minor tidying
authorpaulson
Wed, 27 Apr 2005 16:41:03 +0200
changeset 15863 78db9506cc78
parent 15862 67574c1b15a0
child 15864 cc1b4a289321
minor tidying
src/ZF/Induct/Comb.thy
src/ZF/ex/Primes.thy
--- a/src/ZF/Induct/Comb.thy	Wed Apr 27 16:40:27 2005 +0200
+++ b/src/ZF/Induct/Comb.thy	Wed Apr 27 16:41:03 2005 +0200
@@ -39,7 +39,7 @@
   "p ---> q" == "<p,q> \<in> contract^*"
 
 syntax (xsymbols)
-  "app"    :: "[i, i] => i"    	     (infixl "\<bullet>" 90)
+  "comb.app"    :: "[i, i] => i"    	     (infixl "\<bullet>" 90)
 
 inductive
   domains "contract" \<subseteq> "comb \<times> comb"
@@ -158,8 +158,6 @@
   and S_contractE [elim!]: "S -1-> r"
   and Ap_contractE [elim!]: "p\<bullet>q -1-> r"
 
-declare contract.Ap1 [intro] contract.Ap2 [intro]
-
 lemma I_contract_E: "I -1-> r ==> P"
   by (auto simp add: I_def)
 
--- a/src/ZF/ex/Primes.thy	Wed Apr 27 16:40:27 2005 +0200
+++ b/src/ZF/ex/Primes.thy	Wed Apr 27 16:41:03 2005 +0200
@@ -2,33 +2,32 @@
     ID:         $Id$
     Author:     Christophe Tabacznyj and Lawrence C Paulson
     Copyright   1996  University of Cambridge
+*)
 
-The "divides" relation, the greatest common divisor and Euclid's algorithm
-*)
+header{*The Divides Relation and Euclid's algorithm for the GCD*}
 
 theory Primes = Main:
 constdefs
   divides :: "[i,i]=>o"              (infixl "dvd" 50) 
     "m dvd n == m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
 
-  is_gcd  :: "[i,i,i]=>o"            (* great common divisor *)
+  is_gcd  :: "[i,i,i]=>o"     --{*definition of great common divisor*}
     "is_gcd(p,m,n) == ((p dvd m) & (p dvd n))   &
                        (\<forall>d\<in>nat. (d dvd m) & (d dvd n) --> d dvd p)"
 
-  gcd     :: "[i,i]=>i"              (* gcd by Euclid's algorithm *)
+  gcd     :: "[i,i]=>i"       --{*Euclid's algorithm for the gcd*}
     "gcd(m,n) == transrec(natify(n),
 			%n f. \<lambda>m \<in> nat.
 			        if n=0 then m else f`(m mod n)`n) ` natify(m)"
 
-  coprime :: "[i,i]=>o"              (* coprime relation *)
+  coprime :: "[i,i]=>o"       --{*the coprime relation*}
     "coprime(m,n) == gcd(m,n) = 1"
   
-  prime   :: i                     (* set of prime numbers *)
+  prime   :: i                --{*the set of prime numbers*}
    "prime == {p \<in> nat. 1<p & (\<forall>m \<in> nat. m dvd p --> m=1 | m=p)}"
 
-(************************************************)
-(** Divides Relation                           **)
-(************************************************)
+
+subsection{*The Divides Relation*}
 
 lemma dvdD: "m dvd n ==> m \<in> nat & n \<in> nat & (\<exists>k \<in> nat. n = m#*k)"
 by (unfold divides_def, assumption)
@@ -42,50 +41,42 @@
 
 
 lemma dvd_0_right [simp]: "m \<in> nat ==> m dvd 0"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (fast intro: nat_0I mult_0_right [symmetric])
 done
 
 lemma dvd_0_left: "0 dvd m ==> m = 0"
-by (unfold divides_def, force)
+by (simp add: divides_def)
 
 lemma dvd_refl [simp]: "m \<in> nat ==> m dvd m"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (fast intro: nat_1I mult_1_right [symmetric])
 done
 
 lemma dvd_trans: "[| m dvd n; n dvd p |] ==> m dvd p"
-apply (unfold divides_def)
-apply (fast intro: mult_assoc mult_type)
-done
+by (auto simp add: divides_def intro: mult_assoc mult_type)
 
 lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m=n"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (force dest: mult_eq_self_implies_10
              simp add: mult_assoc mult_eq_1_iff)
 done
 
 lemma dvd_mult_left: "[|(i#*j) dvd k; i \<in> nat|] ==> i dvd k"
-apply (unfold divides_def)
-apply (simp add: mult_assoc, blast)
-done
+by (auto simp add: divides_def mult_assoc)
 
 lemma dvd_mult_right: "[|(i#*j) dvd k; j \<in> nat|] ==> j dvd k"
-apply (unfold divides_def, clarify)
+apply (simp add: divides_def, clarify)
 apply (rule_tac x = "i#*k" in bexI)
 apply (simp add: mult_ac)
 apply (rule mult_type)
 done
 
