HOL setup for linear arithmetic -- moved here from arith_data.ML;
authorwenzelm
Tue, 31 Jul 2007 19:40:23 +0200
changeset 24092 71c27b320610
parent 24091 109f19a13872
child 24093 5d0ecd0c8f3c
HOL setup for linear arithmetic -- moved here from arith_data.ML;
src/HOL/Tools/lin_arith.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/lin_arith.ML	Tue Jul 31 19:40:23 2007 +0200
@@ -0,0 +1,897 @@
+(*  Title:      HOL/Tools/lin_arith.ML
+    ID:         $Id$
+    Author:     Tjark Weber and Tobias Nipkow
+
+HOL setup for linear arithmetic (see Provers/Arith/fast_lin_arith.ML).
+*)
+
+signature BASIC_LIN_ARITH =
+sig
+  type arith_tactic
+  val mk_arith_tactic: string -> (Proof.context -> int -> tactic) -> arith_tactic
+  val eq_arith_tactic: arith_tactic * arith_tactic -> bool
+  val arith_split_add: attribute
+  val arith_discrete: string -> Context.generic -> Context.generic
+  val arith_inj_const: string * typ -> Context.generic -> Context.generic
+  val arith_tactic_add: arith_tactic -> Context.generic -> Context.generic
+  val fast_arith_split_limit: int ConfigOption.T
+  val fast_arith_neq_limit: int ConfigOption.T
+  val lin_arith_pre_tac: Proof.context -> int -> tactic
+  val fast_arith_tac: Proof.context -> int -> tactic
+  val fast_ex_arith_tac: Proof.context -> bool -> int -> tactic
+  val trace_arith: bool ref
+  val lin_arith_simproc: simpset -> term -> thm option
+  val fast_nat_arith_simproc: simproc
+  val simple_arith_tac: Proof.context -> int -> tactic
+  val arith_tac: Proof.context -> int -> tactic
+  val silent_arith_tac: Proof.context -> int -> tactic
+end;
+
+signature LIN_ARITH =
+sig
+  include BASIC_LIN_ARITH
+  val map_data:
+    ({add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list,
+      lessD: thm list, neqE: thm list, simpset: Simplifier.simpset} ->
+     {add_mono_thms: thm list, mult_mono_thms: thm list, inj_thms: thm list,
+      lessD: thm list, neqE: thm list, simpset: Simplifier.simpset}) ->
+    Context.generic -> Context.generic
+  val setup: Context.generic -> Context.generic
+end;
+
+structure LinArith: LIN_ARITH =
+struct
+
+(* Parameters data for general linear arithmetic functor *)
+
+structure LA_Logic: LIN_ARITH_LOGIC =
+struct
+
+val ccontr = ccontr;
+val conjI = conjI;
+val notI = notI;
+val sym = sym;
+val not_lessD = @{thm linorder_not_less} RS iffD1;
+val not_leD = @{thm linorder_not_le} RS iffD1;
+val le0 = thm "le0";
+
+fun mk_Eq thm = (thm RS Eq_FalseI) handle THM _ => (thm RS Eq_TrueI);
+
+val mk_Trueprop = HOLogic.mk_Trueprop;
+
+fun atomize thm = case Thm.prop_of thm of
+    Const("Trueprop",_) $ (Const("op &",_) $ _ $ _) =>
+    atomize(thm RS conjunct1) @ atomize(thm RS conjunct2)
+  | _ => [thm];
+
+fun neg_prop ((TP as Const("Trueprop",_)) $ (Const("Not",_) $ t)) = TP $ t
+  | neg_prop ((TP as Const("Trueprop",_)) $ t) = TP $ (HOLogic.Not $t)
+  | neg_prop t = raise TERM ("neg_prop", [t]);
+
+fun is_False thm =
+  let val _ $ t = Thm.prop_of thm
+  in t = Const("False",HOLogic.boolT) end;
+
+fun is_nat(t) = fastype_of1 t = HOLogic.natT;
+
+fun mk_nat_thm sg t =
+  let val ct = cterm_of sg t  and cn = cterm_of sg (Var(("n",0),HOLogic.natT))
+  in instantiate ([],[(cn,ct)]) le0 end;
+
+end;
+
+
+(* arith context data *)
+
+datatype arith_tactic =
+  ArithTactic of {name: string, tactic: Proof.context -> int -> tactic, id: stamp};
+
+fun mk_arith_tactic name tactic = ArithTactic {name = name, tactic = tactic, id = stamp ()};
+
+fun eq_arith_tactic (ArithTactic {id = id1, ...}, ArithTactic {id = id2, ...}) = (id1 = id2);
+
+structure ArithContextData = GenericDataFun
+(
+  type T = {splits: thm list,
+            inj_consts: (string * typ) list,
+            discrete: string list,
+            tactics: arith_tactic list};
+  val empty = {splits = [], inj_consts = [], discrete = [], tactics = []};
+  val extend = I;
+  fun merge _ ({splits= splits1, inj_consts= inj_consts1, discrete= discrete1, tactics= tactics1},
+             {splits= splits2, inj_consts= inj_consts2, discrete= discrete2, tactics= tactics2}) =
+   {splits = Library.merge Thm.eq_thm_prop (splits1, splits2),
+    inj_consts = Library.merge (op =) (inj_consts1, inj_consts2),
+    discrete = Library.merge (op =) (discrete1, discrete2),
+    tactics = Library.merge eq_arith_tactic (tactics1, tactics2)};
+);
+
+val get_arith_data = ArithContextData.get o Context.Proof;
+
+val arith_split_add = Thm.declaration_attribute (fn thm =>
+  ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
+    {splits = insert Thm.eq_thm_prop thm splits,
+     inj_consts = inj_consts, discrete = discrete, tactics = tactics}));
+
+fun arith_discrete d = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
+  {splits = splits, inj_consts = inj_consts,
+   discrete = insert (op =) d discrete, tactics = tactics});
+
+fun arith_inj_const c = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
+  {splits = splits, inj_consts = insert (op =) c inj_consts,
+   discrete = discrete, tactics= tactics});
+
+fun arith_tactic_add tac = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
+  {splits = splits, inj_consts = inj_consts, discrete = discrete,
+   tactics = insert eq_arith_tactic tac tactics});
+
+
+val (fast_arith_split_limit, setup1) = ConfigOption.int "fast_arith_split_limit" 9;
+val (fast_arith_neq_limit, setup2) = ConfigOption.int "fast_arith_neq_limit" 9;
+val setup_options = setup1 #> setup2;
+
+
+structure LA_Data_Ref =
+struct
+
+val fast_arith_neq_limit = fast_arith_neq_limit;
+
+
