substantial simplification restores code generation
authorhaftmann
Tue, 10 Nov 2009 16:11:43 +0100
changeset 33595 7264824baf66
parent 33594 357f74e0090c
child 33596 27c5023ee818
substantial simplification restores code generation
src/HOL/Record.thy
src/HOL/Tools/record.ML
--- a/src/HOL/Record.thy	Tue Nov 10 16:11:39 2009 +0100
+++ b/src/HOL/Record.thy	Tue Nov 10 16:11:43 2009 +0100
@@ -3,15 +3,386 @@
     Author:     Markus Wenzel, TU Muenchen
     Author:     Norbert Schirmer, TU Muenchen
     Author:     Thomas Sewell, NICTA
+    Author:     Florian Haftmann, TU Muenchen
 *)
 
 header {* Extensible records with structural subtyping *}
 
 theory Record
-imports Product_Type
+imports Datatype
 uses ("Tools/record.ML")
 begin
 
+subsection {* Introduction *}
+
+text {*
+  Records are isomorphic to compound tuple types. To implement
+  efficient records, we make this isomorphism explicit. Consider the
+  record access/update simplification @{text "alpha (beta_update f
+  rec) = alpha rec"} for distinct fields alpha and beta of some record
+  rec with n fields. There are @{text "n ^ 2"} such theorems, which
+  prohibits storage of all of them for large n. The rules can be
+  proved on the fly by case decomposition and simplification in O(n)
+  time. By creating O(n) isomorphic-tuple types while defining the
+  record, however, we can prove the access/update simplification in
+  @{text "O(log(n)^2)"} time.
+
+  The O(n) cost of case decomposition is not because O(n) steps are
+  taken, but rather because the resulting rule must contain O(n) new
+  variables and an O(n) size concrete record construction. To sidestep
+  this cost, we would like to avoid case decomposition in proving
+  access/update theorems.
+
+  Record types are defined as isomorphic to tuple types. For instance,
+  a record type with fields @{text "'a"}, @{text "'b"}, @{text "'c"}
+  and @{text "'d"} might be introduced as isomorphic to @{text "'a \<times>
+  ('b \<times> ('c \<times> 'd))"}. If we balance the tuple tree to @{text "('a \<times>
+  'b) \<times> ('c \<times> 'd)"} then accessors can be defined by converting to the
+  underlying type then using O(log(n)) fst or snd operations.
+  Updators can be defined similarly, if we introduce a @{text
+  "fst_update"} and @{text "snd_update"} function. Furthermore, we can
+  prove the access/update theorem in O(log(n)) steps by using simple
+  rewrites on fst, snd, @{text "fst_update"} and @{text "snd_update"}.
+
+  The catch is that, although O(log(n)) steps were taken, the
+  underlying type we converted to is a tuple tree of size
+  O(n). Processing this term type wastes performance. We avoid this
+  for large n by taking each subtree of size K and defining a new type
+  isomorphic to that tuple subtree. A record can now be defined as
+  isomorphic to a tuple tree of these O(n/K) new types, or, if @{text
+  "n > K*K"}, we can repeat the process, until the record can be
+  defined in terms of a tuple tree of complexity less than the
+  constant K.
+
+  If we prove the access/update theorem on this type with the
+  analagous steps to the tuple tree, we consume @{text "O(log(n)^2)"}
+  time as the intermediate terms are @{text "O(log(n))"} in size and
+  the types needed have size bounded by K.  To enable this analagous
+  traversal, we define the functions seen below: @{text
+  "istuple_fst"}, @{text "istuple_snd"}, @{text "istuple_fst_update"}
+  and @{text "istuple_snd_update"}. These functions generalise tuple
+  operations by taking a parameter that encapsulates a tuple
+  isomorphism.  The rewrites needed on these functions now need an
+  additional assumption which is that the isomorphism works.
+
+  These rewrites are typically used in a structured way. They are here
+  presented as the introduction rule @{text "isomorphic_tuple.intros"}
+  rather than as a rewrite rule set. The introduction form is an
+  optimisation, as net matching can be performed at one term location
+  for each step rather than the simplifier searching the term for
+  possible pattern matches. The rule set is used as it is viewed
+  outside the locale, with the locale assumption (that the isomorphism
+  is valid) left as a rule assumption. All rules are structured to aid
+  net matching, using either a point-free form or an encapsulating
+  predicate.
