $x3699) $x3726)))
+(let (($x3728 (and $x3697 $x3727)))
+(let (($x3729 (and true $x3728)))
+(let (($x3694 (and $x3686 (and $x3687 (and $x3690 $x3691)))))
+(let (($x3695 (and $x3685 $x3694)))
+(let (($x3696 (and $x3683 $x3695)))
+(let (($x3730 (and $x3696 $x3729)))
+(let (($x3731 (and $x3676 $x3730)))
+(let (($x3732 (and (< v_b_P_H_len$ 1099511627776) $x3731)))
+(let (($x3673 (and $x3671 $x3672)))
+(let (($x3733 (and $x3673 $x3732)))
+(let (($x3669 (and $x3667 $x3668)))
+(let (($x3734 (and $x3669 $x3733)))
+(let (($x3665 (and $x3663 (<= v_b_L_H_max$ b_S_max_o_u1$))))
+(let (($x3735 (and $x3665 $x3734)))
+(let (($x3736 (and true $x3735)))
+(let (($x4035 (=> $x3736 (and $x3738 $x4033))))
+(let (($x4036 (not $x4035)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x9165 (not (<= v_b_P_H_len$ ?0))))
+(let (($x1344 (<= ?0 b_S_max_o_u4$)))
+(let (($x1212 (<= 0 ?0)))
+(let (($x9202 (and $x1212 $x1344 $x9165 $x3840)))
+(let (($x3842 (and $x1344 (and (< ?0 v_b_P_H_len$) $x3840))))
+(let (($x3843 (and $x1212 $x3842)))
+(let ((@x9190 (monotonicity (rewrite (= (< ?0 v_b_P_H_len$) $x9165)) (= (and (< ?0 v_b_P_H_len$) $x3840) (and $x9165 $x3840)))))
+(let ((@x9198 (trans (monotonicity @x9190 (= $x3842 (and $x1344 (and $x9165 $x3840)))) (rewrite (= (and $x1344 (and $x9165 $x3840)) (and $x1344 $x9165 $x3840))) (= $x3842 (and $x1344 $x9165 $x3840)))))
+(let ((@x5396 (rewrite (= $x1212 $x1212))))
+(let ((@x9206 (trans (monotonicity @x5396 @x9198 (= $x3843 (and $x1212 (and $x1344 $x9165 $x3840)))) (rewrite (= (and $x1212 (and $x1344 $x9165 $x3840)) $x9202)) (= $x3843 $x9202))))
+(let ((@x9212 (monotonicity (quant-intro @x9206 (= $x3844 $x9207)) (= $x3845 (=> $x9207 true)))))
+(let ((@x9216 (trans @x9212 (rewrite (= (=> $x9207 true) true)) (= $x3845 true))))
+(let ((@x9219 (monotonicity (quant-intro @x9206 (= $x3844 $x9207)) @x9216 (= $x3846 (and $x9207 true)))))
+(let (($x3837 (<= ?x3765 v_b_S_result_G_0$)))
+(let (($x9180 (or (not (and $x1212 $x1344 $x9165)) $x3837)))
+(let (($x3835 (< ?0 v_b_P_H_len$)))
+(let (($x1345 (and $x1212 $x1344)))
+(let (($x3836 (and $x1345 $x3835)))
+(let (($x3838 (=> $x3836 $x3837)))
+(let ((@x5523 (monotonicity @x5396 (= $x1345 $x1345))))
+(let ((@x9170 (monotonicity @x5523 (rewrite (= $x3835 $x9165)) (= $x3836 (and $x1345 $x9165)))))
+(let ((@x9175 (trans @x9170 (rewrite (= (and $x1345 $x9165) (and $x1212 $x1344 $x9165))) (= $x3836 (and $x1212 $x1344 $x9165)))))
+(let ((@x9184 (trans (monotonicity @x9175 (= $x3838 (=> (and $x1212 $x1344 $x9165) $x3837))) (rewrite (= (=> (and $x1212 $x1344 $x9165) $x3837) $x9180)) (= $x3838 $x9180))))
+(let ((@x9226 (monotonicity (quant-intro @x9184 (= $x3839 $x9185)) (trans @x9219 (rewrite (= (and $x9207 true) $x9207)) (= $x3846 $x9207)) (= $x3847 (=> $x9185 $x9207)))))
+(let ((@x9235 (monotonicity (quant-intro @x9184 (= $x3839 $x9185)) (trans @x9226 (rewrite (= (=> $x9185 $x9207) $x9228)) (= $x3847 $x9228)) (= (and $x3839 $x3847) $x9233))))
+(let (($x9160 (= (and b_S_position_n_marker$ (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824)) $x9159)))
+(let (($x9157 (= $x3834 (and b_S_position_n_marker$ (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824)))))
+(let (($x9133 (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824)))
+(let (($x9138 (and $x3784 $x9133)))
+(let (($x9118 (and $x3818 $x3820 $x3822 $x3824)))
+(let ((@x9106 (monotonicity (rewrite (= (and $x3824 true) $x3824)) (= (and $x3822 (and $x3824 true)) (and $x3822 $x3824)))))
+(let ((@x9114 (trans (monotonicity @x9106 (= $x3827 (and $x3820 (and $x3822 $x3824)))) (rewrite (= (and $x3820 (and $x3822 $x3824)) (and $x3820 $x3822 $x3824))) (= $x3827 (and $x3820 $x3822 $x3824)))))
+(let ((@x9122 (trans (monotonicity @x9114 (= $x3828 (and $x3818 (and $x3820 $x3822 $x3824)))) (rewrite (= (and $x3818 (and $x3820 $x3822 $x3824)) $x9118)) (= $x3828 $x9118))))
+(let ((@x9129 (trans (monotonicity @x9122 (= $x3829 (and true $x9118))) (rewrite (= (and true $x9118) $x9118)) (= $x3829 $x9118))))
+(let ((@x8932 (rewrite (= $x3783 $x3783))))
+(let ((@x8934 (monotonicity @x8932 (rewrite (= $x3776 $x3776)) (= $x3784 $x3784))))
+(let ((@x9137 (trans (monotonicity @x8934 @x9129 (= $x3830 (and $x3784 $x9118))) (rewrite (= (and $x3784 $x9118) $x9133)) (= $x3830 $x9133))))
+(let ((@x9144 (trans (monotonicity @x8934 @x9137 (= $x3831 $x9138)) (rewrite (= $x9138 $x9133)) (= $x3831 $x9133))))
+(let ((@x9151 (trans (monotonicity @x9144 (= $x3832 (and true $x9133))) (rewrite (= (and true $x9133) $x9133)) (= $x3832 $x9133))))
+(let ((@x9155 (trans (monotonicity @x8934 @x9151 (= $x3833 $x9138)) (rewrite (= $x9138 $x9133)) (= $x3833 $x9133))))
+(let ((@x9238 (monotonicity (trans (monotonicity @x9155 $x9157) (rewrite $x9160) (= $x3834 $x9159)) @x9235 (= $x3849 (=> $x9159 $x9233)))))
+(let ((@x9247 (monotonicity (trans @x9238 (rewrite (= (=> $x9159 $x9233) $x9240)) (= $x3849 $x9240)) (= $x3850 $x9245))))
+(let ((@x9956 (rewrite (= (and true (and $x3783 $x3776 $x4012)) (and $x3783 $x3776 $x4012)))))
+(let ((@x9048 (rewrite (= (and $x3784 $x3784) $x3784))))
+(let ((@x9042 (rewrite (= $x3808 $x3784))))
+(let ((@x9046 (monotonicity @x8934 (trans (monotonicity @x8934 (= $x3808 $x3808)) @x9042 (= $x3808 $x3784)) (= $x3809 (and $x3784 $x3784)))))
+(let ((@x9050 (trans @x9046 @x9048 (= $x3809 $x3784))))
+(let ((@x9927 (trans (monotonicity @x8934 @x9050 (= $x4013 (and $x3784 $x3784))) @x9048 (= $x4013 $x3784))))
+(let ((@x9933 (monotonicity @x8934 (trans (monotonicity @x9927 (= $x4014 $x3808)) @x9042 (= $x4014 $x3784)) (= $x4015 (and $x3784 $x3784)))))
+(let ((@x9938 (monotonicity (trans @x9933 @x9048 (= $x4015 $x3784)) (= $x4016 (and $x4012 $x3784)))))
+(let ((@x9943 (trans @x9938 (rewrite (= (and $x4012 $x3784) (and $x4012 $x3783 $x3776))) (= $x4016 (and $x4012 $x3783 $x3776)))))
+(let ((@x9951 (trans (monotonicity @x8934 @x9943 (= $x4017 (and $x3784 (and $x4012 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x4012 $x3783 $x3776)) (and $x3783 $x3776 $x4012))) (= $x4017 (and $x3783 $x3776 $x4012)))))
+(let ((@x9958 (trans (monotonicity @x9951 (= $x4018 (and true (and $x3783 $x3776 $x4012)))) @x9956 (= $x4018 (and $x3783 $x3776 $x4012)))))
+(let ((@x9967 (trans (monotonicity @x9958 @x9247 (= $x4019 (=> (and $x3783 $x3776 $x4012) $x9245))) (rewrite (= (=> (and $x3783 $x3776 $x4012) $x9245) $x9963)) (= $x4019 $x9963))))
+(let ((@x9692 (monotonicity (rewrite (= (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x9687)) (= $x3977 $x9690))))
+(let ((@x9699 (trans (monotonicity @x9692 (= $x3978 (and $x9690 false))) (rewrite (= (and $x9690 false) false)) (= $x3978 false))))
+(let ((@x9706 (trans (monotonicity @x9699 (= $x3979 (=> false true))) (rewrite (= (=> false true) true)) (= $x3979 true))))
+(let ((@x9713 (trans (monotonicity @x9692 @x9706 (= $x3980 (and $x9690 true))) (rewrite (= (and $x9690 true) $x9690)) (= $x3980 $x9690))))
+(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$)))
+(let (($x9678 (or (not (and $x1212 $x1344 (not (<= v_b_L_H_p_G_1$ ?0)))) $x3970)))
+(let (($x3969 (and $x1345 (< ?0 v_b_L_H_p_G_1$))))
+(let (($x3971 (=> $x3969 $x3970)))
+(let ((@x9680 (rewrite (= (=> (and $x1212 $x1344 (not (<= v_b_L_H_p_G_1$ ?0))) $x3970) $x9678))))
+(let (($x9663 (not (<= v_b_L_H_p_G_1$ ?0))))
+(let (($x9669 (and $x1212 $x1344 $x9663)))
+(let ((@x9668 (monotonicity @x5523 (rewrite (= (< ?0 v_b_L_H_p_G_1$) $x9663)) (= $x3969 (and $x1345 $x9663)))))
+(let ((@x9676 (monotonicity (trans @x9668 (rewrite (= (and $x1345 $x9663) $x9669)) (= $x3969 $x9669)) (= $x3971 (=> $x9669 $x3970)))))
+(let ((@x9716 (monotonicity (quant-intro (trans @x9676 @x9680 (= $x3971 $x9678)) (= $x3972 $x9683)) @x9713 (= $x3981 (=> $x9683 $x9690)))))
+(let ((@x9725 (monotonicity (quant-intro (trans @x9676 @x9680 (= $x3971 $x9678)) (= $x3972 $x9683)) (trans @x9716 (rewrite (= (=> $x9683 $x9690) $x9718)) (= $x3981 $x9718)) (= (and $x3972 $x3981) $x9723))))
+(let ((@x9734 (trans (monotonicity @x9725 (= $x3983 (=> $x3967 $x9723))) (rewrite (= (=> $x3967 $x9723) $x9730)) (= $x3983 $x9730))))
+(let ((@x9651 (rewrite (= (and $x9623 (and $x3960 $x3961 $x3943)) (and $x9623 $x3960 $x3961 $x3943)))))
+(let ((@x9632 (monotonicity (rewrite (= $x3961 $x3961)) (rewrite (= $x3943 $x3943)) (= $x3962 $x3962))))
+(let ((@x9637 (trans (monotonicity @x9632 (= $x3963 $x3963)) (rewrite (= $x3963 $x3962)) (= $x3963 $x3962))))
+(let ((@x9645 (trans (monotonicity @x9637 (= $x3964 (and $x3960 $x3962))) (rewrite (= (and $x3960 $x3962) (and $x3960 $x3961 $x3943))) (= $x3964 (and $x3960 $x3961 $x3943)))))
+(let ((@x9602 (rewrite (= ?x3954 ?x9600))))
+(let ((@x9628 (trans (monotonicity @x9602 (= (= v_b_L_H_p_G_1$ ?x3954) $x9623)) (rewrite (= $x9623 $x9623)) (= (= v_b_L_H_p_G_1$ ?x3954) $x9623))))
+(let ((@x9653 (trans (monotonicity @x9628 @x9645 (= $x3965 (and $x9623 (and $x3960 $x3961 $x3943)))) @x9651 (= $x3965 (and $x9623 $x3960 $x3961 $x3943)))))
+(let ((@x9619 (trans (monotonicity @x9602 (= $x3956 (<= ?x9600 b_S_max_o_u4$))) (rewrite (= (<= ?x9600 b_S_max_o_u4$) $x9615)) (= $x3956 $x9615))))
+(let ((@x9610 (trans (monotonicity @x9602 (= $x3955 (<= 0 ?x9600))) (rewrite (= (<= 0 ?x9600) $x9606)) (= $x3955 $x9606))))
+(let ((@x9656 (monotonicity (monotonicity @x9610 @x9619 (= $x3957 (and $x9606 $x9615))) @x9653 (= $x3966 (and (and $x9606 $x9615) (and $x9623 $x3960 $x3961 $x3943))))))
+(let ((@x9661 (trans @x9656 (rewrite (= (and (and $x9606 $x9615) (and $x9623 $x3960 $x3961 $x3943)) $x9657)) (= $x3966 $x9657))))
+(let ((@x9740 (monotonicity @x9661 (monotonicity @x9734 (= (and $x3967 $x3983) $x9735)) (= $x3985 (=> $x9657 $x9735)))))
+(let ((@x9749 (monotonicity (monotonicity @x9610 @x9619 (= $x3957 (and $x9606 $x9615))) (trans @x9740 (rewrite (= (=> $x9657 $x9735) $x9742)) (= $x3985 $x9742)) (= $x3986 (and (and $x9606 $x9615) $x9742)))))
+(let ((@x9754 (trans @x9749 (rewrite (= (and (and $x9606 $x9615) $x9742) $x9750)) (= $x3986 $x9750))))
+(let (($x9850 (and $x3992 $x3783 $x3776 $x3993 $x3994 $x3943)))
+(let (($x9824 (and $x3783 $x3776 $x3993 $x3994 $x3943)))
+(let (($x9829 (and $x3784 $x9824)))
+(let (($x9809 (and $x3993 $x3994 $x3783 $x3943)))
+(let ((@x9533 (monotonicity (monotonicity @x8932 (rewrite (= $x3943 $x3943)) (= $x3944 $x3944)) (= $x3945 $x3945))))
+(let ((@x9800 (monotonicity (trans @x9533 (rewrite (= $x3945 $x3944)) (= $x3945 $x3944)) (= $x3995 (and $x3994 $x3944)))))
+(let ((@x9805 (trans @x9800 (rewrite (= (and $x3994 $x3944) (and $x3994 $x3783 $x3943))) (= $x3995 (and $x3994 $x3783 $x3943)))))
+(let ((@x9813 (trans (monotonicity @x9805 (= $x3996 (and $x3993 (and $x3994 $x3783 $x3943)))) (rewrite (= (and $x3993 (and $x3994 $x3783 $x3943)) $x9809)) (= $x3996 $x9809))))
+(let ((@x9820 (trans (monotonicity @x9813 (= $x3997 (and true $x9809))) (rewrite (= (and true $x9809) $x9809)) (= $x3997 $x9809))))
+(let ((@x9828 (trans (monotonicity @x8934 @x9820 (= $x3998 (and $x3784 $x9809))) (rewrite (= (and $x3784 $x9809) $x9824)) (= $x3998 $x9824))))
+(let ((@x9835 (trans (monotonicity @x8934 @x9828 (= $x3999 $x9829)) (rewrite (= $x9829 $x9824)) (= $x3999 $x9824))))
+(let ((@x9842 (trans (monotonicity @x9835 (= $x4000 (and true $x9824))) (rewrite (= (and true $x9824) $x9824)) (= $x4000 $x9824))))
+(let ((@x9846 (trans (monotonicity @x8934 @x9842 (= $x4001 $x9829)) (rewrite (= $x9829 $x9824)) (= $x4001 $x9824))))
+(let ((@x9854 (trans (monotonicity @x9846 (= $x4002 (and $x3992 $x9824))) (rewrite (= (and $x3992 $x9824) $x9850)) (= $x4002 $x9850))))
+(let ((@x9862 (trans (monotonicity @x8934 @x9854 (= $x4003 (and $x3784 $x9850))) (rewrite (= (and $x3784 $x9850) $x9858)) (= $x4003 $x9858))))
+(let ((@x9869 (trans (monotonicity @x9862 (= $x4004 (and true $x9858))) (rewrite (= (and true $x9858) $x9858)) (= $x4004 $x9858))))
+(let ((@x9878 (trans (monotonicity @x9869 @x9754 (= $x4005 (=> $x9858 $x9750))) (rewrite (= (=> $x9858 $x9750) $x9874)) (= $x4005 $x9874))))
+(let ((@x9597 (rewrite (= (and $x3927 (and $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943)) $x9595))))
+(let (($x9587 (and $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943)))
+(let (($x9579 (and $x3936 $x3937 $x3783 $x3940 $x3942 $x3943)))
+(let (($x9571 (and $x3937 $x3783 $x3940 $x3942 $x3943)))
+(let (($x9563 (and $x3783 $x3940 $x3942 $x3943)))
+(let (($x9548 (and $x3940 $x3942 $x3783 $x3943)))
+(let ((@x9539 (monotonicity (trans @x9533 (rewrite (= $x3945 $x3944)) (= $x3945 $x3944)) (= $x3946 (and $x3942 $x3944)))))
+(let ((@x9544 (trans @x9539 (rewrite (= (and $x3942 $x3944) (and $x3942 $x3783 $x3943))) (= $x3946 (and $x3942 $x3783 $x3943)))))
+(let ((@x9552 (trans (monotonicity @x9544 (= $x3947 (and $x3940 (and $x3942 $x3783 $x3943)))) (rewrite (= (and $x3940 (and $x3942 $x3783 $x3943)) $x9548)) (= $x3947 $x9548))))
+(let ((@x9559 (trans (monotonicity @x9552 (= $x3948 (and true $x9548))) (rewrite (= (and true $x9548) $x9548)) (= $x3948 $x9548))))
+(let ((@x9527 (trans (monotonicity @x8932 @x8932 (= $x3938 $x3938)) (rewrite (= $x3938 $x3783)) (= $x3938 $x3783))))
+(let ((@x9567 (trans (monotonicity @x9527 @x9559 (= $x3949 (and $x3783 $x9548))) (rewrite (= (and $x3783 $x9548) $x9563)) (= $x3949 $x9563))))
+(let ((@x9575 (trans (monotonicity @x9567 (= $x3950 (and $x3937 $x9563))) (rewrite (= (and $x3937 $x9563) $x9571)) (= $x3950 $x9571))))
+(let ((@x9583 (trans (monotonicity @x9575 (= $x3951 (and $x3936 $x9571))) (rewrite (= (and $x3936 $x9571) $x9579)) (= $x3951 $x9579))))
+(let ((@x9591 (trans (monotonicity @x9583 (= $x3952 (and $x3935 $x9579))) (rewrite (= (and $x3935 $x9579) $x9587)) (= $x3952 $x9587))))
+(let ((@x9599 (trans (monotonicity @x9591 (= $x3953 (and $x3927 $x9587))) @x9597 (= $x3953 $x9595))))
+(let ((@x9763 (trans (monotonicity @x9599 @x9754 (= $x3987 (=> $x9595 $x9750))) (rewrite (= (=> $x9595 $x9750) $x9759)) (= $x3987 $x9759))))
+(let ((@x9771 (trans (monotonicity @x9763 (= $x3988 (and $x3927 $x9759))) (rewrite (= (and $x3927 $x9759) $x9767)) (= $x3988 $x9767))))
+(let ((@x9780 (trans (monotonicity @x9771 (= $x3989 (=> $x3925 $x9767))) (rewrite (= (=> $x3925 $x9767) $x9776)) (= $x3989 $x9776))))
+(let ((@x9788 (trans (monotonicity @x9780 (= $x3990 (and $x3925 $x9776))) (rewrite (= (and $x3925 $x9776) $x9784)) (= $x3990 $x9784))))
+(let (($x9497 (not $x3992)))
+(let (($x9511 (and $x3783 $x3776 $x9497)))
+(let ((@x9502 (monotonicity (rewrite (= (< v_b_L_H_max_G_1$ ?x3929) $x9497)) @x9050 (= $x3931 (and $x9497 $x3784)))))
+(let ((@x9507 (trans @x9502 (rewrite (= (and $x9497 $x3784) (and $x9497 $x3783 $x3776))) (= $x3931 (and $x9497 $x3783 $x3776)))))
+(let ((@x9515 (trans (monotonicity @x8934 @x9507 (= $x3932 (and $x3784 (and $x9497 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x9497 $x3783 $x3776)) $x9511)) (= $x3932 $x9511))))
+(let ((@x9522 (trans (monotonicity @x9515 (= $x3933 (and true $x9511))) (rewrite (= (and true $x9511) $x9511)) (= $x3933 $x9511))))
+(let ((@x9797 (trans (monotonicity @x9522 @x9788 (= $x3991 (=> $x9511 $x9784))) (rewrite (= (=> $x9511 $x9784) $x9793)) (= $x3991 $x9793))))
+(let ((@x9496 (trans (monotonicity @x8934 (= $x3928 $x3928)) (rewrite (= $x3928 (and $x3923 $x3926 $x3783 $x3776))) (= $x3928 (and $x3923 $x3926 $x3783 $x3776)))))
+(let ((@x9884 (monotonicity @x9496 (monotonicity @x9797 @x9878 (= (and $x3991 $x4005) $x9879)) (= $x4007 (=> (and $x3923 $x3926 $x3783 $x3776) $x9879)))))
+(let ((@x9890 (trans @x9884 (rewrite (= (=> (and $x3923 $x3926 $x3783 $x3776) $x9879) $x9886)) (= $x4007 $x9886))))
+(let ((@x9898 (trans (monotonicity @x9890 (= $x4008 (and $x3927 $x9886))) (rewrite (= (and $x3927 $x9886) $x9894)) (= $x4008 $x9894))))
+(let ((@x9906 (trans (monotonicity @x9898 (= $x4009 (=> $x3925 $x9894))) (rewrite (= (=> $x3925 $x9894) $x9902)) (= $x4009 $x9902))))
+(let ((@x9914 (trans (monotonicity @x9906 (= $x4010 (and $x3925 $x9902))) (rewrite (= (and $x3925 $x9902) $x9910)) (= $x4010 $x9910))))
+(let (($x9465 (not $x4012)))
+(let (($x9479 (and $x3783 $x3776 $x9465)))
+(let ((@x9470 (monotonicity (rewrite (= (< v_b_L_H_p_G_0$ v_b_P_H_len$) $x9465)) @x9050 (= $x3919 (and $x9465 $x3784)))))
+(let ((@x9475 (trans @x9470 (rewrite (= (and $x9465 $x3784) (and $x9465 $x3783 $x3776))) (= $x3919 (and $x9465 $x3783 $x3776)))))
+(let ((@x9483 (trans (monotonicity @x8934 @x9475 (= $x3920 (and $x3784 (and $x9465 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x9465 $x3783 $x3776)) $x9479)) (= $x3920 $x9479))))
+(let ((@x9490 (trans (monotonicity @x9483 (= $x3921 (and true $x9479))) (rewrite (= (and true $x9479) $x9479)) (= $x3921 $x9479))))
+(let ((@x9923 (trans (monotonicity @x9490 @x9914 (= $x4011 (=> $x9479 $x9910))) (rewrite (= (=> $x9479 $x9910) $x9919)) (= $x4011 $x9919))))
+(let ((@x9443 (rewrite (= (and true $x9434) $x9434))))
+(let (($x9419 (and $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let (($x9420 (= (and $x3886 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9419)))
+(let (($x9417 (= $x3910 (and $x3886 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))))
+(let (($x9411 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let ((@x9413 (rewrite (= (and $x3807 (and $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9411))))
+(let (($x9403 (and $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let ((@x9405 (rewrite (= (and $x3893 (and $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9403))))
+(let (($x9395 (and $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let (($x9387 (and $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let (($x9379 (and $x3896 $x3897 $x3898 $x3783 $x3776)))
+(let ((@x8840 (rewrite (= (and true true) true))))
+(let ((@x9359 (rewrite (= (= (b_S_statusmap$ v_b_S_s$) (b_S_statusmap$ v_b_S_s$)) true))))
+(let ((@x9361 (monotonicity (rewrite (= (= ?x3874 ?x3874) true)) @x9359 (= $x3902 (and true true)))))
+(let ((@x9365 (monotonicity (trans @x9361 @x8840 (= $x3902 true)) @x8934 (= $x3903 $x3808))))
+(let ((@x9370 (monotonicity (trans @x9365 @x9042 (= $x3903 $x3784)) (= $x3904 (and (and $x3897 $x3898) $x3784)))))
+(let ((@x9375 (trans @x9370 (rewrite (= (and (and $x3897 $x3898) $x3784) (and $x3897 $x3898 $x3783 $x3776))) (= $x3904 (and $x3897 $x3898 $x3783 $x3776)))))
+(let ((@x9383 (trans (monotonicity @x9375 (= $x3905 (and $x3896 (and $x3897 $x3898 $x3783 $x3776)))) (rewrite (= (and $x3896 (and $x3897 $x3898 $x3783 $x3776)) $x9379)) (= $x3905 $x9379))))
+(let ((@x9391 (trans (monotonicity @x9383 (= $x3906 (and $x3895 $x9379))) (rewrite (= (and $x3895 $x9379) $x9387)) (= $x3906 $x9387))))
+(let ((@x9399 (trans (monotonicity @x9391 (= $x3907 (and $x3894 $x9387))) (rewrite (= (and $x3894 $x9387) $x9395)) (= $x3907 $x9395))))
+(let ((@x9407 (trans (monotonicity @x9399 (= $x3908 (and $x3893 $x9395))) @x9405 (= $x3908 $x9403))))
+(let ((@x9415 (trans (monotonicity @x9407 (= $x3909 (and $x3807 $x9403))) @x9413 (= $x3909 $x9411))))
+(let ((@x9333 (rewrite (= (and true $x3886) $x3886))))
+(let (($x9322 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) )))
+))
+(let (($x9320 (= (<= (b_S_timestamp$ v_b_S_s$ ?0) (b_S_timestamp$ v_b_S_s$ ?0)) true)))
+(let ((@x9328 (trans (quant-intro (rewrite $x9320) (= $x3885 $x9322)) (elim-unused (= $x9322 true)) (= $x3885 true))))
+(let ((@x9335 (trans (monotonicity @x9328 (= $x3887 (and true $x3886))) @x9333 (= $x3887 $x3886))))
+(let ((@x9337 (monotonicity (rewrite (= (<= ?x3713 ?x3713) true)) @x9335 (= $x3888 (and true $x3886)))))
+(let ((@x9423 (trans (monotonicity (trans @x9337 @x9333 (= $x3888 $x3886)) @x9415 $x9417) (rewrite $x9420) (= $x3910 $x9419))))
+(let (($x9311 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) )))
+))
+(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?0)))
+(let (($x3877 (and (= (b_S_select_o_tm$ ?x3874 ?0) (b_S_select_o_tm$ ?x3874 ?0)) $x3862)))
+(let (($x3878 (=> $x3862 $x3877)))
+(let ((@x9277 (rewrite (= (=> $x3862 $x3862) true))))
+(let ((@x9270 (rewrite (= (and true $x3862) $x3862))))
+(let (($x9301 (= (= (b_S_select_o_tm$ ?x3874 ?0) (b_S_select_o_tm$ ?x3874 ?0)) true)))
+(let ((@x9306 (trans (monotonicity (rewrite $x9301) (= $x3877 (and true $x3862))) @x9270 (= $x3877 $x3862))))
+(let ((@x9310 (trans (monotonicity @x9306 (= $x3878 (=> $x3862 $x3862))) @x9277 (= $x3878 true))))
+(let ((@x9317 (trans (quant-intro @x9310 (= $x3880 $x9311)) (elim-unused (= $x9311 true)) (= $x3880 true))))
+(let ((@x9341 (monotonicity @x9317 (trans @x9337 @x9333 (= $x3888 $x3886)) (= $x3889 (and true $x3886)))))
+(let (($x9257 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) )))
+))
+(let ((?x3858 (b_S_statusmap$ v_b_S_s$)))
+(let ((?x3859 (b_S_select_o_sm$ ?x3858 ?0)))
+(let (($x3871 (and (= ?x3859 ?x3859) $x3862)))
+(let (($x3872 (=> $x3862 $x3871)))
+(let ((@x9290 (monotonicity (rewrite (= (= ?x3859 ?x3859) true)) (= $x3871 (and true $x3862)))))
+(let ((@x9294 (monotonicity (trans @x9290 @x9270 (= $x3871 $x3862)) (= $x3872 (=> $x3862 $x3862)))))
+(let ((@x9300 (trans (quant-intro (trans @x9294 @x9277 (= $x3872 true)) (= $x3873 $x9257)) (elim-unused (= $x9257 true)) (= $x3873 true))))
+(let ((@x9345 (monotonicity @x9300 (trans @x9341 @x9333 (= $x3889 $x3886)) (= $x3890 (and true $x3886)))))
+(let (($x9280 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) )))
+))