+(* Decomposition of terms *)
+
+(*internal representation of linear (in-)equations*)
+type decompT = ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat * bool);
+
+fun nT (Type ("fun", [N, _])) = (N = HOLogic.natT)
+  | nT _                      = false;
+
+fun add_atom (t : term) (m : Rat.rat) (p : (term * Rat.rat) list, i : Rat.rat) :
+             (term * Rat.rat) list * Rat.rat =
+  case AList.lookup (op =) p t of NONE   => ((t, m) :: p, i)
+                                | SOME n => (AList.update (op =) (t, Rat.add n m) p, i);
+
+exception Zero;
+
+fun rat_of_term (numt, dent) =
+  let
+    val num = HOLogic.dest_numeral numt
+    val den = HOLogic.dest_numeral dent
+  in
+    if den = 0 then raise Zero else Rat.rat_of_quotient (num, den)
+  end;
+
+(*Warning: in rare cases number_of encloses a non-numeral,
+  in which case dest_numeral raises TERM; hence all the handles below.
+  Same for Suc-terms that turn out not to be numerals -
+  although the simplifier should eliminate those anyway ...*)
+fun number_of_Sucs (Const ("Suc", _) $ n) : int =
+      number_of_Sucs n + 1
+  | number_of_Sucs t =
+      if HOLogic.is_zero t then 0 else raise TERM ("number_of_Sucs", []);
+
+(*decompose nested multiplications, bracketing them to the right and combining
+  all their coefficients*)
+fun demult (inj_consts : (string * typ) list) : term * Rat.rat -> term option * Rat.rat =
+let
+  fun demult ((mC as Const (@{const_name HOL.times}, _)) $ s $ t, m) = (
+    (case s of
+      Const ("Numeral.number_class.number_of", _) $ n =>
+        demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n)))
+    | Const (@{const_name HOL.uminus}, _) $ (Const ("Numeral.number_class.number_of", _) $ n) =>
+        demult (t, Rat.mult m (Rat.rat_of_int (~(HOLogic.dest_numeral n))))
+    | Const (@{const_name Suc}, _) $ _ =>
+        demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_nat s)))
+    | Const (@{const_name HOL.times}, _) $ s1 $ s2 =>
+        demult (mC $ s1 $ (mC $ s2 $ t), m)
+    | Const (@{const_name HOL.divide}, _) $ numt $
+          (Const ("Numeral.number_class.number_of", _) $ dent) =>
+        let
+          val den = HOLogic.dest_numeral dent
+        in
+          if den = 0 then
+            raise Zero
+          else
+            demult (mC $ numt $ t, Rat.mult m (Rat.inv (Rat.rat_of_int den)))
+        end
+    | _ =>
+        atomult (mC, s, t, m)
+    ) handle TERM _ => atomult (mC, s, t, m)
+  )
+    | demult (atom as Const(@{const_name HOL.divide}, _) $ t $
+        (Const ("Numeral.number_class.number_of", _) $ dent), m) =
+      (let
+        val den = HOLogic.dest_numeral dent
+      in
+        if den = 0 then
+          raise Zero
+        else
+          demult (t, Rat.mult m (Rat.inv (Rat.rat_of_int den)))
+      end handle TERM _ => (SOME atom, m))
+    | demult (Const (@{const_name HOL.zero}, _), m) = (NONE, Rat.zero)
+    | demult (Const (@{const_name HOL.one}, _), m) = (NONE, m)
+    | demult (t as Const ("Numeral.number_class.number_of", _) $ n, m) =
+        ((NONE, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n)))
+          handle TERM _ => (SOME t, m))
+    | demult (Const (@{const_name HOL.uminus}, _) $ t, m) = demult (t, Rat.neg m)
+    | demult (t as Const f $ x, m) =
+        (if member (op =) inj_consts f then SOME x else SOME t, m)
+    | demult (atom, m) = (SOME atom, m)
+and
+  atomult (mC, atom, t, m) = (
+    case demult (t, m) of (NONE, m')    => (SOME atom, m')
+                        | (SOME t', m') => (SOME (mC $ atom $ t'), m')
+  )
+in demult end;
+
+fun decomp0 (inj_consts : (string * typ) list) (rel : string, lhs : term, rhs : term) :
+            ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat) option =
+let
+  (* Turn term into list of summand * multiplicity plus a constant *)
+  fun poly (Const (@{const_name HOL.plus}, _) $ s $ t,
+        m : Rat.rat, pi : (term * Rat.rat) list * Rat.rat) = poly (s, m, poly (t, m, pi))
+    | poly (all as Const (@{const_name HOL.minus}, T) $ s $ t, m, pi) =
+        if nT T then add_atom all m pi else poly (s, m, poly (t, Rat.neg m, pi))
+    | poly (all as Const (@{const_name HOL.uminus}, T) $ t, m, pi) =
+        if nT T then add_atom all m pi else poly (t, Rat.neg m, pi)
+    | poly (Const (@{const_name HOL.zero}, _), _, pi) =
+        pi
+    | poly (Const (@{const_name HOL.one}, _), m, (p, i)) =
+        (p, Rat.add i m)
+    | poly (Const (@{const_name Suc}, _) $ t, m, (p, i)) =
+        poly (t, m, (p, Rat.add i m))
+    | poly (all as Const (@{const_name HOL.times}, _) $ _ $ _, m, pi as (p, i)) =
+        (case demult inj_consts (all, m) of
+           (NONE,   m') => (p, Rat.add i m')
+         | (SOME u, m') => add_atom u m' pi)
+    | poly (all as Const (@{const_name HOL.divide}, _) $ _ $ _, m, pi as (p, i)) =
+        (case demult inj_consts (all, m) of
+           (NONE,   m') => (p, Rat.add i m')
+         | (SOME u, m') => add_atom u m' pi)
+    | poly (all as Const ("Numeral.number_class.number_of", Type(_,[_,T])) $ t, m, pi as (p, i)) =
+        (let val k = HOLogic.dest_numeral t
+            val k2 = if k < 0 andalso T = HOLogic.natT then 0 else k
+        in (p, Rat.add i (Rat.mult m (Rat.rat_of_int k2))) end
+        handle TERM _ => add_atom all m pi)
+    | poly (all as Const f $ x, m, pi) =
+        if f mem inj_consts then poly (x, m, pi) else add_atom all m pi
+    | poly (all, m, pi) =
+        add_atom all m pi
+  val (p, i) = poly (lhs, Rat.one, ([], Rat.zero))