+*}
+
+subsection {* Operators and lemmas for types isomorphic to tuples *}
+
+datatype ('a, 'b, 'c) tuple_isomorphism = TupleIsomorphism "'a \<Rightarrow> 'b \<times> 'c" "'b \<times> 'c \<Rightarrow> 'a"
+
+primrec repr :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'b \<times> 'c" where
+  "repr (TupleIsomorphism r a) = r"
+
+primrec abst :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'b \<times> 'c \<Rightarrow> 'a" where
+  "abst (TupleIsomorphism r a) = a"
+
+definition istuple_fst :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'b" where
+  "istuple_fst isom = fst \<circ> repr isom"
+
+definition istuple_snd :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'c" where
+  "istuple_snd isom = snd \<circ> repr isom"
+
+definition istuple_fst_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)" where
+  "istuple_fst_update isom f = abst isom \<circ> apfst f \<circ> repr isom"
+
+definition istuple_snd_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'a)" where
+  "istuple_snd_update isom f = abst isom \<circ> apsnd f \<circ> repr isom"
+
+definition istuple_cons :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'a" where
+  "istuple_cons isom = curry (abst isom)"
+
+
+subsection {* Logical infrastructure for records *}
+
+definition istuple_surjective_proof_assist :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+  "istuple_surjective_proof_assist x y f \<longleftrightarrow> f x = y"
+
+definition istuple_update_accessor_cong_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where
+  "istuple_update_accessor_cong_assist upd acc \<longleftrightarrow> 
+     (\<forall>f v. upd (\<lambda>x. f (acc v)) v = upd f v) \<and> (\<forall>v. upd id v = v)"
+
+definition istuple_update_accessor_eq_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
+  "istuple_update_accessor_eq_assist upd acc v f v' x \<longleftrightarrow>
+     upd f v = v' \<and> acc v = x \<and> istuple_update_accessor_cong_assist upd acc"
+
+lemma update_accessor_congruence_foldE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+  and       r: "r = r'" and v: "acc r' = v'"
+  and       f: "\<And>v. v' = v \<Longrightarrow> f v = f' v"
+  shows        "upd f r = upd f' r'"
+  using uac r v [symmetric]
+  apply (subgoal_tac "upd (\<lambda>x. f (acc r')) r' = upd (\<lambda>x. f' (acc r')) r'")
+   apply (simp add: istuple_update_accessor_cong_assist_def)
+  apply (simp add: f)
+  done
+
+lemma update_accessor_congruence_unfoldE:
+  "istuple_update_accessor_cong_assist upd acc \<Longrightarrow> r = r' \<Longrightarrow> acc r' = v' \<Longrightarrow> (\<And>v. v = v' \<Longrightarrow> f v = f' v)
+     \<Longrightarrow> upd f r = upd f' r'"
+  apply (erule(2) update_accessor_congruence_foldE)
+  apply simp
+  done
+
+lemma istuple_update_accessor_cong_assist_id:
+  "istuple_update_accessor_cong_assist upd acc \<Longrightarrow> upd id = id"
+  by rule (simp add: istuple_update_accessor_cong_assist_def)
+
+lemma update_accessor_noopE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+      and acc: "f (acc x) = acc x"
+  shows        "upd f x = x"
+using uac by (simp add: acc istuple_update_accessor_cong_assist_id [OF uac, unfolded id_def]
+  cong: update_accessor_congruence_unfoldE [OF uac])
+
+lemma update_accessor_noop_compE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+  assumes acc: "f (acc x) = acc x"
+  shows      "upd (g \<circ> f) x = upd g x"
+  by (simp add: acc cong: update_accessor_congruence_unfoldE[OF uac])
+
+lemma update_accessor_cong_assist_idI:
+  "istuple_update_accessor_cong_assist id id"
+  by (simp add: istuple_update_accessor_cong_assist_def)
+
+lemma update_accessor_cong_assist_triv:
+  "istuple_update_accessor_cong_assist upd acc \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
+  by assumption
+
+lemma update_accessor_accessor_eqE:
+  "istuple_update_accessor_eq_assist upd acc v f v' x \<Longrightarrow> acc v = x"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma update_accessor_updator_eqE:
+  "istuple_update_accessor_eq_assist upd acc v f v' x \<Longrightarrow> upd f v = v'"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma istuple_update_accessor_eq_assist_idI:
+  "v' = f v \<Longrightarrow> istuple_update_accessor_eq_assist id id v f v' v"
+  by (simp add: istuple_update_accessor_eq_assist_def update_accessor_cong_assist_idI)
+
+lemma istuple_update_accessor_eq_assist_triv:
+  "istuple_update_accessor_eq_assist upd acc v f v' x \<Longrightarrow> istuple_update_accessor_eq_assist upd acc v f v' x"
+  by assumption
+
+lemma istuple_update_accessor_cong_from_eq:
+  "istuple_update_accessor_eq_assist upd acc v f v' x \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma o_eq_dest:
+  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
+  apply (clarsimp simp: o_def)
+  apply (erule fun_cong)
+  done
+
+lemma o_eq_elim:
+  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
+  apply (erule meta_mp)
+  apply (erule o_eq_dest)
+  done
+
+lemma istuple_surjective_proof_assistI:
+  "f x = y \<Longrightarrow> istuple_surjective_proof_assist x y f"
+  by (simp add: istuple_surjective_proof_assist_def)
+
+lemma istuple_surjective_proof_assist_idE:
+  "istuple_surjective_proof_assist x y id \<Longrightarrow> x = y"
+  by (simp add: istuple_surjective_proof_assist_def)
+
+locale isomorphic_tuple =
+  fixes isom :: "('a, 'b, 'c) tuple_isomorphism"
+    and repr and abst
+  defines "repr \<equiv> Record.repr isom"
+  defines "abst \<equiv> Record.abst isom"
+  assumes repr_inv: "\<And>x. abst (repr x) = x"
+  assumes abst_inv: "\<And>y. repr (abst y) = y"
+begin
+
+lemma repr_inj:
+  "repr x = repr y \<longleftrightarrow> x = y"
+  apply (rule iffI, simp_all)
+  apply (drule_tac f=abst in arg_cong, simp add: repr_inv)
+  done
+
+lemma abst_inj:
+  "abst x = abst y \<longleftrightarrow> x = y"
+  apply (rule iffI, simp_all)
+  apply (drule_tac f=repr in arg_cong, simp add: abst_inv)
+  done
+
+lemmas simps = Let_def repr_inv abst_inv repr_inj abst_inj repr_def [symmetric] abst_def [symmetric]
+
+lemma istuple_access_update_fst_fst:
+  "f o h g = j o f \<Longrightarrow>
+    (f o istuple_fst isom) o (istuple_fst_update isom o h) g
+          = j o (f o istuple_fst isom)"
+  by (clarsimp simp: istuple_fst_update_def istuple_fst_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_snd_snd:
+  "f o h g = j o f \<Longrightarrow>
+    (f o istuple_snd isom) o (istuple_snd_update isom o h) g
+          = j o (f o istuple_snd isom)"
+  by (clarsimp simp: istuple_snd_update_def istuple_snd_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_fst_snd:
+  "(f o istuple_fst isom) o (istuple_snd_update isom o h) g
+          = id o (f o istuple_fst isom)"
+  by (clarsimp simp: istuple_snd_update_def istuple_fst_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_snd_fst:
+  "(f o istuple_snd isom) o (istuple_fst_update isom o h) g
+          = id o (f o istuple_snd isom)"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_swap_fst_fst:
+  "h f o j g = j g o h f \<Longrightarrow>
+    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o j) g o (istuple_fst_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def simps apfst_compose intro!: ext)
+
+lemma istuple_update_swap_snd_snd:
+  "h f o j g = j g o h f \<Longrightarrow>
+    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o j) g o (istuple_snd_update isom o h) f"
+  by (clarsimp simp: istuple_snd_update_def simps apsnd_compose intro!: ext)
+
+lemma istuple_update_swap_fst_snd:
+  "(istuple_snd_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o j) g o (istuple_snd_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps intro!: ext)
+
+lemma istuple_update_swap_snd_fst:
+  "(istuple_fst_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o j) g o (istuple_fst_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps intro!: ext)
+
+lemma istuple_update_compose_fst_fst:
+  "h f o j g = k (f o g) \<Longrightarrow>
+    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o k) (f o g)"
+  by (clarsimp simp: istuple_fst_update_def simps apfst_compose intro!: ext)
+
+lemma istuple_update_compose_snd_snd:
+  "h f o j g = k (f o g) \<Longrightarrow>
+    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o k) (f o g)"
+  by (clarsimp simp: istuple_snd_update_def simps apsnd_compose intro!: ext)
+
+lemma istuple_surjective_proof_assist_step:
+  "istuple_surjective_proof_assist v a (istuple_fst isom o f) \<Longrightarrow>
+     istuple_surjective_proof_assist v b (istuple_snd isom o f)
+      \<Longrightarrow> istuple_surjective_proof_assist v (istuple_cons isom a b) f"
+  by (clarsimp simp: istuple_surjective_proof_assist_def simps
+    istuple_fst_def istuple_snd_def istuple_cons_def)
+
+lemma istuple_fst_update_accessor_cong_assist:
+  assumes "istuple_update_accessor_cong_assist f g"
+  shows "istuple_update_accessor_cong_assist (istuple_fst_update isom o f) (g o istuple_fst isom)"
+proof -
+  from assms have "f id = id" by (rule istuple_update_accessor_cong_assist_id)
+  with assms show ?thesis by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
+    istuple_fst_update_def istuple_fst_def)
+qed
+
+lemma istuple_snd_update_accessor_cong_assist:
+  assumes "istuple_update_accessor_cong_assist f g"