+(let ((?x3864 (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?0)))
+(let (($x3866 (and (= ?x3864 ?x3864) $x3862)))
+(let (($x3867 (=> $x3862 $x3866)))
+(let ((@x9268 (monotonicity (rewrite (= (= ?x3864 ?x3864) true)) (= $x3866 (and true $x3862)))))
+(let ((@x9275 (monotonicity (trans @x9268 @x9270 (= $x3866 $x3862)) (= $x3867 (=> $x3862 $x3862)))))
+(let ((@x9286 (trans (quant-intro (trans @x9275 @x9277 (= $x3867 true)) (= $x3869 $x9280)) (elim-unused (= $x9280 true)) (= $x3869 true))))
+(let ((@x9349 (monotonicity @x9286 (trans @x9345 @x9333 (= $x3890 $x3886)) (= $x3891 (and true $x3886)))))
+(let (($x3855 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?0))) b_S_kind_n_thread$)))
+(let ((@x9259 (quant-intro (rewrite (= (=> (not $x3855) (not $x3855)) true)) (= $x3861 $x9257))))
+(let ((@x9353 (monotonicity (trans @x9259 (elim-unused (= $x9257 true)) (= $x3861 true)) (trans @x9349 @x9333 (= $x3891 $x3886)) (= $x3892 (and true $x3886)))))
+(let ((@x9426 (monotonicity (trans @x9353 @x9333 (= $x3892 $x3886)) @x9423 (= $x3911 (and $x3886 $x9419)))))
+(let ((@x9433 (monotonicity @x8934 (trans @x9426 (rewrite (= (and $x3886 $x9419) $x9419)) (= $x3911 $x9419)) (= $x3912 (and $x3784 $x9419)))))
+(let ((@x9441 (monotonicity (trans @x9433 (rewrite (= (and $x3784 $x9419) $x9434)) (= $x3912 $x9434)) (= $x3913 (and true $x9434)))))
+(let ((@x9448 (monotonicity @x8934 (trans @x9441 @x9443 (= $x3913 $x9434)) (= $x3914 (and $x3784 $x9434)))))
+(let ((@x9454 (monotonicity (trans @x9448 (rewrite (= (and $x3784 $x9434) $x9434)) (= $x3914 $x9434)) (= $x3915 (and true $x9434)))))
+(let ((@x9458 (monotonicity @x8934 (trans @x9454 @x9443 (= $x3915 $x9434)) (= $x3916 (and $x3784 $x9434)))))
+(let ((@x9462 (monotonicity (trans @x9458 (rewrite (= (and $x3784 $x9434) $x9434)) (= $x3916 $x9434)) (= $x3917 (and true $x9434)))))
+(let ((@x9973 (monotonicity (trans @x9462 @x9443 (= $x3917 $x9434)) (monotonicity @x9923 @x9967 (= (and $x4011 $x4019) $x9968)) (= $x4021 (=> $x9434 $x9968)))))
+(let ((@x9979 (trans @x9973 (rewrite (= (=> $x9434 $x9968) (or $x9974 $x9968))) (= $x4021 (or $x9974 $x9968)))))
+(let (($x9062 (and $x3783 $x3776 $x3806 $x3699)))
+(let ((@x9058 (trans (monotonicity @x9050 (= $x3810 (and $x3807 $x3784))) (rewrite (= (and $x3807 $x3784) (and $x3806 $x3699 $x3783 $x3776))) (= $x3810 (and $x3806 $x3699 $x3783 $x3776)))))
+(let ((@x9061 (monotonicity @x8934 @x9058 (= $x3811 (and $x3784 (and $x3806 $x3699 $x3783 $x3776))))))
+(let ((@x9066 (trans @x9061 (rewrite (= (and $x3784 (and $x3806 $x3699 $x3783 $x3776)) $x9062)) (= $x3811 $x9062))))
+(let ((@x9073 (trans (monotonicity @x9066 (= $x3812 (and true $x9062))) (rewrite (= (and true $x9062) $x9062)) (= $x3812 $x9062))))
+(let ((@x9080 (trans (monotonicity @x8934 @x9073 (= $x3813 (and $x3784 $x9062))) (rewrite (= (and $x3784 $x9062) $x9062)) (= $x3813 $x9062))))
+(let ((@x9083 (monotonicity (rewrite (= $x3805 false)) @x9080 (= $x3814 (and false $x9062)))))
+(let ((@x9087 (trans @x9083 (rewrite (= (and false $x9062) false)) (= $x3814 false))))
+(let ((@x9094 (trans (monotonicity @x8934 @x9087 (= $x3815 (and $x3784 false))) (rewrite (= (and $x3784 false) false)) (= $x3815 false))))
+(let ((@x9101 (trans (monotonicity @x9094 (= $x3816 (and true false))) (rewrite (= (and true false) false)) (= $x3816 false))))
+(let ((@x9254 (trans (monotonicity @x9101 @x9247 (= $x3851 (=> false $x9245))) (rewrite (= (=> false $x9245) true)) (= $x3851 true))))
+(let ((@x9986 (trans (monotonicity @x9254 @x9979 (= $x4022 (and true (or $x9974 $x9968)))) (rewrite (= (and true (or $x9974 $x9968)) (or $x9974 $x9968))) (= $x4022 (or $x9974 $x9968)))))
+(let (($x9017 (and $x3772 $x3773 $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)))
+(let (($x8916 (and $x8667 $x3769)))
+(let (($x9018 (= (and $x3774 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)) $x9017)))
+(let (($x9015 (= $x3802 (and $x3774 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)))))
+(let (($x9009 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)))
+(let ((@x9011 (rewrite (= (and $x3778 (and $x3780 $x3781 $x3783 $x3776 $x3785 $x8956 $x8960 $x3794)) $x9009))))
+(let (($x9001 (and $x3780 $x3781 $x3783 $x3776 $x3785 $x8956 $x8960 $x3794)))
+(let (($x8993 (and $x3783 $x3776 $x3785 $x8956 $x8960 $x3794)))
+(let (($x8985 (and $x3785 $x8956 $x8960 $x3794 $x3783 $x3776)))
+(let (($x8977 (and $x8956 $x8960 $x3794 $x3783 $x3776)))
+(let (($x8964 (= (and (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x3794) (and $x8960 $x3794))))
+(let ((@x8965 (monotonicity (rewrite (= (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x8960)) $x8964)))
+(let ((@x8973 (trans (monotonicity @x8965 @x8934 (= $x3796 (and (and $x8960 $x3794) $x3784))) (rewrite (= (and (and $x8960 $x3794) $x3784) (and $x8960 $x3794 $x3783 $x3776))) (= $x3796 (and $x8960 $x3794 $x3783 $x3776)))))
+(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$)))
+(let (($x8951 (or (not (and $x1212 $x1344 (not (<= v_b_L_H_p_G_0$ ?0)))) $x3788)))
+(let (($x3787 (and $x1345 (< ?0 v_b_L_H_p_G_0$))))
+(let (($x3789 (=> $x3787 $x3788)))
+(let ((@x8953 (rewrite (= (=> (and $x1212 $x1344 (not (<= v_b_L_H_p_G_0$ ?0))) $x3788) $x8951))))
+(let (($x8936 (not (<= v_b_L_H_p_G_0$ ?0))))
+(let (($x8942 (and $x1212 $x1344 $x8936)))
+(let ((@x8941 (monotonicity @x5523 (rewrite (= (< ?0 v_b_L_H_p_G_0$) $x8936)) (= $x3787 (and $x1345 $x8936)))))
+(let ((@x8949 (monotonicity (trans @x8941 (rewrite (= (and $x1345 $x8936) $x8942)) (= $x3787 $x8942)) (= $x3789 (=> $x8942 $x3788)))))
+(let ((@x8976 (monotonicity (quant-intro (trans @x8949 @x8953 (= $x3789 $x8951)) (= $x3790 $x8956)) @x8973 (= $x3797 (and $x8956 (and $x8960 $x3794 $x3783 $x3776))))))
+(let ((@x8981 (trans @x8976 (rewrite (= (and $x8956 (and $x8960 $x3794 $x3783 $x3776)) $x8977)) (= $x3797 $x8977))))
+(let ((@x8989 (trans (monotonicity @x8981 (= $x3798 (and $x3785 $x8977))) (rewrite (= (and $x3785 $x8977) $x8985)) (= $x3798 $x8985))))
+(let ((@x8997 (trans (monotonicity @x8934 @x8989 (= $x3799 (and $x3784 $x8985))) (rewrite (= (and $x3784 $x8985) $x8993)) (= $x3799 $x8993))))
+(let ((@x9000 (monotonicity (monotonicity (rewrite (= $x3780 $x3780)) (= $x3782 $x3782)) @x8997 (= $x3800 (and $x3782 $x8993)))))
+(let ((@x9008 (monotonicity (monotonicity (rewrite (= $x3776 $x3776)) (= $x3778 $x3778)) (trans @x9000 (rewrite (= (and $x3782 $x8993) $x9001)) (= $x3800 $x9001)) (= $x3801 (and $x3778 $x9001)))))
+(let ((@x9016 (monotonicity (monotonicity (rewrite (= $x3772 $x3772)) (= $x3774 $x3774)) (trans @x9008 @x9011 (= $x3801 $x9009)) $x9015)))
+(let ((@x9024 (monotonicity (trans @x9016 (rewrite $x9018) (= $x3802 $x9017)) (= $x3803 (and true $x9017)))))
+(let ((@x9031 (monotonicity (monotonicity (rewrite (= $x3676 $x8667)) (= $x3770 $x8916)) (trans @x9024 (rewrite (= (and true $x9017) $x9017)) (= $x3803 $x9017)) (= $x3804 (and $x8916 $x9017)))))
+(let ((@x9989 (monotonicity (trans @x9031 (rewrite (= (and $x8916 $x9017) $x9032)) (= $x3804 $x9032)) @x9986 (= $x4023 (=> $x9032 (or $x9974 $x9968))))))
+(let ((@x9995 (trans @x9989 (rewrite (= (=> $x9032 (or $x9974 $x9968)) $x9991)) (= $x4023 $x9991))))
+(let ((@x9998 (monotonicity (monotonicity (rewrite (= $x3676 $x8667)) (= $x3770 $x8916)) @x9995 (= $x4024 (and $x8916 $x9991)))))
+(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$)))
+(let (($x8908 (or (not (and $x1212 $x1344 (not (<= 1 ?0)))) $x3766)))
+(let (($x3763 (and $x1345 (< ?0 1))))
+(let (($x3767 (=> $x3763 $x3766)))
+(let (($x8887 (<= 1 ?0)))
+(let (($x8888 (not $x8887)))
+(let (($x8899 (and $x1212 $x1344 $x8888)))
+(let ((@x8895 (trans (rewrite (= (< ?0 1) $x8888)) (monotonicity (rewrite (= $x8887 $x8887)) (= $x8888 $x8888)) (= (< ?0 1) $x8888))))
+(let ((@x8903 (trans (monotonicity @x5523 @x8895 (= $x3763 (and $x1345 $x8888))) (rewrite (= (and $x1345 $x8888) $x8899)) (= $x3763 $x8899))))
+(let ((@x8912 (trans (monotonicity @x8903 (= $x3767 (=> $x8899 $x3766))) (rewrite (= (=> $x8899 $x3766) $x8908)) (= $x3767 $x8908))))
+(let ((@x10006 (monotonicity (quant-intro @x8912 (= $x3768 $x8913)) (trans @x9998 (rewrite (= (and $x8916 $x9991) $x9999)) (= $x4024 $x9999)) (= $x4025 (=> $x8913 $x9999)))))
+(let ((@x10015 (monotonicity (quant-intro @x8912 (= $x3768 $x8913)) (trans @x10006 (rewrite (= (=> $x8913 $x9999) $x10008)) (= $x4025 $x10008)) (= (and $x3768 $x4025) $x10013))))
+(let ((@x10018 (monotonicity (rewrite (= $x3761 $x3761)) @x10015 (= $x4027 (=> $x3761 $x10013)))))
+(let ((@x10027 (monotonicity (rewrite (= $x3761 $x3761)) (trans @x10018 (rewrite (= (=> $x3761 $x10013) $x10020)) (= $x4027 $x10020)) (= (and $x3761 $x4027) $x10025))))
+(let ((@x8874 (rewrite (= (and $x3747 (and $x3748 $x3749 $x3750)) (and $x3747 $x3748 $x3749 $x3750)))))
+(let ((@x8838 (monotonicity (rewrite (= $x3752 true)) (rewrite (= $x3752 true)) (= $x3753 (and true true)))))
+(let ((@x8844 (monotonicity (rewrite (= $x3751 true)) (trans @x8838 @x8840 (= $x3753 true)) (= $x3754 (and true true)))))
+(let ((@x8848 (monotonicity (rewrite (= $x3751 true)) (trans @x8844 @x8840 (= $x3754 true)) (= $x3755 (and true true)))))
+(let ((@x8853 (monotonicity (trans @x8848 @x8840 (= $x3755 true)) (= $x3756 (and $x3750 true)))))
+(let ((@x8860 (monotonicity (trans @x8853 (rewrite (= (and $x3750 true) $x3750)) (= $x3756 $x3750)) (= (and $x3749 $x3756) (and $x3749 $x3750)))))
+(let ((@x8868 (trans (monotonicity @x8860 (= $x3758 (and $x3748 (and $x3749 $x3750)))) (rewrite (= (and $x3748 (and $x3749 $x3750)) (and $x3748 $x3749 $x3750))) (= $x3758 (and $x3748 $x3749 $x3750)))))
+(let ((@x8876 (trans (monotonicity @x8868 (= $x3759 (and $x3747 (and $x3748 $x3749 $x3750)))) @x8874 (= $x3759 (and $x3747 $x3748 $x3749 $x3750)))))
+(let ((@x8884 (trans (monotonicity @x8876 (= $x3760 (and $x3744 (and $x3747 $x3748 $x3749 $x3750)))) (rewrite (= (and $x3744 (and $x3747 $x3748 $x3749 $x3750)) $x8880)) (= $x3760 $x8880))))
+(let ((@x10036 (trans (monotonicity @x8884 @x10027 (= $x4029 (=> $x8880 $x10025))) (rewrite (= (=> $x8880 $x10025) $x10032)) (= $x4029 $x10032))))
+(let ((@x10044 (trans (monotonicity @x10036 (= $x4030 (and $x3744 $x10032))) (rewrite (= (and $x3744 $x10032) $x10040)) (= $x4030 $x10040))))
+(let ((@x10053 (trans (monotonicity @x10044 (= $x4031 (=> $x3742 $x10040))) (rewrite (= (=> $x3742 $x10040) $x10049)) (= $x4031 $x10049))))
+(let ((@x10061 (trans (monotonicity @x10053 (= $x4032 (and $x3742 $x10049))) (rewrite (= (and $x3742 $x10049) $x10057)) (= $x4032 $x10057))))
+(let ((@x10070 (trans (monotonicity @x10061 (= $x4033 (=> $x3738 $x10057))) (rewrite (= (=> $x3738 $x10057) $x10066)) (= $x4033 $x10066))))
+(let (($x8812 (and $x3667 $x3668 $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8804 (and $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8796 (and $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8788 (and $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8780 (and $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8765 (and $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8692 (and $x3683 $x3685 $x3686 $x3687 $x3690 $x3691)))
+(let (($x8766 (= (and $x3697 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8765)))
+(let (($x8763 (= $x3728 (and $x3697 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))))
+(let (($x8757 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let (($x8758 (= (and (and $x3698 $x3699) (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8757)))
+(let (($x8755 (= $x3727 (and (and $x3698 $x3699) (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))))
+(let (($x8749 (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let ((@x8751 (rewrite (= (and $x8701 (and $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8749))))
+(let (($x8741 (and $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let ((@x8743 (rewrite (= (and (and $x3708 $x3709) (and $x3711 $x3714 $x8707 $x3719 $x3720)) $x8741))))
+(let (($x8733 (and $x3711 $x3714 $x8707 $x3719 $x3720)))
+(let ((@x8727 (rewrite (= (and $x3714 (and $x8707 $x3719 $x3720)) (and $x3714 $x8707 $x3719 $x3720)))))
+(let (($x8705 (= (= (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?0) false) (not (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?0)))))
+(let ((@x8716 (monotonicity (quant-intro (rewrite $x8705) (= $x3718 $x8707)) (monotonicity (rewrite (= $x3719 $x3719)) (= $x3721 $x3721)) (= $x3722 (and $x8707 $x3721)))))
+(let ((@x8721 (trans @x8716 (rewrite (= (and $x8707 $x3721) (and $x8707 $x3719 $x3720))) (= $x3722 (and $x8707 $x3719 $x3720)))))
+(let ((@x8729 (trans (monotonicity @x8721 (= $x3723 (and $x3714 (and $x8707 $x3719 $x3720)))) @x8727 (= $x3723 (and $x3714 $x8707 $x3719 $x3720)))))
+(let ((@x8737 (trans (monotonicity @x8729 (= $x3724 (and $x3711 (and $x3714 $x8707 $x3719 $x3720)))) (rewrite (= (and $x3711 (and $x3714 $x8707 $x3719 $x3720)) $x8733)) (= $x3724 $x8733))))
+(let ((@x8745 (trans (monotonicity @x8737 (= $x3725 (and (and $x3708 $x3709) $x8733))) @x8743 (= $x3725 $x8741))))
+(let (($x8699 (= (< (b_S_frame_n_level$ ?0) b_S_current_n_frame_n_level$) (not (<= b_S_current_n_frame_n_level$ (b_S_frame_n_level$ ?0))))))
+(let ((@x8748 (monotonicity (quant-intro (rewrite $x8699) (= $x3706 $x8701)) @x8745 (= $x3726 (and $x8701 $x8741)))))
+(let ((@x8761 (trans (monotonicity (trans @x8748 @x8751 (= $x3726 $x8749)) $x8755) (rewrite $x8758) (= $x3727 $x8757))))
+(let ((@x8772 (monotonicity (trans (monotonicity @x8761 $x8763) (rewrite $x8766) (= $x3728 $x8765)) (= $x3729 (and true $x8765)))))
+(let (($x8684 (and $x3685 $x3686 $x3687 $x3690 $x3691)))
+(let ((@x8678 (rewrite (= (and $x3686 (and $x3687 $x3690 $x3691)) (and $x3686 $x3687 $x3690 $x3691)))))
+(let ((@x8675 (monotonicity (rewrite (= (and $x3687 (and $x3690 $x3691)) (and $x3687 $x3690 $x3691))) (= $x3694 (and $x3686 (and $x3687 $x3690 $x3691))))))
+(let ((@x8683 (monotonicity (trans @x8675 @x8678 (= $x3694 (and $x3686 $x3687 $x3690 $x3691))) (= $x3695 (and $x3685 (and $x3686 $x3687 $x3690 $x3691))))))
+(let ((@x8688 (trans @x8683 (rewrite (= (and $x3685 (and $x3686 $x3687 $x3690 $x3691)) $x8684)) (= $x3695 $x8684))))
+(let ((@x8696 (trans (monotonicity @x8688 (= $x3696 (and $x3683 $x8684))) (rewrite (= (and $x3683 $x8684) $x8692)) (= $x3696 $x8692))))
+(let ((@x8779 (monotonicity @x8696 (trans @x8772 (rewrite (= (and true $x8765) $x8765)) (= $x3729 $x8765)) (= $x3730 (and $x8692 $x8765)))))
+(let ((@x8787 (monotonicity (rewrite (= $x3676 $x8667)) (trans @x8779 (rewrite (= (and $x8692 $x8765) $x8780)) (= $x3730 $x8780)) (= $x3731 (and $x8667 $x8780)))))
+(let ((@x8665 (trans (rewrite (= (< v_b_P_H_len$ 1099511627776) $x8658)) (monotonicity (rewrite (= $x8657 $x8657)) (= $x8658 $x8658)) (= (< v_b_P_H_len$ 1099511627776) $x8658))))
+(let ((@x8795 (monotonicity @x8665 (trans @x8787 (rewrite (= (and $x8667 $x8780) $x8788)) (= $x3731 $x8788)) (= $x3732 (and $x8658 $x8788)))))
+(let ((@x8803 (monotonicity (monotonicity (rewrite (= $x3671 $x3671)) (= $x3673 $x3673)) (trans @x8795 (rewrite (= (and $x8658 $x8788) $x8796)) (= $x3732 $x8796)) (= $x3733 (and $x3673 $x8796)))))
+(let ((@x8811 (monotonicity (monotonicity (rewrite (= $x3667 $x3667)) (= $x3669 $x3669)) (trans @x8803 (rewrite (= (and $x3673 $x8796) $x8804)) (= $x3733 $x8804)) (= $x3734 (and $x3669 $x8804)))))
+(let ((@x8819 (monotonicity (monotonicity (rewrite (= $x3663 $x3663)) (= $x3665 $x3665)) (trans @x8811 (rewrite (= (and $x3669 $x8804) $x8812)) (= $x3734 $x8812)) (= $x3735 (and $x3665 $x8812)))))
+(let ((@x8827 (monotonicity (trans @x8819 (rewrite (= (and $x3665 $x8812) $x8820)) (= $x3735 $x8820)) (= $x3736 (and true $x8820)))))
+(let ((@x10076 (monotonicity (trans @x8827 (rewrite (= (and true $x8820) $x8820)) (= $x3736 $x8820)) (monotonicity @x10070 (= (and $x3738 $x4033) $x10071)) (= $x4035 (=> $x8820 $x10071)))))
+(let ((@x10085 (monotonicity (trans @x10076 (rewrite (= (=> $x8820 $x10071) $x10078)) (= $x4035 $x10078)) (= $x4036 (not $x10078)))))
+(let ((@x10087 (not-or-elim (mp (asserted $x4036) @x10085 (not $x10078)) $x8820)))
+(let ((@x10095 (and-elim @x10087 $x8667)))
+(let (($x21235 (or $x12351 $x21232)))
+(let (($x21238 (not $x21235)))
+(let (($x16251 (not $x3743)))
+(let (($x16242 (not $x3740)))
+(let (($x21241 (or $x16242 $x16251 (not $x3747) (not $x3748) (not $x3749) (not $x3750) $x21238)))
+(let (($x21244 (not $x21241)))
+(let (($x23354 (= (b_S_kind_n_of$ (b_S_typ$ ?x23206)) b_S_kind_n_primitive$)))
+(let ((?x22173 (b_S_kind_n_of$ b_T_T_u1$)))
+(let (($x22174 (= ?x22173 b_S_kind_n_primitive$)))
+(let (($x3529 (b_S_is_n_primitive$ b_T_T_u1$)))
+(let (($x22181 (= $x3529 $x22174)))
+(let (($x12265 (forall ((?v0 B_S_ctype$) )(!(let (($x1179 (b_S_is_n_primitive$ ?v0)))
+(= $x1179 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_primitive$))) :pattern ( (b_S_is_n_primitive$ ?v0) )))
+))
+(let (($x1179 (b_S_is_n_primitive$ ?0)))
+(let (($x12261 (= $x1179 (= (b_S_kind_n_of$ ?0) b_S_kind_n_primitive$))))
+(let (($x3575 (forall ((?v0 B_S_ctype$) )(!(let (($x1179 (b_S_is_n_primitive$ ?v0)))
+(= $x1179 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_primitive$))) :pattern ( (b_S_is_n_primitive$ ?v0) )))
+))
+(let ((@x12264 (rewrite (= (= $x1179 (= (b_S_kind_n_of$ ?0) b_S_kind_n_primitive$)) $x12261))))
+(let ((@x16196 (mp~ (mp (asserted $x3575) (quant-intro @x12264 (= $x3575 $x12265)) $x12265) (nnf-pos (refl (~ $x12261 $x12261)) (~ $x12265 $x12265)) $x12265)))
+(let ((@x5093 (asserted $x3529)))
+(let ((@x23476 (unit-resolution (def-axiom (or (not $x22181) (not $x3529) $x22174)) @x5093 (or (not $x22181) $x22174))))
+(let ((@x23477 (unit-resolution @x23476 (unit-resolution ((_ quant-inst b_T_T_u1$) (or (not $x12265) $x22181)) @x16196 $x22181) $x22174)))
+(let ((@x23492 (unit-resolution (def-axiom (or (not $x23223) $x16242 $x23216)) @x23251 (or (not $x23223) $x23216))))
+(let ((@x23499 (unit-resolution @x23492 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23223)) @x20966 $x23223) $x23216)))
+(let ((@x23922 (symm (unit-resolution @x23405 @x16076 @x23251 $x23207) (= ?x23206 ?x3739))))
+(let ((@x23778 (trans (monotonicity @x23922 (= (b_S_typ$ ?x23206) ?x23215)) @x23499 (= (b_S_typ$ ?x23206) b_T_T_u1$))))
+(let ((@x23574 (trans (monotonicity @x23778 (= (b_S_kind_n_of$ (b_S_typ$ ?x23206)) ?x22173)) @x23477 $x23354)))
+(let (($x23361 (not (b_S_closed$ v_b_S_s$ (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x3874 ?x23206))))))
+(let ((?x23356 (b_S_select_o_tm$ ?x3874 ?x23206)))
+(let (($x23357 (b_S_ts_n_is_n_volatile$ ?x23356)))
+(let (($x23358 (not $x23357)))
+(let (($x23362 (or $x23358 $x23361)))
+(let ((@x24072 (monotonicity @x23922 (= ?x23356 (b_S_select_o_tm$ ?x3874 ?x3739)))))
+(let ((@x23530 (monotonicity @x24072 (= $x23357 (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739))))))
+(let ((@x23502 (symm @x23530 (= (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739)) $x23357))))
+(let ((@x23522 (monotonicity @x23502 (= (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739))) $x23358))))
+(let ((?x23179 (b_S_select_o_tm$ ?x3874 ?x3739)))
+(let (($x23303 (b_S_ts_n_is_n_volatile$ ?x23179)))
+(let (($x23260 (not $x23303)))
+(let (($x16245 (not $x3741)))
+(let (($x23304 (or $x16245 $x23303)))
+(let (($x23305 (not $x23304)))
+(let ((?x23296 (b_S_ptr$ ?x3678 v_b_P_H_arr$)))
+(let (($x23297 (b_S_set_n_in$ ?x23296 (b_S_domain$ v_b_S_s$ (b_S_ptr$ ?x3678 (b_S_ref$ ?x3682))))))
+(let ((?x21715 (b_S_ref$ ?x3682)))
+(let ((?x22684 (b_S_ptr$ ?x3678 ?x21715)))
+(let (($x23045 (b_S_set_n_in$ ?x22684 (b_S_domain$ v_b_S_s$ ?x22684))))
+(let ((@x23339 (monotonicity (symm @x23283 (= v_b_P_H_arr$ ?x3681)) (= ?x23296 ?x3682))))
+(let (($x22691 (= ?x3682 ?x22684)))
+(let (($x22699 (= (or (not $x8559) (or (not $x3686) $x22691)) (or (not $x8559) (not $x3686) $x22691))))
+(let ((@x22701 (mp ((_ quant-inst (b_S_ptr$ ?x3678 ?x3681) (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) (or (not $x8559) (or (not $x3686) $x22691))) (rewrite $x22699) (or (not $x8559) (not $x3686) $x22691))))
+(let ((@x24449 (symm (unit-resolution @x22701 @x16076 (and-elim @x10087 $x3686) $x22691) (= ?x22684 ?x3682))))
+(let ((@x23394 (monotonicity (trans @x24449 (symm @x23339 (= ?x3682 ?x23296)) (= ?x22684 ?x23296)) (= $x23045 $x23297))))
+(let (($x23063 (forall ((?v3 B_S_ptr$) )(!(let ((?x3680 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$)))
+(let ((?x3681 (b_S_ref$ ?x3680)))
+(let ((?x3678 (b_S_array$ b_T_T_u1$ v_b_P_H_len$)))
+(let ((?x3682 (b_S_ptr$ ?x3678 ?x3681)))
+(let ((?x21715 (b_S_ref$ ?x3682)))
+(let ((?x22684 (b_S_ptr$ ?x3678 ?x21715)))
+(let (($x23060 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ v_b_S_s$ ?x22684)))))
+(or (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?x22684)) (not (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ ?x22684))) $x23060)))))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))))))) )))
+))
+(let (($x22949 (b_S_closed$ v_b_S_s$ ?x22684)))
+(let (($x22973 (not $x22949)))
+(let (($x23066 (not (or (not $x23045) $x22973 (not $x23063)))))
+(let (($x23019 (b_S_in_n_domain$ v_b_S_s$ ?x22684 ?x22684)))
+(let (($x23018 (b_S_in_n_domain_n_lab$ v_b_S_s$ ?x22684 ?x22684 b_l_H_public$)))
+(let (($x23027 (= $x23018 $x23019)))