+  val (q, j) = poly (rhs, Rat.one, ([], Rat.zero))
+in
+  case rel of
+    @{const_name HOL.less}    => SOME (p, i, "<", q, j)
+  | @{const_name HOL.less_eq} => SOME (p, i, "<=", q, j)
+  | "op ="              => SOME (p, i, "=", q, j)
+  | _                   => NONE
+end handle Zero => NONE;
+
+fun of_lin_arith_sort sg (U : typ) : bool =
+  Type.of_sort (Sign.tsig_of sg) (U, ["Ring_and_Field.ordered_idom"])
+
+fun allows_lin_arith sg (discrete : string list) (U as Type (D, [])) : bool * bool =
+  if of_lin_arith_sort sg U then
+    (true, D mem discrete)
+  else (* special cases *)
+    if D mem discrete then  (true, true)  else  (false, false)
+  | allows_lin_arith sg discrete U =
+  (of_lin_arith_sort sg U, false);
+
+fun decomp_typecheck (thy, discrete, inj_consts) (T : typ, xxx) : decompT option =
+  case T of
+    Type ("fun", [U, _]) =>
+      (case allows_lin_arith thy discrete U of
+        (true, d) =>
+          (case decomp0 inj_consts xxx of
+            NONE                   => NONE
+          | SOME (p, i, rel, q, j) => SOME (p, i, rel, q, j, d))
+      | (false, _) =>
+          NONE)
+  | _ => NONE;
+
+fun negate (SOME (x, i, rel, y, j, d)) = SOME (x, i, "~" ^ rel, y, j, d)
+  | negate NONE                        = NONE;
+
+fun decomp_negation data
+  ((Const ("Trueprop", _)) $ (Const (rel, T) $ lhs $ rhs)) : decompT option =
+      decomp_typecheck data (T, (rel, lhs, rhs))
+  | decomp_negation data ((Const ("Trueprop", _)) $
+  (Const ("Not", _) $ (Const (rel, T) $ lhs $ rhs))) =
+      negate (decomp_typecheck data (T, (rel, lhs, rhs)))
+  | decomp_negation data _ =
+      NONE;
+
+fun decomp ctxt : term -> decompT option =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val {discrete, inj_consts, ...} = get_arith_data ctxt
+  in decomp_negation (thy, discrete, inj_consts) end;
+
+fun domain_is_nat (_ $ (Const (_, T) $ _ $ _))                      = nT T
+  | domain_is_nat (_ $ (Const ("Not", _) $ (Const (_, T) $ _ $ _))) = nT T
+  | domain_is_nat _                                                 = false;
+
+fun number_of (n, T) = HOLogic.mk_number T n;
+
+(*---------------------------------------------------------------------------*)
+(* the following code performs splitting of certain constants (e.g. min,     *)
+(* max) in a linear arithmetic problem; similar to what split_tac later does *)
+(* to the proof state                                                        *)
+(*---------------------------------------------------------------------------*)
+
+(* checks if splitting with 'thm' is implemented                             *)
+
+fun is_split_thm (thm : thm) : bool =
+  case concl_of thm of _ $ (_ $ (_ $ lhs) $ _) => (
+    (* Trueprop $ ((op =) $ (?P $ lhs) $ rhs) *)
+    case head_of lhs of
+      Const (a, _) => member (op =) [@{const_name Orderings.max},
+                                    @{const_name Orderings.min},
+                                    @{const_name HOL.abs},
+                                    @{const_name HOL.minus},
+                                    "IntDef.nat",
+                                    "Divides.div_class.mod",
+                                    "Divides.div_class.div"] a
+    | _            => (warning ("Lin. Arith.: wrong format for split rule " ^
+                                 Display.string_of_thm thm);
+                       false))
+  | _ => (warning ("Lin. Arith.: wrong format for split rule " ^
+                   Display.string_of_thm thm);
+          false);
+
+(* substitute new for occurrences of old in a term, incrementing bound       *)
+(* variables as needed when substituting inside an abstraction               *)
+
+fun subst_term ([] : (term * term) list) (t : term) = t
+  | subst_term pairs                     t          =
+      (case AList.lookup (op aconv) pairs t of
+        SOME new =>
+          new
+      | NONE     =>
+          (case t of Abs (a, T, body) =>
+            let val pairs' = map (pairself (incr_boundvars 1)) pairs
+            in  Abs (a, T, subst_term pairs' body)  end
+          | t1 $ t2                   =>
+            subst_term pairs t1 $ subst_term pairs t2
+          | _ => t));
+
+(* approximates the effect of one application of split_tac (followed by NNF  *)
+(* normalization) on the subgoal represented by '(Ts, terms)'; returns a     *)
+(* list of new subgoals (each again represented by a typ list for bound      *)
+(* variables and a term list for premises), or NONE if split_tac would fail  *)
+(* on the subgoal                                                            *)
+
+(* FIXME: currently only the effect of certain split theorems is reproduced  *)
+(*        (which is why we need 'is_split_thm').  A more canonical           *)
+(*        implementation should analyze the right-hand side of the split     *)
+(*        theorem that can be applied, and modify the subgoal accordingly.   *)
+(*        Or even better, the splitter should be extended to provide         *)
+(*        splitting on terms as well as splitting on theorems (where the     *)
+(*        former can have a faster implementation as it does not need to be  *)
+(*        proof-producing).                                                  *)
+
+fun split_once_items ctxt (Ts : typ list, terms : term list) :
+                     (typ list * term list) list option =
+let
+  val thy = ProofContext.theory_of ctxt
+  (* takes a list  [t1, ..., tn]  to the term                                *)
