move FrechetDeriv.thy to Library
authorhuffman
Wed, 18 Feb 2009 19:51:39 -0800
changeset 29986 6b1ccda8bf19
parent 29985 57975b45ab70
child 29987 391dcbd7e4dd
move FrechetDeriv.thy to Library
src/HOL/Complex_Main.thy
src/HOL/FrechetDeriv.thy
src/HOL/IsaMakefile
src/HOL/Library/FrechetDeriv.thy
src/HOL/Library/Library.thy
--- a/src/HOL/Complex_Main.thy	Wed Feb 18 19:32:26 2009 -0800
+++ b/src/HOL/Complex_Main.thy	Wed Feb 18 19:51:39 2009 -0800
@@ -9,7 +9,6 @@
   Ln
   Taylor
   Integration
-  FrechetDeriv
 begin
 
 end
--- a/src/HOL/FrechetDeriv.thy	Wed Feb 18 19:32:26 2009 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,503 +0,0 @@
-(*  Title       : FrechetDeriv.thy
-    ID          : $Id$
-    Author      : Brian Huffman
-*)
-
-header {* Frechet Derivative *}
-
-theory FrechetDeriv
-imports Lim
-begin
-
-definition
-  fderiv ::
-  "['a::real_normed_vector \<Rightarrow> 'b::real_normed_vector, 'a, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
-    -- {* Frechet derivative: D is derivative of function f at x *}
-          ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
-  "FDERIV f x :> D = (bounded_linear D \<and>
-    (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
-
-lemma FDERIV_I:
-  "\<lbrakk>bounded_linear D; (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0\<rbrakk>
-   \<Longrightarrow> FDERIV f x :> D"
-by (simp add: fderiv_def)
-
-lemma FDERIV_D:
-  "FDERIV f x :> D \<Longrightarrow> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0"
-by (simp add: fderiv_def)
-
-lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
-by (simp add: fderiv_def)
-
-lemma bounded_linear_zero:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
-proof
-  show "(0::'b) = 0 + 0" by simp
-  fix r show "(0::'b) = scaleR r 0" by simp
-  have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
-  thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
-qed
-
-lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
-by (simp add: fderiv_def bounded_linear_zero)
-
-lemma bounded_linear_ident:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
-proof
-  fix x y :: 'a show "x + y = x + y" by simp
-  fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
-  have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
-  thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
-qed
-
-lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
-by (simp add: fderiv_def bounded_linear_ident)
-
-subsection {* Addition *}
-
-lemma add_diff_add:
-  fixes a b c d :: "'a::ab_group_add"
-  shows "(a + c) - (b + d) = (a - b) + (c - d)"
-by simp
-
-lemma bounded_linear_add:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  shows "bounded_linear (\<lambda>x. f x + g x)"
-proof -
-  interpret f: bounded_linear f by fact
-  interpret g: bounded_linear g by fact
-  show ?thesis apply (unfold_locales)
-    apply (simp only: f.add g.add add_ac)
-    apply (simp only: f.scaleR g.scaleR scaleR_right_distrib)
-    apply (rule f.pos_bounded [THEN exE], rename_tac Kf)
-    apply (rule g.pos_bounded [THEN exE], rename_tac Kg)
-    apply (rule_tac x="Kf + Kg" in exI, safe)
-    apply (subst right_distrib)
-    apply (rule order_trans [OF norm_triangle_ineq])
-    apply (rule add_mono, erule spec, erule spec)
-    done
-qed
-
-lemma norm_ratio_ineq:
-  fixes x y :: "'a::real_normed_vector"
-  fixes h :: "'b::real_normed_vector"
-  shows "norm (x + y) / norm h \<le> norm x / norm h + norm y / norm h"
-apply (rule ord_le_eq_trans)
-apply (rule divide_right_mono)
-apply (rule norm_triangle_ineq)
-apply (rule norm_ge_zero)
-apply (rule add_divide_distrib)
-done
-
-lemma FDERIV_add:
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g x :> G"
-  shows "FDERIV (\<lambda>x. f x + g x) x :> (\<lambda>h. F h + G h)"
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. F h + G h)"
-    apply (rule bounded_linear_add)
-    apply (rule FDERIV_bounded_linear [OF f])
-    apply (rule FDERIV_bounded_linear [OF g])
-    done
-next
-  have f': "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
-    using f by (rule FDERIV_D)
-  have g': "(\<lambda>h. norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
-    using g by (rule FDERIV_D)
-  from f' g'
-  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h
-           + norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
-    by (rule LIM_add_zero)
-  thus "(\<lambda>h. norm (f (x + h) + g (x + h) - (f x + g x) - (F h + G h))