+  shows "istuple_update_accessor_cong_assist (istuple_snd_update isom o f) (g o istuple_snd isom)"
+proof -
+  from assms have "f id = id" by (rule istuple_update_accessor_cong_assist_id)
+  with assms show ?thesis by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
+    istuple_snd_update_def istuple_snd_def)
+qed
+
+lemma istuple_fst_update_accessor_eq_assist:
+  assumes "istuple_update_accessor_eq_assist f g a u a' v"
+  shows "istuple_update_accessor_eq_assist (istuple_fst_update isom o f) (g o istuple_fst isom)
+    (istuple_cons isom a b) u (istuple_cons isom a' b) v"
+proof -
+  from assms have "f id = id"
+    by (auto simp add: istuple_update_accessor_eq_assist_def intro: istuple_update_accessor_cong_assist_id)
+  with assms show ?thesis by (clarsimp simp: istuple_update_accessor_eq_assist_def
+    istuple_fst_update_def istuple_fst_def istuple_update_accessor_cong_assist_def istuple_cons_def simps)
+qed
+
+lemma istuple_snd_update_accessor_eq_assist:
+  assumes "istuple_update_accessor_eq_assist f g b u b' v"
+  shows "istuple_update_accessor_eq_assist (istuple_snd_update isom o f) (g o istuple_snd isom)
+    (istuple_cons isom a b) u (istuple_cons isom a b') v"
+proof -
+  from assms have "f id = id"
+    by (auto simp add: istuple_update_accessor_eq_assist_def intro: istuple_update_accessor_cong_assist_id)
+  with assms show ?thesis by (clarsimp simp: istuple_update_accessor_eq_assist_def
+    istuple_snd_update_def istuple_snd_def istuple_update_accessor_cong_assist_def istuple_cons_def simps)
+qed
+
+lemma istuple_cons_conj_eqI:
+  "a = c \<and> b = d \<and> P \<longleftrightarrow> Q \<Longrightarrow>
+    istuple_cons isom a b = istuple_cons isom c d \<and> P \<longleftrightarrow> Q"
+  by (clarsimp simp: istuple_cons_def simps)
+
+lemmas intros =
+    istuple_access_update_fst_fst
+    istuple_access_update_snd_snd
+    istuple_access_update_fst_snd
+    istuple_access_update_snd_fst
+    istuple_update_swap_fst_fst
+    istuple_update_swap_snd_snd
+    istuple_update_swap_fst_snd
+    istuple_update_swap_snd_fst
+    istuple_update_compose_fst_fst
+    istuple_update_compose_snd_snd
+    istuple_surjective_proof_assist_step
+    istuple_fst_update_accessor_eq_assist
+    istuple_snd_update_accessor_eq_assist
+    istuple_fst_update_accessor_cong_assist
+    istuple_snd_update_accessor_cong_assist
+    istuple_cons_conj_eqI
+
+end
+
+lemma isomorphic_tuple_intro:
+  fixes repr abst
+  assumes repr_inj: "\<And>x y. repr x = repr y \<longleftrightarrow> x = y"
+     and abst_inv: "\<And>z. repr (abst z) = z"
+  assumes v: "v \<equiv> TupleIsomorphism repr abst"
+  shows "isomorphic_tuple v"
+  apply (rule isomorphic_tuple.intro)
+  apply (simp_all add: abst_inv v)
+  apply (cut_tac x="abst (repr x)" and y="x" in repr_inj)
+  apply (simp add: abst_inv)
+  done
+
+definition
+  "tuple_istuple \<equiv> TupleIsomorphism id id"
+
+lemma tuple_istuple:
+  "isomorphic_tuple tuple_istuple"
+  by (simp add: isomorphic_tuple_intro [OF _ _ reflexive] tuple_istuple_def)
+
+lemma refl_conj_eq:
+  "Q = R \<Longrightarrow> P \<and> Q \<longleftrightarrow> P \<and> R"
+  by simp
+
+lemma istuple_UNIV_I: "x \<in> UNIV \<equiv> True"
+  by simp
+
+lemma istuple_True_simp: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
+  by simp
+
 lemma prop_subst: "s = t \<Longrightarrow> PROP P t \<Longrightarrow> PROP P s"
   by simp
 
@@ -22,14 +393,11 @@
   "a o b = c \<Longrightarrow> a (b v) = c v"
   by clarsimp
 
-lemma id_o_refl:
-  "id o f = f o id"
-  by simp
-
 lemma o_eq_id_dest:
   "a o b = id o c \<Longrightarrow> a (b v) = c v"
   by clarsimp
 
+
 subsection {* Concrete record syntax *}
 
 nonterminals
@@ -63,400 +431,15 @@
   "_record_scheme"      :: "[fields, 'a] => 'a"                 ("(3\<lparr>_,/ (2\<dots> =/ _)\<rparr>)")
   "_record_update"      :: "['a, updates] => 'b"                ("_/(3\<lparr>_\<rparr>)" [900,0] 900)
 
-subsection {* Operators and lemmas for types isomorphic to tuples *}
 
-text {*
-Records are isomorphic to compound tuple types. To implement efficient
-records, we make this isomorphism explicit. Consider the record
-access/update simplification @{text "alpha (beta_update f rec) = alpha rec"} for
-distinct fields alpha and beta of some record rec with n fields. There
-are @{text "n ^ 2"} such theorems, which prohibits storage of all of them for
-large n. The rules can be proved on the fly by case decomposition and
-simplification in O(n) time. By creating O(n) isomorphic-tuple types
-while defining the record, however, we can prove the access/update
-simplification in @{text "O(log(n)^2)"} time.