+  (*   tn' --> ... --> t1' --> False  ,                                      *)
+  (* where ti' = HOLogic.dest_Trueprop ti                                    *)
+  fun REPEAT_DETERM_etac_rev_mp terms' =
+    fold (curry HOLogic.mk_imp) (map HOLogic.dest_Trueprop terms') HOLogic.false_const
+  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
+  val cmap       = Splitter.cmap_of_split_thms split_thms
+  val splits     = Splitter.split_posns cmap thy Ts (REPEAT_DETERM_etac_rev_mp terms)
+  val split_limit = ConfigOption.get ctxt fast_arith_split_limit
+in
+  if length splits > split_limit then
+   (tracing ("fast_arith_split_limit exceeded (current value is " ^
+      string_of_int split_limit ^ ")"); NONE)
+  else (
+  case splits of [] =>
+    (* split_tac would fail: no possible split *)
+    NONE
+  | ((_, _, _, split_type, split_term) :: _) => (
+    (* ignore all but the first possible split *)
+    case strip_comb split_term of
+    (* ?P (max ?i ?j) = ((?i <= ?j --> ?P ?j) & (~ ?i <= ?j --> ?P ?i)) *)
+      (Const (@{const_name Orderings.max}, _), [t1, t2]) =>
+      let
+        val rev_terms     = rev terms
+        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
+        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
+        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
+                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
+        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
+        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms2 @ [not_false]
+        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms1 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (Ts, subgoal2)]
+      end
+    (* ?P (min ?i ?j) = ((?i <= ?j --> ?P ?i) & (~ ?i <= ?j --> ?P ?j)) *)
+    | (Const (@{const_name Orderings.min}, _), [t1, t2]) =>
+      let
+        val rev_terms     = rev terms
+        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
+        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
+        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
+                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
+        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
+        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms1 @ [not_false]
+        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms2 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (Ts, subgoal2)]
+      end
+    (* ?P (abs ?a) = ((0 <= ?a --> ?P ?a) & (?a < 0 --> ?P (- ?a))) *)
+    | (Const (@{const_name HOL.abs}, _), [t1]) =>
+      let
+        val rev_terms   = rev terms
+        val terms1      = map (subst_term [(split_term, t1)]) rev_terms
+        val terms2      = map (subst_term [(split_term, Const (@{const_name HOL.uminus},
+                            split_type --> split_type) $ t1)]) rev_terms
+        val zero        = Const (@{const_name HOL.zero}, split_type)
+        val zero_leq_t1 = Const (@{const_name HOL.less_eq},
+                            split_type --> split_type --> HOLogic.boolT) $ zero $ t1
+        val t1_lt_zero  = Const (@{const_name HOL.less},
+                            split_type --> split_type --> HOLogic.boolT) $ t1 $ zero
+        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1    = (HOLogic.mk_Trueprop zero_leq_t1) :: terms1 @ [not_false]
+        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (Ts, subgoal2)]
+      end
+    (* ?P (?a - ?b) = ((?a < ?b --> ?P 0) & (ALL d. ?a = ?b + d --> ?P d)) *)
+    | (Const (@{const_name HOL.minus}, _), [t1, t2]) =>
+      let
+        (* "d" in the above theorem becomes a new bound variable after NNF   *)
+        (* transformation, therefore some adjustment of indices is necessary *)
+        val rev_terms       = rev terms
+        val zero            = Const (@{const_name HOL.zero}, split_type)
+        val d               = Bound 0
+        val terms1          = map (subst_term [(split_term, zero)]) rev_terms
+        val terms2          = map (subst_term [(incr_boundvars 1 split_term, d)])
+                                (map (incr_boundvars 1) rev_terms)
+        val t1'             = incr_boundvars 1 t1
+        val t2'             = incr_boundvars 1 t2
+        val t1_lt_t2        = Const (@{const_name HOL.less},
+                                split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
+        val t1_eq_t2_plus_d = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
+                                (Const (@{const_name HOL.plus},
+                                  split_type --> split_type --> split_type) $ t2' $ d)
+        val not_false       = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1        = (HOLogic.mk_Trueprop t1_lt_t2) :: terms1 @ [not_false]
+        val subgoal2        = (HOLogic.mk_Trueprop t1_eq_t2_plus_d) :: terms2 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (split_type :: Ts, subgoal2)]
+      end
+    (* ?P (nat ?i) = ((ALL n. ?i = int n --> ?P n) & (?i < 0 --> ?P 0)) *)
+    | (Const ("IntDef.nat", _), [t1]) =>
+      let
+        val rev_terms   = rev terms
+        val zero_int    = Const (@{const_name HOL.zero}, HOLogic.intT)
+        val zero_nat    = Const (@{const_name HOL.zero}, HOLogic.natT)
+        val n           = Bound 0
+        val terms1      = map (subst_term [(incr_boundvars 1 split_term, n)])
+                            (map (incr_boundvars 1) rev_terms)
+        val terms2      = map (subst_term [(split_term, zero_nat)]) rev_terms