+(let (($x12066 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x3056 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3)))
+(= $x3056 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) )))
+))
+(let (($x3056 (b_S_in_n_domain_n_lab$ ?3 ?2 ?1 ?0)))
+(let (($x12062 (= $x3056 (b_S_in_n_domain$ ?3 ?2 ?1))))
+(let (($x3060 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x3056 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3)))
+(= $x3056 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) )))
+))
+(let ((@x12068 (quant-intro (rewrite (= (= $x3056 (b_S_in_n_domain$ ?3 ?2 ?1)) $x12062)) (= $x3060 $x12066))))
+(let ((@x15761 (mp~ (mp (asserted $x3060) @x12068 $x12066) (nnf-pos (refl (~ $x12062 $x12062)) (~ $x12066 $x12066)) $x12066)))
+(let (($x36 (= b_S_kind_n_primitive$ b_S_kind_n_array$)))
+(let (($x37 (not $x36)))
+(let (($x23052 (= $x37 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x22684)) b_S_kind_n_primitive$)))))
+(let ((?x22935 (b_S_typ$ ?x22684)))
+(let ((?x23088 (b_S_kind_n_of$ ?x22935)))
+(let (($x23089 (= ?x23088 b_S_kind_n_primitive$)))
+(let ((?x3688 (b_S_kind_n_of$ ?x3678)))
+(let (($x22849 (= ?x3688 b_S_kind_n_array$)))
+(let (($x21816 (b_S_is_n_arraytype$ ?x3678)))
+(let (($x22850 (= $x21816 $x22849)))
+(let (($x12251 (forall ((?v0 B_S_ctype$) )(!(let (($x2733 (b_S_is_n_arraytype$ ?v0)))
+(= $x2733 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_array$))) :pattern ( (b_S_is_n_arraytype$ ?v0) )))
+))
+(let (($x2733 (b_S_is_n_arraytype$ ?0)))
+(let (($x12247 (= $x2733 (= (b_S_kind_n_of$ ?0) b_S_kind_n_array$))))
+(let (($x3569 (forall ((?v0 B_S_ctype$) )(!(let (($x2733 (b_S_is_n_arraytype$ ?v0)))
+(= $x2733 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_array$))) :pattern ( (b_S_is_n_arraytype$ ?v0) )))
+))
+(let ((@x12250 (rewrite (= (= $x2733 (= (b_S_kind_n_of$ ?0) b_S_kind_n_array$)) $x12247))))
+(let ((@x16186 (mp~ (mp (asserted $x3569) (quant-intro @x12250 (= $x3569 $x12251)) $x12251) (nnf-pos (refl (~ $x12247 $x12247)) (~ $x12251 $x12251)) $x12251)))
+(let (($x2482 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(let ((?x2267 (b_S_array$ ?v0 ?v1)))
+(b_S_is_n_arraytype$ ?x2267)) :pattern ( (b_S_array$ ?v0 ?v1) )))
+))
+(let ((?x2267 (b_S_array$ ?1 ?0)))
+(let (($x2481 (b_S_is_n_arraytype$ ?x2267)))
+(let ((@x15316 (mp~ (asserted $x2482) (nnf-pos (refl (~ $x2481 $x2481)) (~ $x2482 $x2482)) $x2482)))
+(let ((@x24927 (unit-resolution (def-axiom (or (not $x22850) (not $x21816) $x22849)) (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_len$) (or (not $x2482) $x21816)) @x15316 $x21816) (or (not $x22850) $x22849))))
+(let ((@x24928 (unit-resolution @x24927 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) (or (not $x12251) $x22850)) @x16186 $x22850) $x22849)))
+(let ((@x24406 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x3680)) (or (not $x20974) (= (b_S_typ$ ?x3682) ?x3678))) @x20979 (= (b_S_typ$ ?x3682) ?x3678))))
+(let ((@x23038 (trans (monotonicity @x24449 (= ?x22935 (b_S_typ$ ?x3682))) @x24406 (= ?x22935 ?x3678))))
+(let ((@x23042 (trans (monotonicity @x23038 (= ?x23088 ?x3688)) @x24928 (= ?x23088 b_S_kind_n_array$))))
+(let ((@x23031 (monotonicity @x23042 (= $x23089 (= b_S_kind_n_array$ b_S_kind_n_primitive$)))))
+(let ((@x23049 (trans @x23031 (commutativity (= (= b_S_kind_n_array$ b_S_kind_n_primitive$) $x36)) (= $x23089 $x36))))
+(let (($x45 (and (not (= b_S_kind_n_composite$ b_S_kind_n_array$)) (and (not (= b_S_kind_n_thread$ b_S_kind_n_array$)) true))))
+(let (($x47 (and $x37 (and (not (= b_S_kind_n_composite$ b_S_kind_n_thread$)) $x45))))
+(let (($x49 (and (not (= b_S_kind_n_primitive$ b_S_kind_n_composite$)) (and (not (= b_S_kind_n_primitive$ b_S_kind_n_thread$)) $x47))))
+(let ((@x4039 (and-elim (asserted $x49) (and (not (= b_S_kind_n_primitive$ b_S_kind_n_thread$)) $x47))))
+(let ((@x23078 (mp (and-elim (and-elim @x4039 $x47) $x37) (monotonicity (symm @x23049 (= $x36 $x23089)) $x23052) (not $x23089))))
+(let (($x23034 (not $x23019)))
+(let (($x23037 (not $x23018)))
+(let ((@x23072 (monotonicity (symm (monotonicity @x24449 @x24449 (= $x23018 $x3738)) (= $x3738 $x23018)) (= $x10065 $x23037))))
+(let ((@x23071 (unit-resolution (def-axiom (or (not $x23027) $x23018 $x23034)) (mp (hypothesis $x10065) @x23072 $x23037) (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715) b_l_H_public$) (or (not $x12066) $x23027)) @x15761 $x23027) $x23034)))
+(let (($x23069 (b_S_is$ ?x22684 ?x22935)))
+(let ((@x23095 (mp (and-elim @x10087 $x3686) (symm (monotonicity @x24449 @x23038 (= $x23069 $x3686)) (= $x3686 $x23069)) $x23069)))
+(let (($x23086 (b_S_typed$ v_b_S_s$ ?x22684)))
+(let ((@x23099 (mp (and-elim @x10087 $x3687) (symm (monotonicity @x24449 (= $x23086 $x3687)) (= $x3687 $x23086)) $x23086)))
+(let ((@x10097 (and-elim @x10087 $x3685)))
+(let ((@x23104 (trans (monotonicity @x24449 (= (b_S_owner$ v_b_S_s$ ?x22684) ?x3684)) @x10097 (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$))))
+(let ((@x23113 (mp (and-elim @x10087 $x3683) (symm (monotonicity @x24449 (= $x22949 $x3683)) (= $x3683 $x22949)) $x22949)))
+(let (($x22936 (b_S_is_n_non_n_primitive$ ?x22935)))
+(let ((@x23118 (mp (and-elim @x10087 $x3691) (symm (monotonicity @x23038 (= $x22936 $x3691)) (= $x3691 $x22936)) $x22936)))
+(let ((@x10104 (and-elim @x10087 $x3699)))
+(let (($x19623 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1)))
+(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$)))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x8534 (not $x1106)))
+(let (($x1098 (b_S_closed$ ?v0 ?v1)))
+(let (($x3231 (not $x1098)))
+(or (not (b_S_full_n_stop$ ?v0)) $x3231 (not (= (b_S_owner$ ?v0 ?v1) b_S_me$)) (not (b_S_is$ ?v1 (b_S_typ$ ?v1))) $x8534 $x1001 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?v1))) $x3028))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) )))
+))
+(let (($x8148 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1)))
+(let ((?x999 (b_S_typ$ ?v1)))
+(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999)))
+(let (($x1001 (= (b_S_kind_n_of$ ?x999) b_S_kind_n_primitive$)))
+(let (($x1024 (not $x1001)))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x1105 (b_S_is$ ?v1 ?x999)))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x1098 (b_S_closed$ ?v0 ?v1)))
+(let (($x1172 (b_S_full_n_stop$ ?v0)))
+(let (($x8134 (and $x1172 $x1098 $x1104 $x1105 $x1106 $x1024 $x1042)))
+(let (($x8142 (not $x8134)))
+(or $x8142 $x3028)))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) )))
+))
+(let (($x3028 (b_S_in_n_domain$ ?1 ?0 ?0)))
+(let (($x1098 (b_S_closed$ ?1 ?0)))
+(let (($x3231 (not $x1098)))
+(let (($x19618 (or (not (b_S_full_n_stop$ ?1)) $x3231 (not $x1104) (not (b_S_is$ ?0 (b_S_typ$ ?0))) $x8534 $x1001 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?0))) $x3028)))
+(let ((?x999 (b_S_typ$ ?0)))
+(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999)))
+(let (($x1105 (b_S_is$ ?0 ?x999)))
+(let (($x1172 (b_S_full_n_stop$ ?1)))
+(let (($x8134 (and $x1172 $x1098 $x1104 $x1105 $x1106 $x1024 $x1042)))
+(let (($x8142 (not $x8134)))
+(let (($x8143 (or $x8142 $x3028)))
+(let (($x19604 (or (not $x1172) $x3231 (not $x1104) (not $x1105) $x8534 $x1001 (not $x1042))))
+(let ((@x19610 (monotonicity (rewrite (= $x8134 (not $x19604))) (= $x8142 (not (not $x19604))))))
+(let ((@x19617 (monotonicity (trans @x19610 (rewrite (= (not (not $x19604)) $x19604)) (= $x8142 $x19604)) (= $x8143 (or $x19604 $x3028)))))
+(let ((@x19625 (quant-intro (trans @x19617 (rewrite (= (or $x19604 $x3028) $x19618)) (= $x8143 $x19618)) (= $x8148 $x19623))))
+(let (($x3031 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1)))
+(let ((?x999 (b_S_typ$ ?v1)))
+(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999)))
+(let (($x1001 (= (b_S_kind_n_of$ ?x999) b_S_kind_n_primitive$)))
+(let (($x1024 (not $x1001)))
+(let (($x1106 (b_S_typed$ ?v0 ?v1)))
+(let (($x1105 (b_S_is$ ?v1 ?x999)))
+(let (($x3024 (and $x1105 (and $x1106 (and $x1024 $x1042)))))
+(let ((?x1103 (b_S_owner$ ?v0 ?v1)))
+(let (($x1104 (= ?x1103 b_S_me$)))
+(let (($x3025 (and $x1104 $x3024)))
+(let (($x1098 (b_S_closed$ ?v0 ?v1)))
+(let (($x3026 (and $x1098 $x3025)))
+(let (($x1172 (b_S_full_n_stop$ ?v0)))
+(let (($x3027 (and $x1172 $x3026)))
+(=> $x3027 $x3028)))))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) )))
+))
+(let (($x3024 (and $x1105 (and $x1106 (and $x1024 $x1042)))))
+(let (($x3025 (and $x1104 $x3024)))
+(let (($x3026 (and $x1098 $x3025)))
+(let (($x3027 (and $x1172 $x3026)))
+(let (($x3029 (=> $x3027 $x3028)))
+(let (($x8126 (and $x1098 $x1104 $x1105 $x1106 $x1024 $x1042)))
+(let (($x8118 (and $x1104 $x1105 $x1106 $x1024 $x1042)))
+(let ((@x8112 (rewrite (= (and $x1105 (and $x1106 $x1024 $x1042)) (and $x1105 $x1106 $x1024 $x1042)))))
+(let ((@x8109 (monotonicity (rewrite (= (and $x1106 (and $x1024 $x1042)) (and $x1106 $x1024 $x1042))) (= $x3024 (and $x1105 (and $x1106 $x1024 $x1042))))))
+(let ((@x8117 (monotonicity (trans @x8109 @x8112 (= $x3024 (and $x1105 $x1106 $x1024 $x1042))) (= $x3025 (and $x1104 (and $x1105 $x1106 $x1024 $x1042))))))
+(let ((@x8122 (trans @x8117 (rewrite (= (and $x1104 (and $x1105 $x1106 $x1024 $x1042)) $x8118)) (= $x3025 $x8118))))
+(let ((@x8130 (trans (monotonicity @x8122 (= $x3026 (and $x1098 $x8118))) (rewrite (= (and $x1098 $x8118) $x8126)) (= $x3026 $x8126))))
+(let ((@x8138 (trans (monotonicity @x8130 (= $x3027 (and $x1172 $x8126))) (rewrite (= (and $x1172 $x8126) $x8134)) (= $x3027 $x8134))))
+(let ((@x8147 (trans (monotonicity @x8138 (= $x3029 (=> $x8134 $x3028))) (rewrite (= (=> $x8134 $x3028) $x8143)) (= $x3029 $x8143))))
+(let ((@x15729 (mp~ (mp (asserted $x3031) (quant-intro @x8147 (= $x3031 $x8148)) $x8148) (nnf-pos (refl (~ $x8143 $x8143)) (~ $x8148 $x8148)) $x8148)))
+(let (($x23087 (not $x23086)))
+(let (($x23085 (not $x23069)))
+(let (($x21687 (not $x3699)))
+(let (($x24394 (or (not $x19623) $x21687 $x22973 (not (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$)) $x23085 $x23087 $x23089 (not $x22936) $x23019)))
+(let (($x23090 (or $x21687 $x22973 (not (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$)) $x23085 $x23087 $x23089 (not $x22936) $x23019)))
+(let ((@x24401 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715)) (or (not $x19623) $x23090)) (rewrite (= (or (not $x19623) $x23090) $x24394)) $x24394)))
+(let ((@x23120 (unit-resolution @x24401 (mp @x15729 @x19625 $x19623) @x10104 @x23118 @x23113 @x23104 (or $x23085 $x23087 $x23089 $x23019))))
+(let ((@x23328 (mp (lemma (unit-resolution @x23120 @x23099 @x23095 @x23071 @x23078 false) $x3738) (symm (monotonicity @x24449 @x24449 (= $x23018 $x3738)) (= $x3738 $x23018)) $x23018)))
+(let ((@x23329 (unit-resolution (def-axiom (or (not $x23027) $x23037 $x23019)) @x23328 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715) b_l_H_public$) (or (not $x12066) $x23027)) @x15761 $x23027) $x23019)))
+(let (($x19663 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x19647 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2)))))
+(let ((?x2289 (b_S_typ$ ?v1)))
+(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289)))
+(or $x3032 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))) $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) )))
+))
+(let (($x19654 (or (not (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2))) (not (b_S_closed$ ?v0 ?v1)) (not $x19647))))
+(let (($x19655 (not $x19654)))
+(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2)))
+(let (($x8173 (not $x2979)))
+(or $x8173 $x19655)))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) )))
+))
+(let (($x8179 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x8156 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2)))))
+(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))))
+(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x3035)))
+(let (($x8152 (not $x3036)))
+(or $x8152 $x3038))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) )))
+))
+(let (($x1136 (b_S_closed$ ?v0 ?v1)))
+(let (($x2963 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2))))
+(let (($x8165 (and $x2963 $x1136 $x8156)))
+(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2)))
+(let (($x8173 (not $x2979)))
+(or $x8173 $x8165))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) )))
+))
+(let (($x19647 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0)))))
+(let ((?x2289 (b_S_typ$ ?1)))
+(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289)))
+(or $x3032 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))) $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) )))
+))
+(let (($x19654 (or (not (b_S_set_n_in$ ?1 (b_S_domain$ ?2 ?0))) (not (b_S_closed$ ?2 ?1)) (not $x19647))))
+(let (($x19655 (not $x19654)))
+(let (($x2979 (b_S_in_n_domain$ ?2 ?1 ?0)))
+(let (($x8173 (not $x2979)))
+(let (($x8156 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0)))))
+(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))))
+(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x3035)))
+(let (($x8152 (not $x3036)))
+(or $x8152 $x3038))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) )))
+))
+(let (($x1136 (b_S_closed$ ?2 ?1)))
+(let (($x2963 (b_S_set_n_in$ ?1 (b_S_domain$ ?2 ?0))))
+(let (($x8165 (and $x2963 $x1136 $x8156)))
+(let (($x8174 (or $x8173 $x8165)))
+(let (($x3038 (b_S_set_n_in2$ ?0 (b_S_ver_n_domain$ (b_S_read_n_version$ ?3 ?1)))))
+(let ((?x2289 (b_S_typ$ ?2)))
+(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289)))
+(let (($x19642 (or $x3032 (not (b_S_set_n_in$ ?0 (b_S_owns$ ?3 ?2))) $x3038)))
+(let (($x3035 (b_S_set_n_in$ ?0 (b_S_owns$ ?3 ?2))))
+(let (($x3036 (and (not $x3032) $x3035)))
+(let (($x8152 (not $x3036)))
+(let (($x8153 (or $x8152 $x3038)))
+(let ((@x19636 (rewrite (= (not (not (or $x3032 (not $x3035)))) (or $x3032 (not $x3035))))))
+(let ((@x19634 (monotonicity (rewrite (= $x3036 (not (or $x3032 (not $x3035))))) (= $x8152 (not (not (or $x3032 (not $x3035))))))))
+(let ((@x19641 (monotonicity (trans @x19634 @x19636 (= $x8152 (or $x3032 (not $x3035)))) (= $x8153 (or (or $x3032 (not $x3035)) $x3038)))))
+(let ((@x19646 (trans @x19641 (rewrite (= (or (or $x3032 (not $x3035)) $x3038) $x19642)) (= $x8153 $x19642))))
+(let ((@x19652 (monotonicity (quant-intro @x19646 (= $x8156 $x19647)) (= $x8165 (and $x2963 $x1136 $x19647)))))
+(let ((@x19659 (trans @x19652 (rewrite (= (and $x2963 $x1136 $x19647) $x19655)) (= $x8165 $x19655))))
+(let ((@x19665 (quant-intro (monotonicity @x19659 (= $x8174 (or $x8173 $x19655))) (= $x8179 $x19663))))
+(let ((@x15741 (monotonicity (refl (~ $x2963 $x2963)) (refl (~ $x1136 $x1136)) (nnf-pos (refl (~ $x8153 $x8153)) (~ $x8156 $x8156)) (~ $x8165 $x8165))))
+(let ((@x15745 (nnf-pos (monotonicity (refl (~ $x8173 $x8173)) @x15741 (~ $x8174 $x8174)) (~ $x8179 $x8179))))
+(let (($x3046 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x3041 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2)))))
+(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))))
+(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x3035)))
+(=> $x3036 $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) )))
+))
+(let (($x1136 (b_S_closed$ ?v0 ?v1)))
+(let (($x2963 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2))))
+(let (($x3043 (and $x2963 (and $x1136 $x3041))))
+(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2)))
+(=> $x2979 $x3043)))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) )))
+))
+(let (($x3041 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0)))))
+(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))))
+(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x3035)))
+(=> $x3036 $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) )))
+))
+(let (($x3043 (and $x2963 (and $x1136 $x3041))))
+(let (($x3044 (=> $x2979 $x3043)))
+(let ((@x8161 (monotonicity (quant-intro (rewrite (= (=> $x3036 $x3038) $x8153)) (= $x3041 $x8156)) (= (and $x1136 $x3041) (and $x1136 $x8156)))))
+(let ((@x8169 (trans (monotonicity @x8161 (= $x3043 (and $x2963 (and $x1136 $x8156)))) (rewrite (= (and $x2963 (and $x1136 $x8156)) $x8165)) (= $x3043 $x8165))))
+(let ((@x8178 (trans (monotonicity @x8169 (= $x3044 (=> $x2979 $x8165))) (rewrite (= (=> $x2979 $x8165) $x8174)) (= $x3044 $x8174))))
+(let ((@x15746 (mp~ (mp (asserted $x3046) (quant-intro @x8178 (= $x3046 $x8179)) $x8179) @x15745 $x8179)))
+(let ((@x24384 (rewrite (= (or (not $x19663) (or $x23034 $x23066)) (or (not $x19663) $x23034 $x23066)))))
+(let ((@x24402 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715)) (or (not $x19663) (or $x23034 $x23066))) @x24384 (or (not $x19663) $x23034 $x23066))))
+(let ((@x23335 (unit-resolution (unit-resolution @x24402 (mp @x15746 @x19665 $x19663) (or $x23034 $x23066)) @x23329 $x23066)))
+(let ((@x23336 (unit-resolution (def-axiom (or (or (not $x23045) $x22973 (not $x23063)) $x23045)) @x23335 $x23045)))
+(let (($x19385 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)))
+(let ((?x2429 (b_S_typemap$ ?v0)))
+(let (($x19373 (or (not (b_S_typed$ ?v0 ?x2903)) (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))
+(let (($x19374 (not $x19373)))
+(let (($x11257 (>= (+ ?v4 (* (- 1) ?v3)) 0)))
+(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2))))
+(or (not (b_S_full_n_stop$ ?v0)) (not (b_S_is_n_primitive$ ?v5)) (not $x2898) (not (>= ?v4 0)) $x11257 $x19374))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) )))
+))
+(let (($x12034 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)))
+(let ((?x2429 (b_S_typemap$ ?v0)))
+(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))))
+(let (($x10181 (>= ?v4 0)))
+(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2))))
+(let (($x1179 (b_S_is_n_primitive$ ?v5)))
+(let (($x2894 (b_S_full_n_stop$ ?v0)))
+(let (($x12018 (and $x2894 $x1179 $x2898 $x10181 (not (>= (+ ?v4 (* (- 1) ?v3)) 0)))))
+(let (($x12021 (not $x12018)))
+(or $x12021 $x2915)))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) )))
+))
+(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?0 ?4) ?1 ?0)))
+(let ((?x2429 (b_S_typemap$ ?5)))
+(let (($x19373 (or (not (b_S_typed$ ?5 ?x2903)) (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))
+(let (($x19374 (not $x19373)))
+(let (($x11257 (>= (+ ?1 (* (- 1) ?2)) 0)))
+(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?0 ?2) ?4) (b_S_domain$ ?5 ?3))))
+(let (($x19380 (or (not (b_S_full_n_stop$ ?5)) (not $x1179) (not $x2898) (not (>= ?1 0)) $x11257 $x19374)))
+(let (($x2915 (and (b_S_typed$ ?5 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))))
+(let (($x10181 (>= ?1 0)))
+(let (($x2894 (b_S_full_n_stop$ ?5)))
+(let (($x12018 (and $x2894 $x1179 $x2898 $x10181 (not $x11257))))
+(let (($x12021 (not $x12018)))
+(let (($x12031 (or $x12021 $x2915)))
+(let (($x19381 (= (or (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257) $x19374) $x19380)))
+(let (($x19378 (= $x12031 (or (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257) $x19374))))
+(let (($x19349 (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257)))
+(let ((@x19355 (monotonicity (rewrite (= $x12018 (not $x19349))) (= $x12021 (not (not $x19349))))))
+(let ((@x19379 (monotonicity (trans @x19355 (rewrite (= (not (not $x19349)) $x19349)) (= $x12021 $x19349)) (rewrite (= $x2915 $x19374)) $x19378)))
+(let ((@x19387 (quant-intro (trans @x19379 (rewrite $x19381) (= $x12031 $x19380)) (= $x12034 $x19385))))
+(let (($x7948 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)))
+(let ((?x2429 (b_S_typemap$ ?v0)))
+(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))))
+(let (($x1751 (<= ?v3 ?v4)))
+(let (($x7247 (not $x1751)))
+(let (($x1330 (<= 0 ?v4)))
+(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2))))
+(let (($x1179 (b_S_is_n_primitive$ ?v5)))
+(let (($x2894 (b_S_full_n_stop$ ?v0)))
+(let (($x7922 (and $x2894 $x1179 $x2898 $x1330 $x7247)))
+(or (not $x7922) $x2915))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) )))
+))
+(let (($x7943 (or (not (and $x2894 $x1179 $x2898 (<= 0 ?1) (not (<= ?2 ?1)))) $x2915)))
+(let (($x12022 (= (not (and $x2894 $x1179 $x2898 (<= 0 ?1) (not (<= ?2 ?1)))) $x12021)))
+(let (($x1751 (<= ?2 ?1)))
+(let (($x7247 (not $x1751)))
+(let (($x1330 (<= 0 ?1)))
+(let (($x7922 (and $x2894 $x1179 $x2898 $x1330 $x7247)))
+(let ((@x12020 (monotonicity (rewrite (= $x1330 $x10181)) (monotonicity (rewrite (= $x1751 $x11257)) (= $x7247 (not $x11257))) (= $x7922 $x12018))))
+(let ((@x12036 (quant-intro (monotonicity (monotonicity @x12020 $x12022) (= $x7943 $x12031)) (= $x7948 $x12034))))
+(let (($x2920 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)))
+(let ((?x2429 (b_S_typemap$ ?v0)))
+(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))))
+(let (($x1330 (<= 0 ?v4)))
+(let (($x2333 (and $x1330 (< ?v4 ?v3))))
+(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2))))
+(let (($x2899 (and $x2898 $x2333)))
+(let (($x1179 (b_S_is_n_primitive$ ?v5)))
+(let (($x2900 (and $x1179 $x2899)))
+(let (($x2894 (b_S_full_n_stop$ ?v0)))
+(let (($x2901 (and $x2894 $x2900)))
+(=> $x2901 $x2915)))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) )))
+))
+(let (($x2333 (and $x1330 (< ?1 ?2))))
+(let (($x2899 (and $x2898 $x2333)))
+(let (($x2900 (and $x1179 $x2899)))