-
-The O(n) cost of case decomposition is not because O(n) steps are taken,
-but rather because the resulting rule must contain O(n) new variables and
-an O(n) size concrete record construction. To sidestep this cost, we would
-like to avoid case decomposition in proving access/update theorems.
-
-Record types are defined as isomorphic to tuple types. For instance, a
-record type with fields 'a, 'b, 'c and 'd might be introduced as
-isomorphic to @{text "'a \<times> ('b \<times> ('c \<times> 'd))"}. If we balance the tuple tree to
-@{text "('a \<times> 'b) \<times> ('c \<times> 'd)"} then accessors can be defined by converting to
-the underlying type then using O(log(n)) fst or snd operations.
-Updators can be defined similarly, if we introduce a @{text "fst_update"} and
-@{text "snd_update"} function. Furthermore, we can prove the access/update
-theorem in O(log(n)) steps by using simple rewrites on fst, snd,
-@{text "fst_update"} and @{text "snd_update"}.
-
-The catch is that, although O(log(n)) steps were taken, the underlying
-type we converted to is a tuple tree of size O(n). Processing this term
-type wastes performance. We avoid this for large n by taking each
-subtree of size K and defining a new type isomorphic to that tuple
-subtree. A record can now be defined as isomorphic to a tuple tree
-of these O(n/K) new types, or, if @{text "n > K*K"}, we can repeat the process,
-until the record can be defined in terms of a tuple tree of complexity
-less than the constant K.
-
-If we prove the access/update theorem on this type with the analagous
-steps to the tuple tree, we consume @{text "O(log(n)^2)"} time as the intermediate
-terms are O(log(n)) in size and the types needed have size bounded by K.
-To enable this analagous traversal, we define the functions seen below:
-@{text "istuple_fst"}, @{text "istuple_snd"}, @{text "istuple_fst_update"}
-and @{text "istuple_snd_update"}. These functions generalise tuple
-operations by taking a parameter that encapsulates a tuple isomorphism.
-The rewrites needed on these functions now need an additional assumption
-which is that the isomorphism works.
-
-These rewrites are typically used in a structured way. They are here
-presented as the introduction rule @{text "isomorphic_tuple.intros"} rather than
-as a rewrite rule set. The introduction form is an optimisation, as net
-matching can be performed at one term location for each step rather than
-the simplifier searching the term for possible pattern matches. The rule
-set is used as it is viewed outside the locale, with the locale assumption
-(that the isomorphism is valid) left as a rule assumption. All rules are
-structured to aid net matching, using either a point-free form or an
-encapsulating predicate.
-*}
-
-typedef ('a, 'b, 'c) tuple_isomorphism
-  = "UNIV :: (('a \<Rightarrow> ('b \<times> 'c)) \<times> (('b \<times> 'c) \<Rightarrow> 'a)) set"
-  by simp
-
-definition
-  "TupleIsomorphism repr abst = Abs_tuple_isomorphism (repr, abst)"
-
-definition
-  istuple_fst :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'b"
-where
- "istuple_fst isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in fst \<circ> repr"
-
-definition
-  istuple_snd :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'c"
-where
- "istuple_snd isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in snd \<circ> repr"
-
-definition
-  istuple_fst_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)"
-where
- "istuple_fst_update isom \<equiv>
-     let (repr, abst) = Rep_tuple_isomorphism isom in
-        (\<lambda>f v. abst (f (fst (repr v)), snd (repr v)))"
-
-definition
-  istuple_snd_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'a)"
-where
- "istuple_snd_update isom \<equiv>
-     let (repr, abst) = Rep_tuple_isomorphism isom in
-        (\<lambda>f v. abst (fst (repr v), f (snd (repr v))))"
-
-definition
-  istuple_cons :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'a"
-where
- "istuple_cons isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in curry abst"
-
-text {*
-These predicates are used in the introduction rule set to constrain
-matching appropriately. The elimination rules for them produce the
-desired theorems once they are proven. The final introduction rules are
-used when no further rules from the introduction rule set can apply.