+        val t1'         = incr_boundvars 1 t1
+        val t1_eq_int_n = Const ("op =", HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1' $
+                            (Const ("Nat.of_nat", HOLogic.natT --> HOLogic.intT) $ n)
+        val t1_lt_zero  = Const (@{const_name HOL.less},
+                            HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1 $ zero_int
+        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1    = (HOLogic.mk_Trueprop t1_eq_int_n) :: terms1 @ [not_false]
+        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
+      in
+        SOME [(HOLogic.natT :: Ts, subgoal1), (Ts, subgoal2)]
+      end
+    (* "?P ((?n::nat) mod (number_of ?k)) =
+         ((number_of ?k = 0 --> ?P ?n) & (~ (number_of ?k = 0) -->
+           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P j))) *)
+    | (Const ("Divides.div_class.mod", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
+      let
+        val rev_terms               = rev terms
+        val zero                    = Const (@{const_name HOL.zero}, split_type)
+        val i                       = Bound 1
+        val j                       = Bound 0
+        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
+        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, j)])
+                                        (map (incr_boundvars 2) rev_terms)
+        val t1'                     = incr_boundvars 2 t1
+        val t2'                     = incr_boundvars 2 t2
+        val t2_eq_zero              = Const ("op =",
+                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
+        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
+                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
+        val j_lt_t2                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
+        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
+                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
+                                         (Const (@{const_name HOL.times},
+                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
+        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
+        val subgoal2                = (map HOLogic.mk_Trueprop
+                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
+                                          @ terms2 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
+      end
+    (* "?P ((?n::nat) div (number_of ?k)) =
+         ((number_of ?k = 0 --> ?P 0) & (~ (number_of ?k = 0) -->
+           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P i))) *)
+    | (Const ("Divides.div_class.div", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
+      let
+        val rev_terms               = rev terms
+        val zero                    = Const (@{const_name HOL.zero}, split_type)
+        val i                       = Bound 1
+        val j                       = Bound 0
+        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
+        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, i)])
+                                        (map (incr_boundvars 2) rev_terms)
+        val t1'                     = incr_boundvars 2 t1
+        val t2'                     = incr_boundvars 2 t2
+        val t2_eq_zero              = Const ("op =",
+                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
+        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
+                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
+        val j_lt_t2                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
+        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
+                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
+                                         (Const (@{const_name HOL.times},
+                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
+        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
+        val subgoal2                = (map HOLogic.mk_Trueprop
+                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
+                                          @ terms2 @ [not_false]
+      in
+        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
+      end
+    (* "?P ((?n::int) mod (number_of ?k)) =
+         ((iszero (number_of ?k) --> ?P ?n) &
+          (neg (number_of (uminus ?k)) -->
+            (ALL i j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j --> ?P j)) &
+          (neg (number_of ?k) -->
+            (ALL i j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j --> ?P j))) *)
+    | (Const ("Divides.div_class.mod",
+        Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) =>
+      let
+        val rev_terms               = rev terms
+        val zero                    = Const (@{const_name HOL.zero}, split_type)
+        val i                       = Bound 1
+        val j                       = Bound 0
+        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
+        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, j)])
+                                        (map (incr_boundvars 2) rev_terms)
+        val t1'                     = incr_boundvars 2 t1
+        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
+        val iszero_t2               = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2
+        val neg_minus_k             = Const ("IntDef.neg", split_type --> HOLogic.boolT) $
+                                        (number_of $