-           / norm h) -- 0 --> 0"
-    apply (rule real_LIM_sandwich_zero)
-     apply (simp add: divide_nonneg_pos)
-    apply (simp only: add_diff_add)
-    apply (rule norm_ratio_ineq)
-    done
-qed
-
-subsection {* Subtraction *}
-
-lemma bounded_linear_minus:
-  assumes "bounded_linear f"
-  shows "bounded_linear (\<lambda>x. - f x)"
-proof -
-  interpret f: bounded_linear f by fact
-  show ?thesis apply (unfold_locales)
-    apply (simp add: f.add)
-    apply (simp add: f.scaleR)
-    apply (simp add: f.bounded)
-    done
-qed
-
-lemma FDERIV_minus:
-  "FDERIV f x :> F \<Longrightarrow> FDERIV (\<lambda>x. - f x) x :> (\<lambda>h. - F h)"
-apply (rule FDERIV_I)
-apply (rule bounded_linear_minus)
-apply (erule FDERIV_bounded_linear)
-apply (simp only: fderiv_def minus_diff_minus norm_minus_cancel)
-done
-
-lemma FDERIV_diff:
-  "\<lbrakk>FDERIV f x :> F; FDERIV g x :> G\<rbrakk>
-   \<Longrightarrow> FDERIV (\<lambda>x. f x - g x) x :> (\<lambda>h. F h - G h)"
-by (simp only: diff_minus FDERIV_add FDERIV_minus)
-
-subsection {* Continuity *}
-
-lemma FDERIV_isCont:
-  assumes f: "FDERIV f x :> F"
-  shows "isCont f x"
-proof -
-  from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
-  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
-    by (rule FDERIV_D [OF f])
-  hence "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h * norm h) -- 0 --> 0"
-    by (intro LIM_mult_zero LIM_norm_zero LIM_ident)
-  hence "(\<lambda>h. norm (f (x + h) - f x - F h)) -- 0 --> 0"
-    by (simp cong: LIM_cong)
-  hence "(\<lambda>h. f (x + h) - f x - F h) -- 0 --> 0"
-    by (rule LIM_norm_zero_cancel)
-  hence "(\<lambda>h. f (x + h) - f x - F h + F h) -- 0 --> 0"
-    by (intro LIM_add_zero F.LIM_zero LIM_ident)
-  hence "(\<lambda>h. f (x + h) - f x) -- 0 --> 0"
-    by simp
-  thus "isCont f x"
-    unfolding isCont_iff by (rule LIM_zero_cancel)
-qed
-
-subsection {* Composition *}
-
-lemma real_divide_cancel_lemma:
-  fixes a b c :: real
-  shows "(b = 0 \<Longrightarrow> a = 0) \<Longrightarrow> (a / b) * (b / c) = a / c"
-by simp
-
-lemma bounded_linear_compose:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  shows "bounded_linear (\<lambda>x. f (g x))"
-proof -
-  interpret f: bounded_linear f by fact
-  interpret g: bounded_linear g by fact
-  show ?thesis proof (unfold_locales)
-    fix x y show "f (g (x + y)) = f (g x) + f (g y)"
-      by (simp only: f.add g.add)
-  next
-    fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
-      by (simp only: f.scaleR g.scaleR)
-  next
-    from f.pos_bounded
-    obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
-    from g.pos_bounded
-    obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
-    show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
-    proof (intro exI allI)
-      fix x
-      have "norm (f (g x)) \<le> norm (g x) * Kf"
-	using f .
-      also have "\<dots> \<le> (norm x * Kg) * Kf"
-	using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
-      also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
-	by (rule mult_assoc)
-      finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
-    qed
-  qed
-qed
-
-lemma FDERIV_compose:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
-  fixes g :: "'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector"
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g (f x) :> G"
-  shows "FDERIV (\<lambda>x. g (f x)) x :> (\<lambda>h. G (F h))"
-proof (rule FDERIV_I)
-  from FDERIV_bounded_linear [OF g] FDERIV_bounded_linear [OF f]
-  show "bounded_linear (\<lambda>h. G (F h))"
-    by (rule bounded_linear_compose)
-next
-  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
-  let ?Rg = "\<lambda>k. g (f x + k) - g (f x) - G k"
-  let ?k = "\<lambda>h. f (x + h) - f x"
-  let ?Nf = "\<lambda>h. norm (?Rf h) / norm h"
-  let ?Ng = "\<lambda>h. norm (?Rg (?k h)) / norm (?k h)"
-  from f interpret F!: bounded_linear "F" by (rule FDERIV_bounded_linear)
-  from g interpret G!: bounded_linear "G" by (rule FDERIV_bounded_linear)
-  from F.bounded obtain kF where kF: "\<And>x. norm (F x) \<le> norm x * kF" by fast
-  from G.bounded obtain kG where kG: "\<And>x. norm (G x) \<le> norm x * kG" by fast
-
-  let ?fun2 = "\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)"
-
-  show "(\<lambda>h. norm (g (f (x + h)) - g (f x) - G (F h)) / norm h) -- 0 --> 0"
-  proof (rule real_LIM_sandwich_zero)
-    have Nf: "?Nf -- 0 --> 0"
-      using FDERIV_D [OF f] .