-*}
-
-definition
-  istuple_surjective_proof_assist :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
-where
- "istuple_surjective_proof_assist x y f \<equiv> (f x = y)"
-
-definition
-  istuple_update_accessor_cong_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a))
-                              \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
-where
- "istuple_update_accessor_cong_assist upd acc
-    \<equiv> (\<forall>f v. upd (\<lambda>x. f (acc v)) v = upd f v)
-       \<and> (\<forall>v. upd id v = v)"
-
-definition
-  istuple_update_accessor_eq_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)) \<Rightarrow> ('a \<Rightarrow> 'b)
-                              \<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
-where
- "istuple_update_accessor_eq_assist upd acc v f v' x
-    \<equiv> upd f v = v' \<and> acc v = x
-      \<and> istuple_update_accessor_cong_assist upd acc"
-
-lemma update_accessor_congruence_foldE:
-  assumes uac: "istuple_update_accessor_cong_assist upd acc"
-  and       r: "r = r'" and v: "acc r' = v'"
-  and       f: "\<And>v. v' = v \<Longrightarrow> f v = f' v"
-  shows        "upd f r = upd f' r'"
-  using uac r v[symmetric]
-  apply (subgoal_tac "upd (\<lambda>x. f (acc r')) r' = upd (\<lambda>x. f' (acc r')) r'")
-   apply (simp add: istuple_update_accessor_cong_assist_def)
-  apply (simp add: f)
-  done
-
-lemma update_accessor_congruence_unfoldE:
-  "\<lbrakk> istuple_update_accessor_cong_assist upd acc;
-     r = r'; acc r' = v'; \<And>v. v = v' \<Longrightarrow> f v = f' v \<rbrakk>
-     \<Longrightarrow> upd f r = upd f' r'"
-  apply (erule(2) update_accessor_congruence_foldE)
-  apply simp
-  done
-
-lemma istuple_update_accessor_cong_assist_id:
-  "istuple_update_accessor_cong_assist upd acc \<Longrightarrow> upd id = id"
-  by (rule ext, simp add: istuple_update_accessor_cong_assist_def)
-
-lemma update_accessor_noopE:
-  assumes uac: "istuple_update_accessor_cong_assist upd acc"
-      and acc: "f (acc x) = acc x"
-  shows        "upd f x = x"
-  using uac
-  by (simp add: acc istuple_update_accessor_cong_assist_id[OF uac, unfolded id_def]
-          cong: update_accessor_congruence_unfoldE[OF uac])
-
-lemma update_accessor_noop_compE:
-  assumes uac: "istuple_update_accessor_cong_assist upd acc"
-  assumes acc: "f (acc x) = acc x"
-  shows      "upd (g \<circ> f) x = upd g x"
-  by (simp add: acc cong: update_accessor_congruence_unfoldE[OF uac])
-
-lemma update_accessor_cong_assist_idI:
-  "istuple_update_accessor_cong_assist id id"
-  by (simp add: istuple_update_accessor_cong_assist_def)
-
-lemma update_accessor_cong_assist_triv:
-  "istuple_update_accessor_cong_assist upd acc
-       \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
-  by assumption
-
-lemma update_accessor_accessor_eqE:
-  "\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> acc v = x"
-  by (simp add: istuple_update_accessor_eq_assist_def)
-
-lemma update_accessor_updator_eqE:
-  "\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> upd f v = v'"
-  by (simp add: istuple_update_accessor_eq_assist_def)
-
-lemma istuple_update_accessor_eq_assist_idI:
-  "v' = f v \<Longrightarrow> istuple_update_accessor_eq_assist id id v f v' v"
-  by (simp add: istuple_update_accessor_eq_assist_def
-                update_accessor_cong_assist_idI)
-
-lemma istuple_update_accessor_eq_assist_triv:
-  "istuple_update_accessor_eq_assist upd acc v f v' x
-     \<Longrightarrow> istuple_update_accessor_eq_assist upd acc v f v' x"
-  by assumption
-
-lemma istuple_update_accessor_cong_from_eq:
-  "istuple_update_accessor_eq_assist upd acc v f v' x
-     \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
-  by (simp add: istuple_update_accessor_eq_assist_def)
-
-lemma o_eq_dest:
-  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
-  apply (clarsimp simp: o_def)
-  apply (erule fun_cong)
-  done
-
-lemma o_eq_elim:
-  "\<lbrakk> a o b = c o d; \<lbrakk> \<And>v. a (b v) = c (d v) \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
-  apply (erule meta_mp)
-  apply (erule o_eq_dest)
-  done
-
-lemma istuple_surjective_proof_assistI:
-  "f x = y \<Longrightarrow>
-     istuple_surjective_proof_assist x y f"