+                                          (Const (@{const_name HOL.uminus},
+                                            HOLogic.intT --> HOLogic.intT) $ k'))
+        val zero_leq_j              = Const (@{const_name HOL.less_eq},
+                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
+        val j_lt_t2                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
+        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
+                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
+                                         (Const (@{const_name HOL.times},
+                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
+        val neg_t2                  = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2'
+        val t2_lt_j                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
+        val j_leq_zero              = Const (@{const_name HOL.less_eq},
+                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
+        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
+        val subgoal2                = (map HOLogic.mk_Trueprop [neg_minus_k, zero_leq_j])
+                                        @ hd terms2_3
+                                        :: (if tl terms2_3 = [] then [not_false] else [])
+                                        @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j])
+                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
+        val subgoal3                = (map HOLogic.mk_Trueprop [neg_t2, t2_lt_j])
+                                        @ hd terms2_3
+                                        :: (if tl terms2_3 = [] then [not_false] else [])
+                                        @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j])
+                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
+        val Ts'                     = split_type :: split_type :: Ts
+      in
+        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
+      end
+    (* "?P ((?n::int) div (number_of ?k)) =
+         ((iszero (number_of ?k) --> ?P 0) &
+          (neg (number_of (uminus ?k)) -->
+            (ALL i. (EX j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j) --> ?P i)) &
+          (neg (number_of ?k) -->
+            (ALL i. (EX j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j) --> ?P i))) *)
+    | (Const ("Divides.div_class.div",
+        Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) =>
+      let
+        val rev_terms               = rev terms
+        val zero                    = Const (@{const_name HOL.zero}, split_type)
+        val i                       = Bound 1
+        val j                       = Bound 0
+        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
+        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, i)])
+                                        (map (incr_boundvars 2) rev_terms)
+        val t1'                     = incr_boundvars 2 t1
+        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
+        val iszero_t2               = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2
+        val neg_minus_k             = Const ("IntDef.neg", split_type --> HOLogic.boolT) $
+                                        (number_of $
+                                          (Const (@{const_name HOL.uminus},
+                                            HOLogic.intT --> HOLogic.intT) $ k'))
+        val zero_leq_j              = Const (@{const_name HOL.less_eq},
+                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
+        val j_lt_t2                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
+        val t1_eq_t2_times_i_plus_j = Const ("op =",
+                                        split_type --> split_type --> HOLogic.boolT) $ t1' $
+                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
+                                         (Const (@{const_name HOL.times},
+                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
+        val neg_t2                  = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2'
+        val t2_lt_j                 = Const (@{const_name HOL.less},
+                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
+        val j_leq_zero              = Const (@{const_name HOL.less_eq},
+                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
+        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
+        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
+        val subgoal2                = (HOLogic.mk_Trueprop neg_minus_k)
+                                        :: terms2_3
+                                        @ not_false
+                                        :: (map HOLogic.mk_Trueprop
+                                             [zero_leq_j, j_lt_t2, t1_eq_t2_times_i_plus_j])
+        val subgoal3                = (HOLogic.mk_Trueprop neg_t2)
+                                        :: terms2_3
+                                        @ not_false
+                                        :: (map HOLogic.mk_Trueprop
+                                             [t2_lt_j, j_leq_zero, t1_eq_t2_times_i_plus_j])
+        val Ts'                     = split_type :: split_type :: Ts
+      in
+        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
+      end
+    (* this will only happen if a split theorem can be applied for which no  *)