-
-    have Ng1: "isCont (\<lambda>k. norm (?Rg k) / norm k) 0"
-      by (simp add: isCont_def FDERIV_D [OF g])
-    have Ng2: "?k -- 0 --> 0"
-      apply (rule LIM_zero)
-      apply (fold isCont_iff)
-      apply (rule FDERIV_isCont [OF f])
-      done
-    have Ng: "?Ng -- 0 --> 0"
-      using isCont_LIM_compose [OF Ng1 Ng2] by simp
-
-    have "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF))
-           -- 0 --> 0 * kG + 0 * (0 + kF)"
-      by (intro LIM_add LIM_mult LIM_const Nf Ng)
-    thus "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)) -- 0 --> 0"
-      by simp
-  next
-    fix h::'a assume h: "h \<noteq> 0"
-    thus "0 \<le> norm (g (f (x + h)) - g (f x) - G (F h)) / norm h"
-      by (simp add: divide_nonneg_pos)
-  next
-    fix h::'a assume h: "h \<noteq> 0"
-    have "g (f (x + h)) - g (f x) - G (F h) = G (?Rf h) + ?Rg (?k h)"
-      by (simp add: G.diff)
-    hence "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
-           = norm (G (?Rf h) + ?Rg (?k h)) / norm h"
-      by (rule arg_cong)
-    also have "\<dots> \<le> norm (G (?Rf h)) / norm h + norm (?Rg (?k h)) / norm h"
-      by (rule norm_ratio_ineq)
-    also have "\<dots> \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)"
-    proof (rule add_mono)
-      show "norm (G (?Rf h)) / norm h \<le> ?Nf h * kG"
-        apply (rule ord_le_eq_trans)
-        apply (rule divide_right_mono [OF kG norm_ge_zero])
-        apply simp
-        done
-    next
-      have "norm (?Rg (?k h)) / norm h = ?Ng h * (norm (?k h) / norm h)"
-        apply (rule real_divide_cancel_lemma [symmetric])
-        apply (simp add: G.zero)
-        done
-      also have "\<dots> \<le> ?Ng h * (?Nf h + kF)"
-      proof (rule mult_left_mono)
-        have "norm (?k h) / norm h = norm (?Rf h + F h) / norm h"
-          by simp
-        also have "\<dots> \<le> ?Nf h + norm (F h) / norm h"
-          by (rule norm_ratio_ineq)
-        also have "\<dots> \<le> ?Nf h + kF"
-          apply (rule add_left_mono)
-          apply (subst pos_divide_le_eq, simp add: h)
-          apply (subst mult_commute)
-          apply (rule kF)
-          done
-        finally show "norm (?k h) / norm h \<le> ?Nf h + kF" .
-      next
-        show "0 \<le> ?Ng h"
-        apply (case_tac "f (x + h) - f x = 0", simp)
-        apply (rule divide_nonneg_pos [OF norm_ge_zero])
-        apply simp
-        done
-      qed
-      finally show "norm (?Rg (?k h)) / norm h \<le> ?Ng h * (?Nf h + kF)" .
-    qed
-    finally show "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
-        \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)" .
-  qed
-qed
-
-subsection {* Product Rule *}
-
-lemma (in bounded_bilinear) FDERIV_lemma:
-  "a' ** b' - a ** b - (a ** B + A ** b)
-   = a ** (b' - b - B) + (a' - a - A) ** b' + A ** (b' - b)"
-by (simp add: diff_left diff_right)
-
-lemma (in bounded_bilinear) FDERIV:
-  fixes x :: "'d::real_normed_vector"
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g x :> G"
-  shows "FDERIV (\<lambda>x. f x ** g x) x :> (\<lambda>h. f x ** G h + F h ** g x)"
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. f x ** G h + F h ** g x)"
-    apply (rule bounded_linear_add)
-    apply (rule bounded_linear_compose [OF bounded_linear_right])
-    apply (rule FDERIV_bounded_linear [OF g])
-    apply (rule bounded_linear_compose [OF bounded_linear_left])
-    apply (rule FDERIV_bounded_linear [OF f])
-    done
-next
-  from bounded_linear.bounded [OF FDERIV_bounded_linear [OF f]]
-  obtain KF where norm_F: "\<And>x. norm (F x) \<le> norm x * KF" by fast
-
-  from pos_bounded obtain K where K: "0 < K" and norm_prod:
-    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
-
-  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
-  let ?Rg = "\<lambda>h. g (x + h) - g x - G h"
-
-  let ?fun1 = "\<lambda>h.
-        norm (f x ** ?Rg h + ?Rf h ** g (x + h) + F h ** (g (x + h) - g x)) /
-        norm h"
-
-  let ?fun2 = "\<lambda>h.
-        norm (f x) * (norm (?Rg h) / norm h) * K +
-        norm (?Rf h) / norm h * norm (g (x + h)) * K +
-        KF * norm (g (x + h) - g x) * K"
-
-  have "?fun1 -- 0 --> 0"
-  proof (rule real_LIM_sandwich_zero)
-    from f g isCont_iff [THEN iffD1, OF FDERIV_isCont [OF g]]
-    have "?fun2 -- 0 -->
-          norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K"
-      by (intro LIM_add LIM_mult LIM_const LIM_norm LIM_zero FDERIV_D)
-    thus "?fun2 -- 0 --> 0"
-      by simp
-  next
-    fix h::'d assume "h \<noteq> 0"
-    thus "0 \<le> ?fun1 h"
-      by (simp add: divide_nonneg_pos)
-  next
-    fix h::'d assume "h \<noteq> 0"
-    have "?fun1 h \<le> (norm (f x) * norm (?Rg h) * K +
-         norm (?Rf h) * norm (g (x + h)) * K +
-         norm h * KF * norm (g (x + h) - g x) * K) / norm h"
-      by (intro
-        divide_right_mono mult_mono'
-        order_trans [OF norm_triangle_ineq add_mono]
-        order_trans [OF norm_prod mult_right_mono]
-        mult_nonneg_nonneg order_refl norm_ge_zero norm_F
-        K [THEN order_less_imp_le]
-      )
-    also have "\<dots> = ?fun2 h"
-      by (simp add: add_divide_distrib)
-    finally show "?fun1 h \<le> ?fun2 h" .