+(let (($x2901 (and $x2894 $x2900)))
+(let (($x2916 (=> $x2901 $x2915)))
+(let ((@x7916 (rewrite (= (and $x1179 (and $x2898 $x1330 $x7247)) (and $x1179 $x2898 $x1330 $x7247)))))
+(let ((@x7252 (monotonicity (rewrite (= $x1330 $x1330)) (rewrite (= (< ?1 ?2) $x7247)) (= $x2333 (and $x1330 $x7247)))))
+(let ((@x7910 (trans (monotonicity @x7252 (= $x2899 (and $x2898 (and $x1330 $x7247)))) (rewrite (= (and $x2898 (and $x1330 $x7247)) (and $x2898 $x1330 $x7247))) (= $x2899 (and $x2898 $x1330 $x7247)))))
+(let ((@x7918 (trans (monotonicity @x7910 (= $x2900 (and $x1179 (and $x2898 $x1330 $x7247)))) @x7916 (= $x2900 (and $x1179 $x2898 $x1330 $x7247)))))
+(let ((@x7926 (trans (monotonicity @x7918 (= $x2901 (and $x2894 (and $x1179 $x2898 $x1330 $x7247)))) (rewrite (= (and $x2894 (and $x1179 $x2898 $x1330 $x7247)) $x7922)) (= $x2901 $x7922))))
+(let ((@x7947 (trans (monotonicity @x7926 (= $x2916 (=> $x7922 $x2915))) (rewrite (= (=> $x7922 $x2915) $x7943)) (= $x2916 $x7943))))
+(let ((@x12037 (mp (mp (asserted $x2920) (quant-intro @x7947 (= $x2920 $x7948)) $x7948) @x12036 $x12034)))
+(let ((@x19388 (mp (mp~ @x12037 (nnf-pos (refl (~ $x12031 $x12031)) (~ $x12034 $x12034)) $x12034) @x19387 $x19385)))
+(let (($x23298 (not $x23297)))
+(let (($x22190 (not $x3529)))
+(let (($x23330 (not $x19385)))
+(let (($x23309 (or $x23330 $x21687 $x22190 $x23298 $x8666 $x23305)))
+(let (($x23302 (>= (+ 0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x23300 (not (>= 0 0))))
+(let (($x23306 (or $x21687 $x22190 $x23298 $x23300 $x23302 $x23305)))
+(let (($x23310 (or $x23330 $x23306)))
+(let (($x23348 (or $x21687 $x22190 $x23298 $x8666 $x23305)))
+(let ((@x23277 (rewrite (= (+ 0 (* (- 1) v_b_P_H_len$)) (* (- 1) v_b_P_H_len$)))))
+(let ((@x23344 (trans (monotonicity @x23277 (= $x23302 (>= (* (- 1) v_b_P_H_len$) 0))) (rewrite (= (>= (* (- 1) v_b_P_H_len$) 0) $x8666)) (= $x23302 $x8666))))
+(let ((@x23275 (trans (monotonicity (rewrite (= (>= 0 0) true)) (= $x23300 $x3805)) (rewrite (= $x3805 false)) (= $x23300 false))))
+(let ((@x23347 (monotonicity @x23275 @x23344 (= $x23306 (or $x21687 $x22190 $x23298 false $x8666 $x23305)))))
+(let ((@x23308 (trans @x23347 (rewrite (= (or $x21687 $x22190 $x23298 false $x8666 $x23305) $x23348)) (= $x23306 $x23348))))
+(let ((@x23318 (trans (monotonicity @x23308 (= $x23310 (or $x23330 $x23348))) (rewrite (= (or $x23330 $x23348) $x23309)) (= $x23310 $x23309))))
+(let ((@x23396 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x3678 ?x21715) v_b_P_H_len$ 0 b_T_T_u1$) $x23310) @x23318 $x23309) @x19388 @x5093 @x10095 @x10104 (mp @x23336 @x23394 $x23297) (hypothesis $x23304) false)))
+(let ((@x23503 (mp (unit-resolution (def-axiom (or $x23304 $x23260)) (lemma @x23396 $x23305) $x23260) @x23522 $x23358)))
+(let (($x23368 (= (b_S_owner$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356)) b_S_me$)))
+(let (($x23370 (or $x23368 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356)))))
+(let (($x23366 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23356))) b_S_kind_n_primitive$)))
+(let (($x23363 (not $x23362)))
+(let (($x23355 (not $x23354)))
+(let (($x23372 (or $x23355 $x23363 $x23366 (not $x23370))))
+(let (($x23377 (or (= (b_S_owner$ v_b_S_s$ ?x23206) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x23206))))
+(let (($x23373 (not $x23372)))
+(let (($x23382 (not (or $x23373 (not (or $x23354 (not $x23377)))))))
+(let (($x23383 (or (not (b_S_typed$ v_b_S_s$ ?x23206)) $x23382)))
+(let (($x23349 (b_S_thread_n_local$ v_b_S_s$ ?x23206)))
+(let (($x23385 (= $x23349 (not $x23383))))
+(let ((@x23535 (monotonicity (symm (monotonicity @x23922 (= $x23349 $x3743)) (= $x3743 $x23349)) (= $x16251 (not $x23349)))))
+(let ((@x23541 (unit-resolution (def-axiom (or (not $x23385) $x23349 $x23383)) (mp (hypothesis $x16251) @x23535 (not $x23349)) (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x23186)) (or (not $x19790) $x23385)) @x19793 $x23385) $x23383)))
+(let (($x23350 (b_S_typed$ v_b_S_s$ ?x23206)))
+(let ((@x23928 (mp (unit-resolution (def-axiom (or $x23304 $x3741)) (lemma @x23396 $x23305) $x3741) (symm (monotonicity @x23922 (= $x23350 $x3741)) (= $x3741 $x23350)) $x23350)))
+(let ((@x23600 (unit-resolution (def-axiom (or (not $x23383) (not $x23350) $x23382)) @x23928 @x23541 $x23382)))
+(let ((@x23583 (unit-resolution (def-axiom (or (or $x23373 (not (or $x23354 (not $x23377)))) $x23372)) @x23600 $x23372)))
+(let ((?x24269 (b_S_ref$ ?x22684)))
+(let ((?x24283 (b_S_ptr$ b_T_T_u1$ ?x24269)))
+(let ((?x24260 (b_S_idx$ ?x22684 0 b_T_T_u1$)))
+(let (($x24286 (= ?x24260 ?x24283)))
+(let (($x24289 (not $x24286)))
+(let (($x24292 (or (not (b_S_extent_n_hint$ ?x24260 ?x22684)) $x24289)))
+(let (($x24232 (not $x24292)))
+(let (($x24310 (or $x23217 $x24232)))
+(let (($x24274 (or (not (b_S_extent_n_hint$ ?x24260 ?x22684)) (not (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652))))))))
+(let (($x24290 (= (not (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652))))) $x24289)))
+(let ((@x24278 (monotonicity (rewrite (= (* 0 ?x3652) 0)) (= (+ ?x24269 (* 0 ?x3652)) (+ ?x24269 0)))))
+(let ((@x24282 (trans @x24278 (rewrite (= (+ ?x24269 0) ?x24269)) (= (+ ?x24269 (* 0 ?x3652)) ?x24269))))
+(let ((@x24285 (monotonicity @x24282 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652))) ?x24283))))
+(let ((@x24288 (monotonicity @x24285 (= (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652)))) $x24286))))
+(let ((@x24309 (monotonicity (monotonicity (monotonicity @x24288 $x24290) (= $x24274 $x24292)) (= (not $x24274) $x24232))))
+(let ((@x24303 (trans (monotonicity @x24309 (= (or $x23217 (not $x24274)) $x24310)) (rewrite (= $x24310 $x24310)) (= (or $x23217 (not $x24274)) $x24310))))
+(let ((@x24501 (unit-resolution (mp ((_ quant-inst (b_S_ptr$ ?x3678 ?x21715) 0 b_T_T_u1$) (or $x23217 (not $x24274))) @x24303 $x24310) @x18901 (hypothesis $x24292) false)))
+(let (($x24111 (= (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x3874 (b_S_idx$ ?x23296 0 b_T_T_u1$))) ?x23296)))
+(let ((?x24137 (b_S_idx$ ?x23296 0 b_T_T_u1$)))
+(let ((?x24145 (b_S_select_o_tm$ ?x3874 ?x24137)))
+(let (($x24127 (or (not $x24111) (b_S_ts_n_is_n_volatile$ ?x24145) (not (b_S_ts_n_is_n_array_n_elt$ ?x24145)) (not (b_S_typed$ v_b_S_s$ ?x24137)))))
+(let (($x24130 (not $x24127)))
+(let (($x24131 (b_S_typed$ v_b_S_s$ ?x23296)))
+(let ((@x24253 (mp (and-elim @x10087 $x3687) (symm (monotonicity @x23339 (= $x24131 $x3687)) (= $x3687 $x24131)) $x24131)))
+(let (($x18682 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let ((?x2370 (b_S_typemap$ ?v0)))
+(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372)))
+(let (($x18670 (or (not (= (b_S_ts_n_emb$ ?x2372) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) (b_S_ts_n_is_n_volatile$ ?x2372) (not $x2377) (not $x2378))))
+(let (($x18671 (not $x18670)))
+(let (($x11071 (>= (+ ?v4 (* (- 1) ?v3)) 0)))
+(let (($x10138 (>= ?v4 0)))
+(let (($x10556 (not $x10138)))
+(or (not (b_S_typed$ ?v0 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) $x10556 $x11071 $x18671)))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) )))
+))
+(let (($x11697 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let ((?x2370 (b_S_typemap$ ?v0)))
+(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372)))
+(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372))))
+(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1)))
+(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367)))
+(let (($x7338 (and $x2374 $x2376 $x2377 $x2378)))
+(let (($x10138 (>= ?v4 0)))
+(let (($x2368 (b_S_typed$ ?v0 ?x2367)))
+(let (($x11688 (and $x2368 $x10138 (not (>= (+ ?v4 (* (- 1) ?v3)) 0)))))
+(let (($x11691 (not $x11688)))
+(or $x11691 $x7338))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) )))
+))
+(let (($x2378 (b_S_typed$ ?4 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2))))
+(let ((?x2370 (b_S_typemap$ ?4)))
+(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2))))
+(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372)))
+(let (($x18670 (or (not (= (b_S_ts_n_emb$ ?x2372) (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) (b_S_ts_n_is_n_volatile$ ?x2372) (not $x2377) (not $x2378))))
+(let (($x18671 (not $x18670)))
+(let (($x11071 (>= (+ ?0 (* (- 1) ?1)) 0)))
+(let (($x10138 (>= ?0 0)))
+(let (($x10556 (not $x10138)))
+(let (($x18677 (or (not (b_S_typed$ ?4 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) $x10556 $x11071 $x18671)))
+(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372))))
+(let ((?x2367 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3)))
+(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367)))
+(let (($x7338 (and $x2374 $x2376 $x2377 $x2378)))
+(let (($x2368 (b_S_typed$ ?4 ?x2367)))
+(let (($x11688 (and $x2368 $x10138 (not $x11071))))
+(let (($x11691 (not $x11688)))
+(let (($x11694 (or $x11691 $x7338)))
+(let (($x18656 (or (not $x2368) $x10556 $x11071)))
+(let ((@x18662 (monotonicity (rewrite (= $x11688 (not $x18656))) (= $x11691 (not (not $x18656))))))
+(let ((@x18676 (monotonicity (trans @x18662 (rewrite (= (not (not $x18656)) $x18656)) (= $x11691 $x18656)) (rewrite (= $x7338 $x18671)) (= $x11694 (or $x18656 $x18671)))))
+(let ((@x18684 (quant-intro (trans @x18676 (rewrite (= (or $x18656 $x18671) $x18677)) (= $x11694 $x18677)) (= $x11697 $x18682))))
+(let (($x7352 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let ((?x2370 (b_S_typemap$ ?v0)))
+(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372)))
+(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372))))
+(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1)))
+(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367)))
+(let (($x7338 (and $x2374 $x2376 $x2377 $x2378)))
+(let (($x1660 (<= ?v3 ?v4)))
+(let (($x7169 (not $x1660)))
+(let (($x1212 (<= 0 ?v4)))
+(let (($x2368 (b_S_typed$ ?v0 ?x2367)))
+(let (($x7327 (and $x2368 $x1212 $x7169)))
+(or (not $x7327) $x7338)))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) )))
+))
+(let ((@x11568 (monotonicity (rewrite (= (<= ?1 ?0) $x11071)) (= (not (<= ?1 ?0)) (not $x11071)))))
+(let ((@x10140 (rewrite (= $x1212 $x10138))))
+(let ((@x11690 (monotonicity @x10140 @x11568 (= (and $x2368 $x1212 (not (<= ?1 ?0))) $x11688))))
+(let ((@x11693 (monotonicity @x11690 (= (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x11691))))
+(let ((@x11696 (monotonicity @x11693 (= (or (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x7338) $x11694))))
+(let (($x2390 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let ((?x2370 (b_S_typemap$ ?v0)))
+(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2))))
+(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372)))
+(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372))))
+(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1)))
+(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367)))
+(let (($x2381 (and $x2374 (and $x2376 (and $x2377 $x2378)))))
+(let (($x1212 (<= 0 ?v4)))
+(let (($x2271 (and $x1212 (< ?v4 ?v3))))
+(let (($x2368 (b_S_typed$ ?v0 ?x2367)))
+(let (($x2369 (and $x2368 $x2271)))
+(=> $x2369 $x2381))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) )))
+))
+(let (($x7347 (or (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x7338)))
+(let (($x2381 (and $x2374 (and $x2376 (and $x2377 $x2378)))))
+(let (($x2271 (and $x1212 (< ?0 ?1))))
+(let (($x2369 (and $x2368 $x2271)))
+(let (($x2382 (=> $x2369 $x2381)))
+(let ((@x7337 (monotonicity (rewrite (= (and $x2376 (and $x2377 $x2378)) (and $x2376 $x2377 $x2378))) (= $x2381 (and $x2374 (and $x2376 $x2377 $x2378))))))
+(let ((@x7342 (trans @x7337 (rewrite (= (and $x2374 (and $x2376 $x2377 $x2378)) $x7338)) (= $x2381 $x7338))))
+(let (($x1660 (<= ?1 ?0)))
+(let (($x7169 (not $x1660)))
+(let (($x7327 (and $x2368 $x1212 $x7169)))
+(let ((@x7174 (monotonicity @x5396 (rewrite (= (< ?0 ?1) $x7169)) (= $x2271 (and $x1212 $x7169)))))
+(let ((@x7331 (trans (monotonicity @x7174 (= $x2369 (and $x2368 (and $x1212 $x7169)))) (rewrite (= (and $x2368 (and $x1212 $x7169)) $x7327)) (= $x2369 $x7327))))
+(let ((@x7351 (trans (monotonicity @x7331 @x7342 (= $x2382 (=> $x7327 $x7338))) (rewrite (= (=> $x7327 $x7338) $x7347)) (= $x2382 $x7347))))
+(let ((@x11700 (mp (mp (asserted $x2390) (quant-intro @x7351 (= $x2390 $x7352)) $x7352) (quant-intro @x11696 (= $x7352 $x11697)) $x11697)))
+(let ((@x18685 (mp (mp~ @x11700 (nnf-pos (refl (~ $x11694 $x11694)) (~ $x11697 $x11697)) $x11697) @x18684 $x18682)))
+(let (($x24152 (not $x24131)))
+(let (($x24161 (not $x18682)))
+(let (($x24167 (or $x24161 $x24152 $x8666 $x24130)))
+(let (($x24132 (or $x24152 $x23300 $x23302 $x24130)))
+(let (($x24168 (or $x24161 $x24132)))
+(let ((@x24160 (trans (monotonicity @x23275 @x23344 (= $x24132 (or $x24152 false $x8666 $x24130))) (rewrite (= (or $x24152 false $x8666 $x24130) (or $x24152 $x8666 $x24130))) (= $x24132 (or $x24152 $x8666 $x24130)))))
+(let ((@x24169 (trans (monotonicity @x24160 (= $x24168 (or $x24161 (or $x24152 $x8666 $x24130)))) (rewrite (= (or $x24161 (or $x24152 $x8666 $x24130)) $x24167)) (= $x24168 $x24167))))
+(let ((@x24243 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ 0) $x24168) @x24169 $x24167) @x18685 @x10095 (lemma (unit-resolution (hypothesis $x24152) @x24253 false) $x24131) (hypothesis $x24127) false)))
+(let ((@x24327 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x3680)) (or (not $x20968) (= ?x21715 ?x3681))) @x20973 (= ?x21715 ?x3681))))
+(let ((@x24335 (trans (trans (monotonicity @x24449 (= ?x24269 ?x21715)) @x24327 (= ?x24269 ?x3681)) @x23283 (= ?x24269 v_b_P_H_arr$))))
+(let ((@x24339 (trans @x23339 (unit-resolution @x22701 @x16076 (and-elim @x10087 $x3686) $x22691) (= ?x23296 ?x22684))))
+(let ((@x24454 (trans (monotonicity @x24339 (= ?x24137 ?x24260)) (hypothesis $x24286) (= ?x24137 ?x24283))))
+(let ((@x24456 (trans (trans @x24454 (monotonicity @x24335 (= ?x24283 ?x3680)) (= ?x24137 ?x3680)) @x24358 (= ?x24137 ?x23203))))
+(let ((@x24458 (monotonicity (trans @x24456 (symm @x23269 (= ?x23203 ?x3739)) (= ?x24137 ?x3739)) (= ?x24145 ?x23179))))
+(let ((@x24492 (monotonicity (trans @x24072 (symm @x24458 (= ?x23179 ?x24145)) (= ?x23356 ?x24145)) (= (b_S_ts_n_emb$ ?x23356) (b_S_ts_n_emb$ ?x24145)))))
+(let ((@x24493 (trans @x24492 (unit-resolution (def-axiom (or $x24127 $x24111)) (lemma @x24243 $x24130) $x24111) (= (b_S_ts_n_emb$ ?x23356) ?x23296))))
+(let ((@x24496 (monotonicity (trans @x24493 @x23339 (= (b_S_ts_n_emb$ ?x23356) ?x3682)) (= (b_S_owner$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356)) ?x3684))))
+(let ((@x24497 (unit-resolution (hypothesis (not $x23368)) (trans @x24496 @x10097 $x23368) false)))
+(let ((@x23585 (unit-resolution (lemma @x24497 (or $x24289 $x23368)) (unit-resolution (def-axiom (or $x24292 $x24286)) (lemma @x24501 $x24232) $x24286) $x23368)))
+(let (($x23511 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179))) b_S_kind_n_primitive$)))
+(let (($x23504 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179))) (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23356))))))
+(let ((@x23496 (monotonicity (symm @x24072 (= ?x23179 ?x23356)) (= (b_S_ts_n_emb$ ?x23179) (b_S_ts_n_emb$ ?x23356)))))
+(let ((@x23773 (monotonicity @x23496 (= (b_S_typ$ (b_S_ts_n_emb$ ?x23179)) (b_S_typ$ (b_S_ts_n_emb$ ?x23356))))))
+(let (($x23514 (or $x23511 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179)))))))
+(let (($x19952 (forall ((?v0 B_S_type_n_state$) )(!(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$)))
+(let (($x19948 (or $x3400 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0)))))))
+(not $x19948))) :pattern ( (b_S_ts_n_emb$ ?v0) )))
+))
+(let (($x3405 (forall ((?v0 B_S_type_n_state$) )(!(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$)))
+(and (not $x3400) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))) :pattern ( (b_S_ts_n_emb$ ?v0) )))
+))
+(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?0))) b_S_kind_n_primitive$)))
+(let (($x19948 (or $x3400 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0)))))))
+(let (($x3403 (and (not $x3400) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0))))))
+(let ((@x16056 (mp~ (asserted $x3405) (nnf-pos (refl (~ $x3403 $x3403)) (~ $x3405 $x3405)) $x3405)))
+(let ((@x19955 (mp @x16056 (quant-intro (rewrite (= $x3403 (not $x19948))) (= $x3405 $x19952)) $x19952)))
+(let ((@x23763 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x3874 ?x3739)) (or (not $x19952) (not $x23514))) @x19955 (not $x23514))))
+(let ((@x23521 (unit-resolution (unit-resolution (def-axiom (or $x23514 (not $x23511))) @x23763 (not $x23511)) (trans (monotonicity @x23773 $x23504) (hypothesis $x23366) $x23511) false)))
+(let ((@x23523 (unit-resolution (def-axiom (or $x23373 $x23355 $x23363 $x23366 (not $x23370))) (lemma @x23521 (not $x23366)) (unit-resolution (def-axiom (or $x23370 (not $x23368))) @x23585 $x23370) (or $x23373 $x23355 $x23363))))
+(let ((@x23543 (unit-resolution @x23523 @x23583 (unit-resolution (def-axiom (or $x23362 $x23357)) @x23503 $x23362) @x23574 false)))
+(let (($x21247 (or $x16242 $x16251 $x21244)))
+(let (($x21250 (not $x21247)))
+(let (($x21253 (or $x16242 $x16245 $x21250)))
+(let (($x21256 (not $x21253)))
+(let (($x21259 (or $x16242 $x16245 $x21256)))
+(let (($x21262 (not $x21259)))
+(let (($x21265 (or $x10065 $x21262)))
+(let (($x21268 (not $x21265)))
+(let (($x20335 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12631 (not $x3840))))))))))
+))
+(let (($x20320 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12646 (<= (+ ?x3765 ?x12644) 0)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12631 $x12646))))))))))
+))
+(let (($x20344 (not (or (not $x20320) (not $x20335)))))
+(let (($x20349 (or $x20298 $x20344)))
+(let (($x20360 (or $x12456 $x20190 $x20219 (not $x3818) (not $x3820) (not $x3822) $x20358 (not $x20349))))
+(let (($x20361 (not $x20360)))
+(let (($x20126 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12536 (<= (+ ?x3765 ?x12534) 0)))
+(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12521 $x12536))))))))))
+))
+(let (($x20146 (not (or (not $x20126) $x20131))))
+(let (($x20151 (or $x20104 $x20146)))
+(let (($x20159 (not (or $x12518 (not $x20151)))))
+(let (($x20164 (or $x12518 $x20159)))
+(let (($x20175 (or $x16351 $x16354 $x20170 (not $x3960) (not (>= v_b_L_H_p_G_1$ 2)) $x20173 (not $x20164))))
+(let (($x20176 (not $x20175)))
+(let (($x20181 (or $x16351 $x16354 $x20176)))
+(let (($x20193 (not $x20181)))
+(let (($x20233 (not (or $x20190 $x20219 $x12476 $x20230 (not $x3994) $x20173 $x20193))))
+(let (($x20194 (or $x16330 $x16339 (not $x3935) (not $x3936) (not $x3937) $x20190 (not $x3940) (not $x3942) $x20173 $x20193)))
+(let (($x20195 (not $x20194)))
+(let (($x20200 (or $x16330 $x16339 $x20195)))
+(let (($x20208 (not (or $x16330 $x16333 (not $x20200)))))
+(let (($x20213 (or $x16330 $x16333 $x20208)))
+(let (($x20222 (not (or $x20190 $x20219 $x12471 (not $x20213)))))
+(let (($x20238 (or $x20222 $x20233)))
+(let (($x20246 (not (or $x16330 $x16339 $x20190 $x20219 (not $x20238)))))
+(let (($x20251 (or $x16330 $x16339 $x20246)))
+(let (($x20259 (not (or $x16330 $x16333 (not $x20251)))))
+(let (($x20264 (or $x16330 $x16333 $x20259)))
+(let (($x20272 (not (or $x20190 $x20219 $x12453 (not $x20264)))))
+(let (($x20366 (or $x20272 $x20361)))
+(let (($x20080 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12425 (<= (+ ?x3765 ?x12384) 0)))
+(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12411 $x12425))))))))))
+))
+(let (($x20389 (or $x8666 $x16288 (not (>= v_b_L_H_max_G_1$ 0)) (not (<= v_b_L_H_max_G_1$ 255)) $x20374 $x20375 (not (<= v_b_L_H_p_G_0$ 4294967295)) (not (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)) (not $x20080) $x12435 $x20379 $x20190 $x20219 (not $x3886) (not $x3806) (not $x3893) (not $x3894) (not $x3895) (not $x3896) (not $x3897) (not $x3898) (not $x20366))))
+(let (($x20390 (not $x20389)))
+(let (($x20395 (or $x8666 $x16288 $x20390)))
+(let (($x20058 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0)))
+(let (($x12354 (>= ?v0 1)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x10556 (not $x10138)))
+(or $x10556 $x17271 $x12354 $x12367)))))))))
+))
+(let (($x20404 (not (or (not $x20058) (not $x20395)))))
+(let (($x20409 (or $x20036 $x20404)))
+(let (($x20417 (not (or $x12351 (not $x20409)))))
+(let (($x20422 (or $x12351 $x20417)))
+(let (($x20433 (or $x16242 $x16251 (not $x3747) (not $x3748) (not $x3749) (not $x3750) (not $x20422))))
+(let (($x20434 (not $x20433)))
+(let (($x20439 (or $x16242 $x16251 $x20434)))
+(let (($x20447 (not (or $x16242 $x16245 (not $x20439)))))
+(let (($x20452 (or $x16242 $x16245 $x20447)))
+(let (($x20460 (not (or $x10065 (not $x20452)))))
+(let (($x20465 (or $x10065 $x20460)))
+(let (($x12631 (>= (+ ?0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x14211 (<= ?0 4294967295)))
+(let (($x17271 (not $x14211)))
+(let (($x20324 (or $x10556 $x17271 $x12631 (not $x3840))))
+(let ((@x21180 (monotonicity (quant-intro (refl (= $x20324 $x20324)) (= $x20335 $x21173)) (= (not $x20335) $x21178))))
+(let (($x12646 (<= (+ ?x3765 (* (- 1) v_b_S_result_G_0$)) 0)))
+(let (($x20315 (or $x10556 $x17271 $x12631 $x12646)))
