--- a/src/HOL/Complex/Complex.thy Mon May 14 17:45:42 2007 +0200
+++ b/src/HOL/Complex/Complex.thy Mon May 14 18:03:25 2007 +0200
@@ -67,8 +67,8 @@
lemma complex_Im_zero [simp]: "Im 0 = 0"
by (simp add: complex_zero_def)
-lemma complex_zero_iff [simp]: "(Complex x y = 0) = (x = 0 \<and> y = 0)"
-unfolding complex_zero_def by simp
+lemma Complex_eq_0 [simp]: "(Complex x y = 0) = (x = 0 \<and> y = 0)"
+by (simp add: complex_zero_def)
lemma complex_Re_one [simp]: "Re 1 = 1"
by (simp add: complex_one_def)
@@ -76,12 +76,18 @@
lemma complex_Im_one [simp]: "Im 1 = 0"
by (simp add: complex_one_def)
+lemma Complex_eq_1 [simp]: "(Complex x y = 1) = (x = 1 \<and> y = 0)"
+by (simp add: complex_one_def)
+
lemma complex_Re_i [simp]: "Re(ii) = 0"
by (simp add: i_def)
lemma complex_Im_i [simp]: "Im(ii) = 1"
by (simp add: i_def)
+lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
+by (simp add: i_def)
+
subsection{*Unary Minus*}
@@ -156,16 +162,12 @@
subsection{*Inverse*}
lemma complex_inverse [simp]:
- "inverse (Complex x y) = Complex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))"
+ "inverse (Complex x y) = Complex (x / (x\<twosuperior> + y\<twosuperior>)) (- y / (x\<twosuperior> + y\<twosuperior>))"
by (simp add: complex_inverse_def)
lemma complex_mult_inv_left: "z \<noteq> (0::complex) ==> inverse(z) * z = 1"
apply (induct z)
-apply (rename_tac x y)
-apply (auto simp add:
- complex_one_def complex_zero_def add_divide_distrib [symmetric]
- power2_eq_square mult_ac)
-apply (simp_all add: real_sum_squares_not_zero real_sum_squares_not_zero2)
+apply (simp add: power2_eq_square [symmetric] add_divide_distrib [symmetric])
done
@@ -510,17 +512,6 @@
"(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
by (simp add: complex_of_real_def)
-lemma Complex_eq_0 [simp]: "(Complex x y = 0) = (x = 0 & y = 0)"
-by (simp add: complex_zero_def)
-
-lemma Complex_eq_1 [simp]: "(Complex x y = 1) = (x = 1 & y = 0)"
-by (simp add: complex_one_def)
-
-lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 & y = 1)"
-by (simp add: i_def)
-
-
-
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
proof (induct z)
case (Complex x y)
--- a/src/HOL/Hyperreal/NthRoot.thy Mon May 14 17:45:42 2007 +0200
+++ b/src/HOL/Hyperreal/NthRoot.thy Mon May 14 18:03:25 2007 +0200
@@ -475,7 +475,7 @@
subsection {* Square Root of Sum of Squares *}
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)"
-by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero])
+by (rule real_sqrt_ge_zero [OF sum_squares_ge_zero])
lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
by simp