-  qed
-  thus "(\<lambda>h.
-    norm (f (x + h) ** g (x + h) - f x ** g x - (f x ** G h + F h ** g x))
-    / norm h) -- 0 --> 0"
-    by (simp only: FDERIV_lemma)
-qed
-
-lemmas FDERIV_mult = mult.FDERIV
-
-lemmas FDERIV_scaleR = scaleR.FDERIV
-
-
-subsection {* Powers *}
-
-lemma FDERIV_power_Suc:
-  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
-  shows "FDERIV (\<lambda>x. x ^ Suc n) x :> (\<lambda>h. (1 + of_nat n) * x ^ n * h)"
- apply (induct n)
-  apply (simp add: power_Suc FDERIV_ident)
- apply (drule FDERIV_mult [OF FDERIV_ident])
- apply (simp only: of_nat_Suc left_distrib mult_1_left)
- apply (simp only: power_Suc right_distrib add_ac mult_ac)
-done
-
-lemma FDERIV_power:
-  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
-  shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
-  apply (cases n)
-   apply (simp add: FDERIV_const)
-  apply (simp add: FDERIV_power_Suc)
-  done
-
-
-subsection {* Inverse *}
-
-lemma inverse_diff_inverse:
-  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
-   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
-by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
-
-lemmas bounded_linear_mult_const =
-  mult.bounded_linear_left [THEN bounded_linear_compose]
-
-lemmas bounded_linear_const_mult =
-  mult.bounded_linear_right [THEN bounded_linear_compose]
-
-lemma FDERIV_inverse:
-  fixes x :: "'a::real_normed_div_algebra"
-  assumes x: "x \<noteq> 0"
-  shows "FDERIV inverse x :> (\<lambda>h. - (inverse x * h * inverse x))"
-        (is "FDERIV ?inv _ :> _")
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
-    apply (rule bounded_linear_minus)
-    apply (rule bounded_linear_mult_const)
-    apply (rule bounded_linear_const_mult)
-    apply (rule bounded_linear_ident)
-    done
-next
-  show "(\<lambda>h. norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h)
-        -- 0 --> 0"
-  proof (rule LIM_equal2)
-    show "0 < norm x" using x by simp
-  next
-    fix h::'a
-    assume 1: "h \<noteq> 0"
-    assume "norm (h - 0) < norm x"
-    hence "h \<noteq> -x" by clarsimp
-    hence 2: "x + h \<noteq> 0"
-      apply (rule contrapos_nn)
-      apply (rule sym)
-      apply (erule equals_zero_I)
-      done
-    show "norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h
-          = norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
-      apply (subst inverse_diff_inverse [OF 2 x])
-      apply (subst minus_diff_minus)
-      apply (subst norm_minus_cancel)
-      apply (simp add: left_diff_distrib)
-      done
-  next
-    show "(\<lambda>h. norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h)
-          -- 0 --> 0"
-    proof (rule real_LIM_sandwich_zero)
-      show "(\<lambda>h. norm (?inv (x + h) - ?inv x) * norm (?inv x))
-            -- 0 --> 0"
-        apply (rule LIM_mult_left_zero)
-        apply (rule LIM_norm_zero)
-        apply (rule LIM_zero)
-        apply (rule LIM_offset_zero)
-        apply (rule LIM_inverse)
-        apply (rule LIM_ident)
-        apply (rule x)
-        done
-    next
-      fix h::'a assume h: "h \<noteq> 0"
-      show "0 \<le> norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
-        apply (rule divide_nonneg_pos)
-        apply (rule norm_ge_zero)
-        apply (simp add: h)
-        done
-    next
-      fix h::'a assume h: "h \<noteq> 0"
-      have "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
-            \<le> norm (?inv (x + h) - ?inv x) * norm h * norm (?inv x) / norm h"
-        apply (rule divide_right_mono [OF _ norm_ge_zero])
-        apply (rule order_trans [OF norm_mult_ineq])
-        apply (rule mult_right_mono [OF _ norm_ge_zero])
-        apply (rule norm_mult_ineq)
-        done
-      also have "\<dots> = norm (?inv (x + h) - ?inv x) * norm (?inv x)"
-        by simp
-      finally show "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
-            \<le> norm (?inv (x + h) - ?inv x) * norm (?inv x)" .   