-  by (simp add: istuple_surjective_proof_assist_def)
-
-lemma istuple_surjective_proof_assist_idE:
-  "istuple_surjective_proof_assist x y id \<Longrightarrow> x = y"
-  by (simp add: istuple_surjective_proof_assist_def)
-
-locale isomorphic_tuple =
-  fixes isom :: "('a, 'b, 'c) tuple_isomorphism" 
-       and repr and abst
-  defines "repr \<equiv> fst (Rep_tuple_isomorphism isom)"
-  defines "abst \<equiv> snd (Rep_tuple_isomorphism isom)"
-  assumes repr_inv: "\<And>x. abst (repr x) = x"
-  assumes abst_inv: "\<And>y. repr (abst y) = y"
-
-begin
-
-lemma repr_inj:
-  "(repr x = repr y) = (x = y)"
-  apply (rule iffI, simp_all)
-  apply (drule_tac f=abst in arg_cong, simp add: repr_inv)
-  done
-
-lemma abst_inj:
-  "(abst x = abst y) = (x = y)"
-  apply (rule iffI, simp_all)
-  apply (drule_tac f=repr in arg_cong, simp add: abst_inv)
-  done
-
-lemma split_Rep:
-  "split f (Rep_tuple_isomorphism isom)
-     = f repr abst"
-  by (simp add: split_def repr_def abst_def)
-
-lemmas simps = Let_def split_Rep repr_inv abst_inv repr_inj abst_inj
-
-lemma istuple_access_update_fst_fst:
-  "\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
-    (f o istuple_fst isom) o (istuple_fst_update isom o h) g
-          = j o (f o istuple_fst isom)"
-  by (clarsimp simp: istuple_fst_update_def istuple_fst_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_access_update_snd_snd:
-  "\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
-    (f o istuple_snd isom) o (istuple_snd_update isom o h) g
-          = j o (f o istuple_snd isom)"
-  by (clarsimp simp: istuple_snd_update_def istuple_snd_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_access_update_fst_snd:
-  "(f o istuple_fst isom) o (istuple_snd_update isom o h) g
-          = id o (f o istuple_fst isom)"
-  by (clarsimp simp: istuple_snd_update_def istuple_fst_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_access_update_snd_fst:
-  "(f o istuple_snd isom) o (istuple_fst_update isom o h) g
-          = id o (f o istuple_snd isom)"
-  by (clarsimp simp: istuple_fst_update_def istuple_snd_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_update_swap_fst_fst:
-  "\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
-    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
-          = (istuple_fst_update isom o j) g o (istuple_fst_update isom o h) f"
-  by (clarsimp simp: istuple_fst_update_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_update_swap_snd_snd:
-  "\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
-    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
-          = (istuple_snd_update isom o j) g o (istuple_snd_update isom o h) f"
-  by (clarsimp simp: istuple_snd_update_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_update_swap_fst_snd:
-  "(istuple_snd_update isom o h) f o (istuple_fst_update isom o j) g
-          = (istuple_fst_update isom o j) g o (istuple_snd_update isom o h) f"
-  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_update_swap_snd_fst:
-  "(istuple_fst_update isom o h) f o (istuple_snd_update isom o j) g
-          = (istuple_snd_update isom o j) g o (istuple_fst_update isom o h) f"
-  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
-             intro!: ext elim!: o_eq_elim)
-
-lemma istuple_update_compose_fst_fst:
-  "\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
-    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
-          = (istuple_fst_update isom o k) (f o g)"
-  by (fastsimp simp: istuple_fst_update_def simps
-             intro!: ext elim!: o_eq_elim dest: fun_cong)
-
-lemma istuple_update_compose_snd_snd:
-  "\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
-    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
-          = (istuple_snd_update isom o k) (f o g)"
-  by (fastsimp simp: istuple_snd_update_def simps
-             intro!: ext elim!: o_eq_elim dest: fun_cong)
-
-lemma istuple_surjective_proof_assist_step:
-  "\<lbrakk> istuple_surjective_proof_assist v a (istuple_fst isom o f);
-     istuple_surjective_proof_assist v b (istuple_snd isom o f) \<rbrakk>
-      \<Longrightarrow> istuple_surjective_proof_assist v (istuple_cons isom a b) f"