+(let ((@x21172 (monotonicity (quant-intro (refl (= $x20315 $x20315)) (= $x20320 $x21165)) (= (not $x20320) (not $x21165)))))
+(let ((@x21186 (monotonicity (monotonicity @x21172 @x21180 (= (or (not $x20320) (not $x20335)) $x21181)) (= $x20344 $x21184))))
+(let ((@x21192 (monotonicity (monotonicity @x21186 (= $x20349 $x21187)) (= (not $x20349) $x21190))))
+(let (($x12536 (<= (+ ?x3765 ?x12534) 0)))
+(let (($x12521 (>= (+ ?0 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x20121 (or $x10556 $x17271 $x12521 $x12536)))
+(let ((@x21056 (monotonicity (quant-intro (refl (= $x20121 $x20121)) (= $x20126 $x21049)) (= (not $x20126) (not $x21049)))))
+(let ((@x21062 (monotonicity (monotonicity @x21056 (= (or (not $x20126) $x20131) $x21057)) (= $x20146 $x21060))))
+(let ((@x21068 (monotonicity (monotonicity @x21062 (= $x20151 $x21063)) (= (not $x20151) $x21066))))
+(let ((@x21074 (monotonicity (monotonicity @x21068 (= (or $x12518 (not $x20151)) $x21069)) (= $x20159 $x21072))))
+(let ((@x21080 (monotonicity (monotonicity @x21074 (= $x20164 $x21075)) (= (not $x20164) $x21078))))
+(let ((@x21089 (monotonicity (monotonicity (monotonicity @x21080 (= $x20175 $x21081)) (= $x20176 $x21084)) (= $x20181 $x21087))))
+(let ((@x21125 (monotonicity (monotonicity @x21089 (= $x20193 $x21090)) (= (or $x20190 $x20219 $x12476 $x20230 (not $x3994) $x20173 $x20193) $x21123))))
+(let ((@x21098 (monotonicity (monotonicity (monotonicity @x21089 (= $x20193 $x21090)) (= $x20194 $x21093)) (= $x20195 $x21096))))
+(let ((@x21104 (monotonicity (monotonicity @x21098 (= $x20200 $x21099)) (= (not $x20200) $x21102))))
+(let ((@x21110 (monotonicity (monotonicity @x21104 (= (or $x16330 $x16333 (not $x20200)) $x21105)) (= $x20208 $x21108))))
+(let ((@x21116 (monotonicity (monotonicity @x21110 (= $x20213 $x21111)) (= (not $x20213) $x21114))))
+(let ((@x21122 (monotonicity (monotonicity @x21116 (= (or $x20190 $x20219 $x12471 (not $x20213)) $x21117)) (= $x20222 $x21120))))
+(let ((@x21131 (monotonicity @x21122 (monotonicity @x21125 (= $x20233 $x21126)) (= $x20238 $x21129))))
+(let ((@x21137 (monotonicity (monotonicity @x21131 (= (not $x20238) $x21132)) (= (or $x16330 $x16339 $x20190 $x20219 (not $x20238)) $x21135))))
+(let ((@x21146 (monotonicity (monotonicity (monotonicity @x21137 (= $x20246 $x21138)) (= $x20251 $x21141)) (= (not $x20251) $x21144))))
+(let ((@x21152 (monotonicity (monotonicity @x21146 (= (or $x16330 $x16333 (not $x20251)) $x21147)) (= $x20259 $x21150))))
+(let ((@x21158 (monotonicity (monotonicity @x21152 (= $x20264 $x21153)) (= (not $x20264) $x21156))))
+(let ((@x21164 (monotonicity (monotonicity @x21158 (= (or $x20190 $x20219 $x12453 (not $x20264)) $x21159)) (= $x20272 $x21162))))
+(let ((@x21201 (monotonicity @x21164 (monotonicity (monotonicity @x21192 (= $x20360 $x21193)) (= $x20361 $x21196)) (= $x20366 $x21199))))
+(let (($x12425 (<= (+ ?x3765 (* (- 1) v_b_L_H_max_G_1$)) 0)))
+(let (($x12411 (>= (+ ?0 (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x20075 (or $x10556 $x17271 $x12411 $x12425)))
+(let ((@x21048 (monotonicity (quant-intro (refl (= $x20075 $x20075)) (= $x20080 $x21041)) (= (not $x20080) $x21046))))
+(let ((@x21207 (monotonicity @x21048 (monotonicity @x21201 (= (not $x20366) $x21202)) (= $x20389 $x21205))))
+(let ((@x21216 (monotonicity (monotonicity (monotonicity @x21207 (= $x20390 $x21208)) (= $x20395 $x21211)) (= (not $x20395) $x21214))))
+(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0)))
+(let (($x12354 (>= ?0 1)))
+(let (($x20053 (or $x10556 $x17271 $x12354 $x12367)))
+(let ((@x21040 (monotonicity (quant-intro (refl (= $x20053 $x20053)) (= $x20058 $x21033)) (= (not $x20058) (not $x21033)))))
+(let ((@x21222 (monotonicity (monotonicity @x21040 @x21216 (= (or (not $x20058) (not $x20395)) $x21217)) (= $x20404 $x21220))))
+(let ((@x21228 (monotonicity (monotonicity @x21222 (= $x20409 $x21223)) (= (not $x20409) $x21226))))
+(let ((@x21234 (monotonicity (monotonicity @x21228 (= (or $x12351 (not $x20409)) $x21229)) (= $x20417 $x21232))))
+(let ((@x21240 (monotonicity (monotonicity @x21234 (= $x20422 $x21235)) (= (not $x20422) $x21238))))
+(let ((@x21249 (monotonicity (monotonicity (monotonicity @x21240 (= $x20433 $x21241)) (= $x20434 $x21244)) (= $x20439 $x21247))))
+(let ((@x21255 (monotonicity (monotonicity @x21249 (= (not $x20439) $x21250)) (= (or $x16242 $x16245 (not $x20439)) $x21253))))
+(let ((@x21264 (monotonicity (monotonicity (monotonicity @x21255 (= $x20447 $x21256)) (= $x20452 $x21259)) (= (not $x20452) $x21262))))
+(let ((@x21270 (monotonicity (monotonicity @x21264 (= (or $x10065 (not $x20452)) $x21265)) (= $x20460 $x21268))))
+(let (($x16498 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12635 (not $x12631)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x13747 (and $x10138 $x14211 $x12635 $x3840)))
+(not $x13747)))))))))
+))
+(let (($x13163 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12646 (<= (+ ?x3765 ?x12644) 0)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12635 (not $x12631)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x13586 (and $x10138 $x14211 $x12635)))
+(let (($x13963 (not $x13586)))
+(or $x13963 $x12646)))))))))))
+))
+(let (($x16502 (and $x13163 $x16498)))
+(let (($x16743 (not $x16738)))
+(let (($x16746 (and $x16473 $x16474 $x16743)))
+(let (($x16749 (not $x16746)))
+(let (($x16765 (or $x16749 $x16760)))
+(let (($x16768 (not $x16765)))
+(let (($x16771 (or $x16768 $x16502)))
+(let (($x16777 (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x16771)))
+(let (($x12553 (not $x12550)))
+(let (($x12556 (and $x12553 $x3976)))
+(let (($x16388 (not $x12556)))
+(let (($x13130 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12536 (<= (+ ?x3765 ?x12534) 0)))
+(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x12525 (not $x12521)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x14023 (and $x10138 $x14211 $x12525)))
+(let (($x12802 (not $x14023)))
+(or $x12802 $x12536)))))))))))
+))
+(let (($x16391 (and $x13130 $x16388)))
+(let (($x16605 (not $x16600)))
+(let (($x16608 (and $x16366 $x16367 $x16605)))
+(let (($x16611 (not $x16608)))
+(let (($x16627 (or $x16611 $x16622)))
+(let (($x16630 (not $x16627)))
+(let (($x16633 (or $x16630 $x16391)))
+(let (($x16636 (and $x12514 $x16633)))
+(let (($x16639 (or $x12518 $x16636)))
+(let (($x12505 (>= v_b_L_H_p_G_1$ 2)))
+(let (($x16645 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x16639)))
+(let (($x16650 (or $x16351 $x16354 $x16645)))
+(let (($x16688 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x16650)))
+(let (($x16656 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x16650)))
+(let (($x16661 (or $x16330 $x16339 $x16656)))
+(let (($x16667 (and $x3923 $x3924 $x16661)))
+(let (($x16672 (or $x16330 $x16333 $x16667)))
+(let (($x16678 (and $x12404 $x12389 $x12476 $x16672)))
+(let (($x16693 (or $x16678 $x16688)))
+(let (($x16699 (and $x3923 $x3926 $x12404 $x12389 $x16693)))
+(let (($x16704 (or $x16330 $x16339 $x16699)))
+(let (($x16710 (and $x3923 $x3924 $x16704)))
+(let (($x16715 (or $x16330 $x16333 $x16710)))
+(let (($x16721 (and $x12404 $x12389 $x12456 $x16715)))
+(let (($x16782 (or $x16721 $x16777)))
+(let (($x12438 (not $x12435)))
+(let (($x13341 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12425 (<= (+ ?x3765 ?x12384) 0)))
+(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x12415 (not $x12411)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x13128 (and $x10138 $x14211 $x12415)))
+(let (($x13111 (not $x13128)))
+(or $x13111 $x12425)))))))))))
+))
+(let (($x12407 (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x13193 (<= v_b_L_H_p_G_0$ 4294967295)))
+(let (($x12799 (<= v_b_L_H_max_G_1$ 255)))
+(let (($x12381 (>= v_b_L_H_max_G_1$ 0)))
+(let (($x16788 (and $x8667 $x3769 $x12381 $x12799 $x12834 $x12397 $x13193 $x12407 $x13341 $x12438 $x3794 $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x16782)))
+(let (($x16793 (or $x8666 $x16288 $x16788)))
+(let (($x12941 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0)))
+(let (($x12354 (>= ?v0 1)))
+(let (($x12357 (not $x12354)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x14020 (and $x10138 $x14211 $x12357)))
+(let (($x13679 (not $x14020)))
+(or $x13679 $x12367))))))))))
+))
+(let (($x16796 (and $x12941 $x16793)))
+(let (($x16268 (not (and (>= ?v0!13 0) (<= ?v0!13 4294967295) (not $x16265)))))
+(let (($x16274 (or $x16268 $x16273)))
+(let (($x16275 (not $x16274)))
+(let (($x16799 (or $x16275 $x16796)))
+(let (($x16802 (and $x12348 $x16799)))
+(let (($x16805 (or $x12351 $x16802)))
+(let (($x16811 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x16805)))
+(let (($x16816 (or $x16242 $x16251 $x16811)))
+(let (($x16822 (and $x3740 $x3741 $x16816)))
+(let (($x16827 (or $x16242 $x16245 $x16822)))
+(let (($x16830 (and $x3738 $x16827)))
+(let (($x16833 (or $x10065 $x16830)))
+(let (($x20369 (and $x8667 $x3769 $x12381 $x12799 $x12834 $x12397 $x13193 $x12407 $x20080 $x12438 $x3794 $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x20366)))
+(let ((@x20330 (monotonicity (rewrite (= (and $x10138 $x14211 (not $x12631) $x3840) (not $x20324))) (= (not (and $x10138 $x14211 (not $x12631) $x3840)) (not (not $x20324))))))
+(let ((@x20334 (trans @x20330 (rewrite (= (not (not $x20324)) $x20324)) (= (not (and $x10138 $x14211 (not $x12631) $x3840)) $x20324))))
+(let (($x12635 (not $x12631)))
+(let (($x13586 (and $x10138 $x14211 $x12635)))
+(let (($x13963 (not $x13586)))
+(let (($x13836 (or $x13963 $x12646)))
+(let ((@x20307 (monotonicity (rewrite (= $x13586 (not (or $x10556 $x17271 $x12631)))) (= $x13963 (not (not (or $x10556 $x17271 $x12631)))))))
+(let ((@x20311 (trans @x20307 (rewrite (= (not (not (or $x10556 $x17271 $x12631))) (or $x10556 $x17271 $x12631))) (= $x13963 (or $x10556 $x17271 $x12631)))))
+(let ((@x20319 (trans (monotonicity @x20311 (= $x13836 (or (or $x10556 $x17271 $x12631) $x12646))) (rewrite (= (or (or $x10556 $x17271 $x12631) $x12646) $x20315)) (= $x13836 $x20315))))
+(let ((@x20340 (monotonicity (quant-intro @x20319 (= $x13163 $x20320)) (quant-intro @x20334 (= $x16498 $x20335)) (= $x16502 (and $x20320 $x20335)))))
+(let ((@x20285 (monotonicity (rewrite (= $x16746 (not (or $x20277 $x20278 $x16738)))) (= $x16749 (not (not (or $x20277 $x20278 $x16738)))))))
+(let ((@x20289 (trans @x20285 (rewrite (= (not (not (or $x20277 $x20278 $x16738))) (or $x20277 $x20278 $x16738))) (= $x16749 (or $x20277 $x20278 $x16738)))))
+(let ((@x20297 (trans (monotonicity @x20289 (= $x16765 (or (or $x20277 $x20278 $x16738) $x16760))) (rewrite (= (or (or $x20277 $x20278 $x16738) $x16760) $x20293)) (= $x16765 $x20293))))
+(let ((@x20351 (monotonicity (monotonicity @x20297 (= $x16768 $x20298)) (trans @x20340 (rewrite (= (and $x20320 $x20335) $x20344)) (= $x16502 $x20344)) (= $x16771 $x20349))))
+(let ((@x20354 (monotonicity @x20351 (= $x16777 (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x20349)))))
+(let ((@x20365 (trans @x20354 (rewrite (= (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x20349) $x20361)) (= $x16777 $x20361))))
+(let ((@x20140 (trans (monotonicity (rewrite (= $x12556 $x20131)) (= $x16388 (not $x20131))) (rewrite (= (not $x20131) $x20130)) (= $x16388 $x20130))))
+(let (($x12525 (not $x12521)))
+(let (($x14023 (and $x10138 $x14211 $x12525)))
+(let (($x12802 (not $x14023)))
+(let (($x13633 (or $x12802 $x12536)))
+(let ((@x20113 (monotonicity (rewrite (= $x14023 (not (or $x10556 $x17271 $x12521)))) (= $x12802 (not (not (or $x10556 $x17271 $x12521)))))))
+(let ((@x20117 (trans @x20113 (rewrite (= (not (not (or $x10556 $x17271 $x12521))) (or $x10556 $x17271 $x12521))) (= $x12802 (or $x10556 $x17271 $x12521)))))
+(let ((@x20125 (trans (monotonicity @x20117 (= $x13633 (or (or $x10556 $x17271 $x12521) $x12536))) (rewrite (= (or (or $x10556 $x17271 $x12521) $x12536) $x20121)) (= $x13633 $x20121))))
+(let ((@x20143 (monotonicity (quant-intro @x20125 (= $x13130 $x20126)) @x20140 (= $x16391 (and $x20126 $x20130)))))
+(let ((@x20091 (monotonicity (rewrite (= $x16608 (not (or $x20083 $x20084 $x16600)))) (= $x16611 (not (not (or $x20083 $x20084 $x16600)))))))
+(let ((@x20095 (trans @x20091 (rewrite (= (not (not (or $x20083 $x20084 $x16600))) (or $x20083 $x20084 $x16600))) (= $x16611 (or $x20083 $x20084 $x16600)))))
+(let ((@x20103 (trans (monotonicity @x20095 (= $x16627 (or (or $x20083 $x20084 $x16600) $x16622))) (rewrite (= (or (or $x20083 $x20084 $x16600) $x16622) $x20099)) (= $x16627 $x20099))))
+(let ((@x20153 (monotonicity (monotonicity @x20103 (= $x16630 $x20104)) (trans @x20143 (rewrite (= (and $x20126 $x20130) $x20146)) (= $x16391 $x20146)) (= $x16633 $x20151))))
+(let ((@x20163 (trans (monotonicity @x20153 (= $x16636 (and $x12514 $x20151))) (rewrite (= (and $x12514 $x20151) $x20159)) (= $x16636 $x20159))))
+(let ((@x20169 (monotonicity (monotonicity @x20163 (= $x16639 $x20164)) (= $x16645 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x20164)))))
+(let ((@x20180 (trans @x20169 (rewrite (= (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x20164) $x20176)) (= $x16645 $x20176))))
+(let ((@x20229 (monotonicity (monotonicity @x20180 (= $x16650 $x20181)) (= $x16688 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x20181)))))
+(let ((@x20237 (trans @x20229 (rewrite (= (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x20181) $x20233)) (= $x16688 $x20233))))
+(let ((@x20197 (rewrite (= (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x20181) $x20195))))
+(let ((@x20186 (monotonicity (monotonicity @x20180 (= $x16650 $x20181)) (= $x16656 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x20181)))))
+(let ((@x20205 (monotonicity (monotonicity (trans @x20186 @x20197 (= $x16656 $x20195)) (= $x16661 $x20200)) (= $x16667 (and $x3923 $x3924 $x20200)))))
+(let ((@x20212 (trans @x20205 (rewrite (= (and $x3923 $x3924 $x20200) $x20208)) (= $x16667 $x20208))))
+(let ((@x20218 (monotonicity (monotonicity @x20212 (= $x16672 $x20213)) (= $x16678 (and $x12404 $x12389 $x12476 $x20213)))))
+(let ((@x20226 (trans @x20218 (rewrite (= (and $x12404 $x12389 $x12476 $x20213) $x20222)) (= $x16678 $x20222))))
+(let ((@x20243 (monotonicity (monotonicity @x20226 @x20237 (= $x16693 $x20238)) (= $x16699 (and $x3923 $x3926 $x12404 $x12389 $x20238)))))
+(let ((@x20250 (trans @x20243 (rewrite (= (and $x3923 $x3926 $x12404 $x12389 $x20238) $x20246)) (= $x16699 $x20246))))
+(let ((@x20256 (monotonicity (monotonicity @x20250 (= $x16704 $x20251)) (= $x16710 (and $x3923 $x3924 $x20251)))))
+(let ((@x20263 (trans @x20256 (rewrite (= (and $x3923 $x3924 $x20251) $x20259)) (= $x16710 $x20259))))
+(let ((@x20269 (monotonicity (monotonicity @x20263 (= $x16715 $x20264)) (= $x16721 (and $x12404 $x12389 $x12456 $x20264)))))
+(let ((@x20276 (trans @x20269 (rewrite (= (and $x12404 $x12389 $x12456 $x20264) $x20272)) (= $x16721 $x20272))))
+(let (($x12415 (not $x12411)))
+(let (($x13128 (and $x10138 $x14211 $x12415)))
+(let (($x13111 (not $x13128)))
+(let (($x12774 (or $x13111 $x12425)))
+(let ((@x20067 (monotonicity (rewrite (= $x13128 (not (or $x10556 $x17271 $x12411)))) (= $x13111 (not (not (or $x10556 $x17271 $x12411)))))))
+(let ((@x20071 (trans @x20067 (rewrite (= (not (not (or $x10556 $x17271 $x12411))) (or $x10556 $x17271 $x12411))) (= $x13111 (or $x10556 $x17271 $x12411)))))
+(let ((@x20079 (trans (monotonicity @x20071 (= $x12774 (or (or $x10556 $x17271 $x12411) $x12425))) (rewrite (= (or (or $x10556 $x17271 $x12411) $x12425) $x20075)) (= $x12774 $x20075))))
+(let ((@x20371 (monotonicity (quant-intro @x20079 (= $x13341 $x20080)) (monotonicity @x20276 @x20365 (= $x16782 $x20366)) (= $x16788 $x20369))))
+(let ((@x20397 (monotonicity (trans @x20371 (rewrite (= $x20369 $x20390)) (= $x16788 $x20390)) (= $x16793 $x20395))))
+(let (($x12357 (not $x12354)))
+(let (($x14020 (and $x10138 $x14211 $x12357)))
+(let (($x13679 (not $x14020)))
+(let (($x12918 (or $x13679 $x12367)))
+(let ((@x20045 (monotonicity (rewrite (= $x14020 (not (or $x10556 $x17271 $x12354)))) (= $x13679 (not (not (or $x10556 $x17271 $x12354)))))))
+(let ((@x20049 (trans @x20045 (rewrite (= (not (not (or $x10556 $x17271 $x12354))) (or $x10556 $x17271 $x12354))) (= $x13679 (or $x10556 $x17271 $x12354)))))
+(let ((@x20057 (trans (monotonicity @x20049 (= $x12918 (or (or $x10556 $x17271 $x12354) $x12367))) (rewrite (= (or (or $x10556 $x17271 $x12354) $x12367) $x20053)) (= $x12918 $x20053))))
+(let ((@x20400 (monotonicity (quant-intro @x20057 (= $x12941 $x20058)) @x20397 (= $x16796 (and $x20058 $x20395)))))
+(let (($x20017 (or (not (>= ?v0!13 0)) (not (<= ?v0!13 4294967295)) $x16265)))
+(let (($x20019 (= (and (>= ?v0!13 0) (<= ?v0!13 4294967295) (not $x16265)) (not $x20017))))
+(let ((@x20027 (trans (monotonicity (rewrite $x20019) (= $x16268 (not (not $x20017)))) (rewrite (= (not (not $x20017)) $x20017)) (= $x16268 $x20017))))
+(let ((@x20035 (trans (monotonicity @x20027 (= $x16274 (or $x20017 $x16273))) (rewrite (= (or $x20017 $x16273) $x20031)) (= $x16274 $x20031))))
+(let ((@x20411 (monotonicity (monotonicity @x20035 (= $x16275 $x20036)) (trans @x20400 (rewrite (= (and $x20058 $x20395) $x20404)) (= $x16796 $x20404)) (= $x16799 $x20409))))
+(let ((@x20421 (trans (monotonicity @x20411 (= $x16802 (and $x12348 $x20409))) (rewrite (= (and $x12348 $x20409) $x20417)) (= $x16802 $x20417))))
+(let ((@x20427 (monotonicity (monotonicity @x20421 (= $x16805 $x20422)) (= $x16811 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x20422)))))
+(let ((@x20438 (trans @x20427 (rewrite (= (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x20422) $x20434)) (= $x16811 $x20434))))
+(let ((@x20444 (monotonicity (monotonicity @x20438 (= $x16816 $x20439)) (= $x16822 (and $x3740 $x3741 $x20439)))))
+(let ((@x20451 (trans @x20444 (rewrite (= (and $x3740 $x3741 $x20439) $x20447)) (= $x16822 $x20447))))
+(let ((@x20457 (monotonicity (monotonicity @x20451 (= $x16827 $x20452)) (= $x16830 (and $x3738 $x20452)))))
+(let ((@x20467 (monotonicity (trans @x20457 (rewrite (= (and $x3738 $x20452) $x20460)) (= $x16830 $x20460)) (= $x16833 $x20465))))
+(let (($x16483 (<= (+ ?x16481 (* (- 1) v_b_S_result_G_0$)) 0)))
+(let (($x16478 (and $x16473 $x16474 (not (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0)))))
+(let (($x16485 (not (or (not $x16478) $x16483))))
+(let (($x16506 (or $x16485 $x16502)))
+(let (($x14268 (and $x12404 $x12389 $x3818 $x3820 $x3822 $x3824)))
+(let (($x14273 (not $x14268)))
+(let (($x16469 (not $x14273)))
+(let (($x12619 (and $x12404 $x12389 $x12453)))
+(let (($x12622 (not $x12619)))
+(let (($x16466 (not $x12622)))
+(let (($x16510 (and $x16466 $x16469 $x16506)))
+(let (($x16376 (<= (+ ?x16374 ?x12534) 0)))
+(let (($x16371 (and $x16366 $x16367 (not (>= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) 0)))))
+(let (($x16378 (not (or (not $x16371) $x16376))))
+(let (($x16395 (or $x16378 $x16391)))
+(let (($x16362 (not $x12518)))
+(let (($x16399 (and $x16362 $x16395)))
+(let (($x16403 (or $x12518 $x16399)))
+(let (($x13815 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486)))
+(let (($x13880 (not $x13815)))
+(let (($x16357 (not $x13880)))
+(let (($x16407 (and $x16357 $x16403)))
+(let (($x16411 (or $x16351 $x16354 $x16407)))
+(let (($x12592 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486)))
+(let (($x12595 (not $x12592)))
+(let (($x16435 (not $x12595)))
+(let (($x16438 (and $x16435 $x16411)))
+(let (($x12488 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486)))
+(let (($x12491 (not $x12488)))
+(let (($x16348 (not $x12491)))
+(let (($x16415 (and $x16348 $x16411)))
+(let (($x16419 (or $x16330 $x16339 $x16415)))
+(let (($x16336 (not $x9775)))
+(let (($x16423 (and $x16336 $x16419)))
+(let (($x16427 (or $x16330 $x16333 $x16423)))
+(let (($x12479 (and $x12404 $x12389 $x12476)))
+(let (($x12482 (not $x12479)))
+(let (($x16345 (not $x12482)))
+(let (($x16431 (and $x16345 $x16427)))
+(let (($x16442 (or $x16431 $x16438)))
+(let (($x12465 (and $x3923 $x3926 $x12404 $x12389)))
+(let (($x12468 (not $x12465)))
+(let (($x16342 (not $x12468)))
+(let (($x16446 (and $x16342 $x16442)))
+(let (($x16450 (or $x16330 $x16339 $x16446)))
+(let (($x16454 (and $x16336 $x16450)))
+(let (($x16458 (or $x16330 $x16333 $x16454)))
+(let (($x12459 (and $x12404 $x12389 $x12456)))
+(let (($x12462 (not $x12459)))
+(let (($x16327 (not $x12462)))
+(let (($x16462 (and $x16327 $x16458)))
+(let (($x16514 (or $x16462 $x16510)))
+(let (($x14257 (and $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898)))
+(let (($x14262 (not $x14257)))
+(let (($x16324 (not $x14262)))
+(let (($x13242 (and $x8667 $x3769 $x12381 $x12799 $x12389 $x12834 $x12397 $x13193 $x12404 $x12407 $x13341 $x12438 $x3794)))
+(let (($x16518 (and $x13242 $x16324 $x16514)))
+(let (($x16285 (not $x8667)))
+(let (($x16522 (or $x16285 $x16288 $x16518)))
+(let (($x16526 (and $x12941 $x16522)))
+(let (($x16530 (or $x16275 $x16526)))
+(let (($x16259 (not $x12351)))
+(let (($x16534 (and $x16259 $x16530)))
+(let (($x16538 (or $x12351 $x16534)))
+(let (($x16254 (not $x10031)))
+(let (($x16542 (and $x16254 $x16538)))
+(let (($x16546 (or $x16242 $x16251 $x16542)))
+(let (($x16248 (not $x10048)))
+(let (($x16550 (and $x16248 $x16546)))