-    qed
-  qed
-qed
-
-subsection {* Alternate definition *}
-
-lemma field_fderiv_def:
-  fixes x :: "'a::real_normed_field" shows
-  "FDERIV f x :> (\<lambda>h. h * D) = (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
- apply (unfold fderiv_def)
- apply (simp add: mult.bounded_linear_left)
- apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
- apply (subst diff_divide_distrib)
- apply (subst times_divide_eq_left [symmetric])
- apply (simp cong: LIM_cong)
- apply (simp add: LIM_norm_zero_iff LIM_zero_iff)
-done
-
-end
--- a/src/HOL/IsaMakefile	Wed Feb 18 19:32:26 2009 -0800
+++ b/src/HOL/IsaMakefile	Wed Feb 18 19:51:39 2009 -0800
@@ -271,7 +271,6 @@
   Complex.thy \
   Deriv.thy \
   Fact.thy \
-  FrechetDeriv.thy \
   Integration.thy \
   Lim.thy \
   Ln.thy \
@@ -315,6 +314,7 @@
   Library/Executable_Set.thy Library/Infinite_Set.thy			\
   Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
   Library/Finite_Cartesian_Product.thy \
+  Library/FrechetDeriv.thy \
   Library/Fundamental_Theorem_Algebra.thy \
   Library/Library.thy Library/List_Prefix.thy Library/State_Monad.thy	\
   Library/Nat_Int_Bij.thy Library/Multiset.thy Library/Permutation.thy	\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/FrechetDeriv.thy	Wed Feb 18 19:51:39 2009 -0800
@@ -0,0 +1,503 @@
+(*  Title       : FrechetDeriv.thy
+    ID          : $Id$
+    Author      : Brian Huffman
+*)
+
+header {* Frechet Derivative *}
+
+theory FrechetDeriv
+imports Lim
+begin
+
+definition
+  fderiv ::
+  "['a::real_normed_vector \<Rightarrow> 'b::real_normed_vector, 'a, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
+    -- {* Frechet derivative: D is derivative of function f at x *}
+          ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
+  "FDERIV f x :> D = (bounded_linear D \<and>
+    (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
+
+lemma FDERIV_I:
+  "\<lbrakk>bounded_linear D; (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0\<rbrakk>
+   \<Longrightarrow> FDERIV f x :> D"
+by (simp add: fderiv_def)
+
+lemma FDERIV_D:
+  "FDERIV f x :> D \<Longrightarrow> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0"
+by (simp add: fderiv_def)
+
+lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
+by (simp add: fderiv_def)
+
+lemma bounded_linear_zero:
+  "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
+proof
+  show "(0::'b) = 0 + 0" by simp
+  fix r show "(0::'b) = scaleR r 0" by simp
+  have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
+  thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
+qed
+
+lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
+by (simp add: fderiv_def bounded_linear_zero)
+
+lemma bounded_linear_ident:
+  "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
+proof
+  fix x y :: 'a show "x + y = x + y" by simp
+  fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
+  have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
+  thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
+qed
+
+lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
+by (simp add: fderiv_def bounded_linear_ident)
+
+subsection {* Addition *}
+
+lemma add_diff_add:
+  fixes a b c d :: "'a::ab_group_add"
+  shows "(a + c) - (b + d) = (a - b) + (c - d)"
+by simp
+
+lemma bounded_linear_add:
+  assumes "bounded_linear f"
+  assumes "bounded_linear g"
+  shows "bounded_linear (\<lambda>x. f x + g x)"
+proof -
+  interpret f: bounded_linear f by fact
+  interpret g: bounded_linear g by fact
+  show ?thesis apply (unfold_locales)
+    apply (simp only: f.add g.add add_ac)
+    apply (simp only: f.scaleR g.scaleR scaleR_right_distrib)
+    apply (rule f.pos_bounded [THEN exE], rename_tac Kf)
+    apply (rule g.pos_bounded [THEN exE], rename_tac Kg)
+    apply (rule_tac x="Kf + Kg" in exI, safe)
+    apply (subst right_distrib)
+    apply (rule order_trans [OF norm_triangle_ineq])
+    apply (rule add_mono, erule spec, erule spec)
+    done
+qed
+
+lemma norm_ratio_ineq:
+  fixes x y :: "'a::real_normed_vector"
+  fixes h :: "'b::real_normed_vector"
+  shows "norm (x + y) / norm h \<le> norm x / norm h + norm y / norm h"
+apply (rule ord_le_eq_trans)
+apply (rule divide_right_mono)
+apply (rule norm_triangle_ineq)
+apply (rule norm_ge_zero)
+apply (rule add_divide_distrib)
+done
+
+lemma FDERIV_add:
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g x :> G"
+  shows "FDERIV (\<lambda>x. f x + g x) x :> (\<lambda>h. F h + G h)"
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. F h + G h)"
+    apply (rule bounded_linear_add)
+    apply (rule FDERIV_bounded_linear [OF f])
+    apply (rule FDERIV_bounded_linear [OF g])
+    done
+next
+  have f': "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
+    using f by (rule FDERIV_D)
+  have g': "(\<lambda>h. norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