 
-(************************************************)
-(** Greatest Common Divisor                    **)
-(************************************************)
-
-(* GCD by Euclid's Algorithm *)
+subsection{*Euclid's Algorithm for the GCD*}
 
 lemma gcd_0 [simp]: "gcd(m,0) = natify(m)"
-apply (unfold gcd_def)
+apply (simp add: gcd_def)
 apply (subst transrec, simp)
 done
 
@@ -97,7 +88,7 @@
 
 lemma gcd_non_0_raw: 
     "[| 0<n;  n \<in> nat |] ==> gcd(m,n) = gcd(n, m mod n)"
-apply (unfold gcd_def)
+apply (simp add: gcd_def)
 apply (rule_tac P = "%z. ?left (z) = ?right" in transrec [THEN ssubst])
 apply (simp add: ltD [THEN mem_imp_not_eq, THEN not_sym] 
                  mod_less_divisor [THEN ltD])
@@ -112,12 +103,12 @@
 by (simp (no_asm_simp) add: gcd_non_0)
 
 lemma dvd_add: "[| k dvd a; k dvd b |] ==> k dvd (a #+ b)"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (fast intro: add_mult_distrib_left [symmetric] add_type)
 done
 
 lemma dvd_mult: "k dvd n ==> k dvd (m #* n)"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (fast intro: mult_left_commute mult_type)
 done
 
@@ -132,7 +123,7 @@
 
 lemma dvd_mod_imp_dvd_raw:
      "[| a \<in> nat; b \<in> nat; k dvd b; k dvd (a mod b) |] ==> k dvd a"
-apply (case_tac "b=0")
+apply (case_tac "b=0") 
  apply (simp add: DIVISION_BY_ZERO_MOD)
 apply (blast intro: mod_div_equality [THEN subst]
              elim: dvdE 
@@ -166,9 +157,9 @@
 by (blast intro: gcd_induct_lemma)
 
 
+subsection{*Basic Properties of @{term gcd}*}
 
-(* gcd type *)
-
+text{*type of gcd*}
 lemma gcd_type [simp,TC]: "gcd(m, n) \<in> nat"
 apply (subgoal_tac "gcd (natify (m), natify (n)) \<in> nat")
 apply simp
@@ -178,7 +169,7 @@
 done
 
 
-(* Property 1: gcd(a,b) divides a and b *)
+text{* Property 1: gcd(a,b) divides a and b *}
 
 lemma gcd_dvd_both:
      "[| m \<in> nat; n \<in> nat |] ==> gcd (m, n) dvd m & gcd (m, n) dvd n"
@@ -197,17 +188,17 @@
 apply auto
 done
 
-(* if f divides a and b then f divides gcd(a,b) *)
+text{* if f divides a and b then f divides gcd(a,b) *}
 
 lemma dvd_mod: "[| f dvd a; f dvd b |] ==> f dvd (a mod b)"
-apply (unfold divides_def)
+apply (simp add: divides_def)
 apply (case_tac "b=0")
  apply (simp add: DIVISION_BY_ZERO_MOD, auto)
 apply (blast intro: mod_mult_distrib2 [symmetric])
 done
 
-(* Property 2: for all a,b,f naturals, 
-               if f divides a and f divides b then f divides gcd(a,b)*)
+text{* Property 2: for all a,b,f naturals, 
+               if f divides a and f divides b then f divides gcd(a,b)*}
 
 lemma gcd_greatest_raw [rule_format]:
      "[| m \<in> nat; n \<in> nat; f \<in> nat |]    
@@ -226,20 +217,22 @@
 by (blast intro!: gcd_greatest gcd_dvd1 gcd_dvd2 intro: dvd_trans)
 
 
-(* GCD PROOF: GCD exists and gcd fits the definition *)
+subsection{*The Greatest Common Divisor*}
+
+text{*The GCD exists and function gcd computes it.*}
 
 lemma is_gcd: "[| m \<in> nat; n \<in> nat |] ==> is_gcd(gcd(m,n), m, n)"
 by (simp add: is_gcd_def)
 