+(let (($x16554 (or $x16242 $x16245 $x16550)))
+(let (($x16239 (not $x10065)))
+(let (($x16558 (and $x16239 $x16554)))
+(let (($x16562 (or $x10065 $x16558)))
+(let (($x16753 (= (+ ?x16481 (* (- 1) v_b_S_result_G_0$)) (+ (* (- 1) v_b_S_result_G_0$) ?x16481))))
+(let ((@x16757 (monotonicity (rewrite $x16753) (= $x16483 (<= (+ (* (- 1) v_b_S_result_G_0$) ?x16481) 0)))))
+(let ((@x16764 (trans @x16757 (rewrite (= (<= (+ (* (- 1) v_b_S_result_G_0$) ?x16481) 0) $x16760)) (= $x16483 $x16760))))
+(let (($x16476 (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x16731 (= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) ?v0!15))))
+(let ((@x16735 (monotonicity (rewrite $x16731) (= $x16476 (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0)))))
+(let ((@x16742 (trans @x16735 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0) $x16738)) (= $x16476 $x16738))))
+(let ((@x16748 (monotonicity (monotonicity @x16742 (= (not $x16476) $x16743)) (= $x16478 $x16746))))
+(let ((@x16767 (monotonicity (monotonicity @x16748 (= (not $x16478) $x16749)) @x16764 (= (or (not $x16478) $x16483) $x16765))))
+(let ((@x16776 (monotonicity (rewrite (= $x16466 $x12619)) (rewrite (= $x16469 $x14268)) (monotonicity (monotonicity @x16767 (= $x16485 $x16768)) (= $x16506 $x16771)) (= $x16510 (and $x12619 $x14268 $x16771)))))
+(let ((@x16781 (trans @x16776 (rewrite (= (and $x12619 $x14268 $x16771) $x16777)) (= $x16510 $x16777))))
+(let ((@x16619 (monotonicity (rewrite (= (+ ?x16374 ?x12534) (+ ?x12534 ?x16374))) (= $x16376 (<= (+ ?x12534 ?x16374) 0)))))
+(let ((@x16626 (trans @x16619 (rewrite (= (<= (+ ?x12534 ?x16374) 0) $x16622)) (= $x16376 $x16622))))
+(let ((@x16602 (rewrite (= (>= (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14) 0) $x16600))))
+(let (($x16369 (>= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x16593 (= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14))))
+(let ((@x16597 (monotonicity (rewrite $x16593) (= $x16369 (>= (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14) 0)))))
+(let ((@x16607 (monotonicity (trans @x16597 @x16602 (= $x16369 $x16600)) (= (not $x16369) $x16605))))
+(let ((@x16613 (monotonicity (monotonicity @x16607 (= $x16371 $x16608)) (= (not $x16371) $x16611))))
+(let ((@x16632 (monotonicity (monotonicity @x16613 @x16626 (= (or (not $x16371) $x16376) $x16627)) (= $x16378 $x16630))))
+(let ((@x16638 (monotonicity (rewrite (= $x16362 $x12514)) (monotonicity @x16632 (= $x16395 $x16633)) (= $x16399 $x16636))))
+(let ((@x16644 (monotonicity (rewrite (= $x16357 $x13815)) (monotonicity @x16638 (= $x16403 $x16639)) (= $x16407 (and $x13815 $x16639)))))
+(let ((@x16652 (monotonicity (trans @x16644 (rewrite (= (and $x13815 $x16639) $x16645)) (= $x16407 $x16645)) (= $x16411 $x16650))))
+(let ((@x16687 (monotonicity (rewrite (= $x16435 $x12592)) @x16652 (= $x16438 (and $x12592 $x16650)))))
+(let ((@x16655 (monotonicity (rewrite (= $x16348 $x12488)) @x16652 (= $x16415 (and $x12488 $x16650)))))
+(let ((@x16663 (monotonicity (trans @x16655 (rewrite (= (and $x12488 $x16650) $x16656)) (= $x16415 $x16656)) (= $x16419 $x16661))))
+(let ((@x16666 (monotonicity (rewrite (= $x16336 $x3925)) @x16663 (= $x16423 (and $x3925 $x16661)))))
+(let ((@x16674 (monotonicity (trans @x16666 (rewrite (= (and $x3925 $x16661) $x16667)) (= $x16423 $x16667)) (= $x16427 $x16672))))
+(let ((@x16677 (monotonicity (rewrite (= $x16345 $x12479)) @x16674 (= $x16431 (and $x12479 $x16672)))))
+(let ((@x16695 (monotonicity (trans @x16677 (rewrite (= (and $x12479 $x16672) $x16678)) (= $x16431 $x16678)) (trans @x16687 (rewrite (= (and $x12592 $x16650) $x16688)) (= $x16438 $x16688)) (= $x16442 $x16693))))
+(let ((@x16698 (monotonicity (rewrite (= $x16342 $x12465)) @x16695 (= $x16446 (and $x12465 $x16693)))))
+(let ((@x16706 (monotonicity (trans @x16698 (rewrite (= (and $x12465 $x16693) $x16699)) (= $x16446 $x16699)) (= $x16450 $x16704))))
+(let ((@x16709 (monotonicity (rewrite (= $x16336 $x3925)) @x16706 (= $x16454 (and $x3925 $x16704)))))
+(let ((@x16717 (monotonicity (trans @x16709 (rewrite (= (and $x3925 $x16704) $x16710)) (= $x16454 $x16710)) (= $x16458 $x16715))))
+(let ((@x16720 (monotonicity (rewrite (= $x16327 $x12459)) @x16717 (= $x16462 (and $x12459 $x16715)))))
+(let ((@x16784 (monotonicity (trans @x16720 (rewrite (= (and $x12459 $x16715) $x16721)) (= $x16462 $x16721)) @x16781 (= $x16514 $x16782))))
+(let ((@x16787 (monotonicity (rewrite (= $x16324 $x14257)) @x16784 (= $x16518 (and $x13242 $x14257 $x16782)))))
+(let ((@x16792 (trans @x16787 (rewrite (= (and $x13242 $x14257 $x16782) $x16788)) (= $x16518 $x16788))))
+(let ((@x16798 (monotonicity (monotonicity (rewrite (= $x16285 $x8666)) @x16792 (= $x16522 $x16793)) (= $x16526 $x16796))))
+(let ((@x16804 (monotonicity (rewrite (= $x16259 $x12348)) (monotonicity @x16798 (= $x16530 $x16799)) (= $x16534 $x16802))))
+(let ((@x16810 (monotonicity (rewrite (= $x16254 $x8880)) (monotonicity @x16804 (= $x16538 $x16805)) (= $x16542 (and $x8880 $x16805)))))
+(let ((@x16818 (monotonicity (trans @x16810 (rewrite (= (and $x8880 $x16805) $x16811)) (= $x16542 $x16811)) (= $x16546 $x16816))))
+(let ((@x16821 (monotonicity (rewrite (= $x16248 $x3742)) @x16818 (= $x16550 (and $x3742 $x16816)))))
+(let ((@x16829 (monotonicity (trans @x16821 (rewrite (= (and $x3742 $x16816) $x16822)) (= $x16550 $x16822)) (= $x16554 $x16827))))
+(let ((@x16835 (monotonicity (monotonicity (rewrite (= $x16239 $x3738)) @x16829 (= $x16558 $x16830)) (= $x16562 $x16833))))
+(let (($x12742 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12635 (not $x12631)))
+(let (($x14211 (<= ?v0 4294967295)))
+(let (($x10138 (>= ?v0 0)))
+(and $x10138 $x14211 $x12635 $x3840))))))))
+))
+(let (($x13974 (not $x13163)))
+(let (($x14165 (or $x13974 $x12742)))
+(let (($x13256 (and $x13163 $x14165)))
+(let (($x13521 (or $x12622 $x14273 $x13256)))
+(let (($x13025 (not $x13130)))
+(let (($x12874 (or $x13025 $x12556)))
+(let (($x13199 (and $x13130 $x12874)))
+(let (($x13574 (or $x12518 $x13199)))
+(let (($x13045 (and $x12514 $x13574)))
+(let (($x14132 (or $x13880 $x13045)))
+(let (($x13699 (and $x12494 $x13856 $x14132)))
+(let (($x13117 (or $x12595 $x13699)))
+(let (($x13338 (or $x12491 $x13699)))
+(let (($x13207 (and $x3923 $x3926 $x13338)))
+(let (($x14076 (or $x9775 $x13207)))
+(let (($x14119 (and $x3923 $x3924 $x14076)))
+(let (($x13844 (or $x12482 $x14119)))
+(let (($x13324 (and $x13844 $x13117)))
+(let (($x12957 (or $x12468 $x13324)))
+(let (($x13000 (and $x3923 $x3926 $x12957)))
+(let (($x13827 (or $x9775 $x13000)))
+(let (($x14170 (and $x3923 $x3924 $x13827)))
+(let (($x14053 (or $x12462 $x14170)))
+(let (($x13922 (and $x14053 $x13521)))
+(let (($x13591 (not $x13242)))
+(let (($x13357 (or $x13591 $x14262 $x13922)))
+(let (($x12756 (and $x8667 $x3769 $x13357)))
+(let (($x13900 (not $x12941)))
+(let (($x12819 (or $x13900 $x12756)))
+(let (($x13702 (and $x12941 $x12819)))
+(let (($x13223 (or $x12351 $x13702)))
+(let (($x12832 (and $x12348 $x13223)))
+(let (($x13861 (or $x10031 $x12832)))
+(let (($x12808 (and $x3740 $x3743 $x13861)))
+(let (($x13195 (or $x10048 $x12808)))
+(let (($x13550 (and $x3740 $x3741 $x13195)))
+(let (($x13361 (or $x10065 $x13550)))
+(let (($x13725 (not (and $x3738 $x13361))))
+(let ((@x16497 (refl (~ (not (and $x10138 $x14211 $x12635 $x3840)) (not (and $x10138 $x14211 $x12635 $x3840))))))
+(let ((@x16494 (nnf-neg (nnf-pos (refl (~ $x13836 $x13836)) (~ $x13163 $x13163)) (~ (not $x13974) $x13163))))
+(let ((@x16505 (nnf-neg @x16494 (nnf-neg @x16497 (~ (not $x12742) $x16498)) (~ (not $x14165) $x16502))))
+(let ((@x16513 (nnf-neg (refl (~ $x16466 $x16466)) (refl (~ $x16469 $x16469)) (nnf-neg (sk (~ $x13974 $x16485)) @x16505 (~ (not $x13256) $x16506)) (~ (not $x13521) $x16510))))
+(let ((@x16387 (nnf-neg (nnf-pos (refl (~ $x13633 $x13633)) (~ $x13130 $x13130)) (~ (not $x13025) $x13130))))
+(let ((@x16398 (nnf-neg (sk (~ $x13025 $x16378)) (nnf-neg @x16387 (refl (~ $x16388 $x16388)) (~ (not $x12874) $x16391)) (~ (not $x13199) $x16395))))
+(let ((@x16406 (nnf-neg (refl (~ $x12518 $x12518)) (nnf-neg (refl (~ $x16362 $x16362)) @x16398 (~ (not $x13574) $x16399)) (~ (not $x13045) $x16403))))
+(let ((@x16414 (nnf-neg (refl (~ $x16351 $x16351)) (refl (~ $x16354 $x16354)) (nnf-neg (refl (~ $x16357 $x16357)) @x16406 (~ (not $x14132) $x16407)) (~ (not $x13699) $x16411))))
+(let ((@x16332 (refl (~ $x16330 $x16330))))
+(let ((@x16422 (nnf-neg @x16332 (refl (~ $x16339 $x16339)) (nnf-neg (refl (~ $x16348 $x16348)) @x16414 (~ (not $x13338) $x16415)) (~ (not $x13207) $x16419))))
+(let ((@x16430 (nnf-neg @x16332 (refl (~ $x16333 $x16333)) (nnf-neg (refl (~ $x16336 $x16336)) @x16422 (~ (not $x14076) $x16423)) (~ (not $x14119) $x16427))))
+(let ((@x16445 (nnf-neg (nnf-neg (refl (~ $x16345 $x16345)) @x16430 (~ (not $x13844) $x16431)) (nnf-neg (refl (~ $x16435 $x16435)) @x16414 (~ (not $x13117) $x16438)) (~ (not $x13324) $x16442))))
+(let ((@x16453 (nnf-neg @x16332 (refl (~ $x16339 $x16339)) (nnf-neg (refl (~ $x16342 $x16342)) @x16445 (~ (not $x12957) $x16446)) (~ (not $x13000) $x16450))))
+(let ((@x16461 (nnf-neg @x16332 (refl (~ $x16333 $x16333)) (nnf-neg (refl (~ $x16336 $x16336)) @x16453 (~ (not $x13827) $x16454)) (~ (not $x14170) $x16458))))
+(let ((@x16517 (nnf-neg (nnf-neg (refl (~ $x16327 $x16327)) @x16461 (~ (not $x14053) $x16462)) @x16513 (~ (not $x13922) $x16514))))
+(let ((@x16320 (monotonicity (refl (~ $x8667 $x8667)) (refl (~ $x3769 $x3769)) (refl (~ $x12381 $x12381)) (refl (~ $x12799 $x12799)) (refl (~ $x12389 $x12389)) (refl (~ $x12834 $x12834)) (refl (~ $x12397 $x12397)) (refl (~ $x13193 $x13193)) (refl (~ $x12404 $x12404)) (refl (~ $x12407 $x12407)) (nnf-pos (refl (~ $x12774 $x12774)) (~ $x13341 $x13341)) (refl (~ $x12438 $x12438)) (refl (~ $x3794 $x3794)) (~ $x13242 $x13242))))
+(let ((@x16521 (nnf-neg (nnf-neg @x16320 (~ (not $x13591) $x13242)) (refl (~ $x16324 $x16324)) @x16517 (~ (not $x13357) $x16518))))
+(let ((@x16525 (nnf-neg (refl (~ $x16285 $x16285)) (refl (~ $x16288 $x16288)) @x16521 (~ (not $x12756) $x16522))))
+(let ((@x16284 (nnf-neg (nnf-pos (refl (~ $x12918 $x12918)) (~ $x12941 $x12941)) (~ (not $x13900) $x12941))))
+(let ((@x16533 (nnf-neg (sk (~ $x13900 $x16275)) (nnf-neg @x16284 @x16525 (~ (not $x12819) $x16526)) (~ (not $x13702) $x16530))))
+(let ((@x16541 (nnf-neg (refl (~ $x12351 $x12351)) (nnf-neg (refl (~ $x16259 $x16259)) @x16533 (~ (not $x13223) $x16534)) (~ (not $x12832) $x16538))))
+(let ((@x16549 (nnf-neg (refl (~ $x16242 $x16242)) (refl (~ $x16251 $x16251)) (nnf-neg (refl (~ $x16254 $x16254)) @x16541 (~ (not $x13861) $x16542)) (~ (not $x12808) $x16546))))
+(let ((@x16557 (nnf-neg (refl (~ $x16242 $x16242)) (refl (~ $x16245 $x16245)) (nnf-neg (refl (~ $x16248 $x16248)) @x16549 (~ (not $x13195) $x16550)) (~ (not $x13550) $x16554))))
+(let ((@x16564 (nnf-neg (refl (~ $x10065 $x10065)) (nnf-neg (refl (~ $x16239 $x16239)) @x16557 (~ (not $x13361) $x16558)) (~ $x13725 $x16562))))
+(let (($x12661 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x3840 (= ?x3765 v_b_S_result_G_0$)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12635 (not $x12631)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?v0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x10138 (>= ?v0 0)))
+(and $x10138 $x10221 $x12635 $x3840))))))))))
+))
+(let (($x12652 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12646 (<= (+ ?x3765 ?x12644) 0)))
+(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12635 (not $x12631)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?v0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x12638 (and $x10138 $x10221 $x12635)))
+(let (($x12641 (not $x12638)))
+(or $x12641 $x12646)))))))))))))
+))
+(let (($x12655 (not $x12652)))
+(let (($x12664 (or $x12655 $x12661)))
+(let (($x12667 (and $x12652 $x12664)))
+(let (($x14289 (or $x12622 $x14273 $x12667)))
+(let (($x12542 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12536 (<= (+ ?x3765 ?x12534) 0)))
+(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0)))
+(let (($x12525 (not $x12521)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?v0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x12528 (and $x10138 $x10221 $x12525)))
+(let (($x12531 (not $x12528)))
+(or $x12531 $x12536)))))))))))))
+))
+(let (($x12545 (not $x12542)))
+(let (($x12559 (or $x12545 $x12556)))
+(let (($x12562 (and $x12542 $x12559)))
+(let (($x12565 (or $x12518 $x12562)))
+(let (($x12568 (and $x12514 $x12565)))
+(let ((?x12400 (* (- 1) v_b_L_H_p_G_0$)))
+(let ((?x12401 (+ b_S_max_o_u4$ ?x12400)))
+(let (($x12497 (>= ?x12401 1)))
+(let (($x12508 (and $x12494 $x12497 $x12500 $x3960 $x12505 $x12486)))
+(let (($x12511 (not $x12508)))
+(let (($x12571 (or $x12511 $x12568)))
+(let (($x12574 (and $x12494 $x12497 $x12571)))
+(let (($x12598 (or $x12595 $x12574)))
+(let (($x12577 (or $x12491 $x12574)))
+(let (($x12580 (and $x3923 $x3926 $x12577)))
+(let (($x12583 (or $x9775 $x12580)))
+(let (($x12586 (and $x3923 $x3924 $x12583)))
+(let (($x12589 (or $x12482 $x12586)))
+(let (($x12601 (and $x12589 $x12598)))
+(let (($x12604 (or $x12468 $x12601)))
+(let (($x12607 (and $x3923 $x3926 $x12604)))
+(let (($x12610 (or $x9775 $x12607)))
+(let (($x12613 (and $x3923 $x3924 $x12610)))
+(let (($x12616 (or $x12462 $x12613)))
+(let (($x14294 (and $x12616 $x14289)))
+(let (($x12431 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$)))
+(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12425 (<= (+ ?x3765 ?x12384) 0)))
+(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0)))
+(let (($x12415 (not $x12411)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?v0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x12418 (and $x10138 $x10221 $x12415)))
+(let (($x12421 (not $x12418)))
+(or $x12421 $x12425)))))))))))))
+))
+(let (($x12399 (>= ?x12401 0)))
+(let (($x12391 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) 0)))
+(let (($x12383 (>= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) 0)))
+(let (($x12441 (and $x8667 $x3769 $x12381 $x12383 $x12389 $x12391 $x12397 $x12399 $x12404 $x12407 $x12431 $x12438 $x3794)))
+(let (($x12444 (not $x12441)))
+(let (($x14297 (or $x12444 $x14262 $x14294)))
+(let (($x14300 (and $x8667 $x3769 $x14297)))
+(let (($x12374 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$))))
+(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0)))
+(let (($x12354 (>= ?v0 1)))
+(let (($x12357 (not $x12354)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?v0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x10138 (>= ?v0 0)))
+(let (($x12360 (and $x10138 $x10221 $x12357)))
+(let (($x12363 (not $x12360)))
+(or $x12363 $x12367))))))))))))
+))
+(let (($x12377 (not $x12374)))
+(let (($x14303 (or $x12377 $x14300)))
+(let (($x14306 (and $x12374 $x14303)))
+(let (($x14309 (or $x12351 $x14306)))
+(let (($x14312 (and $x12348 $x14309)))
+(let (($x14315 (or $x10031 $x14312)))
+(let (($x14318 (and $x3740 $x3743 $x14315)))
+(let (($x14321 (or $x10048 $x14318)))
+(let (($x14324 (and $x3740 $x3741 $x14321)))
+(let (($x14327 (or $x10065 $x14324)))
+(let (($x14330 (and $x3738 $x14327)))
+(let (($x14333 (not $x14330)))
+(let (($x13747 (and $x10138 $x14211 $x12635 $x3840)))
+(let ((?x10215 (* (- 1) b_S_max_o_u4$)))
+(let ((?x10220 (+ ?0 ?x10215)))
+(let (($x10221 (<= ?x10220 0)))
+(let (($x12658 (and $x10138 $x10221 $x12635 $x3840)))
+(let ((?x2232 (* 65536 65536)))
+(let ((?x2237 (- ?x2232 1)))
+(let (($x2238 (= b_S_max_o_u4$ ?x2237)))
+(let ((@x7014 (monotonicity (rewrite (= (* (- 1) 1) (- 1))) (= (+ 4294967296 (* (- 1) 1)) (+ 4294967296 (- 1))))))
+(let ((@x7019 (trans @x7014 (rewrite (= (+ 4294967296 (- 1)) 4294967295)) (= (+ 4294967296 (* (- 1) 1)) 4294967295))))
+(let ((@x7011 (trans (monotonicity (rewrite (= ?x2232 4294967296)) (= ?x2237 (- 4294967296 1))) (rewrite (= (- 4294967296 1) (+ 4294967296 (* (- 1) 1)))) (= ?x2237 (+ 4294967296 (* (- 1) 1))))))
+(let ((@x7024 (monotonicity (trans @x7011 @x7019 (= ?x2237 4294967295)) (= $x2238 (= b_S_max_o_u4$ 4294967295)))))
+(let ((@x7025 (mp (asserted $x2238) @x7024 (= b_S_max_o_u4$ 4294967295))))
+(let ((@x13415 (trans (monotonicity @x7025 (= ?x10215 (* (- 1) 4294967295))) (rewrite (= (* (- 1) 4294967295) (- 4294967295))) (= ?x10215 (- 4294967295)))))
+(let ((@x12861 (trans (monotonicity @x13415 (= ?x10220 (+ ?0 (- 4294967295)))) (rewrite (= (+ ?0 (- 4294967295)) (+ (- 4294967295) ?0))) (= ?x10220 (+ (- 4294967295) ?0)))))
+(let ((@x13817 (trans (monotonicity @x12861 (= $x10221 (<= (+ (- 4294967295) ?0) 0))) (rewrite (= (<= (+ (- 4294967295) ?0) 0) $x14211)) (= $x10221 $x14211))))
+(let ((@x12741 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12635) $x13586)) (= (not (and $x10138 $x10221 $x12635)) $x13963))))
+(let ((@x12841 (quant-intro (monotonicity @x12741 (= (or (not (and $x10138 $x10221 $x12635)) $x12646) $x13836)) (= $x12652 $x13163))))
+(let ((@x12999 (monotonicity (monotonicity @x12841 (= $x12655 $x13974)) (quant-intro (monotonicity @x13817 (= $x12658 $x13747)) (= $x12661 $x12742)) (= $x12664 $x14165))))
+(let ((@x13331 (monotonicity (monotonicity @x12841 @x12999 (= $x12667 $x13256)) (= $x14289 $x13521))))
+(let ((@x13632 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12525) $x14023)) (= (not (and $x10138 $x10221 $x12525)) $x12802))))
+(let ((@x13024 (quant-intro (monotonicity @x13632 (= (or (not (and $x10138 $x10221 $x12525)) $x12536) $x13633)) (= $x12542 $x13130))))
+(let ((@x14205 (monotonicity @x13024 (monotonicity (monotonicity @x13024 (= $x12545 $x13025)) (= $x12559 $x12874)) (= $x12562 $x13199))))
+(let ((@x14110 (monotonicity (monotonicity @x7025 (= ?x12401 (+ 4294967295 ?x12400))) (= $x12497 (>= (+ 4294967295 ?x12400) 1)))))
+(let ((@x13814 (trans @x14110 (rewrite (= (>= (+ 4294967295 ?x12400) 1) $x13856)) (= $x12497 $x13856))))
+(let ((@x13698 (monotonicity (monotonicity (monotonicity @x13814 (= $x12508 $x13815)) (= $x12511 $x13880)) (monotonicity (monotonicity @x14205 (= $x12565 $x13574)) (= $x12568 $x13045)) (= $x12571 $x14132))))
+(let ((@x13379 (monotonicity (monotonicity @x13814 @x13698 (= $x12574 $x13699)) (= $x12598 $x13117))))
+(let ((@x13206 (monotonicity (monotonicity @x13814 @x13698 (= $x12574 $x13699)) (= $x12577 $x13338))))
+(let ((@x13797 (monotonicity (monotonicity (monotonicity @x13206 (= $x12580 $x13207)) (= $x12583 $x14076)) (= $x12586 $x14119))))
+(let ((@x12956 (monotonicity (monotonicity @x13797 (= $x12589 $x13844)) @x13379 (= $x12601 $x13324))))
+(let ((@x14003 (monotonicity (monotonicity (monotonicity @x12956 (= $x12604 $x12957)) (= $x12607 $x13000)) (= $x12610 $x13827))))
+(let ((@x13356 (monotonicity (monotonicity (monotonicity @x14003 (= $x12613 $x14170)) (= $x12616 $x14053)) @x13331 (= $x14294 $x13922))))
+(let ((@x13685 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12415) $x13128)) (= (not (and $x10138 $x10221 $x12415)) $x13111))))
+(let ((@x13593 (quant-intro (monotonicity @x13685 (= (or (not (and $x10138 $x10221 $x12415)) $x12425) $x12774)) (= $x12431 $x13341))))
+(let ((@x13192 (monotonicity (monotonicity @x7025 (= ?x12401 (+ 4294967295 ?x12400))) (= $x12399 (>= (+ 4294967295 ?x12400) 0)))))
+(let ((@x13397 (trans @x13192 (rewrite (= (>= (+ 4294967295 ?x12400) 0) $x13193)) (= $x12399 $x13193))))
+(let ((@x13988 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0) $x12834))))
+(let (($x13515 (= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)))))
+(let ((@x12807 (monotonicity (monotonicity @x7025 $x13515) (= $x12391 (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0)))))
+(let (($x13742 (= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) (+ 255 (* (- 1) v_b_L_H_max_G_1$)))))
+(let ((@x12798 (monotonicity (monotonicity (asserted (= b_S_max_o_u1$ 255)) $x13742) (= $x12383 (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0)))))
+(let ((@x13309 (trans @x12798 (rewrite (= (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0) $x12799)) (= $x12383 $x12799))))
+(let ((@x13590 (monotonicity @x13309 (trans @x12807 @x13988 (= $x12391 $x12834)) @x13397 @x13593 (= $x12441 $x13242))))
+(let ((@x13983 (monotonicity (monotonicity @x13590 (= $x12444 $x13591)) @x13356 (= $x14297 $x13357))))
+(let ((@x13411 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12357) $x14020)) (= (not (and $x10138 $x10221 $x12357)) $x13679))))
+(let ((@x14159 (quant-intro (monotonicity @x13411 (= (or (not (and $x10138 $x10221 $x12357)) $x12367) $x12918)) (= $x12374 $x12941))))
+(let ((@x13693 (monotonicity (monotonicity @x14159 (= $x12377 $x13900)) (monotonicity @x13983 (= $x14300 $x12756)) (= $x14303 $x12819))))
+(let ((@x13179 (monotonicity (monotonicity @x14159 @x13693 (= $x14306 $x13702)) (= $x14309 $x13223))))
+(let ((@x13194 (monotonicity (monotonicity (monotonicity @x13179 (= $x14312 $x12832)) (= $x14315 $x13861)) (= $x14318 $x12808))))
+(let ((@x13761 (monotonicity (monotonicity (monotonicity @x13194 (= $x14321 $x13195)) (= $x14324 $x13550)) (= $x14327 $x13361))))
+(let ((@x13603 (monotonicity (monotonicity @x13761 (= $x14330 (and $x3738 $x13361))) (= $x14333 $x13725))))
+(let (($x12625 (and b_S_position_n_marker$ $x12404 $x12389 $x3818 $x3820 $x3822 $x3824)))
+(let (($x12628 (not $x12625)))