-  by (clarsimp simp: istuple_surjective_proof_assist_def simps
-                     istuple_fst_def istuple_snd_def istuple_cons_def)
-
-lemma istuple_fst_update_accessor_cong_assist:
-  "istuple_update_accessor_cong_assist f g \<Longrightarrow>
-      istuple_update_accessor_cong_assist (istuple_fst_update isom o f) (g o istuple_fst isom)"
-  by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
-                     istuple_fst_update_def istuple_fst_def)
-
-lemma istuple_snd_update_accessor_cong_assist:
-  "istuple_update_accessor_cong_assist f g \<Longrightarrow>
-      istuple_update_accessor_cong_assist (istuple_snd_update isom o f) (g o istuple_snd isom)"
-  by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
-                     istuple_snd_update_def istuple_snd_def)
-
-lemma istuple_fst_update_accessor_eq_assist:
-  "istuple_update_accessor_eq_assist f g a u a' v \<Longrightarrow>
-      istuple_update_accessor_eq_assist (istuple_fst_update isom o f) (g o istuple_fst isom)
-              (istuple_cons isom a b) u (istuple_cons isom a' b) v"
-  by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_fst_update_def istuple_fst_def
-                     istuple_update_accessor_cong_assist_def istuple_cons_def simps)
-
-lemma istuple_snd_update_accessor_eq_assist:
-  "istuple_update_accessor_eq_assist f g b u b' v \<Longrightarrow>
-      istuple_update_accessor_eq_assist (istuple_snd_update isom o f) (g o istuple_snd isom)
-              (istuple_cons isom a b) u (istuple_cons isom a b') v"
-  by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_snd_update_def istuple_snd_def
-                     istuple_update_accessor_cong_assist_def istuple_cons_def simps)
-
-lemma istuple_cons_conj_eqI:
-  "\<lbrakk> (a = c \<and> b = d \<and> P) = Q \<rbrakk> \<Longrightarrow>
-    (istuple_cons isom a b = istuple_cons isom c d \<and> P) = Q"
-  by (clarsimp simp: istuple_cons_def simps)
-
-lemmas intros =
-    istuple_access_update_fst_fst
-    istuple_access_update_snd_snd
-    istuple_access_update_fst_snd
-    istuple_access_update_snd_fst
-    istuple_update_swap_fst_fst
-    istuple_update_swap_snd_snd
-    istuple_update_swap_fst_snd
-    istuple_update_swap_snd_fst
-    istuple_update_compose_fst_fst
-    istuple_update_compose_snd_snd
-    istuple_surjective_proof_assist_step
-    istuple_fst_update_accessor_eq_assist
-    istuple_snd_update_accessor_eq_assist
-    istuple_fst_update_accessor_cong_assist
-    istuple_snd_update_accessor_cong_assist
-    istuple_cons_conj_eqI
-
-end
-
-lemma isomorphic_tuple_intro:
-  assumes repr_inj: "\<And>x y. (repr x = repr y) = (x = y)"
-     and abst_inv: "\<And>z. repr (abst z) = z"
-  shows "v \<equiv> TupleIsomorphism repr abst \<Longrightarrow> isomorphic_tuple v"
-  apply (rule isomorphic_tuple.intro,
-         simp_all add: TupleIsomorphism_def Abs_tuple_isomorphism_inverse
-                       tuple_isomorphism_def abst_inv)
-  apply (cut_tac x="abst (repr x)" and y="x" in repr_inj)
-  apply (simp add: abst_inv)
-  done
-
-definition
- "tuple_istuple \<equiv> TupleIsomorphism id id"
-
-lemma tuple_istuple:
-  "isomorphic_tuple tuple_istuple"
-  by (simp add: isomorphic_tuple_intro[OF _ _ reflexive] tuple_istuple_def)
-
-lemma refl_conj_eq:
-  "Q = R \<Longrightarrow> (P \<and> Q) = (P \<and> R)"
-  by simp
-
-lemma istuple_UNIV_I: "\<And>x. x\<in>UNIV \<equiv> True"
-  by simp
-
-lemma istuple_True_simp: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
-  by simp
+subsection {* Record package *}
 
 use "Tools/record.ML"
 setup Record.setup
 
+hide (open) const TupleIsomorphism repr abst istuple_fst istuple_snd
+  istuple_fst_update istuple_snd_update istuple_cons
+  istuple_surjective_proof_assist istuple_update_accessor_cong_assist
+  istuple_update_accessor_eq_assist tuple_istuple
+
 end
--- a/src/HOL/Tools/record.ML	Tue Nov 10 16:11:39 2009 +0100
+++ b/src/HOL/Tools/record.ML	Tue Nov 10 16:11:43 2009 +0100
@@ -150,7 +150,8 @@
     val thm_thy =
       cdef_thy
       |> IsTupleThms.map (Symtab.insert Thm.eq_thm_prop (isom_name, istuple))
-      |> Sign.parent_path;
+      |> Sign.parent_path
+      |> Code.add_default_eqn isom_def;
   in
     ((isom, cons $ isom), thm_thy)
   end;