+    (* code exists above -- in which case either the split theorem should be *)
+    (* implemented above, or 'is_split_thm' should be modified to filter it  *)
+    (* out                                                                   *)
+    | (t, ts) => (
+      warning ("Lin. Arith.: split rule for " ^ ProofContext.string_of_term ctxt t ^
+               " (with " ^ string_of_int (length ts) ^
+               " argument(s)) not implemented; proof reconstruction is likely to fail");
+      NONE
+    ))
+  )
+end;
+
+(* remove terms that do not satisfy 'p'; change the order of the remaining   *)
+(* terms in the same way as filter_prems_tac does                            *)
+
+fun filter_prems_tac_items (p : term -> bool) (terms : term list) : term list =
+let
+  fun filter_prems (t, (left, right)) =
+    if  p t  then  (left, right @ [t])  else  (left @ right, [])
+  val (left, right) = foldl filter_prems ([], []) terms
+in
+  right @ left
+end;
+
+(* return true iff TRY (etac notE) THEN eq_assume_tac would succeed on a     *)
+(* subgoal that has 'terms' as premises                                      *)
+
+fun negated_term_occurs_positively (terms : term list) : bool =
+  List.exists
+    (fn (Trueprop $ (Const ("Not", _) $ t)) => member (op aconv) terms (Trueprop $ t)
+      | _                                   => false)
+    terms;
+
+fun pre_decomp ctxt (Ts : typ list, terms : term list) : (typ list * term list) list =
+let
+  (* repeatedly split (including newly emerging subgoals) until no further   *)
+  (* splitting is possible                                                   *)
+  fun split_loop ([] : (typ list * term list) list) = ([] : (typ list * term list) list)
+    | split_loop (subgoal::subgoals)                = (
+        case split_once_items ctxt subgoal of
+          SOME new_subgoals => split_loop (new_subgoals @ subgoals)
+        | NONE              => subgoal :: split_loop subgoals
+      )
+  fun is_relevant t  = isSome (decomp ctxt t)
+  (* filter_prems_tac is_relevant: *)
+  val relevant_terms = filter_prems_tac_items is_relevant terms
+  (* split_tac, NNF normalization: *)
+  val split_goals    = split_loop [(Ts, relevant_terms)]
+  (* necessary because split_once_tac may normalize terms: *)
+  val beta_eta_norm  = map (apsnd (map (Envir.eta_contract o Envir.beta_norm))) split_goals
+  (* TRY (etac notE) THEN eq_assume_tac: *)
+  val result         = List.filter (not o negated_term_occurs_positively o snd) beta_eta_norm
+in
+  result
+end;
+
+(* takes the i-th subgoal  [| A1; ...; An |] ==> B  to                       *)
+(* An --> ... --> A1 --> B,  performs splitting with the given 'split_thms'  *)
+(* (resulting in a different subgoal P), takes  P  to  ~P ==> False,         *)
+(* performs NNF-normalization of ~P, and eliminates conjunctions,            *)
+(* disjunctions and existential quantifiers from the premises, possibly (in  *)
+(* the case of disjunctions) resulting in several new subgoals, each of the  *)
+(* general form  [| Q1; ...; Qm |] ==> False.  Fails if more than            *)
+(* !fast_arith_split_limit splits are possible.                              *)
+
+local
+  val nnf_simpset =
+    empty_ss setmkeqTrue mk_eq_True
+    setmksimps (mksimps mksimps_pairs)
+    addsimps [imp_conv_disj, iff_conv_conj_imp, de_Morgan_disj, de_Morgan_conj,
+      not_all, not_ex, not_not]
+  fun prem_nnf_tac i st =
+    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st
+in
+
+fun split_once_tac ctxt split_thms =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val cond_split_tac = SUBGOAL (fn (subgoal, i) =>
+      let
+        val Ts = rev (map snd (Logic.strip_params subgoal))
+        val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl subgoal)
+        val cmap = Splitter.cmap_of_split_thms split_thms
+        val splits = Splitter.split_posns cmap thy Ts concl
+        val split_limit = ConfigOption.get ctxt fast_arith_split_limit
+      in
+        if length splits > split_limit then no_tac
+        else split_tac split_thms i
+      end)
+  in
+    EVERY' [
+      REPEAT_DETERM o etac rev_mp,
+      cond_split_tac,
+      rtac ccontr,
+      prem_nnf_tac,
+      TRY o REPEAT_ALL_NEW (DETERM o (eresolve_tac [conjE, exE] ORELSE' etac disjE))
+    ]
+  end;
+
+end;  (* local *)
+
+(* remove irrelevant premises, then split the i-th subgoal (and all new      *)
+(* subgoals) by using 'split_once_tac' repeatedly.  Beta-eta-normalize new   *)
+(* subgoals and finally attempt to solve them by finding an immediate        *)
+(* contradiction (i.e. a term and its negation) in their premises.           *)
+
+fun pre_tac ctxt i =
+let
+  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
+  fun is_relevant t = isSome (decomp ctxt t)
+in
+  DETERM (
+    TRY (filter_prems_tac is_relevant i)
+      THEN (
+        (TRY o REPEAT_ALL_NEW (split_once_tac ctxt split_thms))
+          THEN_ALL_NEW
+            (CONVERSION Drule.beta_eta_conversion
+              THEN'
+            (TRY o (etac notE THEN' eq_assume_tac)))
+      ) i
+  )
+end;
+
+end;  (* LA_Data_Ref *)
+
+
+val lin_arith_pre_tac = LA_Data_Ref.pre_tac;
+
+structure Fast_Arith =
+  Fast_Lin_Arith(structure LA_Logic=LA_Logic and LA_Data=LA_Data_Ref);
+
+val map_data = Fast_Arith.map_data;
+
+fun fast_arith_tac ctxt    = Fast_Arith.lin_arith_tac ctxt false;
+val fast_ex_arith_tac      = Fast_Arith.lin_arith_tac;
+val trace_arith            = Fast_Arith.trace;
+
+(* reduce contradictory <= to False.