+    using g by (rule FDERIV_D)
+  from f' g'
+  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h
+           + norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
+    by (rule LIM_add_zero)
+  thus "(\<lambda>h. norm (f (x + h) + g (x + h) - (f x + g x) - (F h + G h))
+           / norm h) -- 0 --> 0"
+    apply (rule real_LIM_sandwich_zero)
+     apply (simp add: divide_nonneg_pos)
+    apply (simp only: add_diff_add)
+    apply (rule norm_ratio_ineq)
+    done
+qed
+
+subsection {* Subtraction *}
+
+lemma bounded_linear_minus:
+  assumes "bounded_linear f"
+  shows "bounded_linear (\<lambda>x. - f x)"
+proof -
+  interpret f: bounded_linear f by fact
+  show ?thesis apply (unfold_locales)
+    apply (simp add: f.add)
+    apply (simp add: f.scaleR)
+    apply (simp add: f.bounded)
+    done
+qed
+
+lemma FDERIV_minus:
+  "FDERIV f x :> F \<Longrightarrow> FDERIV (\<lambda>x. - f x) x :> (\<lambda>h. - F h)"
+apply (rule FDERIV_I)
+apply (rule bounded_linear_minus)
+apply (erule FDERIV_bounded_linear)
+apply (simp only: fderiv_def minus_diff_minus norm_minus_cancel)
+done
+
+lemma FDERIV_diff:
+  "\<lbrakk>FDERIV f x :> F; FDERIV g x :> G\<rbrakk>
+   \<Longrightarrow> FDERIV (\<lambda>x. f x - g x) x :> (\<lambda>h. F h - G h)"
+by (simp only: diff_minus FDERIV_add FDERIV_minus)
+
+subsection {* Continuity *}
+
+lemma FDERIV_isCont:
+  assumes f: "FDERIV f x :> F"
+  shows "isCont f x"
+proof -
+  from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
+  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
+    by (rule FDERIV_D [OF f])
+  hence "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h * norm h) -- 0 --> 0"
+    by (intro LIM_mult_zero LIM_norm_zero LIM_ident)
+  hence "(\<lambda>h. norm (f (x + h) - f x - F h)) -- 0 --> 0"
+    by (simp cong: LIM_cong)
+  hence "(\<lambda>h. f (x + h) - f x - F h) -- 0 --> 0"
+    by (rule LIM_norm_zero_cancel)
+  hence "(\<lambda>h. f (x + h) - f x - F h + F h) -- 0 --> 0"
+    by (intro LIM_add_zero F.LIM_zero LIM_ident)
+  hence "(\<lambda>h. f (x + h) - f x) -- 0 --> 0"
+    by simp
+  thus "isCont f x"
+    unfolding isCont_iff by (rule LIM_zero_cancel)
+qed
+
+subsection {* Composition *}
+
+lemma real_divide_cancel_lemma:
+  fixes a b c :: real
+  shows "(b = 0 \<Longrightarrow> a = 0) \<Longrightarrow> (a / b) * (b / c) = a / c"
+by simp
+
+lemma bounded_linear_compose:
+  assumes "bounded_linear f"
+  assumes "bounded_linear g"
+  shows "bounded_linear (\<lambda>x. f (g x))"
+proof -
+  interpret f: bounded_linear f by fact
+  interpret g: bounded_linear g by fact
+  show ?thesis proof (unfold_locales)
+    fix x y show "f (g (x + y)) = f (g x) + f (g y)"
+      by (simp only: f.add g.add)
+  next
+    fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
+      by (simp only: f.scaleR g.scaleR)
+  next
+    from f.pos_bounded
+    obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
+    from g.pos_bounded
+    obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
+    show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
+    proof (intro exI allI)
+      fix x
+      have "norm (f (g x)) \<le> norm (g x) * Kf"
+	using f .
+      also have "\<dots> \<le> (norm x * Kg) * Kf"
+	using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
+      also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
+	by (rule mult_assoc)
+      finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
+    qed
+  qed
+qed
+
+lemma FDERIV_compose:
+  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
+  fixes g :: "'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector"
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g (f x) :> G"
+  shows "FDERIV (\<lambda>x. g (f x)) x :> (\<lambda>h. G (F h))"
+proof (rule FDERIV_I)
+  from FDERIV_bounded_linear [OF g] FDERIV_bounded_linear [OF f]
+  show "bounded_linear (\<lambda>h. G (F h))"
+    by (rule bounded_linear_compose)
+next
+  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
+  let ?Rg = "\<lambda>k. g (f x + k) - g (f x) - G k"
+  let ?k = "\<lambda>h. f (x + h) - f x"
+  let ?Nf = "\<lambda>h. norm (?Rf h) / norm h"
+  let ?Ng = "\<lambda>h. norm (?Rg (?k h)) / norm (?k h)"
+  from f interpret F!: bounded_linear "F" by (rule FDERIV_bounded_linear)
+  from g interpret G!: bounded_linear "G" by (rule FDERIV_bounded_linear)
+  from F.bounded obtain kF where kF: "\<And>x. norm (F x) \<le> norm x * kF" by fast
+  from G.bounded obtain kG where kG: "\<And>x. norm (G x) \<le> norm x * kG" by fast
+
+  let ?fun2 = "\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)"
+
+  show "(\<lambda>h. norm (g (f (x + h)) - g (f x) - G (F h)) / norm h) -- 0 --> 0"
+  proof (rule real_LIM_sandwich_zero)
+    have Nf: "?Nf -- 0 --> 0"
+      using FDERIV_D [OF f] .
