Renamed accessible part for predicates to accp.
authorberghofe
Wed, 11 Jul 2007 11:27:46 +0200
changeset 23754 75873e94357c
parent 23753 d74a16b84e05
child 23755 1c4672d130b1
Renamed accessible part for predicates to accp.
src/HOL/Library/Kleene_Algebras.thy
src/HOL/Library/SCT_Interpretation.thy
--- a/src/HOL/Library/Kleene_Algebras.thy	Wed Jul 11 11:25:24 2007 +0200
+++ b/src/HOL/Library/Kleene_Algebras.thy	Wed Jul 11 11:27:46 2007 +0200
@@ -445,7 +445,7 @@
   by induct (auto simp:mk_tcl_lemma1 mk_tcl_lemma2)
 
 lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x"
-  by (rule mk_tcl_graph.induct) (auto intro:accI elim:mk_tcl_rel.cases)
+  by (rule mk_tcl_graph.induct) (auto intro:accp.accI elim:mk_tcl_rel.cases)
 
 lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0"
   unfolding mk_tcl_def
--- a/src/HOL/Library/SCT_Interpretation.thy	Wed Jul 11 11:25:24 2007 +0200
+++ b/src/HOL/Library/SCT_Interpretation.thy	Wed Jul 11 11:27:46 2007 +0200
@@ -13,34 +13,34 @@
   "idseq R s x = (s 0 = x \<and> (\<forall>i. R (s (Suc i)) (s i)))"
 
 lemma not_acc_smaller:
-  assumes notacc: "\<not> acc R x"
-  shows "\<exists>y. R y x \<and> \<not> acc R y"
+  assumes notacc: "\<not> accp R x"
+  shows "\<exists>y. R y x \<and> \<not> accp R y"
 proof (rule classical)
   assume "\<not> ?thesis"
-  hence "\<And>y. R y x \<Longrightarrow> acc R y" by blast
-  with accI have "acc R x" .
+  hence "\<And>y. R y x \<Longrightarrow> accp R y" by blast
+  with accp.accI have "accp R x" .
   with notacc show ?thesis by contradiction
 qed
 
 lemma non_acc_has_idseq:
-  assumes "\<not> acc R x"
+  assumes "\<not> accp R x"
   shows "\<exists>s. idseq R s x"
 proof -
   
-  have	"\<exists>f. \<forall>x. \<not>acc R x \<longrightarrow> R (f x) x \<and> \<not>acc R (f x)"
+  have	"\<exists>f. \<forall>x. \<not>accp R x \<longrightarrow> R (f x) x \<and> \<not>accp R (f x)"
 	by (rule choice, auto simp:not_acc_smaller)
   
   then obtain f where
-	in_R: "\<And>x. \<not>acc R x \<Longrightarrow> R (f x) x"
-	and nia: "\<And>x. \<not>acc R x \<Longrightarrow> \<not>acc R (f x)"
+	in_R: "\<And>x. \<not>accp R x \<Longrightarrow> R (f x) x"
+	and nia: "\<And>x. \<not>accp R x \<Longrightarrow> \<not>accp R (f x)"
 	by blast
   
   let ?s = "\<lambda>i. (f ^ i) x"
   
   {
 	fix i
-	have "\<not>acc R (?s i)"
-	  by (induct i) (auto simp:nia `\<not>acc R x`)
+	have "\<not>accp R (?s i)"
+	  by (induct i) (auto simp:nia `\<not>accp R x`)
 	hence "R (f (?s i)) (?s i)"
 	  by (rule in_R)
   }
@@ -281,10 +281,10 @@
   assumes R: "R = mk_rel RDs"
   assumes sound: "sound_int \<A> RDs M"
   assumes "SCT \<A>"
-  shows "\<forall>x. acc R x"
+  shows "\<forall>x. accp R x"
 proof (rule, rule classical)
   fix x
-  assume "\<not> acc R x"
+  assume "\<not> accp R x"
   with non_acc_has_idseq	
   have "\<exists>s. idseq R s x" .
   then obtain s where "idseq R s x" ..
@@ -409,7 +409,7 @@
   qed
   ultimately have False
     by (rule no_inf_desc_nat_sequence[of "Suc n"]) simp
-  thus "acc R x" ..
+  thus "accp R x" ..
 qed
 
 end