-(* GCD is unique *)
+text{*The GCD is unique*}
 
 lemma is_gcd_unique: "[|is_gcd(m,a,b); is_gcd(n,a,b); m\<in>nat; n\<in>nat|] ==> m=n"
-apply (unfold is_gcd_def)
+apply (simp add: is_gcd_def)
 apply (blast intro: dvd_anti_sym)
 done
 
 lemma is_gcd_commute: "is_gcd(k,m,n) <-> is_gcd(k,n,m)"
-by (unfold is_gcd_def, blast)
+by (simp add: is_gcd_def, blast)
 
 lemma gcd_commute_raw: "[| m \<in> nat; n \<in> nat |] ==> gcd(m,n) = gcd(n,m)"
 apply (rule is_gcd_unique)
@@ -274,7 +267,36 @@
 by (simp add: gcd_commute [of 1])
 
 
-(* Multiplication laws *)
+subsection{*Addition laws*}
+
+lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
+apply (subgoal_tac "gcd (m #+ natify (n), natify (n)) = gcd (m, natify (n))")
+apply simp
+apply (case_tac "natify (n) = 0")
+apply (auto simp add: Ord_0_lt_iff gcd_non_0)
+done
+
+lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
+apply (rule gcd_commute [THEN trans])
+apply (subst add_commute, simp)
+apply (rule gcd_commute)
+done
+
+lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
+by (subst add_commute, rule gcd_add2)
+
+lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
+apply (erule nat_induct)
+apply (auto simp add: gcd_add2 add_assoc)
+done
+
+lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
+apply (cut_tac k = "natify (k)" in gcd_add_mult_raw)
+apply auto
+done
+
+
+subsection{* Multiplication Laws*}
 
 lemma gcd_mult_distrib2_raw:
      "[| k \<in> nat; m \<in> nat; n \<in> nat |]  
@@ -310,59 +332,28 @@
 
 lemma prime_imp_relprime: 
      "[| p \<in> prime;  ~ (p dvd n);  n \<in> nat |] ==> gcd (p, n) = 1"
-apply (unfold prime_def, clarify)
+apply (simp add: prime_def, clarify)
 apply (drule_tac x = "gcd (p,n)" in bspec)
 apply auto
 apply (cut_tac m = p and n = n in gcd_dvd2, auto)
 done
 
 lemma prime_into_nat: "p \<in> prime ==> p \<in> nat"
-by (unfold prime_def, auto)
+by (simp add: prime_def)
 
 lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p\<noteq>0"
-by (unfold prime_def, auto)
+by (auto simp add: prime_def)
 
 
-(*This theorem leads immediately to a proof of the uniqueness of
-  factorization.  If p divides a product of primes then it is
-  one of those primes.*)
+text{*This theorem leads immediately to a proof of the uniqueness of
+  factorization.  If @{term p} divides a product of primes then it is
+  one of those primes.*}
 
 lemma prime_dvd_mult:
      "[|p dvd m #* n; p \<in> prime; m \<in> nat; n \<in> nat |] ==> p dvd m \<or> p dvd n"
 by (blast intro: relprime_dvd_mult prime_imp_relprime prime_into_nat)
 
 
-(** Addition laws **)
-
-lemma gcd_add1 [simp]: "gcd (m #+ n, n) = gcd (m, n)"
-apply (subgoal_tac "gcd (m #+ natify (n), natify (n)) = gcd (m, natify (n))")
-apply simp
-apply (case_tac "natify (n) = 0")
-apply (auto simp add: Ord_0_lt_iff gcd_non_0)
-done
-
-lemma gcd_add2 [simp]: "gcd (m, m #+ n) = gcd (m, n)"
-apply (rule gcd_commute [THEN trans])
-apply (subst add_commute, simp)
-apply (rule gcd_commute)
-done
-
-lemma gcd_add2' [simp]: "gcd (m, n #+ m) = gcd (m, n)"
-by (subst add_commute, rule gcd_add2)
-
-lemma gcd_add_mult_raw: "k \<in> nat ==> gcd (m, k #* m #+ n) = gcd (m, n)"
-apply (erule nat_induct)
-apply (auto simp add: gcd_add2 add_assoc)
-done
-
-lemma gcd_add_mult: "gcd (m, k #* m #+ n) = gcd (m, n)"
-apply (cut_tac k = "natify (k)" in gcd_add_mult_raw)
-apply auto
-done
-
-
-(* More multiplication laws *)
-
 lemma gcd_mult_cancel_raw:
      "[|gcd (k,n) = 1; m \<in> nat; n \<in> nat|] ==> gcd (k #* m, n) = gcd (m, n)"
 apply (rule dvd_anti_sym)
@@ -380,7 +371,7 @@
 done
 
 
-(*** The square root of a prime is irrational: key lemma ***)
+subsection{*The Square Root of a Prime is Irrational: Key Lemma*}
 
 lemma prime_dvd_other_side:
      "\<lbrakk>n#*n = p#*(k#*k); p \<in> prime; n \<in> nat\<rbrakk> \<Longrightarrow> p dvd n"