+(let (($x12670 (or $x12628 $x12667)))
+(let (($x12673 (and b_S_position_n_marker$ $x12670)))
+(let (($x12676 (or $x12622 $x12673)))
+(let (($x12679 (and $x12616 $x12676)))
+(let (($x12447 (and $x12404 $x12389 $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898)))
+(let (($x12450 (not $x12447)))
+(let (($x12682 (or $x12444 $x12450 $x12679)))
+(let (($x12685 (and $x8667 $x3769 $x12682)))
+(let (($x12688 (or $x12377 $x12685)))
+(let (($x12691 (and $x12374 $x12688)))
+(let (($x12694 (or $x12351 $x12691)))
+(let (($x12697 (and $x12348 $x12694)))
+(let (($x12700 (or $x10031 $x12697)))
+(let (($x12703 (and $x3740 $x3743 $x12700)))
+(let (($x12706 (or $x10048 $x12703)))
+(let (($x12709 (and $x3740 $x3741 $x12706)))
+(let (($x12712 (or $x10065 $x12709)))
+(let (($x12715 (and $x3738 $x12712)))
+(let (($x12718 (not $x12715)))
+(let ((@x13981 (iff-true (asserted b_S_position_n_marker$) (= b_S_position_n_marker$ true))))
+(let ((@x14267 (monotonicity @x13981 (= $x12625 (and true $x12404 $x12389 $x3818 $x3820 $x3822 $x3824)))))
+(let ((@x14272 (trans @x14267 (rewrite (= (and true $x12404 $x12389 $x3818 $x3820 $x3822 $x3824) $x14268)) (= $x12625 $x14268))))
+(let ((@x14278 (monotonicity (monotonicity @x14272 (= $x12628 $x14273)) (= $x12670 (or $x14273 $x12667)))))
+(let ((@x14285 (trans (monotonicity @x13981 @x14278 (= $x12673 (and true (or $x14273 $x12667)))) (rewrite (= (and true (or $x14273 $x12667)) (or $x14273 $x12667))) (= $x12673 (or $x14273 $x12667)))))
+(let ((@x14293 (trans (monotonicity @x14285 (= $x12676 (or $x12622 (or $x14273 $x12667)))) (rewrite (= (or $x12622 (or $x14273 $x12667)) $x14289)) (= $x12676 $x14289))))
+(let (($x14258 (= (and $x12404 $x12389 $x3886 $x3806 true $x3893 $x3894 $x3895 $x3896 $x3897 $x3898) $x14257)))
+(let (($x14255 (= $x12447 (and $x12404 $x12389 $x3886 $x3806 true $x3893 $x3894 $x3895 $x3896 $x3897 $x3898))))
+(let ((@x14261 (trans (monotonicity (iff-true @x10104 (= $x3699 true)) $x14255) (rewrite $x14258) (= $x12447 $x14257))))
+(let ((@x14299 (monotonicity (monotonicity @x14261 (= $x12450 $x14262)) (monotonicity @x14293 (= $x12679 $x14294)) (= $x12682 $x14297))))
+(let ((@x14308 (monotonicity (monotonicity (monotonicity @x14299 (= $x12685 $x14300)) (= $x12688 $x14303)) (= $x12691 $x14306))))
+(let ((@x14317 (monotonicity (monotonicity (monotonicity @x14308 (= $x12694 $x14309)) (= $x12697 $x14312)) (= $x12700 $x14315))))
+(let ((@x14326 (monotonicity (monotonicity (monotonicity @x14317 (= $x12703 $x14318)) (= $x12706 $x14321)) (= $x12709 $x14324))))
+(let ((@x14335 (monotonicity (monotonicity (monotonicity @x14326 (= $x12712 $x14327)) (= $x12715 $x14330)) (= $x12718 $x14333))))
+(let ((@x12637 (monotonicity (rewrite (= (<= v_b_P_H_len$ ?0) $x12631)) (= $x9165 $x12635))))
+(let ((@x10223 (rewrite (= $x1344 $x10221))))
+(let ((@x12663 (quant-intro (monotonicity @x10140 @x10223 @x12637 (= $x9202 $x12658)) (= $x9207 $x12661))))
+(let ((@x12640 (monotonicity @x10140 @x10223 @x12637 (= (and $x1212 $x1344 $x9165) (and $x10138 $x10221 $x12635)))))
+(let ((@x12643 (monotonicity @x12640 (= (not (and $x1212 $x1344 $x9165)) (not (and $x10138 $x10221 $x12635))))))
+(let ((@x12651 (monotonicity @x12643 (rewrite (= $x3837 $x12646)) (= $x9180 (or (not (and $x10138 $x10221 $x12635)) $x12646)))))
+(let ((@x12657 (monotonicity (quant-intro @x12651 (= $x9185 $x12652)) (= (not $x9185) $x12655))))
+(let ((@x12669 (monotonicity (quant-intro @x12651 (= $x9185 $x12652)) (monotonicity @x12657 @x12663 (= $x9228 $x12664)) (= $x9233 $x12667))))
+(let ((@x12390 (rewrite (= $x3776 $x12389))))
+(let ((@x12406 (rewrite (= $x3783 $x12404))))
+(let ((@x12630 (monotonicity (monotonicity @x12406 @x12390 (= $x9159 $x12625)) (= (not $x9159) $x12628))))
+(let ((@x12675 (monotonicity (monotonicity @x12630 @x12669 (= $x9240 $x12670)) (= $x9245 $x12673))))
+(let ((@x12621 (monotonicity @x12406 @x12390 (rewrite (= $x4012 $x12453)) (= (and $x3783 $x3776 $x4012) $x12619))))
+(let ((@x12678 (monotonicity (monotonicity @x12621 (= (not (and $x3783 $x3776 $x4012)) $x12622)) @x12675 (= $x9963 $x12676))))
+(let ((@x12555 (monotonicity (rewrite (= (<= v_b_P_H_len$ v_b_SL_H_witness_G_1$) $x12550)) (= $x9687 $x12553))))
+(let ((@x12527 (monotonicity (rewrite (= (<= v_b_L_H_p_G_1$ ?0) $x12521)) (= $x9663 $x12525))))
+(let ((@x12533 (monotonicity (monotonicity @x10140 @x10223 @x12527 (= $x9669 (and $x10138 $x10221 $x12525))) (= (not $x9669) (not (and $x10138 $x10221 $x12525))))))
+(let ((@x12541 (monotonicity @x12533 (rewrite (= $x3970 $x12536)) (= $x9678 (or (not (and $x10138 $x10221 $x12525)) $x12536)))))
+(let ((@x12547 (monotonicity (quant-intro @x12541 (= $x9683 $x12542)) (= (not $x9683) $x12545))))
+(let ((@x12561 (monotonicity @x12547 (monotonicity @x12555 (= $x9690 $x12556)) (= $x9718 $x12559))))
+(let ((@x12567 (monotonicity (monotonicity (rewrite (= $x3967 $x12514)) (= (not $x3967) $x12518)) (monotonicity (quant-intro @x12541 (= $x9683 $x12542)) @x12561 (= $x9723 $x12562)) (= $x9730 $x12565))))
+(let ((@x12487 (rewrite (= $x3943 $x12486))))
+(let ((@x12510 (monotonicity (rewrite (= $x9606 $x12494)) (rewrite (= $x9615 $x12497)) (rewrite (= $x9623 $x12500)) (rewrite (= $x3961 $x12505)) @x12487 (= $x9657 $x12508))))
+(let ((@x12573 (monotonicity (monotonicity @x12510 (= (not $x9657) $x12511)) (monotonicity (rewrite (= $x3967 $x12514)) @x12567 (= $x9735 $x12568)) (= $x9742 $x12571))))
+(let ((@x12576 (monotonicity (rewrite (= $x9606 $x12494)) (rewrite (= $x9615 $x12497)) @x12573 (= $x9750 $x12574))))
+(let ((@x12594 (monotonicity @x12406 @x12390 (rewrite (= $x3992 $x12471)) @x12487 (= $x9858 $x12592))))
+(let ((@x12600 (monotonicity (monotonicity @x12594 (= (not $x9858) $x12595)) @x12576 (= $x9874 $x12598))))
+(let ((@x12493 (monotonicity (monotonicity @x12406 @x12487 (= $x9595 $x12488)) (= (not $x9595) $x12491))))
+(let ((@x12582 (monotonicity (monotonicity @x12493 @x12576 (= $x9759 $x12577)) (= $x9767 $x12580))))
+(let ((@x12481 (monotonicity @x12406 @x12390 (monotonicity (rewrite (= $x3992 $x12471)) (= $x9497 $x12476)) (= $x9511 $x12479))))
+(let ((@x12591 (monotonicity (monotonicity @x12481 (= (not $x9511) $x12482)) (monotonicity (monotonicity @x12582 (= $x9776 $x12583)) (= $x9784 $x12586)) (= $x9793 $x12589))))
+(let ((@x12470 (monotonicity (monotonicity @x12406 @x12390 (= (and $x3923 $x3926 $x3783 $x3776) $x12465)) (= (not (and $x3923 $x3926 $x3783 $x3776)) $x12468))))
+(let ((@x12606 (monotonicity @x12470 (monotonicity @x12591 @x12600 (= $x9879 $x12601)) (= $x9886 $x12604))))
+(let ((@x12615 (monotonicity (monotonicity (monotonicity @x12606 (= $x9894 $x12607)) (= $x9902 $x12610)) (= $x9910 $x12613))))
+(let ((@x12461 (monotonicity @x12406 @x12390 (monotonicity (rewrite (= $x4012 $x12453)) (= $x9465 $x12456)) (= $x9479 $x12459))))
+(let ((@x12618 (monotonicity (monotonicity @x12461 (= (not $x9479) $x12462)) @x12615 (= $x9919 $x12616))))
+(let ((@x12452 (monotonicity (monotonicity @x12406 @x12390 (= $x9434 $x12447)) (= $x9974 $x12450))))
+(let ((@x12440 (monotonicity (rewrite (= (<= v_b_P_H_len$ v_b_SL_H_witness_G_0$) $x12435)) (= $x8960 $x12438))))
+(let ((@x12417 (monotonicity (rewrite (= (<= v_b_L_H_p_G_0$ ?0) $x12411)) (= $x8936 $x12415))))
+(let ((@x12423 (monotonicity (monotonicity @x10140 @x10223 @x12417 (= $x8942 (and $x10138 $x10221 $x12415))) (= (not $x8942) (not (and $x10138 $x10221 $x12415))))))
+(let ((@x12430 (monotonicity @x12423 (rewrite (= $x3788 $x12425)) (= $x8951 (or (not (and $x10138 $x10221 $x12415)) $x12425)))))
+(let ((@x12443 (monotonicity (rewrite (= $x3772 $x12381)) (rewrite (= $x3773 $x12383)) @x12390 (rewrite (= $x3777 $x12391)) (rewrite (= $x3780 $x12397)) (rewrite (= $x3781 $x12399)) @x12406 (rewrite (= $x3785 $x12407)) (quant-intro @x12430 (= $x8956 $x12431)) @x12440 (= $x9032 $x12441))))
+(let ((@x12684 (monotonicity (monotonicity @x12443 (= (not $x9032) $x12444)) @x12452 (monotonicity @x12618 @x12678 (= $x9968 $x12679)) (= $x9991 $x12682))))
+(let ((@x12362 (monotonicity @x10140 @x10223 (monotonicity (rewrite (= $x8887 $x12354)) (= $x8888 $x12357)) (= $x8899 (and $x10138 $x10221 $x12357)))))
+(let ((@x12373 (monotonicity (monotonicity @x12362 (= (not $x8899) (not (and $x10138 $x10221 $x12357)))) (rewrite (= $x3766 $x12367)) (= $x8908 (or (not (and $x10138 $x10221 $x12357)) $x12367)))))
+(let ((@x12379 (monotonicity (quant-intro @x12373 (= $x8913 $x12374)) (= (not $x8913) $x12377))))
+(let ((@x12690 (monotonicity @x12379 (monotonicity @x12684 (= $x9999 $x12685)) (= $x10008 $x12688))))
+(let ((@x12696 (monotonicity (monotonicity (rewrite (= $x3761 $x12348)) (= (not $x3761) $x12351)) (monotonicity (quant-intro @x12373 (= $x8913 $x12374)) @x12690 (= $x10013 $x12691)) (= $x10020 $x12694))))
+(let ((@x12702 (monotonicity (monotonicity (rewrite (= $x3761 $x12348)) @x12696 (= $x10025 $x12697)) (= $x10032 $x12700))))
+(let ((@x12711 (monotonicity (monotonicity (monotonicity @x12702 (= $x10040 $x12703)) (= $x10049 $x12706)) (= $x10057 $x12709))))
+(let ((@x12720 (monotonicity (monotonicity (monotonicity @x12711 (= $x10066 $x12712)) (= $x10071 $x12715)) (= (not $x10071) $x12718))))
+(let ((@x12721 (mp (not-or-elim (mp (asserted $x4036) @x10085 (not $x10078)) (not $x10071)) @x12720 $x12718)))
+(let ((@x20468 (mp (mp (mp~ (mp (mp @x12721 @x14335 $x14333) @x13603 $x13725) @x16564 $x16562) @x16835 $x16833) @x20467 $x20465)))
+(let ((@x21274 (mp @x20468 (monotonicity @x21270 (= $x20465 (or $x10065 $x21268))) (or $x10065 $x21268))))
+(let ((@x24559 (unit-resolution @x21274 (lemma (unit-resolution @x23120 @x23099 @x23095 @x23071 @x23078 false) $x3738) $x21268)))
+(let ((@x24561 (unit-resolution (def-axiom (or $x21262 $x16242 $x16245 $x21256)) (unit-resolution (def-axiom (or $x21265 $x21259)) @x24559 $x21259) $x21259)))
+(let ((@x24567 (unit-resolution @x24561 (unit-resolution (def-axiom (or $x23304 $x3741)) (lemma @x23396 $x23305) $x3741) @x23251 $x21256)))
+(let ((@x24570 (unit-resolution (def-axiom (or $x21250 $x16242 $x16251 $x21244)) @x23251 (unit-resolution (def-axiom (or $x21253 $x21247)) @x24567 $x21247) (or $x16251 $x21244))))
+(let ((@x25304 (unit-resolution (def-axiom (or $x21241 $x21235)) (unit-resolution @x24570 (lemma @x23543 $x3743) $x21244) $x21235)))
+(let ((@x25314 (unit-resolution (unit-resolution (def-axiom (or $x21238 $x12351 $x21232)) @x25304 $x21235) (lemma ((_ th-lemma arith farkas 1 1) @x10095 (hypothesis $x12351) false) $x12348) $x21232)))
+(let (($x16266 (not $x16265)))
+(let ((@x24547 (hypothesis $x20036)))
+(let (($x16263 (>= ?v0!13 0)))
+(let ((@x24551 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x20031 $x16263)) @x24547 $x16263) (unit-resolution (def-axiom (or $x20031 $x16266)) @x24547 $x16266) (= ?v0!13 0))))
+(let ((@x24574 (monotonicity (monotonicity @x24551 (= (b_S_idx$ ?x3680 ?v0!13 b_T_T_u1$) ?x3739)) (= ?x16270 ?x3746))))
+(let ((@x24572 (unit-resolution (def-axiom (or $x21241 $x3747)) (unit-resolution @x24570 (lemma @x23543 $x3743) $x21244) $x3747)))
+(let ((@x24591 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_L_H_max_G_0$ ?x16270)) $x16273)) (unit-resolution (def-axiom (or $x20031 (not $x16273))) @x24547 (not $x16273)) (trans @x24572 (symm @x24574 (= ?x3746 ?x16270)) (= v_b_L_H_max_G_0$ ?x16270)) false)))
+(let ((@x25316 (unit-resolution (def-axiom (or $x21226 $x20036 $x21220)) (lemma @x24591 $x20031) (unit-resolution (def-axiom (or $x21229 $x21223)) @x25314 $x21223) $x21220)))
+(let ((@x25324 (unit-resolution (def-axiom (or $x21214 $x8666 $x16288 $x21208)) @x10095 (or $x21214 $x16288 $x21208))))
+(let ((@x25326 (unit-resolution @x25324 (mp @x24572 (symm (commutativity (= $x3769 $x3747)) (= $x3747 $x3769)) $x3769) (or $x21214 $x21208))))
+(let ((@x25327 (unit-resolution @x25326 (unit-resolution (def-axiom (or $x21217 $x21211)) @x25316 $x21211) $x21208)))
+(let ((@x25328 (unit-resolution (def-axiom (or $x21205 $x12397)) @x25327 $x12397)))
+(let ((@x25333 (unit-resolution (def-axiom (or $x21205 $x21041)) @x25327 $x21041)))
+(let (($x23869 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0)))
+(let (($x23793 (<= (+ v_b_L_H_max_G_1$ (* (- 1) v_b_S_result_G_0$)) 0)))
+(let (($x23789 (= v_b_L_H_max_G_1$ v_b_S_result_G_0$)))
+(let ((@x24013 (symm (unit-resolution (def-axiom (or $x21193 $x3824)) (hypothesis $x21196) $x3824) $x23789)))
+(let (($x21519 (not $x16760)))
+(let ((@x23878 (trans (hypothesis $x3794) (symm (hypothesis $x3824) $x23789) (= ?x3793 v_b_S_result_G_0$))))
+(let (($x23841 (not (= ?x3793 v_b_S_result_G_0$))))
+(let (($x23846 (or $x21178 $x20219 $x20374 $x12435 $x23841)))
+(let (($x23737 (>= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x23847 (or $x21178 (or $x20219 $x20374 $x23737 $x23841))))
+(let (($x23747 (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0) $x12435)))
+(let (($x23745 (= $x23737 (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0))))
+(let (($x23742 (= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$))))
+(let ((@x23750 (trans (monotonicity (rewrite $x23742) $x23745) (rewrite $x23747) (= $x23737 $x12435))))
+(let ((@x23845 (monotonicity @x23750 (= (or $x20219 $x20374 $x23737 $x23841) (or $x20219 $x20374 $x12435 $x23841)))))
+(let ((@x23855 (trans (monotonicity @x23845 (= $x23847 (or $x21178 (or $x20219 $x20374 $x12435 $x23841)))) (rewrite (= (or $x21178 (or $x20219 $x20374 $x12435 $x23841)) $x23846)) (= $x23847 $x23846))))
+(let ((@x23883 (unit-resolution (mp ((_ quant-inst v_b_SL_H_witness_G_0$) $x23847) @x23855 $x23846) (hypothesis $x12834) (hypothesis $x12438) (hypothesis $x12389) (hypothesis $x21173) @x23878 false)))
+(let ((@x24019 (unit-resolution (lemma @x23883 (or $x21178 $x20374 $x12435 $x20219 $x20379 $x20358)) (unit-resolution (def-axiom (or $x21193 $x3824)) (hypothesis $x21196) $x3824) (hypothesis $x12438) (hypothesis $x12389) (hypothesis $x3794) (hypothesis $x12834) $x21178)))
+(let ((@x24021 (unit-resolution (def-axiom (or $x21190 $x20298 $x21184)) (unit-resolution (def-axiom (or $x21181 $x21173)) @x24019 $x21181) (unit-resolution (def-axiom (or $x21193 $x21187)) (hypothesis $x21196) $x21187) $x20298)))
+(let (($x24008 (or (not (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)) $x16760 (not $x23793))))
+(let ((@x24005 ((_ th-lemma arith farkas -1 1 1) (hypothesis (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)) (hypothesis $x21519) (hypothesis $x23793) false)))
+(let ((@x24023 (unit-resolution (lemma @x24005 $x24008) (unit-resolution (def-axiom (or $x20293 $x21519)) @x24021 $x21519) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x23789) $x23793)) @x24013 $x23793) (not (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)))))
+(let (($x23889 (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)))
+(let (($x23897 (or $x21046 $x20277 $x20278 $x23869 $x23889)))
+(let (($x23835 (<= (+ ?x16481 (* (- 1) v_b_L_H_max_G_1$)) 0)))
+(let (($x23815 (>= (+ ?v0!15 ?x12400) 0)))
+(let (($x23898 (or $x21046 (or $x20277 $x20278 $x23815 $x23835))))
+(let (($x23874 (= (+ ?x16481 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481))))
+(let ((@x23887 (monotonicity (rewrite $x23874) (= $x23835 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481) 0)))))
+(let ((@x23893 (trans @x23887 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481) 0) $x23889)) (= $x23835 $x23889))))
+(let ((@x23867 (monotonicity (rewrite (= (+ ?v0!15 ?x12400) (+ ?x12400 ?v0!15))) (= $x23815 (>= (+ ?x12400 ?v0!15) 0)))))
+(let ((@x23872 (trans @x23867 (rewrite (= (>= (+ ?x12400 ?v0!15) 0) $x23869)) (= $x23815 $x23869))))
+(let ((@x23896 (monotonicity @x23872 @x23893 (= (or $x20277 $x20278 $x23815 $x23835) (or $x20277 $x20278 $x23869 $x23889)))))
+(let ((@x23906 (trans (monotonicity @x23896 (= $x23898 (or $x21046 (or $x20277 $x20278 $x23869 $x23889)))) (rewrite (= (or $x21046 (or $x20277 $x20278 $x23869 $x23889)) $x23897)) (= $x23898 $x23897))))
+(let ((@x24028 (unit-resolution (mp ((_ quant-inst ?v0!15) $x23898) @x23906 $x23897) (hypothesis $x21041) (unit-resolution (def-axiom (or $x20293 $x16473)) @x24021 $x16473) (unit-resolution (def-axiom (or $x20293 $x16474)) @x24021 $x16474) (or $x23869 $x23889))))
+(let ((@x24031 ((_ th-lemma arith farkas -1 1 1) (unit-resolution (def-axiom (or $x20293 $x16743)) @x24021 $x16743) (unit-resolution @x24028 @x24023 $x23869) (unit-resolution (def-axiom (or $x21193 $x12453)) (hypothesis $x21196) $x12453) false)))
+(let ((@x25334 (unit-resolution (lemma @x24031 (or $x21193 $x21046 $x12435 $x20219 $x20379 $x20374)) @x25333 (unit-resolution (def-axiom (or $x21205 $x12438)) @x25327 $x12438) (unit-resolution (def-axiom (or $x21205 $x12389)) @x25327 $x12389) (unit-resolution (def-axiom (or $x21205 $x3794)) @x25327 $x3794) (unit-resolution (def-axiom (or $x21205 $x12834)) @x25327 $x12834) $x21193)))
+(let ((@x25336 (unit-resolution (def-axiom (or $x21202 $x21162 $x21196)) (unit-resolution (def-axiom (or $x21205 $x21199)) @x25327 $x21199) @x25334 $x21162)))
+(let ((@x25337 (unit-resolution (def-axiom (or $x21159 $x12456)) @x25336 $x12456)))
+(let ((@x25341 (mp @x23336 (symm (monotonicity @x24339 (= $x23297 $x23045)) (= $x23045 $x23297)) $x23297)))
+(let (($x24098 (or $x23330 $x21687 $x22190 $x23298 $x20375 $x12453 $x24083)))
+(let (($x24080 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x24099 (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x24080 $x24083))))
+(let (($x24096 (= (or $x21687 $x22190 $x23298 $x20375 $x24080 $x24083) (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083))))
+(let ((@x24092 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0) $x12453))))
+(let (($x24086 (= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$))))
+(let ((@x24090 (monotonicity (rewrite $x24086) (= $x24080 (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0)))))
+(let ((@x24103 (monotonicity (monotonicity (trans @x24090 @x24092 (= $x24080 $x12453)) $x24096) (= $x24099 (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083))))))
+(let ((@x24107 (trans @x24103 (rewrite (= (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083)) $x24098)) (= $x24099 $x24098))))
+(let ((@x24142 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x3678 ?x21715) v_b_P_H_len$ v_b_L_H_p_G_0$ b_T_T_u1$) $x24099) @x24107 $x24098) @x19388 @x5093 @x10104 (hypothesis $x12397) (hypothesis $x12456) (hypothesis $x23297) (hypothesis $x24082) false)))
+(let ((@x25343 (unit-resolution (lemma @x24142 (or $x24083 $x20375 $x12453 $x23298)) @x25341 (or $x24083 $x20375 $x12453))))
+(let ((@x25345 (unit-resolution (def-axiom (or $x24082 $x3924)) (unit-resolution @x25343 @x25337 @x25328 $x24083) $x3924)))
+(let ((@x25354 (unit-resolution (hypothesis $x24195) (mp @x25345 (symm @x25350 (= $x3924 $x24194)) $x24194) false)))
+(let ((@x25215 (unit-resolution (def-axiom (or $x24228 $x24195 $x24226)) (unit-resolution (lemma @x25354 (or $x24194 (not $x23973))) @x25156 $x24194) (or $x24228 $x24226))))
+(let ((@x25214 (unit-resolution (def-axiom (or (not $x23994) $x16330 $x23984)) @x25032 (or (not $x23994) $x23984))))
+(let ((@x25219 (unit-resolution @x25214 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23994)) @x20966 $x23994) $x23984)))
+(let ((@x25248 (trans (monotonicity (symm @x25156 (= ?x23972 ?x3922)) (= (b_S_typ$ ?x23972) ?x23986)) @x25219 (= (b_S_typ$ ?x23972) b_T_T_u1$))))
+(let ((@x25302 (trans (monotonicity @x25248 (= (b_S_kind_n_of$ (b_S_typ$ ?x23972)) ?x22173)) @x23477 $x24198)))
+(let ((@x25229 (monotonicity (symm (monotonicity @x25156 (= ?x23936 ?x24200)) (= ?x24200 ?x23936)) (= $x24201 $x24081))))
+(let (($x24854 (not $x24081)))
+(let ((@x25388 (unit-resolution (def-axiom (or $x24082 $x24854)) (unit-resolution @x25343 @x25337 @x25328 $x24083) $x24854)))
+(let ((@x25238 (mp @x25388 (monotonicity (symm @x25229 (= $x24081 $x24201)) (= $x24854 $x24202)) $x24202)))
+(let ((?x25453 (+ ?x24037 ?x24269)))
+(let ((?x25458 (b_S_ptr$ b_T_T_u1$ ?x25453)))
+(let ((?x25435 (b_S_idx$ ?x22684 v_b_L_H_p_G_0$ b_T_T_u1$)))
+(let (($x25461 (= ?x25435 ?x25458)))
+(let (($x25464 (not $x25461)))
+(let (($x25467 (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25464)))
+(let (($x25470 (not $x25467)))
+(let (($x25473 (or $x23217 $x25470)))
+(let (($x25447 (not (= ?x25435 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)))))))
+(let (($x25476 (= (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447))) $x25473)))
+(let (($x25462 (= (= ?x25435 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)))) $x25461)))
+(let ((@x25452 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x3652) ?x24037)) (= (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)) (+ ?x24269 ?x24037)))))
+(let ((@x25457 (trans @x25452 (rewrite (= (+ ?x24269 ?x24037) ?x25453)) (= (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)) ?x25453))))
+(let ((@x25460 (monotonicity @x25457 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652))) ?x25458))))
+(let ((@x25469 (monotonicity (monotonicity (monotonicity @x25460 $x25462) (= $x25447 $x25464)) (= (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447) $x25467))))
+(let ((@x25472 (monotonicity @x25469 (= (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447)) $x25470))))
+(let ((@x25475 ((_ quant-inst (b_S_ptr$ ?x3678 ?x21715) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447))))))