+
+    have Ng1: "isCont (\<lambda>k. norm (?Rg k) / norm k) 0"
+      by (simp add: isCont_def FDERIV_D [OF g])
+    have Ng2: "?k -- 0 --> 0"
+      apply (rule LIM_zero)
+      apply (fold isCont_iff)
+      apply (rule FDERIV_isCont [OF f])
+      done
+    have Ng: "?Ng -- 0 --> 0"
+      using isCont_LIM_compose [OF Ng1 Ng2] by simp
+
+    have "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF))
+           -- 0 --> 0 * kG + 0 * (0 + kF)"
+      by (intro LIM_add LIM_mult LIM_const Nf Ng)
+    thus "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)) -- 0 --> 0"
+      by simp
+  next
+    fix h::'a assume h: "h \<noteq> 0"
+    thus "0 \<le> norm (g (f (x + h)) - g (f x) - G (F h)) / norm h"
+      by (simp add: divide_nonneg_pos)
+  next
+    fix h::'a assume h: "h \<noteq> 0"
+    have "g (f (x + h)) - g (f x) - G (F h) = G (?Rf h) + ?Rg (?k h)"
+      by (simp add: G.diff)
+    hence "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
+           = norm (G (?Rf h) + ?Rg (?k h)) / norm h"
+      by (rule arg_cong)
+    also have "\<dots> \<le> norm (G (?Rf h)) / norm h + norm (?Rg (?k h)) / norm h"
+      by (rule norm_ratio_ineq)
+    also have "\<dots> \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)"
+    proof (rule add_mono)
+      show "norm (G (?Rf h)) / norm h \<le> ?Nf h * kG"
+        apply (rule ord_le_eq_trans)
+        apply (rule divide_right_mono [OF kG norm_ge_zero])
+        apply simp
+        done
+    next
+      have "norm (?Rg (?k h)) / norm h = ?Ng h * (norm (?k h) / norm h)"
+        apply (rule real_divide_cancel_lemma [symmetric])
+        apply (simp add: G.zero)
+        done
+      also have "\<dots> \<le> ?Ng h * (?Nf h + kF)"
+      proof (rule mult_left_mono)
+        have "norm (?k h) / norm h = norm (?Rf h + F h) / norm h"
+          by simp
+        also have "\<dots> \<le> ?Nf h + norm (F h) / norm h"
+          by (rule norm_ratio_ineq)
+        also have "\<dots> \<le> ?Nf h + kF"
+          apply (rule add_left_mono)
+          apply (subst pos_divide_le_eq, simp add: h)
+          apply (subst mult_commute)
+          apply (rule kF)
+          done
+        finally show "norm (?k h) / norm h \<le> ?Nf h + kF" .
+      next
+        show "0 \<le> ?Ng h"
+        apply (case_tac "f (x + h) - f x = 0", simp)
+        apply (rule divide_nonneg_pos [OF norm_ge_zero])
+        apply simp
+        done
+      qed
+      finally show "norm (?Rg (?k h)) / norm h \<le> ?Ng h * (?Nf h + kF)" .
+    qed
+    finally show "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
+        \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)" .
+  qed
+qed
+
+subsection {* Product Rule *}
+
+lemma (in bounded_bilinear) FDERIV_lemma:
+  "a' ** b' - a ** b - (a ** B + A ** b)
+   = a ** (b' - b - B) + (a' - a - A) ** b' + A ** (b' - b)"
+by (simp add: diff_left diff_right)
+
+lemma (in bounded_bilinear) FDERIV:
+  fixes x :: "'d::real_normed_vector"
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g x :> G"
+  shows "FDERIV (\<lambda>x. f x ** g x) x :> (\<lambda>h. f x ** G h + F h ** g x)"
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. f x ** G h + F h ** g x)"
+    apply (rule bounded_linear_add)
+    apply (rule bounded_linear_compose [OF bounded_linear_right])
+    apply (rule FDERIV_bounded_linear [OF g])
+    apply (rule bounded_linear_compose [OF bounded_linear_left])
+    apply (rule FDERIV_bounded_linear [OF f])
+    done
+next
+  from bounded_linear.bounded [OF FDERIV_bounded_linear [OF f]]
+  obtain KF where norm_F: "\<And>x. norm (F x) \<le> norm x * KF" by fast
+
+  from pos_bounded obtain K where K: "0 < K" and norm_prod:
+    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
+
+  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
+  let ?Rg = "\<lambda>h. g (x + h) - g x - G h"
+
+  let ?fun1 = "\<lambda>h.
+        norm (f x ** ?Rg h + ?Rf h ** g (x + h) + F h ** (g (x + h) - g x)) /
+        norm h"
+
+  let ?fun2 = "\<lambda>h.
+        norm (f x) * (norm (?Rg h) / norm h) * K +
+        norm (?Rf h) / norm h * norm (g (x + h)) * K +
+        KF * norm (g (x + h) - g x) * K"
+
+  have "?fun1 -- 0 --> 0"
+  proof (rule real_LIM_sandwich_zero)
+    from f g isCont_iff [THEN iffD1, OF FDERIV_isCont [OF g]]
+    have "?fun2 -- 0 -->
+          norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K"
+      by (intro LIM_add LIM_mult LIM_const LIM_norm LIM_zero FDERIV_D)
+    thus "?fun2 -- 0 --> 0"
+      by simp
+  next
+    fix h::'d assume "h \<noteq> 0"
+    thus "0 \<le> ?fun1 h"
+      by (simp add: divide_nonneg_pos)
+  next
+    fix h::'d assume "h \<noteq> 0"
+    have "?fun1 h \<le> (norm (f x) * norm (?Rg h) * K +
+         norm (?Rf h) * norm (g (x + h)) * K +
+         norm h * KF * norm (g (x + h) - g x) * K) / norm h"
+      by (intro
+        divide_right_mono mult_mono'
+        order_trans [OF norm_triangle_ineq add_mono]
+        order_trans [OF norm_prod mult_right_mono]
+        mult_nonneg_nonneg order_refl norm_ge_zero norm_F
+        K [THEN order_less_imp_le]
+      )
+    also have "\<dots> = ?fun2 h"
+      by (simp add: add_divide_distrib)
+    finally show "?fun1 h \<le> ?fun2 h" .