+   Most of the work is done by the cancel tactics. *)
+
+val init_arith_data =
+ Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, ...} =>
+   {add_mono_thms = add_mono_thms @
+    @{thms add_mono_thms_ordered_semiring} @ @{thms add_mono_thms_ordered_field},
+    mult_mono_thms = mult_mono_thms,
+    inj_thms = inj_thms,
+    lessD = lessD @ [thm "Suc_leI"],
+    neqE = [@{thm linorder_neqE_nat}, @{thm linorder_neqE_ordered_idom}],
+    simpset = HOL_basic_ss
+      addsimps
+       [@{thm "monoid_add_class.zero_plus.add_0_left"},
+        @{thm "monoid_add_class.zero_plus.add_0_right"},
+        @{thm "Zero_not_Suc"}, @{thm "Suc_not_Zero"}, @{thm "le_0_eq"}, @{thm "One_nat_def"},
+        @{thm "order_less_irrefl"}, @{thm "zero_neq_one"}, @{thm "zero_less_one"},
+        @{thm "zero_le_one"}, @{thm "zero_neq_one"} RS not_sym, @{thm "not_one_le_zero"},
+        @{thm "not_one_less_zero"}]
+      addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]
+       (*abel_cancel helps it work in abstract algebraic domains*)
+      addsimprocs nat_cancel_sums_add}) #>
+  arith_discrete "nat";
+
+val lin_arith_simproc = Fast_Arith.lin_arith_simproc;
+
+val fast_nat_arith_simproc =
+  Simplifier.simproc (the_context ()) "fast_nat_arith"
+    ["(m::nat) < n","(m::nat) <= n", "(m::nat) = n"] (K Fast_Arith.lin_arith_simproc);
+
+(* Because of fast_nat_arith_simproc, the arithmetic solver is really only
+useful to detect inconsistencies among the premises for subgoals which are
+*not* themselves (in)equalities, because the latter activate
+fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
+solver all the time rather than add the additional check. *)
+
+
+(* arith proof method *)
+
+local
+
+fun raw_arith_tac ctxt ex =
+  (* FIXME: K true should be replaced by a sensible test (perhaps "isSome o
+     decomp sg"? -- but note that the test is applied to terms already before
+     they are split/normalized) to speed things up in case there are lots of
+     irrelevant terms involved; elimination of min/max can be optimized:
+     (max m n + k <= r) = (m+k <= r & n+k <= r)
+     (l <= min m n + k) = (l <= m+k & l <= n+k)
+  *)
+  refute_tac (K true)
+    (* Splitting is also done inside fast_arith_tac, but not completely --   *)
+    (* split_tac may use split theorems that have not been implemented in    *)
+    (* fast_arith_tac (cf. pre_decomp and split_once_items above), and       *)
+    (* fast_arith_split_limit may trigger.                                   *)
+    (* Therefore splitting outside of fast_arith_tac may allow us to prove   *)
+    (* some goals that fast_arith_tac alone would fail on.                   *)
+    (REPEAT_DETERM o split_tac (#splits (get_arith_data ctxt)))
+    (fast_ex_arith_tac ctxt ex);
+
+fun more_arith_tacs ctxt =
+  let val tactics = #tactics (get_arith_data ctxt)
+  in FIRST' (map (fn ArithTactic {tactic, ...} => tactic ctxt) tactics) end;
+
+in
+
+fun simple_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
+  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true];
+
+fun arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
+  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true,
+  more_arith_tacs ctxt];
+
+fun silent_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
+  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt false,
+  more_arith_tacs ctxt];
+
+fun arith_method src =
+  Method.syntax Args.bang_facts src
+  #> (fn (prems, ctxt) => Method.METHOD (fn facts =>
+      HEADGOAL (Method.insert_tac (prems @ facts) THEN' arith_tac ctxt)));
+
+end;
+
+
+(* context setup *)
+
+val setup =
+  init_arith_data #>
+  Simplifier.map_ss (fn ss => ss addsimprocs [fast_nat_arith_simproc]
+    addSolver (mk_solver' "lin_arith" Fast_Arith.cut_lin_arith_tac)) #>
+  Context.mapping
+   (setup_options #>
+    Method.add_methods
+      [("arith", arith_method, "decide linear arithmethic")] #>
+    Attrib.add_attributes [("arith_split", Attrib.no_args arith_split_add,
+      "declaration of split rules for arithmetic procedure")]) I;
+
+end;
+
+structure BasicLinArith: BASIC_LIN_ARITH = LinArith;
+open BasicLinArith;