Renamed accessible part for predicates to accp.
--- a/src/HOL/Library/Kleene_Algebras.thy Wed Jul 11 11:25:24 2007 +0200
+++ b/src/HOL/Library/Kleene_Algebras.thy Wed Jul 11 11:27:46 2007 +0200
@@ -445,7 +445,7 @@
by induct (auto simp:mk_tcl_lemma1 mk_tcl_lemma2)
lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x"
- by (rule mk_tcl_graph.induct) (auto intro:accI elim:mk_tcl_rel.cases)
+ by (rule mk_tcl_graph.induct) (auto intro:accp.accI elim:mk_tcl_rel.cases)
lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0"
unfolding mk_tcl_def
--- a/src/HOL/Library/SCT_Interpretation.thy Wed Jul 11 11:25:24 2007 +0200
+++ b/src/HOL/Library/SCT_Interpretation.thy Wed Jul 11 11:27:46 2007 +0200
@@ -13,34 +13,34 @@
"idseq R s x = (s 0 = x \<and> (\<forall>i. R (s (Suc i)) (s i)))"
lemma not_acc_smaller:
- assumes notacc: "\<not> acc R x"
- shows "\<exists>y. R y x \<and> \<not> acc R y"
+ assumes notacc: "\<not> accp R x"
+ shows "\<exists>y. R y x \<and> \<not> accp R y"
proof (rule classical)
assume "\<not> ?thesis"
- hence "\<And>y. R y x \<Longrightarrow> acc R y" by blast
- with accI have "acc R x" .
+ hence "\<And>y. R y x \<Longrightarrow> accp R y" by blast
+ with accp.accI have "accp R x" .
with notacc show ?thesis by contradiction
qed
lemma non_acc_has_idseq:
- assumes "\<not> acc R x"
+ assumes "\<not> accp R x"
shows "\<exists>s. idseq R s x"
proof -
- have "\<exists>f. \<forall>x. \<not>acc R x \<longrightarrow> R (f x) x \<and> \<not>acc R (f x)"
+ have "\<exists>f. \<forall>x. \<not>accp R x \<longrightarrow> R (f x) x \<and> \<not>accp R (f x)"
by (rule choice, auto simp:not_acc_smaller)
then obtain f where
- in_R: "\<And>x. \<not>acc R x \<Longrightarrow> R (f x) x"
- and nia: "\<And>x. \<not>acc R x \<Longrightarrow> \<not>acc R (f x)"
+ in_R: "\<And>x. \<not>accp R x \<Longrightarrow> R (f x) x"
+ and nia: "\<And>x. \<not>accp R x \<Longrightarrow> \<not>accp R (f x)"
by blast
let ?s = "\<lambda>i. (f ^ i) x"
{
fix i
- have "\<not>acc R (?s i)"
- by (induct i) (auto simp:nia `\<not>acc R x`)
+ have "\<not>accp R (?s i)"
+ by (induct i) (auto simp:nia `\<not>accp R x`)
hence "R (f (?s i)) (?s i)"
by (rule in_R)
}
@@ -281,10 +281,10 @@
assumes R: "R = mk_rel RDs"
assumes sound: "sound_int \<A> RDs M"
assumes "SCT \<A>"
- shows "\<forall>x. acc R x"
+ shows "\<forall>x. accp R x"
proof (rule, rule classical)
fix x
- assume "\<not> acc R x"
+ assume "\<not> accp R x"
with non_acc_has_idseq
have "\<exists>s. idseq R s x" .
then obtain s where "idseq R s x" ..
@@ -409,7 +409,7 @@
qed
ultimately have False
by (rule no_inf_desc_nat_sequence[of "Suc n"]) simp
- thus "acc R x" ..
+ thus "accp R x" ..
qed
end