+  qed
+  thus "(\<lambda>h.
+    norm (f (x + h) ** g (x + h) - f x ** g x - (f x ** G h + F h ** g x))
+    / norm h) -- 0 --> 0"
+    by (simp only: FDERIV_lemma)
+qed
+
+lemmas FDERIV_mult = mult.FDERIV
+
+lemmas FDERIV_scaleR = scaleR.FDERIV
+
+
+subsection {* Powers *}
+
+lemma FDERIV_power_Suc:
+  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
+  shows "FDERIV (\<lambda>x. x ^ Suc n) x :> (\<lambda>h. (1 + of_nat n) * x ^ n * h)"
+ apply (induct n)
+  apply (simp add: power_Suc FDERIV_ident)
+ apply (drule FDERIV_mult [OF FDERIV_ident])
+ apply (simp only: of_nat_Suc left_distrib mult_1_left)
+ apply (simp only: power_Suc right_distrib add_ac mult_ac)
+done
+
+lemma FDERIV_power:
+  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
+  shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
+  apply (cases n)
+   apply (simp add: FDERIV_const)
+  apply (simp add: FDERIV_power_Suc)
+  done
+
+
+subsection {* Inverse *}
+
+lemma inverse_diff_inverse:
+  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
+   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
+by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
+
+lemmas bounded_linear_mult_const =
+  mult.bounded_linear_left [THEN bounded_linear_compose]
+
+lemmas bounded_linear_const_mult =
+  mult.bounded_linear_right [THEN bounded_linear_compose]
+
+lemma FDERIV_inverse:
+  fixes x :: "'a::real_normed_div_algebra"
+  assumes x: "x \<noteq> 0"
+  shows "FDERIV inverse x :> (\<lambda>h. - (inverse x * h * inverse x))"
+        (is "FDERIV ?inv _ :> _")
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
+    apply (rule bounded_linear_minus)
+    apply (rule bounded_linear_mult_const)
+    apply (rule bounded_linear_const_mult)
+    apply (rule bounded_linear_ident)
+    done
+next
+  show "(\<lambda>h. norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h)
+        -- 0 --> 0"
+  proof (rule LIM_equal2)
+    show "0 < norm x" using x by simp
+  next
+    fix h::'a
+    assume 1: "h \<noteq> 0"
+    assume "norm (h - 0) < norm x"
+    hence "h \<noteq> -x" by clarsimp
+    hence 2: "x + h \<noteq> 0"
+      apply (rule contrapos_nn)
+      apply (rule sym)
+      apply (erule equals_zero_I)
+      done
+    show "norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h
+          = norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
+      apply (subst inverse_diff_inverse [OF 2 x])
+      apply (subst minus_diff_minus)
+      apply (subst norm_minus_cancel)
+      apply (simp add: left_diff_distrib)
+      done
+  next
+    show "(\<lambda>h. norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h)
+          -- 0 --> 0"
+    proof (rule real_LIM_sandwich_zero)
+      show "(\<lambda>h. norm (?inv (x + h) - ?inv x) * norm (?inv x))
+            -- 0 --> 0"
+        apply (rule LIM_mult_left_zero)
+        apply (rule LIM_norm_zero)
+        apply (rule LIM_zero)
+        apply (rule LIM_offset_zero)
+        apply (rule LIM_inverse)
+        apply (rule LIM_ident)
+        apply (rule x)
+        done
+    next
+      fix h::'a assume h: "h \<noteq> 0"
+      show "0 \<le> norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
+        apply (rule divide_nonneg_pos)
+        apply (rule norm_ge_zero)
+        apply (simp add: h)
+        done
+    next
+      fix h::'a assume h: "h \<noteq> 0"
+      have "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
+            \<le> norm (?inv (x + h) - ?inv x) * norm h * norm (?inv x) / norm h"
+        apply (rule divide_right_mono [OF _ norm_ge_zero])
+        apply (rule order_trans [OF norm_mult_ineq])
+        apply (rule mult_right_mono [OF _ norm_ge_zero])
+        apply (rule norm_mult_ineq)
+        done
+      also have "\<dots> = norm (?inv (x + h) - ?inv x) * norm (?inv x)"
+        by simp
+      finally show "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
+            \<le> norm (?inv (x + h) - ?inv x) * norm (?inv x)" .   
+    qed
+  qed
+qed
+
+subsection {* Alternate definition *}
+
+lemma field_fderiv_def:
+  fixes x :: "'a::real_normed_field" shows
+  "FDERIV f x :> (\<lambda>h. h * D) = (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
+ apply (unfold fderiv_def)
+ apply (simp add: mult.bounded_linear_left)
+ apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
+ apply (subst diff_divide_distrib)
+ apply (subst times_divide_eq_left [symmetric])
+ apply (simp cong: LIM_cong)
+ apply (simp add: LIM_norm_zero_iff LIM_zero_iff)
+done
+
+end
--- a/src/HOL/Library/Library.thy	Wed Feb 18 19:32:26 2009 -0800
+++ b/src/HOL/Library/Library.thy	Wed Feb 18 19:51:39 2009 -0800
@@ -22,6 +22,7 @@
   Executable_Set
   Float
   Formal_Power_Series
+  FrechetDeriv
   FuncSet
   Fundamental_Theorem_Algebra
   Infinite_Set