+(let ((@x25481 (mp @x25475 (trans (monotonicity @x25472 $x25476) (rewrite (= $x25473 $x25473)) $x25476) $x25473)))
+(let ((@x25407 (unit-resolution (def-axiom (or $x25467 $x25461)) (lemma (unit-resolution @x25481 @x18901 (hypothesis $x25467) false) $x25470) $x25461)))
+(let ((?x25308 (b_S_idx$ ?x23296 v_b_L_H_p_G_0$ b_T_T_u1$)))
+(let ((?x25309 (b_S_select_o_tm$ ?x3874 ?x25308)))
+(let (($x25310 (= (b_S_ts_n_emb$ ?x25309) ?x23296)))
+(let (($x25362 (or (not $x25310) (b_S_ts_n_is_n_volatile$ ?x25309) (not (b_S_ts_n_is_n_array_n_elt$ ?x25309)) (not (b_S_typed$ v_b_S_s$ ?x25308)))))
+(let (($x25363 (not $x25362)))
+(let (($x25293 (or $x24161 $x24152 $x20375 $x12453 $x25363)))
+(let (($x25294 (or $x24161 (or $x24152 $x20375 $x24080 $x25363))))
+(let ((@x25292 (monotonicity (trans @x24090 @x24092 (= $x24080 $x12453)) (= (or $x24152 $x20375 $x24080 $x25363) (or $x24152 $x20375 $x12453 $x25363)))))
+(let ((@x25384 (trans (monotonicity @x25292 (= $x25294 (or $x24161 (or $x24152 $x20375 $x12453 $x25363)))) (rewrite (= (or $x24161 (or $x24152 $x20375 $x12453 $x25363)) $x25293)) (= $x25294 $x25293))))
+(let ((@x25376 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ v_b_L_H_p_G_0$) $x25294) @x25384 $x25293) @x18685 @x25328 @x25337 (lemma (unit-resolution (hypothesis $x24152) @x24253 false) $x24131) (hypothesis $x25362) false)))
+(let ((@x25585 (trans (trans @x23922 @x23269 (= ?x23206 ?x23203)) (symm @x24358 (= ?x23203 ?x3680)) (= ?x23206 ?x3680))))
+(let ((@x25593 (trans (symm @x25587 (= ?x24043 ?x23996)) (monotonicity @x25585 (= ?x23996 ?x3922)) (= ?x24043 ?x3922))))
+(let (($x25908 (>= (+ ?x24040 (* (- 1) (b_S_ref$ ?x24043))) 0)))
+(let ((?x25052 (+ ?x23612 ?x24037 (* (- 1) (b_S_ref$ ?x24043)))))
+(let (($x25064 (>= ?x25052 0)))
+(let (($x25050 (= ?x25052 0)))
+(let (($x21853 (not $x20968)))
+(let (($x25054 (or $x21853 $x25050)))
+(let ((@x25058 (monotonicity (rewrite (= (= (b_S_ref$ ?x24043) ?x24040) $x25050)) (= (or $x21853 (= (b_S_ref$ ?x24043) ?x24040)) $x25054))))
+(let ((@x25061 (trans @x25058 (rewrite (= $x25054 $x25054)) (= (or $x21853 (= (b_S_ref$ ?x24043) ?x24040)) $x25054))))
+(let ((@x25599 (unit-resolution (mp ((_ quant-inst b_T_T_u1$ (+ ?x23612 ?x24037)) (or $x21853 (= (b_S_ref$ ?x24043) ?x24040))) @x25061 $x25054) @x20973 $x25050)))
+(let ((@x25911 (unit-resolution ((_ th-lemma arith assign-bounds -1) (or $x25908 (not $x25064))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x25050) $x25064)) @x25599 $x25064) $x25908)))
+(let (($x25907 (<= (+ ?x24040 (* (- 1) (b_S_ref$ ?x24043))) 0)))
+(let (($x25063 (<= ?x25052 0)))
+(let ((@x25914 (unit-resolution ((_ th-lemma arith assign-bounds -1) (or $x25907 (not $x25063))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x25050) $x25063)) @x25599 $x25063) $x25907)))
+(let ((@x25925 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= ?x24040 (b_S_ref$ ?x24043)) (not $x25907) (not $x25908))) @x25914 @x25911 (= ?x24040 (b_S_ref$ ?x24043)))))
+(let (($x25910 (>= (+ ?x24040 (* (- 1) ?x25453)) 0)))
+(let (($x23420 (<= (+ ?x21715 (* (- 1) ?x23186)) 0)))
+(let ((@x25567 (monotonicity (trans @x23269 (symm @x24358 (= ?x23203 ?x3680)) (= ?x3739 ?x3680)) (= ?x23186 ?x3681))))
+(let ((@x25574 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x23186)) $x23420)) (trans @x24327 (symm @x25567 (= ?x3681 ?x23186)) (= ?x21715 ?x23186)) $x23420)))
+(let (($x25491 (>= (+ ?x21715 (* (- 1) ?x24269)) 0)))
+(let ((@x25608 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x24269)) $x25491)) (symm (monotonicity @x24449 (= ?x24269 ?x21715)) (= ?x21715 ?x24269)) $x25491)))
+(let (($x24750 (<= (+ ?x23186 (* (- 1) ?x23612)) 0)))
+(let ((@x25581 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x23186 ?x23612)) $x24750)) (symm (monotonicity @x23922 (= ?x23612 ?x23186)) (= ?x23186 ?x23612)) $x24750)))
+(let ((@x25922 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1) (or $x25910 (not $x24750) (not $x25491) (not $x23420))) @x25581 @x25608 @x25574 $x25910)))
+(let (($x25909 (<= (+ ?x24040 (* (- 1) ?x25453)) 0)))
+(let (($x23421 (>= (+ ?x21715 (* (- 1) ?x23186)) 0)))
+(let ((@x25619 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x23186)) $x23421)) (trans @x24327 (symm @x25567 (= ?x3681 ?x23186)) (= ?x21715 ?x23186)) $x23421)))
+(let (($x25490 (<= (+ ?x21715 (* (- 1) ?x24269)) 0)))
+(let ((@x25631 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x24269)) $x25490)) (symm (monotonicity @x24449 (= ?x24269 ?x21715)) (= ?x21715 ?x24269)) $x25490)))
+(let (($x24751 (>= (+ ?x23186 (* (- 1) ?x23612)) 0)))
+(let ((@x25622 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x23186 ?x23612)) $x24751)) (symm (monotonicity @x23922 (= ?x23612 ?x23186)) (= ?x23186 ?x23612)) $x24751)))
+(let ((@x25916 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1) (or $x25909 (not $x24751) (not $x25490) (not $x23421))) @x25622 @x25631 @x25619 $x25909)))
+(let ((@x25951 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= ?x24040 ?x25453) (not $x25909) (not $x25910))) @x25916 @x25922 (= ?x24040 ?x25453))))
+(let ((@x25927 (trans (trans (symm @x25951 (= ?x25453 ?x24040)) @x25925 (= ?x25453 (b_S_ref$ ?x24043))) (monotonicity @x25593 (= (b_S_ref$ ?x24043) ?x24124)) (= ?x25453 ?x24124))))
+(let ((@x25944 (trans (monotonicity @x24339 (= ?x25308 ?x25435)) (hypothesis $x25461) (= ?x25308 ?x25458))))
+(let ((@x25837 (monotonicity (trans @x25944 (monotonicity @x25927 (= ?x25458 ?x23972)) (= ?x25308 ?x23972)) (= ?x25309 ?x24200))))
+(let ((@x25955 (trans (monotonicity (symm @x25837 (= ?x24200 ?x25309)) (= ?x24203 (b_S_ts_n_emb$ ?x25309))) (unit-resolution (def-axiom (or $x25362 $x25310)) (lemma @x25376 $x25363) $x25310) (= ?x24203 ?x23296))))
+(let ((@x25957 (monotonicity (trans @x25955 @x23339 (= ?x24203 ?x3682)) (= (b_S_owner$ v_b_S_s$ ?x24203) ?x3684))))
+(let ((@x25971 (unit-resolution (hypothesis (not $x24212)) (trans @x25957 @x10097 $x24212) false)))
+(let ((@x25374 (unit-resolution (def-axiom (or $x24214 (not $x24212))) (unit-resolution (lemma @x25971 (or $x25464 $x24212)) @x25407 $x24212) $x24214)))
+(let (($x25207 (or (not $x19952) (not (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203))))))))
+(let ((@x25126 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x3874 ?x23972)) $x25207) @x19955 (hypothesis (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203))))) false)))
+(let ((@x25204 (lemma @x25126 (not (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203))))))))
+(let (($x25192 (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203))))))
+(let ((@x25299 (unit-resolution (def-axiom (or $x24217 $x24199 $x24207 $x24210 (not $x24214))) (unit-resolution (def-axiom (or $x25192 (not $x24210))) @x25204 (not $x24210)) @x25374 (or $x24217 $x24199 $x24207))))
+(let ((@x25300 (unit-resolution @x25299 (unit-resolution (def-axiom (or $x24206 $x24201)) @x25238 $x24206) @x25302 $x24217)))
+(let (($x25367 (or (or $x24217 (not (or $x24198 (not $x24221)))) (or $x24199 $x24207 $x24210 (not $x24214)))))
+(let ((@x25298 (unit-resolution (def-axiom $x25367) @x25300 (unit-resolution @x25215 @x25226 $x24226) false)))
+(let (($x25758 (>= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!14)) 0)))
+(let (($x25493 (not $x25758)))
+(let (($x26041 (= ?x3929 ?x16374)))
+(let (($x26045 (not $x26041)))
+(let (($x21439 (<= (+ v_b_L_H_max_G_1$ ?x12534) 0)))
+(let (($x21437 (= v_b_L_H_max_G_1$ v_b_L_H_max_G_3$)))
+(let ((@x23828 (mp (hypothesis $x3993) (symm (commutativity (= $x21437 $x3993)) (= $x3993 $x21437)) $x21437)))
+(let ((@x23799 (lemma (unit-resolution (hypothesis (not $x21437)) @x23828 false) (or $x20230 $x21437))))
+(let ((@x25753 (unit-resolution @x23799 (unit-resolution (def-axiom (or $x21123 $x3993)) (hypothesis $x21126) $x3993) $x21437)))
+(let (($x21321 (not $x16622)))
+(let (($x13842 (<= v_b_P_H_len$ 4294967295)))
+(let (($x12342 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) 0)))
+(let (($x12813 (= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) (+ 4294967295 (* (- 1) v_b_P_H_len$)))))
+(let ((@x12767 (monotonicity (monotonicity @x7025 $x12813) (= $x12342 (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0)))))
+(let ((@x13004 (trans @x12767 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0) $x13842)) (= $x12342 $x13842))))
+(let ((@x13005 (mp (mp (and-elim @x10087 $x3720) (rewrite (= $x3720 $x12342)) $x12342) @x13004 $x13842)))
+(let ((@x25757 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x13856 (not $x13842) $x12453)) @x13005 (or $x13856 $x12453))))
+(let ((@x26039 (unit-resolution (def-axiom (or $x21090 $x16351 $x16354 $x21084)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x20375 $x12494)) @x25328 $x12494) (unit-resolution @x25757 @x25337 $x13856) (or $x21090 $x21084))))
+(let ((@x25754 (unit-resolution @x26039 (unit-resolution (def-axiom (or $x21123 $x21087)) (hypothesis $x21126) $x21087) $x21084)))
+(let (($x21314 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_L_H_p_G_1$)) (- 1))))
+(let ((@x25773 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x20170 $x21314)) (unit-resolution (def-axiom (or $x21081 $x12500)) @x25754 $x12500) $x21314)))
+(let ((@x24365 (lemma ((_ th-lemma arith farkas -1 1 1) (hypothesis $x12518) (hypothesis $x12456) (hypothesis $x21314) false) (or $x12514 $x12453 (not $x21314)))))
+(let ((@x25776 (unit-resolution (unit-resolution @x24365 @x25337 (or $x12514 (not $x21314))) @x25773 $x12514)))
+(let ((@x25780 (unit-resolution (def-axiom (or $x21078 $x12518 $x21072)) @x25776 (unit-resolution (def-axiom (or $x21081 $x21075)) @x25754 $x21075) $x21072)))
+(let ((@x25788 (symm (unit-resolution (def-axiom (or $x21123 $x3993)) (hypothesis $x21126) $x3993) $x21437)))
+(let ((@x26009 (monotonicity (unit-resolution (def-axiom (or $x21123 $x3994)) (hypothesis $x21126) $x3994) (= ?x3974 (b_S_idx$ ?x3680 v_b_SL_H_witness_G_0$ b_T_T_u1$)))))
+(let ((@x25796 (trans (monotonicity @x26009 (= ?x3975 ?x3793)) (unit-resolution (def-axiom (or $x21205 $x3794)) @x25327 $x3794) (= ?x3975 v_b_L_H_max_G_1$))))
+(let (($x21444 (>= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_SL_H_witness_G_1$)) 0)))
+(let (($x21441 (= v_b_SL_H_witness_G_0$ v_b_SL_H_witness_G_1$)))
+(let ((@x25805 (mp (unit-resolution (def-axiom (or $x21123 $x3994)) (hypothesis $x21126) $x3994) (symm (commutativity (= $x21441 $x3994)) (= $x3994 $x21441)) $x21441)))
+(let ((@x25039 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x12553 $x12435 (not $x21444))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21441) $x21444)) @x25805 $x21444) (unit-resolution (def-axiom (or $x21205 $x12438)) @x25327 $x12438) $x12553)))
+(let ((@x24865 (unit-resolution (def-axiom (or $x20131 $x12550 (not $x3976))) @x25039 (trans @x25796 @x25788 $x3976) $x20131)))
+(let ((@x24882 (unit-resolution (def-axiom (or $x21066 $x20104 $x21060)) (unit-resolution (def-axiom (or $x21057 $x20130)) @x24865 $x21057) (unit-resolution (def-axiom (or $x21069 $x21063)) @x25780 $x21063) $x20104)))
+(let ((@x25939 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x12471) (hypothesis $x21321) (hypothesis $x21439) (hypothesis (>= (+ ?x3929 ?x16620) 0)) false)))
+(let ((@x25943 (lemma @x25939 (or (not (>= (+ ?x3929 ?x16620) 0)) $x12476 $x16622 (not $x21439)))))
+(let ((@x23480 (unit-resolution @x25943 (unit-resolution (def-axiom (or $x21123 $x12471)) (hypothesis $x21126) $x12471) (unit-resolution (def-axiom (or $x20099 $x21321)) @x24882 $x21321) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21437) $x21439)) @x25753 $x21439) (not (>= (+ ?x3929 ?x16620) 0)))))
+(let ((@x25040 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26045 (>= (+ ?x3929 ?x16620) 0))) @x23480 $x26045)))
+(let ((@x26053 (symm (hypothesis (= v_b_L_H_p_G_0$ ?v0!14)) (= ?v0!14 v_b_L_H_p_G_0$))))
+(let ((@x26057 (monotonicity (monotonicity @x26053 (= (b_S_idx$ ?x3680 ?v0!14 b_T_T_u1$) ?x3922)) (= ?x16374 ?x3929))))
+(let ((@x26062 (lemma (unit-resolution (hypothesis $x26045) (symm @x26057 $x26041) false) (or (not (= v_b_L_H_p_G_0$ ?v0!14)) $x26041))))
+(let (($x24388 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!14)) 0)))
+(let (($x24400 (>= (+ v_b_L_H_max_G_1$ ?x16620) 0)))
+(let (($x25800 (not $x24400)))
+(let ((@x25043 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25800 $x16622 (not $x21439))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21437) $x21439)) @x25753 $x21439) (unit-resolution (def-axiom (or $x20099 $x21321)) @x24882 $x21321) $x25800)))
+(let (($x25270 (or $x21046 $x20083 $x20084 $x24388 $x24400)))
+(let (($x24379 (<= (+ ?x16374 (* (- 1) v_b_L_H_max_G_1$)) 0)))
+(let (($x24371 (>= (+ ?v0!14 ?x12400) 0)))
+(let (($x25240 (or $x21046 (or $x20083 $x20084 $x24371 $x24379))))
+(let (($x25224 (= (+ ?x16374 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374))))
+(let ((@x25242 (monotonicity (rewrite $x25224) (= $x24379 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374) 0)))))
+(let ((@x25266 (trans @x25242 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374) 0) $x24400)) (= $x24379 $x24400))))
+(let ((@x25195 (monotonicity (rewrite (= (+ ?v0!14 ?x12400) (+ ?x12400 ?v0!14))) (= $x24371 (>= (+ ?x12400 ?v0!14) 0)))))
+(let ((@x25223 (trans @x25195 (rewrite (= (>= (+ ?x12400 ?v0!14) 0) $x24388)) (= $x24371 $x24388))))
+(let ((@x25269 (monotonicity @x25223 @x25266 (= (or $x20083 $x20084 $x24371 $x24379) (or $x20083 $x20084 $x24388 $x24400)))))
+(let ((@x25287 (trans (monotonicity @x25269 (= $x25240 (or $x21046 (or $x20083 $x20084 $x24388 $x24400)))) (rewrite (= (or $x21046 (or $x20083 $x20084 $x24388 $x24400)) $x25270)) (= $x25240 $x25270))))
+(let ((@x25045 (unit-resolution (mp ((_ quant-inst ?v0!14) $x25240) @x25287 $x25270) @x25333 (unit-resolution (def-axiom (or $x20099 $x16366)) @x24882 $x16366) (unit-resolution (def-axiom (or $x20099 $x16367)) @x24882 $x16367) @x25043 $x24388)))
+(let ((@x25794 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= v_b_L_H_p_G_0$ ?v0!14) (not $x24388) $x25493)) @x25045 (or (= v_b_L_H_p_G_0$ ?v0!14) $x25493))))
+(let ((@x25807 (unit-resolution @x25794 (unit-resolution @x26062 @x25040 (not (= v_b_L_H_p_G_0$ ?v0!14))) $x25493)))
+(let ((@x25542 ((_ th-lemma arith farkas -1 -1 1) (unit-resolution (def-axiom (or $x20099 $x16605)) @x24882 $x16605) @x25773 @x25807 false)))
+(let ((@x23800 (hypothesis $x21114)))
+(let ((@x23806 (unit-resolution (def-axiom (or $x21111 $x3923)) @x23800 $x3923)))
+(let ((@x23831 (unit-resolution (def-axiom (or $x21108 $x16330 $x16333 $x21102)) (unit-resolution (def-axiom (or $x21111 $x21105)) @x23800 $x21105) @x23806 (unit-resolution (def-axiom (or $x21111 $x3924)) @x23800 $x3924) $x21102)))
+(let ((@x23833 (unit-resolution (def-axiom (or $x21156 $x16330 $x16333 $x21150)) (unit-resolution (def-axiom (or $x21111 $x3924)) @x23800 $x3924) (hypothesis $x21153) @x23806 $x21150)))
+(let ((@x23933 (unit-resolution (def-axiom (or $x21132 $x21120 $x21126)) (unit-resolution (def-axiom (or $x21117 $x21111)) @x23800 $x21117) (hypothesis $x21123) $x21132)))
+(let ((@x23949 (unit-resolution (def-axiom (or $x21144 $x16330 $x16339 $x21138)) (unit-resolution (def-axiom (or $x21135 $x21129)) @x23933 $x21135) (unit-resolution (def-axiom (or $x21147 $x21141)) @x23833 $x21141) @x23806 (unit-resolution (def-axiom (or $x21099 $x3926)) @x23831 $x3926) false)))
+(let ((@x25705 (unit-resolution (lemma @x23949 (or $x21111 $x21126 $x21156)) (unit-resolution (def-axiom (or $x21159 $x21153)) @x25336 $x21153) (or $x21111 $x21126))))
+(let ((@x24823 (unit-resolution (def-axiom (or $x21114 $x16330 $x16333 $x21108)) @x25345 (or $x21114 $x16330 $x21108))))
+(let ((@x24804 (unit-resolution @x24823 (unit-resolution (def-axiom (or $x21105 $x21099)) (hypothesis $x21102) $x21105) (unit-resolution (def-axiom (or $x21099 $x3923)) (hypothesis $x21102) $x3923) (hypothesis $x21111) false)))
+(let ((@x25544 (unit-resolution (lemma @x24804 (or $x21099 $x21114)) (unit-resolution @x25705 (lemma @x25542 $x21123) $x21111) $x21099)))
+(let ((@x25545 (unit-resolution (def-axiom (or $x21102 $x16330 $x16339 $x21096)) @x25032 @x25544 (or $x16339 $x21096))))
+(let ((@x25499 (unit-resolution @x25545 (lemma @x25298 $x3926) $x21096)))
+(let ((@x24990 (symm (unit-resolution (def-axiom (or $x21093 $x3940)) @x25499 $x3940) (= v_b_L_H_max_G_2$ v_b_L_H_max_G_3$))))
+(let ((@x25684 (symm (unit-resolution (def-axiom (or $x21093 $x3935)) @x25499 $x3935) (= ?x3929 v_b_L_H_max_G_2$))))
+(let ((@x25702 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3929 v_b_L_H_max_G_3$)) $x24191)) (trans @x25684 @x24990 (= ?x3929 v_b_L_H_max_G_3$)) $x24191)))
+(let ((@x25703 (unit-resolution @x26039 (unit-resolution (def-axiom (or $x21093 $x21087)) @x25499 $x21087) $x21084)))
+(let ((@x25694 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x20170 $x21314)) (unit-resolution (def-axiom (or $x21081 $x12500)) @x25703 $x12500) $x21314)))
+(let ((@x25722 (unit-resolution (unit-resolution @x24365 @x25337 (or $x12514 (not $x21314))) @x25694 $x12514)))
+(let ((@x25710 (unit-resolution (def-axiom (or $x21078 $x12518 $x21072)) @x25722 (unit-resolution (def-axiom (or $x21081 $x21075)) @x25703 $x21075) $x21072)))
+(let ((@x25723 (monotonicity (unit-resolution (def-axiom (or $x21093 $x3942)) @x25499 $x3942) (= ?x3974 ?x3922))))
+(let ((@x25707 (trans (monotonicity @x25723 (= ?x3975 ?x3929)) @x25684 (= ?x3975 v_b_L_H_max_G_2$))))
+(let (($x24188 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_SL_H_witness_G_1$)) 0)))
+(let ((@x25713 (symm (unit-resolution (def-axiom (or $x21093 $x3942)) @x25499 $x3942) (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$))))
+(let ((@x25747 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$)) $x24188)) @x25713 $x24188)))
+(let ((@x25736 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x12553 $x12453 (not $x24188))) @x25337 (or $x12553 (not $x24188)))))
+(let ((@x25735 (unit-resolution (def-axiom (or $x20131 $x12550 (not $x3976))) (unit-resolution @x25736 @x25747 $x12553) (trans @x25707 @x24990 $x3976) $x20131)))
+(let ((@x25885 (unit-resolution (def-axiom (or $x21066 $x20104 $x21060)) (unit-resolution (def-axiom (or $x21057 $x20130)) @x25735 $x21057) (unit-resolution (def-axiom (or $x21069 $x21063)) @x25710 $x21063) $x20104)))
+(let (($x25930 (>= (+ ?x3929 ?x16620) 0)))
+(let (($x26036 (= v_b_L_H_p_G_0$ ?v0!14)))
+(let ((@x25738 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25758 $x16600 (not $x21314))) (unit-resolution (def-axiom (or $x20099 $x16605)) @x25885 $x16605) @x25694 $x25758)))
+(let ((@x25737 (unit-resolution (def-axiom (or $x21156 $x16330 $x16333 $x21150)) (unit-resolution (def-axiom (or $x21159 $x21153)) @x25336 $x21153) @x25345 (or $x16330 $x21150))))
+(let ((@x25813 (unit-resolution (def-axiom (or $x21147 $x21141)) (unit-resolution @x25737 @x25032 $x21150) $x21141)))
+(let ((@x25840 (unit-resolution (def-axiom (or $x21144 $x16330 $x16339 $x21138)) @x25032 @x25813 (or $x16339 $x21138))))
+(let ((@x25839 (unit-resolution (def-axiom (or $x21135 $x21129)) (unit-resolution @x25840 (lemma @x25298 $x3926) $x21138) $x21129)))
+(let ((@x25838 (unit-resolution (def-axiom (or $x21132 $x21120 $x21126)) (lemma @x25542 $x21123) (or $x21132 $x21120))))
+(let ((@x25853 (unit-resolution (def-axiom (or $x21117 $x12476)) (unit-resolution @x25838 @x25839 $x21120) $x12476)))
+(let ((@x25814 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x25800 $x16622 (not $x24191) $x12471)) (unit-resolution (def-axiom (or $x20099 $x21321)) @x25885 $x21321) @x25853 @x25702 $x25800)))
+(let ((@x25830 (unit-resolution (mp ((_ quant-inst ?v0!14) $x25240) @x25287 $x25270) @x25333 (unit-resolution (def-axiom (or $x20099 $x16366)) @x25885 $x16366) (unit-resolution (def-axiom (or $x20099 $x16367)) @x25885 $x16367) @x25814 $x24388)))
+(let ((@x25831 (unit-resolution @x26062 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26036 (not $x24388) $x25493)) @x25830 @x25738 $x26036) $x26041)))
+((_ th-lemma arith farkas -1 1 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26045 $x25930)) @x25831 $x25930) (unit-resolution (def-axiom (or $x20099 $x21321)) @x25885 $x21321) @x25702 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/boogie.ML	Thu May 01 22:57:36 2014 +0200
+++ b/src/HOL/SMT_Examples/boogie.ML	Thu May 01 22:57:38 2014 +0200
@@ -110,10 +110,10 @@
 fun mk_list T = HOLogic.mk_list T
 
 
-val patternT = @{typ "SMT.pattern"}
+val patternT = @{typ "SMT2.pattern"}
 
 fun mk_pat t =
-  Const (@{const_name "SMT.pat"}, Term.fastype_of t --> patternT) $ t
+  Const (@{const_name "SMT2.pat"}, Term.fastype_of t --> patternT) $ t
 
 fun mk_pattern [] = raise TERM ("mk_pattern", [])
   | mk_pattern ts = mk_list patternT (map mk_pat ts)
@@ -121,8 +121,8 @@
 
 fun mk_trigger [] t = t
   | mk_trigger pss t =
-      @{term "SMT.trigger"} $
-        mk_list @{typ "SMT.pattern list"} (map mk_pattern pss) $ t
+      @{term "SMT2.trigger"} $
+        mk_list @{typ "SMT2.pattern list"} (map mk_pattern pss) $ t
 
 
 (* parser *)
@@ -294,7 +294,7 @@
 
 
 fun boogie_tac ctxt axioms =
-  ALLGOALS (SMT_Solver.smt_tac ctxt (boogie_rules @ axioms))
+  ALLGOALS (SMT2_Solver.smt2_tac ctxt (boogie_rules @ axioms))
 
 
 fun boogie_prove thy lines =